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For a successful technology, re-
ality must take precedence over
public relations, for Nature cannot
be fooled.

Richard Feynman

Introduction

In this thesis manufacturing systems and model-basedaltantdesign, as well as
their combinations are investigated. Due to increasingstribl complexity and the
costs involved, the need for efficient model-based manufagf feedback control
strategies, to guarantee that the manufacturing systematgsein an optimal way,
becomes stronger.

1.1 Manufacturing systems

A manufacturing system, is a transformation system in witiehactual fabrication of
products takes place. In this sense manufacturing systenueéined as the means for
transforming or converting raw material inputs into usg@idduct outputs. The input-
conversion-output sequence is a useful way to concepéuadanufacturing systems,
beginning with the smallest unit of production activity, isth one commonly refers
to as anoperation[1]. An operation is the smallest production step in the aller
process of producing a product that leads to the final oupuésourceis necessary
for the execution of an operation. processs a set of consecutive operations which
complete a significant stage in the manufacturing of a proddaterial is the operand
that undergoes the process. The materials used as inputdaafacturing system are
calledraw materials while the outputs of a manufacturing system are caleducts
Products are created by different operations on one or naovematerials. The way
these operations are performed is defined bgcipe A recipe is a list of operations
that have to be executed. A recipe tells which operations bkabe performed, what
raw material is involved and in which order the operationsshta be executed.

A rough classification of manufacturing systems can be mgdmbsidering the
universality of the resources and the route flexibility desthe manufacturing system.
This results in the classd®w shopandjob shop[2]. A flow shop is characterized
by dedicated and a fixed route. Flow shops are product-edem@anufacturing sys-
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tems. In a job shop there are universal resources which casdukfor many different
operations and many possible routes. Job shops are progessed manufacturing
systems. The producing of high-volume standardized prisdna flow shop results
in continuous use of the facilities. In contrast the proaucbf small-batch variant
products in a job shop results in intermittent demand forstysem’s facilities, and
the material flows from one process to the next is intermiitgen

In order to explain the basic "physics” of manufacturingteyss a simple funnel
model is introduced. The funnel model for manufacturingesys is proposed in [3].
The model, which is based on the idea that every work statiom imanufacturing
system can be abstracted intiuane| see the left part of Figure 1.1. The funnel model
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Figure 1.1: Funnel model of manufacturing systems and throughput dagr

can be employed as a tool to help in understanding the mamuifag process. All the
input orders want to pass the funnel, but they cannot getiirat once because of the
capacity limit. The output orders correspond to the prangssapacity. Hence, part
of the input orders form an inventory of waiting orders, whis depicted as work-in-
process in Figure 1.1. The mean flow time (or lead time) of aleois proportional
to the work-in-process, and it is inverse proportional ® ¢apacity. The throughput
diagram, presented in the right part of Figure 1.1, reprsgbe work input and output
at the work station over a period of time. At the start of theexation period,, one
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has to draw the input trend curve. The input trend curve isiobt by adding up the
input order work contents over time within the period. Thgoticurve is constructed
by adding up the completed order work contents over timeiwitie period. At the
end of the observation tintg there is also a certain inventory, i.e. @md inventoryn
Figure 1.1, which can be seen as the begin inventory for tkeabservation period.
Further, the throughput diagram shows how the key valuesookin-process, flow
time and throughput (production rate) are related. Flovwetindefined as the time
period between the time when an order arrives at the funretltla@ time when it
leaves the funnel. The mean flow time is determined by cdiaglahe arithmetic
mean of individual flow times. For a manufacturing systensteady stat®peration
the funnel model of the manufacturing system can be desthp¢he so-called funnel
formula also known as Little’s law [4, 5]

W= ¢m'5m7 (1-1)

whereW, is the mean Work-In-Progress (WIR is the mean flow time, andy, is
the mean throughput [output orders/period].

A typical manufacturing problem that one could be interésteis how to meet
the demands of customers meanwhile keeping a high profiheocompany. One of
the measures is to have a reliable short delivery time ofrerdéth a high produc-
tion rate (throughput) of the manufacturing system. Rédiahort delivery times can
be ensured by reliable short flow times. The objectives ofufaaturing are to ob-
tain short mean flow times of orders and reasonable high ¢fimout of the system.
Both mean flow time and throughput can be adjusted by altehiagnean work-in-
process. A high WIP generally results a high throughputléads to long flow times.
Low WIP may lead to short flow time, but it results in a low thgtwput. Obviously
mean throughput and mean flow time have a conflicting relaffon a manufacturing
system insteady stat@peration a graphical relation between throughput and mean
flow time as function of the mean work-in-progress can beinbthresulting in Fig-
ure 1.2 [5]. If the WIP is varied within a wide range, a corm@sging variation of
the mean flow time will be the result, see Figure 1.2. The dledaritical pointson
the idealized mean flow time and throughput curves corre$fma WIP at which the
manufacturing system operates at its full capacity, i.eximam throughput, whereas
the flow time attains its minimum value which is equal to theamprocessing or oper-
ation time. By increasing the WIP from this point the thropghdoes not change and
equals the capacity of the manufacturing system, but thearfil@a time increases pro-
portionally with respect to the WIP. Note that the idealizegves in Figure 1.2 obey
Little’s law given in (1.1). By decreasing the WIP from théical point the flow time
will remain constant and equal to the processing time of theufacturing system,
while the throughput will proportionally decrease. Hertbe, characteristic curves in




CHAPTER 1. INTRODUCTION

A Om
_______ Y
e o _
sy practical
critical mean throughput
points practical

mean flow time

mean flow time [time units] /
mean throughput [orders/ time unit]

‘\\ u/ o ¢m
\\\ ___________ N

\

g I practical minimum
L1 4 minimum mean flow time
Ll Pm |

A Ll

mean WIP [amount of orders]

Figure 1.2: The characteristic curves.

Figure 1.2 are divided into two parts. The shadowed part hadihshadowed part.
Within the unshadowed part machines in the manufacturisgesy will be idle or
waiting for orders from time to time. The shadowed part repngs the case in which
the manufacturing system is always busy. The critical goimdicated in Figure 1.2
are obviously the desiresteady statavorking points. Thepractical critical points
are expected somewhat different from the theoretical ondsee more shifted to the
right (due to variability that is present in the system ingtie). The dark shadowed
part indicates a desiresteady statevorking region for the manufacturing system.
One of the goals afontrolin the context of manufacturing systems is to dynamically
stabilize the manufacturing system to the desgtdidy statevorking points. In the
next section control is introduced in the context of manufaag systems.

1.2 Manufacturing systems and their control

In the field of manufacturing systems, control is an impdriasue, which appears
at various operation levels. At the process level, for eXamgontrol is necessary
in order to assure properly working processes. At an intdiate level, sequencing
and scheduling rules are used to decide which of the prodhatsare waiting, in

front of a machine, should be processed first. At the top lef&l manufacturing

system, the product streams through the system are cautrtl satisfy customer
demands in some optimal sense. Here, the definition of optiarabe interpreted




1.2. MANUFACTURING SYSTEMS AND THEIR CONTROL

in various ways, such as “with the least possible costs imgesf money”, “in the
shortest possible time”. In this thesis, the attention sufsed on the top level of
control as just defined. The word control related to manufémg systems should in
the remainder of the thesis therefore be interpreted irctrisext.

Many heuristic methods such as Just-In-Time productioh)(Hanban pull sys-
tem, Material Requirements Planning (MRP), ManufactuRegource Planning (MRP
1), Queueing Models and Load Oriented Order Release (LO®&® e.g. [2] and ref-
erences therein, appear in the literature in relation toufamuring system control.
From a strictly system theoretical point of view one coulglerwhether the word con-
trol in relation to the just mentioned heuristic is justified many cases the heuristic
methods do not even have a clésedback mechanismsghich is necessary when one
wants to react meaningfully on unforseen changes and pattans occurring in the
system. Although the usage of the word control might be abirseelation to the
afore mentioned heuristics it is employed just for the edi$ermulation.

The application of MRP to manufacturing control is cons@tkeas the big break-
through in the 1970’s within the manufacturing society. sSTapproach ties together
in a computer program all the parts that go into complicatedipcts. This enables
production planners to quickly adjust production scheslaled inventory purchases
to meet changing demands for final products [6]. As soon as M#tRidered re-
sources as well as materials, it was called MRP II. JIT prédads clearly the major
breakthrough in manufacturing philosophy in the 1980'q. idlan integrated set of
activities designed to achieve high-volume productiomgsninimal inventories of
parts that arrive at the workplace “just-in-time”. The Kanbpull system is simple
and self-regulating, which provides good managementilityibThis system is de-
signed to produce only the number of parts needed by “ptiltimg products through
the system. The Kanban pull system of inventory control wauérticularly well in
situations where standardized parts and products arectyctbe manufacturing sys-
tems, as for example in an assembly environment.

Nowadays, the afore mentioned heuristic methods are siitigoused in combi-
nation with operator experience for management of ressuesioe planning of pro-
duction. However, as the complexity of the manufacturingtems rapidly increases,
the (simple) heuristic methods and operator experiendeatvéome point become
incapable of finding an “optimal” control strategy.

In this dissertation the potential of considering manufeng system control from
a system theoretic control point of view is investigatedhwiie ultimate goal of even-
tually obtaining a more constructive way to address coleralesign for manufactur-
ing systems. One of the famous existing theoretical cofanheworks for (discrete-
event) manufacturing systems is based on automata the@mnppsesed in [7]. How-
ever, one of the main drawbacks of this framework is the wesbproblem of state




CHAPTER 1. INTRODUCTION

explosion. Among different existing control methods, imstHissertation the opti-
mal control framework with its receding horizon implemeita often referred to as
Model Predictive Control (MPC), e.g. see [8, 9, 10, 11, 13] eeferences therein, is
chosen. The major reasons to investigate the model preglictintrol principle as a
control strategy for manufacturing systems are the pakotisimultaneously

e to enforcingoptimality,
e to handleconstraints
e to introducefeedback

Since in manufacturing systems a lot of physical systemtcaings are involved, like
for examplefinite machine process capacitiéffite product storage capacities;
nite product arrival rates, etc., the capability for a manufaotucontrol strategy to
handle those constraints is a necessity. Furthermorebée&ds important to deal
with all kinds of unforseen or unpredictable chances onybetions occurring in the
manufacturing system, like machine break downs. Other itapbmotivations to in-
vestigate the model predictive control principle in redatto manufacturing systems
are

e the capability of allowing for the mixed continuous and déte model struc-
tures. Model structures with mixed continuous and discneteire are some-
times referred to as hybrid models, which often are encoadtehen models
of manufacturing systems are derived.

o the intuitive principle on which the control strategy is edon and the way
manufacturers work in practice,

1.3 MPC: History and basic principle

Model Predictive Control (MPC), also referred to as recgdiiarizon control, is a con-
trol strategy that offers appealing solutions for the colntf a broad class of systems
that can be described by (piecewise) continuous (or disctiete differential (or dif-
ference) equations. One of the key characteristic elenoémi®del predictive control
that distinguishes itself from other existing control &ttaes is the ability of handling
constraints, which are almost always present in (manufacfuapplications. Within
a relatively short time, model predictive control has restth certain maturity because
of the continuously increasing interest for this distinetpart of control theory. This
is not only illustrated in many articles and books see, famegle, [8, 9, 10, 11, 12]
and references therein, but also in many successful impitatiens in industry of
which some examples will follow in the sequel.

The initial model predictive control algorithms utilizechly linear input/output
models. In this framework, several solutions have beengsegpboth in the industrial

10
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world and in the academic world: IDCOM - Identification androoand (later MAC
- Model algorithmic control) at ADERSA [13] and DMC - Dynamigatrix control at
Shell [14], which use step and impulse response models, MASMMultistep mul-
tivariable adaptive regulator [15] - the first model preigtcontrol formulation that
is based on state-space linear models, and EPSAC - Exteditfire self-adaptive
control [16]. Generalized frameworks for setting up modadactive control algo-
rithms based on input/output models were also developed tat, from which the
most significant ones are GPC - Generalized predictive obfitv] and UPC - Uni-
fied predictive control [18]. The next step of the academimwnity was to ex-
tend the model predictive control algorithms based on stptee models to continu-
ous (smooth) nonlinear systems, which includes the folhgvdpproaches: nonlinear
model predictive control with zero state terminal equatiystraint [19], dual-mode
nonlinear model predictive control [20] and quasi-infiniterizon nonlinear model
predictive control [21]. More recent general set-ups fartbgsizing stabilizing model
predictive control algorithms for smooth nonlinear systeran be found in [22, 23].
Another issue that makes model predictive control an aitweacontrol strategy is that
it can in principle cope with hybrid model formulations. Tfiest model predictive
control approach for the control of hybrid systems has begonted quite recently
in [24, 25].

One of the reasons for the fruitful achievements of modedipt&e control algo-
rithms consists in the intuitive way of addressing the aalgroblem. In comparison
with conventional control, which often uses a pre-compustate or output feedback
control law, predictive control uses a model of the systemtitain a prediction of
its future behavior. This is done by applying a set of contrajectory to a model,
with the measured state as initial condition, while takimig iaccount the constraints.
An optimization problem built around a performance orientest function is then
solved to choose an optimal control trajectory from all fielestrajectory. A feedback
mechanism is then obtained in a receding horizon manner plyiag to the system
only the first part of the computed optimal control trajegt@nd repeating the whole
procedure at a next discrete-time step. Summarizing theealiscussion, one can
conclude that model predictive control is built around tbkofving principles:

e The explicit use of a model of the system to be controlled &dcwalating pre-
dictions of the future system behavior;

e The optimization of an objective function subject to coastts, which yields
an optimal control trajectory;

e The receding horizon strategy (which induces feedbaclgeraling to which
only the first part of the optimal control trajectory is agglion-line.

The model predictive control methodology involves solvorgline an finite horizon

11
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optimal control problem subject to system and control t&jey constraints. A graph-
ical illustration of the basic conceptis depicted in Figlirg. Based on measurements
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Figure 1.3: Principle of the model predictive control strategy.

obtained at time € R, the controller predicts the dynamic behavior of the system
over a prediction horizoil, € R, into the future and determines the control trajec-
tory such that a predetermined open-loop performance tias minimized. If there
were no disturbances and no model mismatches, and if theiaation problem could
be solved over an infinite horizon, then the control trajgcfound att = 0 could be

12



1.4. MANUFACTURING SYSTEMS AS DISCRETE EVENT SYSTEMS

injected to the system for dlle R;. However, due to disturbances, model mismatch,
and the finite prediction horizon the actual system behasidifferent from the pre-
dicted one. To incorporate feedback, the optimal open-tmoyrol trajectory is in-
jected into the system only until the next sampling instan®®. At the next sample
instantt + & new measurements from the physical system are availabltharvehole
procedure - prediction and optimization - is repeated, mgtne prediction horizon
forward.

In Figure 1.3 the open-loop optimal control trajectory ipidéed as a (piecewise)
continuous function of time. To allow a numerical (approais) solution of the open-
loop optimal control trajectory the control is often parderzed by a finite number
of basis functions, leading to a finite dimensional optirtic@aproblem. In practice
often a piecewise constant control trajectory is employeatling toT,/5 decisions
for the control trajectory over the prediction horizon.

Depending on what kind of modeling framework one considbes,e are various
ways of formalizing the model predictive control probleniti®ugh continuous-time
models can be employed, see [9, 11] and Chapter 6 of thissthesidel predictive
control is often considered from a discrete-time perspectDne of the benefits of
considering model predictive control from a discrete-tipeespective is that the opti-
mal control trajectory does not have to be parameterized abtain a finite dimen-
sional optimization problem. Furthermore, the stabilibhalysis in discrete-time is
in general less complex. One of the disadvantages of camsidmodel predictive
control from a discrete-time perspective is the fact tha itsually hard to obtaining
discrete-time nonlinear models since, in general, thergegm of physical systems
leads to continuous-time models.

Clearly, modeling of the system to-be-controlled is an ingat issue in case the
model predictive control principle is employed. Modeliisgues for control purposes
of manufacturing systems is therefore introduced next.

1.4 Manufacturing systems as discrete event systems

Manufacturing systems are mostly modeled and consideradissrete event system
(DES), see e.g. [26]. Unlike continuous- or discrete-timeamical systems, discrete
event systems are “driven” only lmccurrence®f different types of events instead of
time. An event, in the context of a manufacturing system, ¢eangeof the “mode
of being” of the manufacturing system that takes place attaicepoint in time, such
as the arrival of a product at a buffer in front of a processa onachine or process
becoming available to process a product. Note that, for @@nproduct transport
and processing of a product by a machine are not events. Tidegé a changever

INote that in general the time between each new optimizatisnsample timé, can vary.

13
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time in the system, however they do raftangethe “mode of being” of the system.
The start and end of such an action however are events. Atearti the mode of
being of the manufacturing system changes; between twas#ea mode of being
remains unchanged.

Discrete event systems can be specified or described byrolgis, see e.g. [27,
28]. Events satisfy these logical specifications. Gengsgleaking, one can consider
discrete event systems that can evolve, i.e. events ocithgwttime elapsing. A class
of discrete event systems, which the manufacturing systeatsre considered in this
thesis also belong to, are timed discrete event systemsidtlass of discrete event
systems, some time has to elapse after some finite numbeewtsdvave occurred. In
other words although the system is event driven events asa@irrtime.

One of the major difficulties of analyzing discrete eventtegs from a system
theoretic point of view is the fact that those systems ard twatackle in g&ime domain
based mathematical framework as there exists for contswardiscrete-time dynam-
ical systems. However, there exists a mathematical machisee e.g. [29, 30, 31],
for a subclass of discrete event systems. A disadvantag&Jeo, is that the mathe-
matical machinery can only be employed if the system modetirperformed in the
so calledevent domain In event domairdescriptions, the evolution of time labels
associated to certain events are considered along a diseeatt axis Since, all sys-
tem theoretic notions and control objectives are time damelated a compatibility
and/or causality problem emerges. One of the contributibise thesis is having es-
tablished insight in the relation between the event domadtthe time domain way of
modeling. This result makes it possible to utilize event domelated mathematical
tools to solve time domain control problems. This has belestiated in the con-
text of a model predictive control problem and on an obsepveblem for a class of
discrete-event manufacturing systems in Chapters 6 andhédhesis.

1.5 Fluid models of manufacturing systems

Another way of looking at discrete-event manufacturingtays is to approximate
the relatively detailed nature of the discrete-event sysiescription. In particularly
if there are a lot of products being processed by the manufagtsystem, think for
example about mass fabrication of products, then from a tmappoint of view it
could be justified to consider the product streams in the figatwring system as fluid
streams, see e.g. [32, 33].

The idea of approximating discrete-event manufacturiragesys is motivated by
the potential of the directly utilizing “conventional” esting control theory to synthe-
sis controllers for manufacturing systems. This approachsualized in Figure 1.4,
see e.g. [34, 35]. In Figure 1.4 one can observe conversamkblbetween the con-

14
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_|manufacturing

discrete system (DES discrete
signals @abstraction signals
- - _ Y
signal (piecewise) signal
conversion| continuous modglconversior
A
continuoug @cont;}olle_r continuous
signals synthesis signals
controller |

Figure 1.4: Framework of controller synthesis based on (piecewiselimaous model abstrac-
tion of discrete event manufacturing system.

troller and the discrete event manufacturing system. Theg®sent conversion algo-
rithms that are needed to establish compatibility betwkenliscrete event system and
the controller. That is, discrete signals from the discestent system must be con-
verted to signals that are compatible with those the cdetrokeds for feedback and
control signals the controller generates must be convéstedmpatible commands,

i.e. control signals, for the discrete event system.

An important issue, which is induced by the conversion bépék a quantization
problem. Quantization errors are introduced due to thetfattthe discrete nature
of a manufacturing system is approximated by somethingépiese) continuous of
nature. More details about this issue will follow later ir tthesis, i.e. Chapter 4.

It is well known that a feedback law designed to be globallyngstotically sta-
bilizing for the system in absence of quantization errory tead to instability if this
control law is implemented on the system where quantizaioors are present, see
e.g. [36]. One reason for this is saturation: If the quawnitiignal is outside the range
of the quantizer, then the quantization error is large, &edcontrol law designed for
the ideal case of no quantization may lead to instabilityo#ver reason is deteriora-
tion of performance near the equilibrium: As the differebedween the current and
the desired values of the state becomes small, higher medssrequired, and so in
the presence of quantization errors asymptotic convergsntypically lost. Hence,
finding a stabilizing controller in the framework as depitie Figure 1.4 is not suffi-
cient to guarantee stabilizing behavior of the designedrober in closed-loop with
the manufacturing system as depicted in Figure 1.4. Notetileaabove discussion
also holds for nonlinear model predictive controller dadigr manufacturing systems

15
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using the framework as depicted in Figure 1.4.

From the above discussion, it follows that it is importardttthe quantization
errors, for example, in the measurements employed in thealter are taken into
account in the controller design. However, existing (noedir) model predictive con-
trol schemes cannot cope with this issue. This is the mativdd investigate how to
design nonlinear model predictive control schemes in whhih issue can be taken
into account. In Chapter 4 robustness results are obtdia¢dan be employed in this
matter.

Recently a result on manufacturing control employing fluiddels has appeared
in [37]. In [37] an LMI approach is followed to design contiesks for manufacturing
systems. However, the approach followed by [37] can onlywgadinear fluid models
of manufacturing systems while fluid models for manufaciysystems are often non-
linear and might exhibit discontinuous, i.e. hybrid modelistures. The approaches
proposed in this thesis can to some extend cope with therfaddel structures.

1.6 Objective outline and contributions

The objectives of the research presented in this thesis are

e The development of computationally friendly robust modeldaictive control
techniques for a class of nonlinear hybrid systems suitidslenanufacturing
system control;

e The development of observer-based output feedback moddiqgbive control
techniques for nonlinear systems;

e The development of model predictive control techniqueslfecrete event man-
ufacturing systems.

Next it is explained how each chapter relates to the resedjelttives.

Chapter 2 “Preliminaries In this chapter mathematical notation and definitions are
given, which will be used throughout the remainder of theihe~urthermore, stabil-
ity properties for discrete-time nonlinear differencelursions such as Lyapunov sta-
bility [38, 39] and input-to-state stability [40, 41] arefohed in this chapter. Sufficient
conditions for stability that allow for discontinuous syt dynamics, non-uniqueness
of solutions and discontinuous candidate Lyapunov funstire given.

Chapter 3 “Nonlinear model predictive control: sub-optimality andustnessThis
chapter focuses on the synthesis of computationally fhesab-optimal model pre-
dictive control algorithms for hybrid nonlinear with guataed robust stability of the
closed-loop system, i.e. input-to-state stability of thesed-loop system with re-
spect to additive disturbances. For the analysis of rolesstof the to-be-controlled
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system in closed-loop with the model predictive contraiter input-to-state stability
framework introduced in Chapter 2 is employed. Opposed tstieg input-to-state
stabilizing model predictive control schemes simple dizibg constraints, that can
be implemented as a finite number of linear inequalities] tea reduction of on-line
computational complexity of the controller. Besides that tlesigned model pre-
dictive controller renders the close-loop system inpustate stable with respect to
additive disturbances alsuppressiomf the additive disturbance is established by in-
corporating a mechanism which gives feedback to distusanit is illustrated how
the developed model predictive control algorithm in thiggter can be employed to
efficiently solving a manufacturing network control prailé a decentralized way.
Chapter 4 “Robustness results for control and state constrained dideep systenis
The in Chapter 3 mentioned newly proposed model predictirdrol scheme can
a priori guarantee robustness, i.e. input-to-state #ghilf the closed-loop system
with respect tadditive disturbancesHowever, does this also imply that the resulting
closed-loop system is, for example, input-to-state steoltate measurement errors
andactuator nois@ For state and control constrained nonlinear systemsaltatty
nonlinear model predictive controllers, which result imtol laws that are possibly
discontinuous and/or set-valued, the mentioned quedistili open. However, a re-
sult on this issue is given in this chapter. Note that theeafoentioned question is
one that does not necessarily has to be asked in the contmadd! predictive con-
trol but can be stated in general. However, since model giiedicontrol is one of
the few control strategies to deal in a systematic way witstraints, the result is in
particularly interesting in this field. The result in thisagher gives mild conditions
under which the afore mentioned question can be answersyesthThe value of this
result is emphasized due to the fact that nonlinear modéigiiee controller synthe-
sis methodologies that result in closed-loop systems tieshput-to-state stable with
respect testate measurement erroandactuator noisgare rare, while there is a rel-
atively rich literature on how to synthesize model preditontrollers that can cope
with additive disturbancesee e.g. Chapter 3 of this thesis and [42, 43, 44, 45, 46, 47].
Then, based on the result in this chapter all model predictontrol design method-
ologies in for example [42, 43, 44, 45, 46, 47] can, not onlyeb®ployed to render
the closed-loop system input-to-state stable with resppeadditive disturbancesut
they can also be employed to render the closed-loop systeut-fn-state stable with
respect tcstate measurement erroedactuator noise Furthermore, in the context
of manufacturing system control it is shown how the issuefgadi-out in the end of
Section 1.5 can be treated employing the robustness rdstaihed in this chapter.
Chapter 5 “Nonlinear model predictive control: output feedbadie focus in this
part of the thesis is on how to synthesize stabilizing outpetiback nonlinear model
predictive controllers. In contrast to Chapter 3, wherevidedge of the full state of
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the to-be-controlled system is required, in this chapter mguires less information
of the to-be-controlled system to be available for feedbddiat is, only knowledge
of the outputis required. An observer-based approach is followed toestiie output
feedback nonlinear model predictive control problem. Bhewn how teseparately
design a nonlinear observer and a nonlinear model predictmtroller, which rep-
resents a possibly discontinuous state feedback conwpklach that, by employing
the certainty equivalence principle, a stabilizmgiput feedbackonlinear model pre-
dictive controller is obtained. For the analysis the infnsstate stability framework
introduced in Chapter 2 is employed.

Chapter 6 “Event driven manufacturing systems as time domain contstéms In
contrast to the previous chapters, i.e. Chapters 3, 4, whareifacturing systems are
controlled employing the model predictive control prirleipased orfluid modelsof
manufacturing systems, in this chapter the focus is on eyiqgjahe model predictive
control principle directly based on thikscrete-evendescription of the manufacturing
system. It is shown how besides time domain modeling, therelis-event property of
manufacturing systems opens the opportunity to model naatufing systems from
anevent domairperspective. It is shown that in contrast to relatively ctergime
domain models, that are obtained when modeling manufagtwystems, event do-
main modeling facilitates obtaining relatively simple ééytical) difference equations
as descriptions of discrete-event manufacturing systeéoshermore, it is shown that
under some conditions there exists a bijective mappingdethe event and time do-
main modeling frameworks. This opens possibilities to emphe relatively simple
event domain models to do controller computations for mactufing systems con-
trolled in time domain. This is illustrated on a discrete®ivmanufacturing system
controlled in time domain by employing the model predicteantrol principle. A
continuous time model predictive control setup is formedgand it is shown how the
optimization problem involved can be solve via the event dionn a tractable way.
Chapter 7 “An event domain controller design approach for discreterévmanu-
facturing systenisin Chapter 6 a continuous time model predictive controlpas
formulated and it is shown how in case of discrete-event faturing systems the
involved optimization problem can be solved efficiently tha event domain, which
is introduced in Chapter 6 of the thesis. However, a majondggue that remains,
is to formally prove closed-loop stability following therte domain model predictive
control setup in Chapter 6. To facilitate stability anadysn this chapter a model
predictive control setup for discrete-event manufactysgstems is formulated in
event domain. Since in the event domain the description @htAnufacturing sys-
tem dynamics can be described as difference equations &moven in Chapter 6)
this approach allows one to employ "conventional” discttétee stability analysis of
the resulting event domain closed-loop system. It is shdvahthe approach leads to
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1.7. INTERACTION BETWEEN CHAPTERS AND PUBLICATIONS

event domain controllers that are stabilizing in the evemhdin. However, a disad-
vantage of this approach is that the obtained controllens@straightforwardly be
employed in the time domain due to a causality problem tharges. It is pointed
out how in case of manufacturing lines this causality probtan be taken care of by
using an observer.

1.7 Interaction between chapters and publications

The interactions between the chapters in the thesis is graphpresented by means
of a block diagram presented in Figure 1.5. Most of the malténat is presented in

Chapter 1 Chapter p

Y

\

\

Chapter 1| Chapter § Chapter Chapter 4 Chapter %

\

Chapter 8

Figure 1.5: The interaction between chapters.

the chapters of this Ph.D. thesis is published, or acceptegublication, in journals
or conference proceedings. Some of the material has beenitsedh for publication
recently. Below it is indicated to which chapter of the tisehkiese publications belong
to.

Chapter 3 is based on [43, 44].

Chapter 4 is based on [48, 49].

Chapter 5 is based on [50, 51, 52, 53].

Chapter 6 is based on [54, 55].
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Any man whose errors take ten
years to correct is quite a man.

Robert Oppenheimer

Preliminaries

In this chapter stability properties for discrete-time Iear difference inclusions
such as Lyapunov stability and input-to-state stability defined. Sufficient condi-
tions for stability that allow for discontinuous system dymcs, non-uniqueness of
solutions and discontinuous candidate Lyapunov functamesgiven. Before treat-
ing the stability properties for discrete-time nonline#fedtence inclusions, first some
mathematical notation and definitions are given, which dlused throughout the
remainder of the thesis.

2.1 Mathematical preliminaries

In this section, some basic mathematical notation and atardkfinitions are given.

Sets and operations with sets

e ThesetR, R,, Z andZ. denote the set of real numbers, the set of non-negative
reals, the set of integers and the set of non-negative irgegespectively;

e Foraset” CR"or.” C Z" and somen € Z~g.

— ¢, denotes the sdise .’|s> ¢, } for somec; € .
— ¢, denotes the sdise .’|s> ¢, } for somec; € .&;
— <, denotes the sdise .’|s< ¢; } for somec; € .
— Y, denotes the sdis€ .’|s < ¢, } for somec; € .
— Je1,c,) denotes the sgis€ 7|c; <s< ¢z} for somec; € 7, € € Sy
— Hc1co) denotes the sels € 7|cy < s< ¢p} for somec; € 7, ¢ € Hogy;

— Je1,cp) denotes the sels€ 7|cy < s< ¢z} for somec; € 7, ¢ € Hgy;
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— Ylc,.c,) denotes the sgse.”|cy < s< Cp} for somecy € .7, ¢y € Hag;

e For two arbitrary sets”; and.”>, .71 C .%, denotes 7] is a subset of but not
equal to,.%", ¥ C % denotes ] is a subset of, or equal t&%", .71 U.%
denotes theiunion, .71 N.% denotes theimtersection .1 \ .2 denotes their
set difference

e For a set?, " denotes the&Cartesian product? x . x ... x ., where.s
appears times anch € Z>1;

e The notations? is a shorthand notation to denote the set of all maps f#8m
to .7,

e Foraset” CR", int(.) denotes thenterior of ., cl(.#) denotes thelosure
of ., card.#) denotes the number of elements#fand Cd.”’) denotes the
convex hulbf .7,

¢ A polyhedron(or a polyhedral set) ifR" is a set obtained as the intersection of
a finite number of open and/or closed half-spaces.

e Given(n-+1) affinely independemoints{<®,s!,...,s"} of R", i.e. 1|7, ..,
[1 §"T]T are linear independent iR"+1, asimplexS is defined as

SécO{so,...,s“}

(1>

{EER“ | E:iiuié, iimzl, Ui € Rxo, for i:0,1,...,n},

where Cd-} denotes theonvex hull
e For two arbitrary sets”; C R"and. C R",
Fi~ Sp2 xR x+ S5 C A
denotes theiPontryagin differencand
A@72{x+y|xe A ye )
denotes theiMinkowski sum

e A closed hypeball of dimensiom € R 1 with centerc € R" and radius € R~ ¢
is defined by

B (c) & {5 ER E—c|p< r}.

e A singleton seti.e. a set having exactly one elemeastis denoted by{s}.
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Vectors, matrices and norms

For anyx € R", x with i € {1,2, ...,n} stands for thé" component ok;
For a real numbea € R, |a| denotes its absolute value;

The Holderp-norm of a vectox € R" is defined as:

1
X[y 2 (Xa[P+... 4+ [%a[P)P, P EZj1e
P max)xl, p=oo,

I

where|x|; is also known as the Euclidean norm grid is also called the infin-
ity norm;

For any matrixA the notationdj is used to denote thg-th entry ofA,
For any matrixA € R™Mandp € Z>; or p= oo

AX
|Alp = SUP—' |p’
x#£0 |X|p
denotes its induced matrix norm. Fpr= 2 the quantity sup.q |AX/p/|X|p is
equal to thenaximal singular valuef A, which is denoted by (A). Further-
more,

n
|Al = 12%;1'/3” l;

In the sequel of the thesis one uses for amyR" || as the shorthand notation
for an arbitrary norm ofR";

A shorthand notation for an x n identity matrix, i.e.l € R"™", is denoted by
In;

For any matrixA € R™™, di([A]n) denotes a block diagonal matrix of appropri-
ate dimension with the matricés..., A appearingN € Z>1 times on the main
diagonal, i.e.

A 0 ... O
gigan 2 [0
;o0
0O ... 0 A
N times

For a matrixA € R™" AT denotes its transpose;
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For a matrixA € R™", A~1 denotes its inverse (if it exists);

For a matrixA € R™", A> 0 means A is positive definitg i.e. for all x €
RM\ {0} it holds thatx' Ax> 0, andA = AT;

For a matrixA € R™" with full-column rank, A=t £ (ATA)~1AT denotes the
Moore-Penrose inverse #f which satisfieA A= I,;

A pair of matricegC,A) € RP*" x R™" s called arobservable paiif
[ S
CA

rank ] =n;

CA.n_l

A matrix A € R™"is calledSchurif all its eigenvalues are within the unit disk.

Functions and function classes

A functiony: Ry — R is a2 -functionif it is continuous, strictly increasing
andy(0) =0;

A functiony: Ry — R, is a#,-functionif it is a #-functionand in addition
it is radially unbounded, i.e/(s) — o ass— oo;

Remark 2.1.1 If yis of class % then the inverse functioyr ! is well defined
and is again of class.

Afunction: R xRy — R, is a# Z-functionif, for each fixedk € R, the
functionB(-,k) is a.# -function and for each fixed € R, the functiong(s,-)
is non-increasing anfi(s,k) — 0 ask — oo;

Composition of two function$ : R" — R™andg: RY — R" is denoted byf o g;

For a functionf : R — R, theright limit of f(x) asx approaches is denoted
by
f(ah) £ lim f(x).
x—at
In words: f(a') is the value the functiori(x) approaches, if any, asvalues
larger thara get close ta;
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For a functionf : R — R, theleft limit of f(x) asx approachea is denoted by

f(a) £ lim f(x).

X—a~

In words: f(a™) is the value the functiori(x) approaches, if any, asvalues
smaller thara get close ta;

A function f : R" — R" is calledhomogeneoui$

VEER", VheR, f(&+h)=f(&)+h

The space of continuously differentiable functions is deddoyC?;

A function @ : Z, — R", i.e. @(k), is for shorthand notational purposes also
denoted agy;

The notationlli_m @ is a shorthand notation for lim syg;

k—o0

For a functionp: Z, — R", |

¢|| is defined as
loll = sup|@|  (if it exists);
k€Z+
For anyk € Z, and any functionp: Z, — R", ¢y denotes théruncationof ¢
atk, i.e.,@u(j) = @(j) if j € Zjoy, and@yy(j) =0if j € Z-.

For anyk € Z, and any functiorp : Z, — R", g, denotes th@re-truncation
of patk, i.e.,@u(j) = @(j) if j € Z>k, and@y (j) =0if j € Zjgy).

A functiong: X x S — R" with X € R™ andS C R" is Lipschitz continuous
with respect tocin the domairX x S, if there exists a constaht; such that for
all x!, x> € X and for alls€ S,

[d0¢,8) = a0, )] < Lglx =7 (2.1)

The constantq is called theLipschitz constandf g with respect tox.

By the notation# : X — Y for X C R™ andY C R", it is meant that% is a
set-valued function frorX to Y, i.e..#(x) C Y for eachx € X.
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Max-plus algebra

Defineg £ —w and denot®, = RU{e}. For elements,y € R,, one can define the
operations max-plus addition, i.e, and max-plus multiplication, i.e» as

XDy 2 max{x,y} and  X®yZ&x+y.

The setR, together with the operations and® is calledmax-plus algebrand is
denoted byZ: = (R, ®,®,¢€,0). It can be shown that the max-plus algels#a =
(Re,®,®,€,0) is an algebraic structure calledmiring That is, the sun® is associa-
tive (Va,b,ce R¢, (a®@b) dc=ad (b@c)), commutativgva,b € R, adb=boa),
idempoten{va € R, a® a = a) and admits aeutralelement (Vac Re,ad € = a).
Furthermore, the producd is associative, distributes over the suvap,c € Z,
(adb)®c=(a®c)® (b®c), c® (adb) = (c®a)® (c®b)), admits a neutral ele-
ment 0 anck is absorbing for the producté € R¢, a® € = €). The main reason to
employ, in the max-plus algebra, the symboland® for max and+, from the “con-
ventional” algebra, respectively, is the analogy that theses with the conventional
algebra, like eigenvectors and eigenvalues, etc.

For anyx € R, define

x®kéx®x®...®x, Vk € Z>1, X 20
—_———— =
k times

Note thatx®" corresponds téx in conventional algebra.

The set ofm x n matrices with entries ilR; is denoted byRT™". For matrices
A B e RM™"andC € Ry P one can extend the max-plus operations in the conventional
manner.

(A®B)ij £ Aj B Bjj = maX{AijaBij}a Vi€Zyn, i €Lym,

n
(A®C)ir = P Ak ®Ciy = max {Aik+ck€}7 Vi€ Zpn,l € L.
k=1 kEZ[l,n]

The matrixE € RI*" is the identity matrix in max-plus algebra, i.Ej; = 0, for all
i € Zj1 y andE;j £ g, foralli # j and the “zero” matrix is denoted &where€jj £ ¢.
For any matrixA € R?*", thek!" max-plus power oA is denoted with
AL AQA®D .. @A VYkeZs,, AP LE.
—_——————— =
k times

Moreover, defind\*, whenever it exists, by

A2 imEGAD.. oA 2.2
k
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The star operator as defined in (2.2) is also known a¥tbene staoperator. Some
properties of the Kleene star operator, if it exists, &t,;B € RP*"

(A*)* = A", (2.33)
A(BA)* = (AB)*A, (2.3b)
(A®B)* = (A"B)*A" = B*(AB")* = (A@ B)*A* = B* (A& B)", (2.3c)
AA* = A" (2.3d)

Note that in above relations the operatigris omitted for notational simplicity pur-
poses.
The following statement is proven in [31].

Lemma 2.1.2 Suppose that & R3*" such that & < Ofor alli,j € Zp . Then the
following relations hold:
i)

lim A% = €;

k—co

i) The matrix A defined in(2.2)exists and is given by

A —E@As®.. oA

A matrix P € R}P*"is invertible in the max-plus algebraic sense if there exasinatrix
pet ¢ RY*" such thaP® "@P=PaP? " =E.

Definition 2.1.3 Let A € R}*". Then,A € R, is amax-plus eigenvaluandn € R,
(wheren has at least one finite entry) is a max-plus eigenvector if

ARnN=A®n.

Note that a square matrix might have more than one max-phemealue. The largest
max-plus eigenvalue of a square matrix is denotedi*ashA matrix A € R}*™ is row-
finiteif for any rowi € Zjy ),

“max Ajj > €.

J€Zpy )

Matrix A € RP*™ is column-finiteif for any columnj € Zj

max Ajj > &.
IEZ[lvn]

The following statement is proven in [31].
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Lemma 2.1.4 Let Ac RT™" be a matrix which is row-finite, then
[(A®X) = (A®Y)|w < [X— Y|, VX yeERM
Define the notation
X 2min{xy}, and x® yZx+y, (2.4)

where the operations and®’ differ only in that(—c) ® (+w) £ —, while (—w) @'
(+00) £ 400, The matrix multiplication and addition g, @) are defined similarly
as to the case that one defined fer, ®).

Some more basic max-plus algebraic results from [56, 29a6]

Lemma 2.1.5 Suppose A& R?*" and be RI". Then, the inequality
Aex<b
has the largest solution given by
%x=(—AT) @' b=—(AT®(-b)).
By largest solution it is meant that for all x satisfyingAx < b one has that X X.
Lemma 2.1.6 Suppose A& R*" and be Ry. If Ajj < Oforalli,j € Zp , then the

equation
X=ARx®b

has a solution
x=A"®bhb. (2.5)

Furthermore, if Aj < Oforalli, j € Zj1 ), then the solution iff2.5)is unique

Lemma 2.1.7 Suppose A& R?*" and be R}. If A* exists, then the “least solution”
of the equation

Xx=A®xdb (2.6)
is given by
x=A"®b. (2.7)

With the “least solution” is meant that for any other possilsblution of(2.6), denoted
byX, there holdX > A*® b.
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Residuation theory

Residuation allows one to define a (pseudo)-inverse operatithe max-plus algebra
to solve an equation of for example typed x = b with a,b € R;. In the sequel one
will, for notational simplicity purposes, omitted. In the max-plus algebra, the left
and right quotients are defined as follows

a\b= max{x | ax< b} (2.8)
a/b £ max{x|xb< a} (2.9)
a\b/c = max{x | axc< b} (2.10)

Some examples of residuation in max-plus algebra are

a\b=b—a if aandb are finite,
a\(4wo) = (+) foralla,
a\e=¢ for all a finite, (2.11)
g\a=+ow for all a,
(+wo)\a=¢ if a# +o.

The left and right quotients defined for scalars in the massplgebra by (2.8), (2.9)
and (2.10) can also be extended to matrices. Consider tlosving linear equations
in X € RPX™

AX=B, XC=D, AXC=F

whereX, A B,C,D andF are matrices iiRg**, wheree should be read as “appropriate
dimensions”. The left and right quotients for matrices dentdefined as

mB2\/{x|Ax<B}, (2.12a)
D/c2 \/{x\ch D}, (2.12b)
mF/c2\/{x|axc<F}, (2.12c)

where\/ should be read as the “greatest”. The following relatiotatecthe residua-
tion of matrices to scalars

(A\B)j; £ mkin{Aki\Bkj}a
(D/C)ij & m[in{Aié/Cjé}a
(AVF /Cij 2 min { Ag\F/Cy¢ }.
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Assume one has the following matricks RY*", B€ RY*P, M € RY*P andN € RI*".
Then some properties of matrix residuation are

A\A= (A\A)*
B/B= (B/B)'
A\(M*A) = (M*A)\(M*A) = (A\(M*A)*
(AN")/A = (AN)/(AN*) = ((AN")/A)*

(2.13)
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2.2 Lyapunov stability

The Lyapunov stability property of a continuous-time noahr systems, introduced
in the work [38], is a well known system property studied imgol systems theory.
Practically, the goal of any controller design methodolagio obtain a closed-loop
system which is at least Lyapunov stable. Examples of reém®where extensions of
Lyapunov stability to discrete-time nonlinear systemsehagen considered are [57]
and [58], whose work is summarized in [39]. Lyapunov stapilor discrete-time
systems became more important in control applications wdigital computers came
into the picture. Furthermore, an interesting property thancountered in discrete-
time, is that the candidate Lyapunov function, as in coht@sontinuous-time, and
the system dynamics do not necessarily have to be contin@mlg continuity at the
equilibrium point is required. This is pointed-out and faltg proven in [25]. This
property is very interesting for hybrid systems, as in tlasecthe system dynamics
can be discontinuous. In this section the Lyapunov stghilittion is formulated for
the class of nonlinear difference inclusions that are aldto be discontinuous.

Consider an autonomous system described by the followiyetie-time nonlin-
ear difference inclusion

X1 € F(X), kKeZi, (2.14)

wherex, € R" is the state at discrete timec Z,, .% : R" — R" is a set-valued
mapping that is allowed to be discontinuous afAdé) # 0 for all £ € R". The latter
condition guarantees that for each initial stafat timek = 0 there exists a solution,
not necessarily unique, to system (2.14). The set of cooredipg solutions of the
difference inclusion (2.14) is denoted %7 (Xo). Furthermore, a poinfeqg € R" is an
equilibrium point of system (2.14) i¥ (Xeq) = {Xeq}-

Definition 2.2.1 Let Xeq € R" be an equilibrium point of system (2.14) and f&t C
R" be a set withkeq € int(2"). Then, the equilibrium pointeq is

i) (Lyapunov) stablevith respect to initial stategy in 2" if for any € € R. ¢ there
exists ad = d(¢&) € R+ such that for eacky € 2 all solutionsx € .7z (Xp) satisfy
the following implication

Xo—Xeq <8 = |k—Xeq <E VKEZ,.

Or equivalently, see [59]:

(Lyapunov) stablevith respect to initial stateg in 2" if there exists a% -function¢
such that for eacky € 2" all solutionsx € . (xg) satisfy

X —Xeql < @(|X0 —Xeq|), VKEZy. (2.15)
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i) Attractivewith respect to initial states ir#” if for eachxg € £ all solutionsx €
Lz (X) satisfy
lli_m X — Xeg| = O.

iii) Asymptotically stablevith respect to initial stateg) in 2" if it is both (Lyapunov)
stableandattractivefor initial statesxg in 2", respectively.

iv) Exponentially stablevith respect to initial stateg in 2" if there existK € R.q
andp € Rg 1) such that for eacky € 2" all solutionsx € .z (Xo) satisfy

X — Xeq| < KP¥|Xo—Xeq|, VK€ Zy.

Definition 2.2.2 A set#? C R" is calledPositively Invarian{Pl) for system (2.14) if
forall £ € £ itholds that# (&) C 2.

In the sequel sufficient conditions for the given stabilitgerties in Definition 2.2.1
of an equilibrium point of the autonomous system, descriyediscrete-time nonlin-
ear difference inclusion in (2.14), is formulated.

Theorem 2.2.3Let 2" C R" be a bounded Pl set for systgth14)with Xeq € int(2")
and letay, a andas be class’# -functions Suppose there exists a function¥™ —
R4 with V(xeq) = 0 such that for all§ € 2" the following inequalities hold

a1(|§ —Xeq) <V (&) < a2(]€ —Xeq|), (2.16a)
Suz)V(w) <V (&) — a3(|& — Xeq)- (2.16b)
peF

Then the following results hold:

i) The equilibrium point ¥, of systen(2.14)is asymptotically stablevith respect to
initial states ¥ in 2.

ii) If the inequalities in(2.16)hold with a1 (s) 2 as', a,(s) 2 bs' and as(s) £ cs'
for some constants, b, c,A € R q, then the equilibrium pointeg of syster(2.14)is
exponentially stablevith respect to initial statespin 2.

Proof:

i) (Lyapunov) stability:Let x, represent a solution of (2.14) a tirkec Z . obtained
from the initial conditiorxp at timek = 0. Take a% € R,o such that the bal#s (Xeq) £
{& €eR"||& —Xeg| < I} satisfiesZBs (xeq) C £ . Sinceay, a, € # one can choose
foranye € R s ad € Rog) such thatop(5) < ai(g). Due topositive invariance
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2.2. LYAPUNOV STABILITY

of 2, from (2.16a) and (2.16b) it then follows that for aryc Zs(xeq) C £ all
solutionsx € .7 (xg) satisfy

SV (1) V) < ...V (X0) < @a(]X0 — Xeq) < @2(8) < au(g).  (2.17)

Since that, due to (2.16a), one has th&€) > ai(g) for all & € 27\ HBe(Xeq) it
follows that for allxp € Z5(Xeq) all solutionsx € .7z (Xo) satisfyx, € Zg (Xeq) for all
k € Z,.. Hence, the equilibrium poingq of (2.14) is(Lyapunov) stable
Attractivity: SinceA(x) 2V (X 1) —V (%) < 0andV(-) is lower bounded by zero, it
follows thatl!i_mV(xk) =V_ > 0 exists. Then,

WAV(XK) =v.—-Ww.=0.

k— o0

Since 0< a3([X« — Xeq|) < AV (xk), it follows that
lli_>_fT100013(|Xk—Xeq|):0- (2.18)

Assume by contradiction that for a soluti@nx — Xeq| - 0 for k — . Then there
would exists a subsequenggi.e. gy = Xx¢ for £ € Z, and somek € Z, such that
|0¢ — Xeq| > 1 > O for all £ € Z,, which by monotonicity and positivity ofi; implies
that az(|a; — Xeq) < a3(u) > O for all ¢ € Z,.. Hence, one reached a contradiction
of convergence ofr3(|x — Xeq|) to zero as in (2.18). Hence, for eaghie 2" all
solutionsx € .“# (Xg) satisfy

lli_>_mw|xk_XEQ|:07

which implies thatxeq is attractive with respect to initial states i#" and thus, the
equilibrium pointxeq of system (2.14) issymptotic stablevith respect to initial states
in 2.

i) Exponentially stability Due topositive invariancef 2, from (2.16a) and (2.16b)
it follows that for eachxg € 2" all solutionsx € .z (Xg) satisfyV (Xi) < 02 (|Xk — Xeq|)
andV (X1) —V (%) < —as(|x«—Xeq|) forallk € Z.. Then, one has that for &l Z .
c c
V (1) = V%) < ~Clxc—Xeql = — L t2((Xc ~ Xeq]) < ~ LV ().
This implies that for alkg € 2~

c\ K
Vo < (1-) V0o, vkeZy.
To show that(1— £) € Ryp ) the inequalities in (2.16) are employed, which yields

0 <V (Xkr1) < V(%) — ClXc—Xeg* <

< 002([X— Xeq) — CX—Xeq|" = (D)X —Xeq".
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Hence, it follows that € R (g ,. Then, one has th@= (1—§) € Ry ). From (2.16a)
it follows that for allxg € 2~

alx— Xeq® <V (%) < PV (x0) < p*blxo — Xeq, VKEZ;.
Hence, for allxg € .2
X —Xeq| < KPMXo—Xeq,  VKEZq,
with
b\ * .
K2 (5) €R-o and p£pi € R ).

This means that the equilibrium poixdy is exponentially stablavith respect to initial
statesxg in 2.

Definition 2.2.4 A function V(-) that satisfies the hypothesis of Theorem 2.2.3 is
called aLyapunov function

Another result that will be employed later in the thesis isfibllowing converse Lya-
punov statement, which is obtained in [60].

Theorem 2.2.5 SupposeZ (x) in (2.14)is defined as
F (%) ={I (%)}, (2.19)

with I : R" — R" is Lipschitz continuous in the domaR{' with Lipschitz constant
Lr. Let %q be an equilibrium point 0f2.14) i.e. T (Xeq) = Xeq, Which isexponentially
stablewith respect to initial statesgxin 2” = R". Then, there exists a Lipschitz
continuous Lyapunov function(V and constants @,c € R.p andA € R>1, such
thatforallé € 2" =R"

al& —Xeq! <V(&) <b|& —Xeql”, (2.20a)
V(F(E)) V(&) — & —Xeq* (2.20b)

Proof: Let x, represent the solution of (2.14) at tirkeorresponding to initial
statexg at timek = 0. As the system igxponentially stablevith respect to initial
statesg in R", there exist constants € R.o andp € Rg 1), such that

Xkr | —Xeq] < Kp! [}k —Xeq, forall xccR" and j,keZ;. (2.21)
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2.2. LYAPUNOV STABILITY

ChooseN such thak pN*1 < 1, which is possible since < 1. In the sequel it will be
proven that the candidate Lyapunov function

k+N
V(%) =D [Xj —Xeq (2.22)
k ,Zk j = Xeq

satisfies inequalities (2.20a) and (2.20b). The choicemténdidate Lyapunov func-
tion (2.22) immediately leads to

V (%) < Kq|X—Xeq|, vkeZs, (2.23)
with Ky £K(1+p+p2+...+pN). Also
V(X) > [Xc—Xeq|  VKE Zy. (2.24)
Inequality (2.23) and (2.24) proves that (2.20a) is satiffie the candidate Lyapunov
function (2.22) for constants= 1, b =K; andA = 1. Next, for allk € Z,. there holds
V(T (%)) =V (%) =V (Xier1) =V (%) = [Xiepn+1 — Xeg| — [Xk— Xeq (2.25)
< —Ko|X — Xeqs

in whichK; £ (1— KpN*1) € R.o due to the fact thall is chosen such thitp"N ™t <
1. Inequality in (2.25) proves that (2.20b) is satisfied foe tandidate Lyapunov
function (2.22) forc = K. HenceV(+) in (2.22) is a Lyapunov function.

To complete the proof, one has to show that the Lyapunov imméh (2.22) is
Lipschitz continuous ifR". Define

ri2roro...of. (2.26)
%,—/
j times
Utilizing the Lipschitz property of’, one has that for alf;, &> € R" andj € Zyy )

there holds ' _ ' .
r@E) <LH&l, and  [FU(&)] <L &) (2.27)

This leads to
V(&) — V(&) = (|&1— Xeq| — |&2— Yeq|) + (T (&1) — Xed — [T (&2) — Xeq|) + ...+
(IF™ (&) — Xeq — TN (&2) — Xedl)
<& =&+ T (&) T (&) +...+ TNV (&) TN (&)]

<Lv|é— &,
(2.28)
with the Lipschitz constarity defined as
Lv =1+Lr+...+LN (2.29)
[ ]
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2.3 Input-to-state stability

For continuous-time nonlinear systems affectedekternal disturbanceghe input-
to-state stability (ISS) framework has been introduced4i p1, 62, 63, 64]. This
framework generalizes the Lyapunov stability concept &ieys affected by external
disturbances, like measurement noise, uncertainty in feadedeled by for exam-
ple an external disturbance. Extensions of the inputdtesstability framework to
discrete-time nonlinear systems has been developed hetef1, 65, 66]. Similarly
to the Lyapunov stability property, sufficient conditions input-to-state stability can
be derived in terms of a so-called candidate ISS Lyapunogtfom which must en-
joy certain properties. In this chapter a particular casthnefmore general sufficient
conditions of [41] is considered to establish explicit bdsion the evolution of the
perturbed system’s state. Furthermore, it will be shown tloatinuity at the equi-
librium point alone, rather than continuity on a neighbarti@f the equilibrium is
sufficient for input-to-state stability for discrete-tirmgstems. This has been pointed
out in [25]. In this section the input-to-state stabilitytiom, and a related notion
known as input-to-output stability, is formulated for tHass of nonlinear difference
inclusions that are allowed to be discontinuous.

Consider a non-autonomous system described by the digoreteonlinear dif-
ference inclusion

Xic+-1 € y(Xk,Vk), K € Z+7 (230&)
Yk € g(Xth), k € Z+7 (23Ob)

wherex, € 2 C R"is the statey, € V C R™ a disturbance angk € R the output at
discrete-timeék € Z ., , respectively. The sét is assumed to be a known set witke 0.
Furthermore,Z : 2" xV — 2" and¥ : 2" xV — R are set-valued mappings
with .Z (&,0) # 0 and¥(&,v) # 0 for all £ € 2 and allu € V. Hence, for all
& € Z and allu € V one has that & % (£,0) C 2" which guarantees that for each
initial statexg € 2" at timek = 0 and disturbance function: Z, — V there exists
a global solution, not necessarily unique, to system (2.38g set of corresponding
solutions of the state and output of difference inclusioB@2is denoted by’ (Xo, V)
and .z (Xo,V), respectively. A poinkeq € £ is an equilibrium point of system
(2.30) if F (Xeq,0) = {Xeq} @aNAY (Xeq,0) = {Yeq} fOr someyeq € R". The condition
F(&,v) C X forall &£ € 2 and allu € V is related to robust positive invariance.

Definition 2.3.1 Given a disturbance s#&t, a set%? € R" is calledRobust Positively
Invariant (RPI) for system (2.30) if for alf € &2 it holds that#(&,v) C &2 for all
vev.
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2.3. INPUT-TO-STATE STABILITY

Definition 2.3.2 For given setsZ C 2 andV C R™, with Xeq € int(ﬁ?), the the
equilibrium pointxeq is called

i) Input-to-State Stable (IS8jth respect to disturbancesZ. — V and initial states
X0 in 2, if there exist a# ¥ -function x and a.# -functiony} such that for each
functionv: Z; — V and each € 2" all solutionsx € . (Xo, V) satisfy

X — Xeq| < Bx(|Xo—Xeql:K) + %((IIVI]),  VKeZ,. (2.31)

i) Input-to-Output Stable (I0Syith respect to disturbances Z, — V and initial
statesxg in 27, if there exist a% Z-function, and a,)i/-functiony;’ such that for

each functiorv: Z, — V and eachg € 2 all solutionsy € .#z«(Xo,V) satisfy
Vi — Yed| < By([Xo—Xeq|,K) +¥/(IVI),  VkeZ. (2.32)

In the remainder of the thesj§ andy] in (2.31) and (2.32) are referred to as the ISS-
and 10S-gain of the system, respectively. To differentis®veen various?.Z- and
¢ -functions, we will adopt the convention to use sub- and sg#gts to indicate
between which variables the functions apply, g/gindicates that it is an ISS-gain
function fromv to x.

Note that by causality of (2.30), the same definition of ISSuldaesult if one
would replace (2.31) by

X — Xeq| < Bx(|Xo—Xeql: K) + % (IVa-g[l), VK€ Zy. (2.33)

Remark 2.3.3 Note that in case the external disturbance&. . — V in (2.30) con-
verges to zero, i.ey, — 0 for (at leastk — o, the input-to-state stability property of
the equilibrium pointeq = 0 for system (2.30) implies asymptotic stability of equi-
librium pointxeq = 0.

Next, sufficient conditions for the input-to-state stakiln Definition 2.3.2 of an equi-
librium point of the non-autonomous system, described lsgrdte-time nonlinear
difference inclusion in (2.30), is given.

Theorem 2.3.4Let V C R™. Moreover, letZ C 2" with Xeq € int(ﬁ?) be an RPI
set for systen2.30)perturbed by disturbance\Z, — V. Supposer, = as', a, £
bs' € #, andaz £ cs* € ¢ for some constants,b,c,A € R.o. Leto € .# and
suppose there exists a function 7 — R, with V(Xeq) = 0 such that for all§ € Z
and alluv € V the following inequalities hold

a1(|€ —Xeq) < V(&) < a2(|€ —Xeq]), (2.34a)
S‘ﬂ? )V(co) <V(&) — a3(]& —Xeq) + a(|U]). (2.34b)
pcF(&,u

37



CHAPTER 2. PRELIMINARIES

Then, equilibrium point gg of system(2.30) is input-to-state stablevith respect to
disturbances vZ, — V and initial states g in 2 . Furthermore, the ISS property of
Definition 2.3.2 holds with

(&l 2 o @otallao)). (D) 2 @ 2ol =), (239)

wherep £ (1- ) € Rjp ).

Proof: From the hypothesis one has that inequality (2.34a) holdalf§ < Z.
Due to the fact tha¥/ (§) < a2(|& — Xeq)) forall & € 2" implies that

V(&)

mgl forall &€ 27\ {Xeq},

one obtains that

a3(|§ — Xeq|)

V(&) — a3(|€ —Xeq|) < (1_ 02(| € —Xeq|)

Vi =pvie). e T\ (xah
(2.36)
wherep £ 1— £. Next it will be shown thap € Ryp1). Since inequalities (2.34a) and

(2.34b) hold foru = 0 it follows that for allé € 2

0< sup V(@) <V(E)—clé —Xeq < (b—C)|& —Xeq*.
peF(&,0)

Henceg € R and therefor@ € Rjg 1). SiNCEV (Xeq) — a3(|Xeq— Xeq|) = PV (Xeq) =
0, one obtains, by utilizing (2.36), thelt(& ) — ar3(|€ — Xeq) < pV(&) forall & € 2.
Then,

V(4:1) < sup V(Q) <pV()+ (W), Yxee L, WeV, KEZ,.
QET (X, Vk)

Due torobust positive invariancef 2 one can employ the above inequality repeti-
tively, which yields

V (Xe1) < PV (x0) + pRa(Ivo]) + p* Lo (va]) + ...+ o (W),

forall xg € é”\ v € V, ke Z.. Then, it follows that

Ko
a1 ([Xs1 = Xed) <V (Xk1) < P a2((%0 — Xeq|) + %p'O(Ivk_i )
i=

1
< ¥ ara(|x0 — Yed) + oVl =5
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forall xg € Z, Vg € Vk+1 k e Z... Taking into consideration that; € .7, implies
thata; * is well-defined and is also of clasé, and thato € .#” one obtains

k+1

- 1
pesa v < 05 (P40~ + oMl 5 )

i 1

_ _ 1
< 0yt (20 a0 - xed) ) + a3 (201l =5 ).

for all xg € Z, Vi € VK1 ke Z,. In the sequel two situations are considered,

namelyp =0 andp € Rq ).
If p = 0there holds

= Xeq| < a3 (O ([IVi 1) < Bul[%0 —Xeq,K) + o (T ([IV-1]1))
< Bell%0 — Xedl, k) +az (20 ([[vi-1 1)),

foranyfBy € ¥ %, k € Z>1. By causality of the system (2.30a) one obtains
[ — Xeql < Be([Xo —Xeq, k) + 0 H(20(|IVI])),

foranypxe # £, ke Z,.

For p € Rg1), let Bx(|Xo — Xeql, K) = a{l(Zpkaz(s)). For a fixedk € Z., one
has thatB«(-,k) € ¢ due toa, € %, and a{l € Jw» andp € Rqq). For a fixeds,
it follows that Bx(s,-) is non-increasing ang_liorﬁx(s, k) =0, due top € R 1) and
a; ! € H. Therefore, it follows thagy € 7 .Z.

Now let/(s) £ a; *(20(s) 25)- Sincer?; € -, it follows thatyy € %" due to
al‘l € Jw ando € 2. Hence, the equilibriumeq of system (2.30) isnput-to-state
stablewith respect to disturbances Z, — V and initial statesg in 2" in the sense
of Definition 2.3.2, withBy andy} as given in (2.35). ]

Definition 2.3.5 A functionV : 2" — R, that satisfies the hypothesis of Theorem 2.3.4
is called anSS Lyapunov function
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Everything is vague to a degree
you do not realize till you have
tried to make it precise.

Bertrand Russell

Nonlinear model predictive control:
sub-optimality and robustness

One of the most studied properties of nonlinear model ptidicontrol is the stability
of the resulting closed-loop system. Perhaps the most erabistabilization method
is the so-called terminal cost and constraint set approsesh, for example, the sur-
vey [9] for an overview. This method uses the value functibthe model predictive
control cost functional as a candidate Lyapunov functiartifie closed-loop system
and achieves stability via a particular terminal cost andddlitional constraint on the
terminal state, i.e. the predicted state at the end of ttdigiten horizon. Its advantage
consists in the fact that initial feasibility of the optiration problem, which has to be
solved at every sample instant in the nonlinear model ptigdicontrol strategy, im-
pliesrecursive feasibilityand, the finite horizon model predictive control cost can be
a good approximation of the infinite horizon model predietontrol costs. However,
these properties are only guaranteed under the standimgptens that global opti-
mumof the model predictive control optimization problem iséted at each sampling
instant. Clearly, when dealing with nonlinear predictioadals and hard constraints,
it is difficult if not impossible to guarantee that this asstion holds in practice,
where numerical solvers usually provide (in the limited panational time available)
a feasible, sub-optimal control sequence as solution tadndinear model predictive
control optimization problem. Such a sub-optimal contezjgence needs to have cer-
tain properties to still guarantee stability of the to-lmevrolled system in closed-loop
with the model predictive controller. Therefore, in praetithere is a need for sub-
optimal nonlinear model predictive control algorithmséen simpler optimization
problems, which can be solved faster, and can still a prioargntee stability.

An important result regarding sub-optimal nonlinear maateHdictive control was
presented in [67], where it is shown tHagsibility of the nonlinear model predictive
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control optimization problem rather than optimality is fetiént for stability. To be
precise, in [67], stability is achieved without requiringtionality via an additional
constraint which forces the model predictive control valuection to decrease at
each sampling-instant. However, when nonlinear predictmdels are employed,
this constraint becomes highly nonlinear and difficult tpiement from a computa-
tional point of view, as the model predictive control valumétion depends on the
whole sequence of predicted future controls. Recursivsiliéiy is guaranteed for
the nominal case in [67] by adding a terminal equality or indify constraint. Re-
garding the model predictive control algorithms of [67]otvesues remain to be in-
vestigated: how to guarantee robust stability for the adsep system and how to
decrease the computational burden, so that implementa¢gioomes possible for rel-
atively fast systems, e.g. motion systems, or relativeipglex systems such as for
example manufacturing systems.

In this chapter a new method for the design of an input-teestgabilizing sub-
optimal model predictive control algorithm, which is contgtionally friendly, is pro-
posed. This is achieved via new, simpler stabilizing caists, that can be imple-
mented as a finite number of linear inequalities. The proghasatrol design resorts
to a (infinity) norm basedrtificial ISS Lyapunov function. The proposed input-to-
state stabilizing model predictive control algorithm bejs to the category dhher-
ently robust model predictive controllers, as opposed to min-max modediptive
control [9]. That is, the knowledge about disturbances igtalcen into account when
computing the model predictive control law. However, in tlase of disturbances that
take values in a bounded, polyhedral set, it is shown how theetnpredictive con-
trol scheme based on the proposed artificial ISS Lyapunoetifum can be modified
to incorporate feedback to disturbances. This is achiei@édditional constraints
that allow for online optimization of the 1SS-gain of the lte-controlled system in
closed-loop with the model predictive controller. The nfigadi model predictive con-
trol algorithm results in better performance in the presasfadisturbances, while the
feedback input-to-state constraints can still be speciid finite number of linear
inequalities.

The chapter is organized as follows. First, a discrete-timelinear model pre-
dictive control formulation and terminologies are intredd in Section 3.1. In Sec-
tion 3.2 the proposed computational friendly nonlineab(iig) model predictive con-
troller is presented. In Section 3.3 the model predictivetaler scheme presented in
Section 3.2 is adopted such that the scheme can give feettbdaturbances which
results in disturbance rejection properties of the cldseq-system. In Section 3.4
it is illustrated how the proposed nonlinear model pred&tontrol scheme can be

1By theinherentlyrobustness property it is meant that a stabilizing corgrdias some robustness in the
presence of arbitrarily small disturbances induced by fangple model mismatch, etc.
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employed to control a complex manufacturing system netwoakdecentralized way.
In Section 3.5 a summary of the achievement obtained in thptehare summarized.

3.1 A discrete-time MPC formulation

Consider the following nominal and perturbed discretestimnlinear systems

Xer1 = (%, Uk), keZy, (3.1a)
S(vk+:|. = f(kvka uk) + W, ke Z+7 (31b)

wherexy, X € R" anduy, € R™ are the state and the control at discrete-theeZ
respectively. Furthermord,: R" x R™ — R" and f : R" x R™ — R" are a possibly
discontinuous nonlinear functions wift{0,0) = 0 andf(0,0) = 0, i.e. Xeq= 0 is an
equilibrium point for both (3.1a) and (3.1b) far= 0 andu = 0. The vectomy €
W C R" denotes an unknown additive disturbance &¥ids assumed to be a known
set. The nominal discrete-time nonlinear system (3.1d)beilused in a nonlinear
model predictive control scheme to makeMu Z-, time steps ahead prediction of
the system’s behavior. The system given by (3.1b) represeperturbed discrete-
time system to which the nonlinear model predictive cotgrddased on the nominal
model (3.1a) will be applied. Throughout the chapter it sumsed that the state and
the controls are constrained for both systems (3.1a) aidth8 somecompactsets
X andU, respectively, i.e.

wWcUCR™ x,X%cXCR", VvkecZ,.

FurthermorelU andX are assumed to have zero in their interior, i.es t(U) and
0 € int(X), respectively.
For a fixedN € Z>4, let

-
[LN] iva [OvN_l] A T T
X Kot ) = Ko XNk

denote the state sequence generated by the nominal systka {f®m initial state
Xk £ X attimek € Z, and by applying the control sequence

T
ON-1] A [, T T N
Uy = [Ugier - U -1k ceU".

The class ohdmissible control sequencedsfined with respect to the stafec X is
%) 2 (U e TN [N U ) exM)

LetN € Z>1 be givenand lef : R" — R, with F(0) =0 andL : R" x R™ — R with
L(0,0) = 0 be continuous bounded mappings. At tikne Z., let % € X be given.
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The basic model predictive control scenario consists inm#ing, via optimization,
at each tim&k € Z, a finite horizon cost function of the form

N—-1
I UMY 2 F (e i) + Z} L (Xic-ifico Uik » (3.2)
=

with prediction model (3.1a), over all sequenmé%N_l] in Zn(X). In the nonlin-
ear model predictive control literatuke, L andN are called the terminal cost, the
stage cost and the prediction horizon, respectively. fesiat X is calledfeasibleif
I (X) # 0. Let Z%1(N) C X denote the set deasible initial statesvith respect to
the mentioned optimization problem. Thép. : 27 (N) — R,

Viee(®) 2 inf IR uitN ) (3.3)

ue™ e (%)
is the nonlinear model predictive control value functionresponding to the cost
(3.2). If there exists an optimal sequence of controls

[ON—1% & T

T T T
U = [uﬁ\kvuﬁJrl\kv"'auEJerl\k
that minimizes (3.3), the infimum in (3.3) is a minimum and

[07N—l]*)

VMPc(ik) = \](ikauk (3-4)

In [68] one can find sufficient conditions for the existencewdh an optimal sequence
of controls. In case of anniqueglobal optimum, theptimalmodel predictive control
law is denoted by a map"** : 2% (N) — U, i.e.

Uk = Ugy = K" (%), ke Zy

Stability, or stronger input-to-state stability, of thesuting model predictive control
closed-loop system, i.e.

K1 = F (R, K" (X)) + W, Wee WCR", keZy, (3.5)

is usually guaranteed by adding a particular constrainhersb-callederminalstate,
i.e. X |k, See, for example [9], [46] and [47]. Recall from the introdan of this chap-
ter, that in practice numerical solvers usually provideasiiele sub-optimakequence

.
=ON=-1] A [T T —T
Uk = | Ukjko Uk afko - o Uk N—1fk |

with resulting value function




3.2. INPUT-TO-STATE STABLE NONLINEAR MPC

Sub-optimalitybut also the existence of a non-unique global optimum,dadypossi-
bly non-uniqueness of solutions to the optimization probénd therefore in that case
the model predictive control law is denoted by a set-valueg r¥*°: 27 (N) — U
that is allowed to be discontinuous, i.e.

Uk = Uy € KMPC(XVk), keZ.. (3.6)

The sub-optimalmodel predictive control law (3.6), can be substituted ir1i§3 and
yields closed-loop system

K1 € F(Ri K"O(X0)) + Wi & P (K, Wi), W€ WCR", keZi.  (3.7)

In the remainder of this chapter sub-optimal model pregictiontrol is considered.
In case ofsub-optimality stability of the model predictive control closed-loopteys
may be unclear, or may even be lost. Recall that one of theogempof this chapter
is to present a model predictive control design methodolelich can, irrespective
whether or not an optimal solution to the model predictivetonl optimization prob-
lem is found, a priori guarantee input-to-state stability.

A well known property, which is often employed to prove slityobf model pre-
dictive control schemes, see for example [67Tegularity of the controller.

Definition 3.1.1 Let N € Z>1 be the prediction horizon of the model predictive con-
troller. Then a model predictive controller is callesjular over a certain horizon
Nr € Zj1 v if the predictedfuture controls, predicted by the model predictive con-
troller over a horizom;, satisfy the following relation

Ukl p < 61Xkl p:

. (3.8)
|uk+i\k|p < 92|Xk\k|p7 for i=1,....N,

with 6,6, € R.q.

3.2 Input-to-state stable nonlinear MPC

In the robust model predictive control literature there saeeral ways for designing
robust model predictive controllers for perturbed nordingystems. One way is to
rely on the inherent robustness properties of nominallgizéng nonlinear model

predictive controllers, e.g. which is done in [60, 69], heeetheir results rely on
the very strict assumption that the nonlinear model pragictontrol law isLipschitz

continuous. Another approach is to incorporate knowledgriathe disturbances in
the model predictive control problem formulation via odeop worst case scenar-
ios. This includes model predictive control algorithmsdzhen open-loop min-max
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optimization problems, e.g. see the survey [9]. To incoapmfeedback to the distur-
bances, the closed-loop or feedback min-max model predictintrol problem set-up
has been introduced in [70] and further developed in [4572].,, The main drawback
of min-max based model predictive control algorithms is ldrge online computa-
tional burden. Yet another approach to incorporate thesimass issue in the model
predictive controller design is to synthesize model priacBontrollers that, based on
a nominal model of the system, render the closed-loop systpmt-to-state-stable.
The input-to-state stability framework related to nonéinenodel predictive control
has been introduced first in [46]. One year later the inptgtate stability framework
related to model predictive control fdinear systems has been considered in [73].
In [46] a nonlinear model predictive control scheme is psggbto render closed-
loop system (3.7) input-to-state stable with respecadditive disturbances w A
tightened constraint set approach is employed in [46] irptd ensureecursive fea-
sibility. Furthermore, the input-to-state stability property & thosed-loop system is
obtained using the so-called terminal cost and constrairagproach This method
uses the value function, i.e. (3.4), of the model prediativetrol cost as a candidate
ISS Lyapunov function. However, as in the case of stabijjzitodel predictive con-
trol mentioned in the introductory part of this chapter, téyeninal cost and constraint
set approach to render the closed-loop system (3.7) impstate stable only works
under the standing assumption thaglabal optimum of the model predictive control
optimization problem is attained at each sampling inst&at. the model predictive
control approach that will be proposed in the sequsiib-optimalor feasible solu-
tion to model predictive control optimization problem, tiead of a global optimum,
is sufficient to show input-to-state stability of the clodedp system. Compared to
the sub-optimal model predictive control scheme of [67@, pnoposed model predic-
tive control scheme cannot guarantee that initial feagliihplies feasibility for all
following sample instants, i.e. recursive feasibility. wiver, note that in this chap-
ter systems perturbed by additive disturbances are caesidin this case, recursive
feasibility is also not guaranteed for the algorithms of][67

The material in this chapter is based on the work in [43, 4éjyvéver in this
chapter a generalization of the model predictive contralésign approach in [43, 44]
is obtained. Furthermore, a proposal to reduce consemvatighe proposed model
predictive control design approach is given. The model iotieé controller design
approach proposed in this chapter is based on the idea td tesan artificial 1SS
Lyapunov function based approach. The artificial Lyapunmcfion based approach
in model predictive control has been treated in, for examg¥] and [75] for con-
trol and state constrained linear discrete-time system$arunconstrained nonlinear

2The so-called terminal cost and constraint set approaclsdsaam embraced method for synthesizing
stabilizing model predictive control schemes, see for edari9].
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continuous-time systems, respectively. In [75] the saechdirtificial Lyapunov based
approach is mentioned as the CLF (Control Lyapunov Functea e.g. [76]) based
approach. Furthermore, in [77] the approach is called tixdiary Lyapunov-based
approach. One of the key elements of &éntficial Lyapunov approach is that one “ar-
tificially” imposes that a certain function is a Lyapunov @tion for the closed-loop
system by introducing additional constraints to the modedijctive control optimiza-
tion problem. Opposed to the existing approaches in thisosethere are constraints
impose to a model predictive controller such that a ceriaircfion is an ISS Lyapunov
function instead of just a Lyapunov function. This consetiadly guarantees robust-
ness, i.e. input-to-state stability, of the closed-looptesn with respect to additive
disturbances.

Consider a candidate ISS Lyapunov function that satisfiesdlowing assump-
tion.

Assumption 3.2.1Let W C R" with 0 € W. Supposer; £ as' andas £ bs' € %,
for some constantg,b,A € R.o. Letay € # andV : X — R, with V(0) = 0 be
such that for al€ € R" andw € W the following inequalities and equality holds

ai(|E]) < V(&) < aa(|E)), (3.9)
V(& + ) <V(E)+V(w), (3.9b)
av (&) = av(—&). (3.9¢)

Consider the following algorithm.

Algorithm 3.2.2

Step 1)
Given the state at timek € Z., let Xk £ % and find a control sequence
uLON Ua [uk‘k, ukTJrN—l\k]T that satisfies
V (f Xk, Ukk)) — V (%) < —av (Xigk) (3.10a)
ulP™N Y e (%) (3.10b)

and optionally also minimizes the cakk, ukO N-1) ) in (3.2).

Step 2)
Let
KM (%) = {u;qk e U | u>N Y satisfies (3.1(%.
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[ON-1] a =T aT T with Ti MPC (7
Furthermore, leT, = [uk‘k,...,uk+N71‘k] with Ty € K"°(X) denote a

feasible sequence of controls with respect to the optinoiagiroblem formu-
lated at Step 1. Apply an input

Uk = Tk € K"™°(%)
to the perturbed system (3.1b), incremkibly one and go to Step 1.

The following result can be obtained for nonlinear syster§Bin closed-loop with
Algorithm 3.2.2 forming system (3.7).

Theorem 3.2.3 Suppose Assumption 3.2.1 holds. 28t(N) be the set of stateg

X for which the optimization problem in Stépf Algorithm 3.2.2 is feasible and let
%(N) C Zi(N) be an RPI set witld € int(%(N)) for closed-loop syster(B.7)
perturbed by additive disturbances:\&, — W. Then, equilibrium poinkeq = 0 of
closed-loop systelf3.7)is input-to-state stable with respect to disturbances:\#., —
W and initial states<g in %(N).

Proof: The proof consists of showing that the ISS Lyapunov candida®\s-
sumption 3.2.1 is actually an ISS Lyapunov function for egst(3.7). Note that in-
equality (3.9a) holds for alf € X. Hence,V(.) satisfies condition (2.34a) of The-
orem 2.3.4. From constraint (3.10a) and using propertie2aj3(3.9b) and (3.9c)
from Assumption 3.2.1, one has that for &l fff(N) CX, we W and any feasible

ULO‘Nfl], or for anyu € KMPC(E):

V((&, 1) +w) —V(E) <V(f(E,1)) +V(w) ~V(E)

< —av(§)+V(w) (3.11)
—a3(|&)) +o(|w),

IN

o (5) whereag, (s) € # i such thaty (&) > ag, (|&]) for all & €

whereas(s) £ a
2 a,(s). Since the last inequality in (3.11) holds for gmy k“*°(&) one

R"andao(s)
has that N N
sup V(@) <V(§)—as(|¢])+o(|w])
peFw(€,w)
for all ge fff(N), w € W. Hence, the statement of Theorem 3.2.3 then follows from
Theorem 2.3.4. [ ]

Remark 3.2.4 Note if there are no additive disturbances present, we= 0, and
V is a Lyapunov function under treptimalcontrol, i.e. the optimal control obtained
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under infinite horizonNl = «) model predictive control (without constrained (3.10a)),
then Algorithm 3.2.2 can recover (fof = «) the performance of the optimal infinite
horizon model predictive controller.

Remark 3.2.5 In Step 1 of Algorithm 3.2.2, one has to search for a feasibdgience
of inputs, which is sufficient for guaranteeing input-tatst stability of the closed-
loop system, as stated in Theorem 3.2.3. In other wordsrsieufeasibility implies
input-to-state stability of the closed-loop system witbpect to additive disturbances.

Selecting a functiolV in Algorithm 3.2.2 that satisfies Assumption 3.2.1 is catjc
since it has a direct influence on the feasibly and performaricAlgorithm 3.2.2.
Furthermore, the structure ¥falso has a direct influence on the computational com-
plexity of the optimization problem that is involved in Algthm 3.2.2. A proposal to
properly compute & is explained next.

Let Qv € R¥*" andR, € RP*" denote matrices with full-column rank. Suppose
the functionay (-) in Assumption 3.2.1 is given by

av (%) = |QuXi, (3.12)

andv(-)
V(%) £ [R/%l. (3.13)

A direct consequence of the result in (3.2.3) is the follayvin

Corollary 3.2.6 Supposey (-) and V(-) are of the form as given i(8.12)and(3.13)
Let 27 (N) be the set of state& € X for which the optimization problem in Step 1 of
Algorithm 3.2.2 is feasible and I&”f( ) € Z%(N) be an RPI set with € mt(%f( )
for closed-loop systerf8.7) perturbed by additive disturbances:\i& . — W. Then,
equilibrium pointXeq = 0 of closed-loop systel3.7)is input-to-state stable with re-
spect to disturbances wZ, — W and initial statestp in fff(N).

Proof Dueto the fact thal, has full-column rank, there exist > c; > 0 such
thatcl|E|p < ||:\,5| < c2|£| for all E e R" HenceV( ) satisfies condition (3.9a) in
Assumption 3.2.1 fou1(|E|) £ c1|E| and a2(|E|) = cz|E| Note by definitionV (-)
anday(-) in (3.13) and (3.12) satisfy condition (3.9b) and (3.9c}pexctively. The
result in Corollary 3.2.6 then follows from the result in Bnem 3.2.3 withoz £ Go, S

(Goy € Rugis such thath§| > Goy |E|) ando(s) = cgs. [ |

With the result from Corollary 3.2.6 a constructive methoddomputing an ISS Lya-
punov functiorV (-) of the particular form given in (3.13)ff-lineis presented. Let

X1 = Ax+ Bu@ ke Z+7 (314)
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with A € R™", B € R™™ be a linearapproximationof (3.1b) around0,0,0), i.e.
A0+ B0 = f(0,0) and in a neighborhood” C X aroundx = 0 one has

AxXc+Bu = (X, U), (3.15)

for all x, € 4" anduy € U. In order to compute the matric€y andR;, the following
linear state-feedbaal = Kxx, K e R™" k € Z,, is introduced. Then, the following
result can be employed to find a matiy, which then defines an ISS Lyapunov
function of the form in (3.13) for the closed-loop system7{§3.with k"<, derived
from Algorithm 3.2.2.

Lemma 3.2.7 Suppose that the matriceg,FQy and K satisfy

1— |R/(A+BK)R M - |QUR M > 0, (3.16a)
R/ R/ >0, (3.16b)
Q/Q >0, (3.16¢)

where R'- 2 (RJR/) "R/ is a left Moore-Penrose inverse of PThen, it holds that
|R/(A+BK)&| —|R/E| < —|Qvé]| for all £. Hence, the function ) = |R/X| is an
ISS Lyapunov function for the closed-loop systgm = (A+ BK) X + .

Proof: Inequalities (3.16b), (3.16c¢) guarantee tretk(R,) = rank(Qy) = n.
Multiplication of (3.16a) with|R, & | yields

0< |R/&|—|R/(A+BK)R,|R/ & — [QUR MR/, VE
<|RE| - |R(A+BK)R ' RE| - QR PRE], V€ =

= [RE[-[R/(A+BK)E| < —|Quvé], V¢.
n

Numerically the matrice®,, Qy andK in (3.16) can be obtained by constructing,
for example, a zero cost optimization problem, which candbeesl with for example
fminconof Matlab or other nonlinear optimization tools. The noekn nature of the
obtained optimization problem is not critical, since it idved off-line.

Remark 3.2.8 The hypothesis of Theorem 3.2.3 and Corollary 3.2.6 assoimast
feasibility of the problem in Step 1 of Algorithm 3.2.2, whicannot be guaranteed
a priori in general. In practice, the constrait 1 € X ~ W can be added to the
optimization problem to ensure that the closed-loop systetate, i.e X 1 = X1k +
W, k € Z,, does not violate the state constraints at threl for any disturbance in
W.
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Computational aspects

In this subsection it is shown that the norm based artific&8 Lyapunov function
defined in (3.13) has some nice advantages when it comes tfputational issues of
the proposed model predictive controller defined in Aldorit3.2.2. The standing
assumption throughout this section is that every vectomnol is aninfinity norm
|- |p=w. Note that this assumption can be made without loss of gétyasthe results
presented so far in this chapter.

Corollary 3.2.9 Supposery () and V(-) in Assumption 3.2.1 are of the form as given
in (3.12)and(3.13) Consider infinity norms (p= «) and assume the seX§ U (and
W) are polyhedral. Furthermore, let the function$4 and L(x, u), defining the model
predictive control cos(3.2), be defined as

F(X) 2 |PXe and LX,u) 2 |QXw + |RyUlw,

where Pe R " Q € R"™*" and R, € R'v*™M are assumed to be known matrices that
have full-column rank, i.e. &) and L(x,u) are therefore bounded mappings on the
domainsX andX x U, respectively. Then,

i) if the systen{3.1b)and the prediction moddB.1a)are affine with respect to the

control u, i.e.
_ -1 2 .
Xerirak = T Kerio Ukri) = T i) + T i) Ui, 1=0,...,N =1,
(3.17)
and
f(%e, U = (%) + F2(K)u, keZy (3.18)

with f1:R? — RM, f2: R — R™M T1: RN, R" and?: R" — R"™M possibly
discontinuous mappings then, for-N1, the optimization problem that has to
be solved at Step 1 of Algorithm 3.2.2 can be formulatedlassar program;

ii) if the systen{3.1b)is affine with respect to the control u, i.e. as(118) and if
prediction mode(3.1a)is a well-posed piecewise affine systeeg. a well-
posed piecewise affine approximation(8f18), i.e.

. . S, .
" (Xerip) = A% +02, T (%) =B, when X € Qj, (3.19)

where A € R™", Bl e R™™M, bl € R", j € . with.7 £ Z; 4, for some & Z-1,

is a finite set of indices, then, for &Z- 1, the optimization problem that has
to be solved at Step 1 of Algorithm 3.2.2 can be formulatedraixad integer
linear program,

3A piecewise affine systemi;1 = Alx + Bluy + bl for xc € Q; is called well-posed if for specifiexk
anduy, X1 is uniquely defined.
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iii) if the system(3.1b)is affine with respect to the control u, i.e. as(B118) and
if prediction modek3.1a)in Algorithm 3.2.2 is replaced by a linearization of
(3.1b) (if it exists) around the stat®, at time ke Z. and the zero control or
Uk—1, i.e.
~ 2~ .
Xeririk = < (X Xrijk + T K )Uqie, 1=0,...,N=1, (3.20)

o 1 2 .
where .« (%) £ Wk:ik,u:o or u—y,_,» then, for Ne Z.,, the opti-
mization problem that has to be solved at Step 1 of Algoritht23can be
formulated as dinear program;

iv) if the systen{3.18)and the prediction modéB.17)are linear with respect to the
control, i.e. (%) =B < R™M ande(Yk‘k) =B e R™M then, for N= 1, the
optimization problem that has to be solved at Step 1 of Alilgori3.2.2 can be
formulated as solving anulti-parametric linear program. Furthermore, the
model predictive control laww= k“"°(X,) can be obtained explicitly and is of

the form
(%) (%)
U = K P +qi, if C (%) <d,
|R/ik|°°_|(?\/ik|oo |R/ik|oo_|Q\/ik|oo

21)
j € X where”K £ 7, 4, for some s Z.o. The index set’ and matrices
Ki e R™G@+D) gl ¢ RM CI e Rex(31) and d € R™ result from the to be
solved multi-parametric linear program;

v) if the systen{3.18)and the prediction mod€B.17)are linear with respect to the
control, i.e. #(X) = Tz(xk‘k) =B e R™M and if

1
™ (Xirik) = AXerifks

%
that has to be solved at Step 1 of Algorithm 3.2.2 can be fatedlas solving

a multi-parametric linear program. Furthermore, the model predictive control
law u, = K"¢(X) can be obtained explicitly and is of the form

where A= o1 (%) |>~<=o (if it exists), then, for Ne Z~1, the optimization problem

_ (%) , , (%) ,
U = K Xi +q!, if C! Xi <c,
|R/ik|°°_ |Q\/ik|oo |R/ik|oo_|Q\/ik|oo
(3.22)
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j € X wheresK £ 7, g, for some s Z.o. The index set’ and matrices
Ki e R™(@+D) gl ¢ R™ CI e R"e*(21) and d € R™ result from the to be
solved multi-parametric linear program;

Proof: For the system dynamics of the form (3.18), the functibm (3.10a)
defined as in (3.13) and considering infinity norms=), one can rewrite inequality
(3.10a), for any fixedk, as a set of linear constraints with respecttQ. Indeed,
inequality (3.10a) can be written as

IRy (F1 (k) + F2 (X)) Uigic) oo < 9 (X (3.23)

where
9 (Xgk) = [RXigicloo — Qv Xigioo-

By definition of| - | inequality (3.23) can be equivalently expressed as
— 178 (Xiq) < ER(FH (%) + F2(Xgk) Ui

or

3 (Xk“()7 (3.24)

Ry 2 (Xk) Ry 1Pv
[_R/fz()k(kkk)] = lR/ ] P00+ |10

wherel™ is a shorthand notation fa™ = [1,...,1]" € RP. Hence, inequality (3.24)
is, for any fixedxy, linear with respect toiy.
According to the hypothesis in Corollary 3.2.9 the constraetsX andU are
polyhedral, i.e.
X£{&eR"| A& <bx},

U2 {ueR™ Ayu<hy},
with real valued matricedy, bx, Ay andby having appropriate dimensions. There-
fore one has that

AxXtitk <bx, i=0,...,N—1,

, (3.25)
AUUkJr”kaU, i=0,...,N—1

Note that for the prediction model as defined in (3.17) andrfer |PX, /- and
L = |QXcyikloo + [Rullsijkleo With i = 0,...,N — 1, as defined in the Corollary 3.2.9,
Step 1 in Algorithm 3.2.2 can be formulated as solving théofaing optimization

problem
N—1 N—1
min £+ %EQJ + ZESRUJ , (3.26)
uLo’NfllﬁQ‘i,&aRu?i i= i=
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subject to:
—1"e < —PXciNjko £>0, (3.27a)
—1™E < PXeinjs (3.27D)
Mg < ~QXeriks &0 =0, i=0,...,N—1, (3.27¢)
—1Meq; < QXyifks i=0,...,N—1, (3.27d)
—1"er,i < —Ruliyijk,  ERyi >0, i=0,...,N—1, (3.27¢)
~1"eR, i < Rullsilks i=0,...,N—1, (3.27f)
Xrisak = T (Resifi) + T i) U i=0,...,N—1, (3.279)
inequality (3.25) and (3.24) (3.27h)

ForN = 1 one can, by substitution of (3.27g) in (3.27a) and (3.2/@write optimiza-
tion problem defined by (3.26) and (3.27) in the followingrfor

min £+ &0+ & }, 3.28
Ukik,£Q,0,€-ERy,0 { T Q0 Ru0 ( )
subject to:
-
At (%K) [Uk\k &o € 5%70} < B (X)) (3.29)
where
[0 1% 0 0] — Q¥
0 ~1% 0 0 Qb
72 _
P (Xk) o -1" o —PT (%)
—PFg) 0 -1" 0 P (41
Ry 0 0 —1Mu 0
—Ry 0 0 —1Mu 0
ALPl(Xk‘k) = 0 -1 0 0 |, bLPl(Xklk) = 0
0 0 -1 0 0
0 0 0 -1 0
Ry F2(X) 0 0 0 —Ry FL (%) + 179 (%)
-R f22(Xk\k) 0 0 0 Ry (%) + 179 (Xqi)
AxF () O 0 0 bx —AXTl(Xk|k)
L Ay 0 0 0 | L by ]

which can, for all fixedx, be recognized as lmear programmingproblem. This
proves item i) form Corollary 3.2.9.

In case the prediction model (3.279) is replaced by a lizatidn of (3.279)
around the (measured) stagg £ %, i.e. (3.20), one can, faN € Z- 1, rewrite the
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optimization problem defined by (3.26) and (3.27) in thedaihg form

N-1 N-1
min e+ Z)gQ’i + stgu’i : (3.30)
ULO‘Nill,SQTi,E,SRu‘i i= i=

subject to:

[ON-1]T T T T <b
ALPN(Xk\k) U [8Q107 -, EQN-1, 8] [€Ru’o, cey ‘gRu,N—l] > LPN(Xk\k)a

(3.31)
where
Aen(Xgk) £ bien(Xqk) £
.| o di(-1"]y) O ] [ —Qxk
- QH(ka)} [ 0 -1 0 * _Q‘D(Xk|k)xkk:|
+di([Ruln) 0 di([—1"]n) 0
0 s 0 0
0 0 I 0 ,
Ry F2(%qi)Im 0 0 =Ry (%) + 18 (%)
—Ry 12(Xqi)Im 0 0 Ry (i) + 179 (%)
di([AxIn)H (k) 0 0 bx — di([Ax]n) P (Xqic) Xk
di([Au]n) 0 0o | L by
with -,
MZ(Xk\k) £ (%k) 0 0
REAYD o () T2 ' :
PO = » H 40 = (Xklk)_ G0 _ _ :
: : . . 0
N _ _ _
S A gV T xg) - A O T Oxg) T o)
_ bx by
Qﬁ[d'([g]N) g],Bxﬁ 2| [ im2lm 0 .. o and N&N-1
bx by

Note that optimization problem defined by (3.30) and (3.29linear programming
problem for all fixedx. Hence, itemiiii) from Corollary 3.2.9 is proven.

Since the prediction model (3.1a), i.e. (3.279), in itemoii)Corollary 3.2.9 is
assumed to be a well-possed piecewise affine system ancpititeaind state constraint
setsU and X are assumed to compact, one can equivalently rewrite the\pise
affine prediction model into a mixed logical dynamical (MLIDym, i.e.

Xcri+ 1k = MXici i+ Gl i+ G4 i+ G, 1=0,...,N—1, (3.32a)
EXcifk+ E'Ukiik+ E%Oci+ EZeik <9, 1=0,...,.N~1  (3.32b)

whered i € {0,1}" andz,x € R™ are binary and real valued auxiliary variables,
respectively. This statement follows directly from progios 4 in [78], which is
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provenin [79]. Note that as mixed logical dynamical modeily@llow for non-strict
inequalities in (3.32b), rewriting a discontinuous pieteaffine system as a mixed
logical dynamical system strict inequalities likg,jx < 0 must be approximated by
Xerijk < —¢ for some¢ > 0 (typically the machine (computer) precision), with the
assumption that-¢ < X,k < 0 cannot occur due to the finite number of bits used
for representing real numbers. Note that no problem exibtrvthe piecewise affine
model is continuous, where the strict inequality can in tlaise be equivalently rewrit-
ten as non-strict, i.e¢ = 0. See [24] for more details. Define

dN e [6kT\k7 T 5KT+N71\k] : ;
and
ZLO’Nil} = [Zij\kvzilrl\kV“vzierfl\k}T'
Replacing equality (3.27g) by equality (3.32a) and add uradity (3.32b) to the opti-

mization problem defined by (3.26), (3.27a), (3.27b), (8)2{B.27d), (3.27¢), (3.27f),
(3.32a) and (3.27h) yields the following optimization pierh.

N-1 N-1
min £+ Z} £ + Z) ERui ( (3.33)
ULO’Nd]ﬁQ.i £.6Rd 7dLOTN71]*ZLOTN71] & &

subject to:

Auien (Xk k) l,I[O’N_l]T £00,---,EQN-1,€ T
\ K [eQ.0 QN-1,€] . (3.34)

T T
[ERu‘o, .. ,ERU‘N,;L]T dLQN 4 ZLQN 1 } < byien (Xk\k)v
where
Auien (i) =
0 di([—1"]n) 0 0 0
- {GH“] [ o fl”p] ° - [QH"] - {QHZ]
£di([Ruln) 0 di([-1"]n) 0 0
0 =N+ 0 0 0
0 0 “Iy 0 0
Ry 12(Xgie) Im 0 0 0 0
—Ry (%) Im 0 0 0 0
di([Ax]n)HY 0 0 di([Ax ) H® di([Ax]n)H?
di([Auln) 0 0 0 0
Ldi([EY)n) + di([E]n)H" 0 0 di([E%n) + di([ElN)F® di((EZ)n) + di([E]n) A7
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Puien (%K) £

0 ... O

0 Ge :
0 , with A2 vMee . - 1| eef{udz,
=Ry (%) + 19 (X))
Ry (%) + 19 (Xq)
bx — di([Ax]n) PmXiqk
m —
L §—di([E]n)Pmxk

MN-2Ge .. MGE G® O

G® 0 0 In

s | Mce

He ec{udz, dy=| . |, Iy 2 ,andg2

. . . 0 ) : g
MN-1ge ... MGE G® MM MN-1

Note that optimization problem defined by (3.33) and (3.34)or all fixedXq, a
mixed integer linear programmingroblem. Hence, this concludes the proof of item
ii) from Corollary 3.2.9.

If fz(xk‘k) = B holds, then, the optimization problem defined by (3.28) éha9q)

can be rewritten as

min {8+8Q,o+8Ru,o}, (3.35)

Ui k»€Q,0,€:€Ry,0
subject to:

T
AmpLPl ng €Q0 € &R0 SbmpLP1+meLP16k) (336)
|

with 62 (61" 62" ], 6']T € R¥™L C 01 x 0y x X x Oy, where

@1é{z eR" | 7 =TY), EeX}, (3.373)
@zé{z eR"| ¢ =), EEX}, (3.37b)
@4é{z ER|Z=9(¢), EEX}, (3.37¢)
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0 -1 0 0 0 0 0 -Q o0

0 -1 0 0 0 0 0 Q o0
PB 0o -1 o 0 -P 0 0 o0
-PBE 0 -1" 0 0 P 0 0 o0
Ry 0 0 -1 0 0 0 0 ©
—Ry 0 0 -1 0 0 0 0 o0
A =| 0 -1 0 0 |, b= | O, WeppZ| O 0 0 O
0 0o -1 o0 0 0 0 0 o0
0 0 0o -1 0 0 0 0 o0
R/B 0 0 0 0 0 -R 0 1M
-RB 0 0 0 0 0 RR 0 1M
AKB 0 0 0 bx -Ax O 0 o0
| Ay 0 0 0 | Lby | | 0 0 0 0]

Note that problem defined by (3.35) and (3.36) muati-parametric linear programming prob-

lem If problem defined by (3.35) and (3.36) is solvable on the d@iorfd; x Q2 x X x Q4, then
ot
it is well known that the solution, i.e.uﬁIk €00 € €R,o| Isapiecewise affine function of

the parameters if,.. Hence, the contral, = u;lk is solved explicitly and is given by
w=Klg+g, if clg<c, je.oK, (3.38)

where.#X £ 7, g, for somes € Zo and matrice! € R™G3M) gl ¢ RM, CJ ¢ RMex(30+1)
andc/ € R™ follow by solving the multi-parametric linear programmipgoblem defined by
(3.35) and (3.36). Note that the parameterjirare related tog = X as follows

ps

(%)

f

6.2 H(%) . (3.39)
%

R/ icloo — Qv %[0

Substitution of (3.39) in (3.38) yields (3.21) and conclsidiee proof of item iv) from Corol-
lary 3.2.9.

If £2(%) = Tz(xk‘k) =B € R™™M, then, the optimization problem defined by (3.30) and
(3.31) can be rewritten as

_ N-1 N-1
[oAN71]m|n e+ 20 &+ ZO ERyi (s (3.40)
Uy 1€Q.iEERyi i= i=

subject to:

AmpLPN(Xk\k) [ULQN Y [EQ,O7 .o, EQN-1, E] T [ER{J70, ceey ERU,Nfl] T] < bmpLPN +meLPN9k7
(3.41)
with 6 2 [62' Xk 6417 e R@™D C 0, x X x 04, whereD, and0y are defined as in (3.37b)

and (3.37c), respectively. Furthermorg,,.»\ is obtained by substitution o_‘fz(xk‘k), fz(xk‘k)
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and </ (Xk) in Aen, P(Xik) andH (xqk) by matricesB, B andA, respectively. The matrices
Binpien @NAW, 6y in (3.41) are defined as

0 0 -Q 0
0 0 —Qo 0
0 0 Q 0
0 0 Qo 0
0 0 0 0
bmpLPN £ 0 s meLPN £ 0 0 0
0 0 0 0
0 —R 0 1P
0 R/ 0 1P
bx 0 —di((AxJn)® 0
by | 0 0 0|

Note that problem defined by (3.40) and (3.41) mw@lti-parametric linear programming prob-
lem If problem defined by (3.40) and (3.41) is solvable on the @iord, x X x Qg4, then it is
well known that the solution, i.e.

T " " T T
ERICI

is a piecewise affine function of the parametersin Hence, the contraly £ ”§|k is solved
explicitly and is given by

[ON-1)+T * * *
[uk [t sm1:87]

w=Klg+g, if clg<dc, je.oX, (3.42)

where. 7K £ 7, y, for somes € Z-.o and matrice) € R™ (1) gl € R™, CJ € RMex(20+1)
andc/ € R™ follow by solving the multi-parametric linear programmipgoblem defined by
(3.40) and (3.41). Note that the parametergjirare related tay = X, as follows

(%)
6 2 K ) (3.43)
IR Xieleo — [ Qu |0
Substitution of (3.43) in (3.42) yields (3.22) and conclsidiee proof of item v) from Corol-
lary 3.2.9. [ ]

Reducing conservatism

The proposed model predictive control scheme given in Alilgor3.2.2 withV (-) de-
fined as in is based onammonSS Lyapunov function of the form given in (3.13).
The common ISS Lyapunov function is computed based on arleqgaroximationof

the system dynamics (3.1b). Due to the fact thabeimonSS Lyapunov approach
based on a lineapproximatiorof the system dynamics (3.1b) is employed, constraint

59



CHAPTER 3. NONLINEAR MODEL PREDICTIVE CONTROL: SUB-OPTIMALITY AND ROBUSTNESS

(3.10a) in combination with (3.13) might be conservativiaflis, the input-to-state
stabilizing constraint in (3.10a) in combination with (3)Imight, due to conserva-
tiveness induced by the common ISS Lyapunov (3.13) funejmproach, deteriorate
performance of the model predictive control algorithm.Histsection an altered ver-
sion of Algorithm 3.2.2 is presented, for a slightly strictéass of systems, in which
conservativeness of constraint (3.10a) can be reduced.silhelass of systems in
(3.1b) that is considered is defined as

K1 = (R W) +We 2 g (R, U) + W when %€ Qj, keZ,  (3.44)
wherej € . with .7 & Zyyg, for somese€ Z, is afinite setof indices. An index
j € .7 is referred to as enodeof system (3.44). The collectiof; | j € ./} defines
a partition ofX, that is

UiesrQj=X and in{Q;)Nint(Qj) =0 for i#]j.

Each setQ; is assumed to be polyhedronwhich is not necessarily closed. Let
So={je 7 |0ecl(Qj)}and.s1 £ {j €. |0&cl(Q))}, so that? = SU.71.
Furthermoreg! : R" x R™ — R" is allowed to adiscontinuousnap. It is assumed
thatxeq = 0 is an equilibrium point for (3.44) with = 0 andw = 0. Therefore, it is
required thag;(0,0) =0 for all j € .. Let

Q,-ié{fesz,-|auew:gi(é,u)eQiNW}, ji]Tesxs (3.45)

and let

S 2 {[j i .7 x.7 | 2; ﬂ)}.
Furthermore, let '

Aelies |1 e A}

Note that the set of pairs of indice®;, defines allmodetransitions that can occur
in system (3.44), i.e. ifji]" € .%;, then a transition fron®; to Q; can occur. For
a givenmode jthe set of indice%ﬁ defines to whichmodes ie . a transition can
occur, i.e. given a modge .7 transition fromQ; to Q; with i € A} can occur. Once
2j; is computed¥; and.#} are easy to determine. For afixpdZj; in (3.52) is also
known in literature as thene-step reachable sahder the disturbances: Z, — W,
e.g. see [80].

Remark 3.2.10 In caseg; (X, Ux) in (3.44) is piecewise affine (PWA), i.e.
o' (X%, u) = Al +Blug+ b/, when %€ Q;,

whereAl ¢ R™" Bl ¢ R™™ bl e R, j € .7, bl =0 for j € .7 andW, defined in
Section 3.1, is assumed to be polyhedron then the set of hiinglices.#;, can be
easily determined by solvingf linear programs.
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In the sequel an altered version of Algorithm 3.2.2, withgmially less conservatism,
for the afore specified system class, i.e. (3.44), is presei@onsider a candidate ISS
Lyapunov function of the form

V(%) 2 RI%|, %eQj, je.7. (3.46)

whereR} € R™*" with j €.7 are full-column rank matrices. L&Y, € R *" with
j € & denote a known matrix with full-column rank.

Algorithm 3.2.11

Step 1)
Given the stat@j at timek € Z, find the indexj € .# for which holdsx, € Q;
and |eth‘k £ Xic-

Step 2)
i) For givenxx andj compute the one-step reachable set, i.e.

2 () = {36 X|E=g (%) +w e, we W}- (3.47)

i) If 2 (%) N Qi # 0 fori € ., then add the indexto a set of indices’/gﬂ‘k.

Step 3)
find a control sequenua%(O‘Nfl] = [ug‘k, . ukT+N—l\k]T that satisfies
max (|Ry]) 17 (Xik» Uig) | — R Xl < — Q) Xl (3.48a)
€Sk
ulPM Y e ;%) (3.48Db)

and optionally also minimizes the cakk, uLo’Nfl]) in (3.2).

Step 4)
Let
KMPC(%) £ {uk‘k el | uLO‘Nfl} satisfies (3.48}.
Furthermore IeHLO’N’l] = [UkT“(,...,ULMHK]T with Ty € k(%) denote a

feasible sequence of controls with respect to the optinoiagiroblem formu-
lated at Step 1. Apply a control

Uk = Tk € K"7°(X)

to the perturbed system (3.1b), incremkibly one and go to Step 1.
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The following result can be obtained for nonlinear system43in closed-loop with
Algorithm 3.2.11 forming system (3.7).

Theorem 3.2.12Let 27 (N) be the set of state% € X for which the optimization
problem in Stefd of Algorithm 3.2.11 is feasible and I&?(N) C Z%(N) be an RPI
set with0 € int(fff(N)) for closed-loop systert8.7) perturbed by additive distur-
bances w Z; — W. Then, equilibrium poinkeq = O of closed-loop systeif8.7)is
input-to-state stable with respect to disturbances MZ; — W and initial statesx in
Zt(N).

Proof: The proof consists in showing that the ISS Lyapunov candiataf3.46)
is actually an ISS Lyapunov function for system (3 7). SiRgehas full-column
rank for all j € .7, there existt; > ¢; > 0 such that:1|E| > |P‘E| > c2|E| for all E
andj € .. Hence V() in (3.46) satisfies condition (2.34a) from Theorem 2.3.4 for
C2 > MaXc.y |P\J,|. From constraint (3.48a) and using the triangle inequalitye has
that for all€ € fff(N), w € W and any feasibIELo’Nfl], or for anyu € KMPC(E):

V(f(E, 1) +w) —V(E) =

= IRV(G(&, 1) + w)| — [RIE], when &€Qj, gi(&,u)+weQ
< IRIIG! (&, 1) + w| — RIE], when &€ Qj, g/(&, 1) +weQ;
<|R|1G' (&, )|+ |RY||w| — [RIE|, when &e€Qj, g/(&,u)eQi~W (3.49)
<m/ax(|Pv|)|g (& u>|+m;x(|Pv|>|w| IRIE|, when &€ Q

—1Q €|+ max (|R)]) |w],

2
'E‘/tr K

whereas(s) = Gl S (CQ\j/ € R.o is such than\j,E| > cQ\j/|E| for all g?) ando(s) £

max_, i (JR}|)s. Since the last inequality in (3.49) holds for apye KMPC(E) one
trk

has that

sup V(@) <V(&)—as(|€]) + o(|w))

peFw(E,w)

forall & ﬁg(N), w e W. Hence, the statement of Theorem 3.2.12 then follows from
Theorem 2.3.4. [ |

Remark 3.2.13 Note that ifg! in (3.44) is affine with respect to the contrgli.e.

' (% W) = 9} (%) + G (R)uk, for je.”
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with g{ R" — R, gé : R" — R™M possibly discontinuous mappings and the sets
U andW are polyhedral, then the problem that has to be solved atxst#pAlgo-
rithm 3.2.11 involves solving cafd”) linear programmingroblems. Furthermore, if

in addition infinity norms are considerep £ «) the constraint (3.48a) can be written
as a finite number dfnear inequality constraintsNote that therefore, for the opti-
mization problem that has to be solved at step 3 of Algorithen13, Corollary 3.2.9

of Section 3.2 applies (with step 1 in Corollary 3.2.9 repthby step 3).

Remark 3.2.14 A possibility to reduce then-linecomputational burden is to remove
step 2 from Algorithm 3.2.11 and replac; k in (3.48a) by.#;. Then, instead of
computing.#; x on-line one computes, off-line. But since.#,x C %, the off-
line computation might lead to more conservativeness coega online performing
step 2 in Algorithm 3.2.11.

Next, a method for computing the ISS Lyapunov function (3@f6lineis presented.
Let

X1 =Ax+Blu+bl, when xeQj, keZ,, (3.50)
with Al € R™", Bl ¢ R™™ bl ¢ R", j €.7, bl =0 for j € %, be a piecewise
affine (PWA)approximatiorof (3.44) around0,0,0), i.e. Al0+BI0+bl = (0,0) =
g'(0,0), for j € S and

Al +Blug+bl = f(x,u) =g’ (%, u), when x € Qj, (3.51)
for all x € X7 C X, with 0 € int(X1), anduy € U. Let
Qj’iw’*é{Eer |3ueU : AjE+Bju+bjeQi~W}, ji]T e x.7 (3.52)
and let
xﬁWAé{[j i]TeyxywﬁNA;&@}. (3.53)

In order to compute the matricéj/ and P\} the following linear state-feedback =
Kix, KI € R™" ke Z,, is introduced. Then, the following result can be employed
tofind a matrixP\}, which then defines an ISS Lyapunov function of the form id 3.
for closed-loop system (3.7), with"*°, representing Algorithm 3.2.11.

Lemma 3.2.15 Suppose that the following matriceé,FQ\j,, K and scalarstji €
Ryo,1) satisfy

R (A +BIKHRD M +IQR) ™ <1-1,  [ji]Tes™  (354a)
Ry (D) < TR,  VEeXTnQ, [ji]T e (3.54b)
RHTR >0, Vie”,  (3.54c)
@)@, >0, Vie.s.  (3.54d)
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Then, for allé € Xt it holds that
IR) (Al + BIK)E +b)| - |RIE| < —|Q&|. (3.55)

Hence, the function ¥) in (3.46)is a Lyapunov function for closed-loop system
X1 = (Al +BIK)x+bl whenx € Qj, j€ .7,

Proof: Inequalities (3.54c) and (3.54d) guarantee tbak(P\;) = rank(Q\j,) =n
for all j € .. Furthermore, sincéR),KJ Q. 1ji | [ji]T € %™} satisfy (3.54a) it
follows that

IR/(A+BIK)(RH ™+ |Q(R) ™ +1i—1<0, [ji]" e ™  (3.56)

Multiplying (3.56) with |P\}E| yields that for[j i]T € .4

0> |R) (Al +BIKI)(R) IR+ QU (R) HIRE| + ;i [RLE| — [RVE, VE
> RV (AT +BIKI)(R)) " RIE |+ Q) (R) SRIE| + [RYb! | — [RVE], VE € Xr
> |R) (Al +BIK)E +bl)| - [RIE| + QL &, VE € Xr.
Hence, (3.55) follows. [ ]

3.3 Feedback to disturbances

The input-to-state stable sub-optimal model predictiveeste that is presented in
the previous sections can be categorized as belonging fatikeently robust model
predictive control framework, as opposed to the min-max ehg@dedictive control
framework [9]. By this, one means that knowledge about distoces is not incorpo-
rated in the computation of the controlFor example, in the case of Algorithm 3.2.2
forV anday as givenin (3.13) and (3.12), respectively, the ISS-giof the closed-
loop system (3.7) will depend oai(+), i.e. the constant, (see the proof of Corol-
lary 3.2.6), via the relation (2.35). As the constantan be taken equal {&,| (due
to |R/&| < |R/||€] for all £ € R"), one could minimizeR,| off-line, when computing
the matrixR,. However, this might lead to an increase in the conservagise of the
input-to-state stabilizability constraint (3.10a). Figtmore, when it is known that the
disturbances take value at all times in a polyhedrab$git would be desirable to use
this knowledge to minimize the ISS-ga#f by minimizingo () on-lineand therefore,
introduce feedback to disturbances. This yields bettefiopmance, i.e. suppression
of the effect of additive disturbances on the evolution &fskate trajectory.

An obvious solution for achieving the afore mentioned gedbiconsider a spe-
cific type of # -functionfor example,o(s) = ¢ys with ¢ € R-o for allk € Z, , and
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the following constraint added to Algorithm 3.2.2
IR/ (F (> Ugie) +Wic) | — R/ X 4 1QuXigi] — Puwie| <0, vwe e W.  (3.57)

Then, at every time instat € Z; one can minimize gaigy in (3.57) in order to
obtain a minimal ISS-gaig’. Unfortunately, the above constraint cannot be specified
as a finite number of (linear) inequalities. Furthermore, l#ft-hand term in (3.57)
contains the difference of two convex functionsuafi.e. |R, (f (X, Ugqk) + Wk)| and
®x|wi|, which is in general not convex.

To incorporate feedback to disturbances and still prestweomputational ad-
vantages of Algorithm 3.2.2, the following modification tdgArithm 3.2.2 is pro-
posed. Letw®, with e € Zj; g, be the vertices ofV and letA¢ € R, k € Z, be
optimization variables associated with each vert#x Add the following constraints
to the optimization problem in Step 1 of Algorithm 3.2.2

IR/ (f (X Uig) + @°)] = [ReXiqie| + 1QuXiqel —A¢ <0, e=1,...,E,  (3.58)

where one aims at obtaining “small” values . Before formally stating the result-
ing sub-optimal model predictive control algorithm withnsbraint (3.58), it will be
made precise how the variablg$ are related to the gaig in (3.57).

SinceW is a polyhedron, it can be written as a finite union of sim@®$g...,Swu
for someM € Z>1, i.e.

M
w=Jsi, (3.59)
i=1

with each simplexS; equal to the convex hull of a subset of verticesWéfand the
origin, i.e.w = 0. More precisely,

S, = CO{O, wa,...,wei,n} (3.60)

with n the dimension of the disturbance &tand{@®1,...,@%n} C {@,..., @F}
(,e.{a1,....an} €{1,...,E}) with vectorsw®1,..., @ linearly independent.

Example 3.3.1In Figure 3.1 a simple graphical representation of a givetudbance
setW is given. The set can be divided in, for examples= 5 simplices, i.eSy,...,Ss
which are all five equal to the convex hull of a subset of vegiof W. Take for
example the simples; from the sefW in Figure 3.1. The simple&; is spanned by
w=0, w%=1, w2, withe3y =2 andez» = 3.

For each simples; one can define the matrié = [@®1...@®n] € R™", which is
invertible.
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o3

Figure 3.1: A 2-D example of the disturbance $&twith verticesw?, ..., @® (E=5).

Lemma 3.3.2 If for k € Z and the measured stai® = X there exist W and A,
e € Zj1 g), such tha3.58)holds, thern(3.57)holds with

B2 max A1, (3.61)

ieR[l,M]

whereX'k = [Af’l . Af’"] € R™" and| - | is the corresponding induced matrix norm.

Proof: Let xqx be given and suppose (3.58) holds At e € Zj1 g). Letwy €
W= U{V'Zl Si. Hence, there exists ar Zjy v such thaty € Sj = Co{0, wh, ... whn},
which means that there exist nonnegative reals. . , un with

n n
SHp<l and  we= Y ot
=1 =1

In matrix notation one has that

H1 H1
we=W | : & D =Wt (3.62)
Hn Hn,

Multiplying each inequality in (3.58) corresponding to tindexe ; with pj € R,
summing up, employing the fact thgﬁ-‘zluj < lyields

n .
IR (F (g, Uigi) + Wil — [Ryxigk + [ Qg — 5 KA <0, (3.63)
=1

or equivalently,

H1
|R/(f(xk\kvuk\k)+wk)|_|R/Xk\k|+|Q\/Xk\k|_X:< 1| <0. (3.64)
Hn
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Furthermore, employing (3.62)); € R>o and)\f‘j € R>p, one obtains (3.57) for the
indicatedgy in (3.61). ]

Note that, according to Theorem 2.3.4¢jf < ¢* such that for alk € Z~y~ for some
k" € Z, and¢* € R>q, an ISS-gain is guaranteed via expression (2.35). Sppas
coupled toA;, e € Z g, via (3.61), smalhg, e € Z g, will result in a small ISS-
gain of the closed-loop system (3.7). Hence, optimized stimss of the closed-loop
system to additive disturbances Z, — W is obtained.

Algorithm 3.2.2 as it is, is beneficial as it focusses on penfince and it also pro-
vides guaranteed input-to-state stability with a possliatge 1SS-gain. This gain is
ensured via constraint (3.10a), which yieldfxad ¢ so to speak (i.e. independent
of X« and equal tdR,|). In the new model predictive control scheme, presented in
the sequel, one aims at performingrade-off between robustness (suppressing dis-
turbances adequately) via a smgllon one hand and performance on the other. This
will be done by adding constraint (3.58) to Algorithm 3.2m@laminimizing a weighted
sum of the performance costs and disturbance attenuatiodin® improvement of
robustness, i.e. a reduction of the effect of additive dixnces on the evolution of
the state trajectory, is then guaranteed.

Define

-

A2 [Akl Aﬂ (3.65)
and letR, be a known real-valued full-column rank matrix of approtgidimensions.
Note that relation (3.61) can provide an indication for howtooser, . Consider the
following cost

N-1
o ON-1
IR UM A 2 Ry + [Py ikl + Z) (|ka+i\k| + |Ruuk+i\k|)' (3.66)
|

The input-to-state stabilizing sub-optimal model pradetontrol algorithm, which
provides feedback to additive disturbances, is then foatedlas

Algorithm 3.3.3

Step 1)
Given the state at timek € Z., let Xk £ % and find a control sequence

ul[(O’N_l} = [u[“c...,uL,\,_l‘k]T and a vector\, that minimize the cost (3.66)
and satisfy
IR/ (f (X Uigi) )| — R x| < —|QuXiu (3.67a)
Ry (f (Xigk i) + @°)| — [RoXig| + [Qui| —AE <0, ecZyg, (3.67b)
A>0, eeZjg, (3.67c)
ud™ Y € m(%). (3.67d)
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Step 2)
Let
KMPC(%) £ {uk‘k €U | uLO‘Nfl} satisfies (3.67}.

Furthermore, IeHLO‘N’l] = [UkT\k7"'7UkT+N—1\k]T with Ty € K"(%) denote a
feasible sequence of controls with respect to the optincizgiroblem formu-
lated at Step 1. Apply a control

Uk = Tk € K"™°(%)
to the perturbed system (3.1b), incremkibly one and go to Step 1.

Besides enhancing robustness, the constraint (3.67b¢atsoes that Algorithm 3.3.3
recovers performance if the state of the closed-loop sy$8em) approacheq =0
e-close, i.e [%| < &. If [X| < € one can consider thag, ~ 0. Then, Algorithm 3.3.3
will produce a controly ~ 0 and constraint (3.67b) yield® w®| - A¢ <0, e €
Zj1 g)- Therefore, Algorithm 3.3.3 cannot minimize each variatidelow the corre-
sponding valugR, @®, e € Z;; g leaving more “freedom” in constraint (3.67b) which
the controller might use to generate performance. Thisgngps desirable, since
it is known from min-max model predictive control [9] thatridering avorst-case
disturbance scenario in model predictive control algongheads to poor performance
when the disturbance is small or possibly vanishes.

In other words, the constraint (3.67b) automatically shék off the feedback to
disturbances when the closed-loop state approaches tlidoggm Xeq = 0 £-close
and therefore, the scheme performs as if there are no or gimdgleffects of ad-
ditive disturbances. For the scenageclose toXeq = 0 one, in principle, obtains
Algorithm 3.2.2. Whenever the state is rstlose toXeq = 0, which is the case dur-
ing transient (possibly caused by disturbances), the cins{(3.67b) automatically
incorporates feedback to disturbances. Thahfs,e € Z; g can be minimized be-
low |R,@®| which results in less freedom in constraint (3.67b), but alEngaingy
(and coupled to it a smaller ISS-gain) which results in ettgpression of additive
disturbancew: Z, — W.

Remark 3.3.4 Note that in case the to-be-controlled system (3.1b) is afiinthe
control variable, i.e. (3.18) and infinity norms are consitdie(p = «), the additional
input-to-state constraints (3.67b) can as constrain7€.t the previously presented
control algorithms be specified via a finite number of lingaqualities in the vari-
ablesuk‘k,)\kl, .. ,)\E and therefore Corollary 3.2.9 holds also for Algorithm 3.3.

Remark 3.3.5 In order to possibly reduce conservativeness of constgrédné7a) and
(3.67b), the approach in Section 3.2 as it is employed to Adgm 3.2.2 to reduce
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conservativeness of constraint (3.10a) can straightiatiywalso be employed to Al-
gorithm 3.3.3 to relax constraints (3.67a) and (3.67b).

3.4 Decentralized manufacturing control

In this section it is illustrated how the presented contnekiry presented in this chap-
ter can be employed to control a manufacturing system in ardeslized manner.
That is, the overall manufacturing system under controlis-divided into simpler
subsystems. For each subsystem a (local) controller igledgiaccording to the the-
ory presented in this chapter with the goal to reach an dvesaltrol goal when all
the controllers are implemented on the total manufactusysgem.

Since the analysis and design of large-scale manufactaystgms are in general
difficult, it is desirable to adopt a relatively simple anddtable model to capture the
key performance-related issues, such machine capacistraimts buffer size limita-
tions, blockingbehavior, etc. In this section one takes up the challeng@pifyang
the theory addressed in this chapter to a network manufagtsystems, in order
to specifically address the nonlinearities, possibly disonious, that are typically
present in manufacturing system dynamics as one will erteolater in this section.
Furthermore, the possibility of taking into account maeh@apacity constraints an
buffer size limitations makes the presented MPC algorithrthis chapter an attrac-
tive control strategy to tackle a manufacturing systemsrobproblem.

Modeling for control purposes

Consider the queuing system (manufacturing system) asteelgn Figure 3.2. Here

Figure 3.2: An example of a simple queuing system.

M; is a processing unit (machine) on which for example prodaic$eing processed.
In front of the machine one has a first in first out buffer systiamoted byB;. The
buffer system collects incoming products entering theesystver time with a certain
average arrival rate [products/time unit] R, — R... The machind/; processes over
time with a certain tpo-be-assignedaverage production rate or production capacity

69



CHAPTER 3. NONLINEAR MODEL PREDICTIVE CONTROL: SUB-OPTIMALITY AND ROBUSTNESS

[products/time unitC' : R, — R[o,qp] , whereC‘{Jp is the the maximal possible capacity
that can be assigned to the machMe The average amount of products that are
present in the buffer over time is denotedtby R, — Ryoyy | wherebj,, € Zo is the
maximal allowable products that can be stored in the bufent is verified in [81]
through simulations, and under the condition that the arawnd processing rate are
Poisson, that

HE©) = (1755 ) S0, (3.69)

see Figure 3.2, is a valid choice for modeling the averagerieg rate (i.e. [prod-
ucts/time unit]) for a wide range of communication netwoak&l queuing systems,
e.g. the system depicted in Figure 3.2. Based on relatid@@8)&and applying the
law of mass conservation one can obtain the following bagimachic model for the
queuing system depicted in Figure 3.2

dic i
GiP O =V -p (), teR,

b'(t) € Rpop, - (3.69)
Ci (t) c R[Ovchp] .

This model has been introduced in [82]. Recently, the asthb{81], [83] and [84]
have been considering this model for the purpose of netwerkopmance evalua-
tion and control undenon-stationaryconditions. Furthermore, in [85] a model of
the form as in (3.69) followed from PDE-based modeling of ofanturing systems.
From (3.69), it follows that in the special case af@nstantaverage arrival and pro-
duction rates, i.ev(t) = vi;andC'(t) = Cl, for all imest € R, respectively, that the
correspondingteady stataverage amount of products, i, is given by

%

SS ™ i i
Clss_vlss

(3.70)

Note that (3.70) is the classical formula of queueing théoryirst in first out queuing
systems as depicted in Figure 3.2, see e.g. [86].

To apply the control strategy explained in this chapter ardig-time version of
(3.69) is obtained employing Euler’s discretization schemith sample timel = 1
and ZOH, i.e.

ko1 =B+ Vi— 1 (B, keZy, (3.72)
with _
i bl i
i) = <1+bik )i (3.72)
and constraints
€ Rop,»  Ck€Rpogy- (3.73)
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Based on the basic queuing model (3.71) one can model mongleemanufacturing
systems. Consider for example the manufacturing systengimé 3.3. The system

¢
Vi —m pe(by)
- —_—

2

? [ o M2 H2(b})

b

Figure 3.3: An example of a manufacturing system based on an interctioneaf two simple
gueuing systems.

in Figure 3.3 consists of two basic manufacturing systendepécted in Figure 3.2.
The two systems are decoupled if the average buffer conbéls i.e. bﬁ is above a
certain vaIueE2 € Z~o. However, if the buffer contents & is equal or smaller than
the certain leveb’® ¢ Z~0, there will be a coupling, i.e. products from machie
with the average departure rané(b&) will enter bufferB, with average arrival rate
pt(bl). The system dynamics can be described by

(ot vl yipl)]
P B e 2@ w2 < B
[0 +v§ — H2(b})

1 i
b'§+l = (3.74)
Bici1 Ml vl liply]

b + vic — 1= (by)

with  v2 =2 otherwise
| ) k k>
_E VE “2( E)_

Suppose the system, as depicted in Figure 3.3, is a so caldebf many nodes in
a manufacturing system network. Then, assume that eachindte network can
be described based on basic interconnections of the simplging model description
in (3.69), resulting in for example a system of the form in7@. Each node in the
network is possibly connected to other nodes in the netwagk,incoming product
streams as for example arrival ratgsand\ of the node in Figure 3.3 are fractions
of departure rates of other nodes in the network (or from tikernitself), which might
betime delayedue to, for example, transportation times of products frav@ node
to another. See Figure 3.4 for an example of such a network.N ée the total
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Figure 3.4: An example of a manufacturing system network consisting-fandes and two
external sources of inflow of products at nodes 1 and 2 withagearrival rates@xLk and

Vi, respectively.

number of nodes in the network and lgte R™ anduj € R™ with ¢ € Zj ) for
someN;, € Z>1 be the state and control of each node in the network at déstirae

k € Z.., respectively. Furthermore, Ieixtk €R" be average arrival rates of products
from some external source entering ndd discrete timé € Z.. . The control, of
each node in the network contains @]l of the basic queuing systems, contained in
each node. Consider a node, i.e. node 1, e.g. represent&d7dy.(Note that then

zt £ [bt b2]" andu} £ [C} C2] are the state and the control of that particular node at
discrete-timek € Z.,.. Thenv& andv"ﬁ possibly depend on state@e R"™, which are
possibly time delayed, and the external average arriveisvé;tk, ie.

Vl
] bt g ) 075

wheredj, € Z; with j,¢ € Zj1 n,) represent the time delay caused by for example
transportation time of products between nodeg Substituting expression in (3.75)
in (3.74) forms the description of the dynamics of node 1 Wwhiossibly depends on
states of other nodes in the system and external arrival.rateen, for all nodes one
can derive comparable descriptions of the node dynamiasifigrthe total description

of the dynamics of the network i.e.,

Z (2, U)K Vo B gy B a)
D= : , keZ,. (3.76)
o o b, No o No o

40, h (7, ) + NP (K Voo 2 g o A )
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Control problem

Let Z,; € R™ denote pre-specified buffer levels in all nodes of the system the
buffers levels of buffer®; in the network. Suppose that the state, 'z@e R" with
€ Zp ) at discrete timek € Z, is available for feedback. Then, the control goal
is to assign production rateg< to each machine in the network such tlzétgoes
to zfef as fast as possible but taking into consideration that asgjga high average
production rate, i.eC}, to the machines in the network is costly and has to be taken
into consideration, e.g. penalized, in the controller giesi

To solve the afore mentioned control goalecentralizedontrol approach is fol-
lowed. That is, for each node an individual (i.e. local) eohproblem is formulated
and a controller is designed to reach the afore mentioneclbyglobal) control goal.
As to formulate a local control problem a single node is cdai®d, e.g. node 1, and
is isolated from all the other nodes by considering only thecdiption of that sin-
gle node, e.g. (3.74), and considering the arrival rates, ‘q} andvf, asadditive
disturbances y e.g.

1
Vi

wi 2 M = h&(k,véxtk,z&75{1,...,j:‘j%l). (3.77)

Assume that the arrival rates at each note are upper-bourydssime known bound.
Then one has that’ € W’, whereW' is some known compact set, e.g.

W& S Wl £ R[OC&p] X R[O,Cgp] . (378)

Remark 3.4.1 Note that assuming there is an upper-bound for the arrivesria the
network is a mild assumption due to the fakte Ry, are finite for allk € Z,. and
due to the fact that relation (3.72) has the following niceparty

0<u'(§) <Clp  VEER,.

The following local control problem is now considered.

Problem 3.4.2 For somel € Zj; v, let Z,; € R™ andz be given at discrete-time
k € Z.. Design a controller that based on the state in node. Z, assigns, to the
each machine in nodesuch that

1. zﬁ goes tozfef as fast as possible while penalizing that high average ptamu
ratesC}, are assigned to the machines in the network

2. Additive disturbances’ : Z, — W' are rejected.
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A good disturbance rejection property of the local conénd] i.e. item 2 in Prob-
lem 3.4.2, will guarantee that the local controllers des@yfor performance based
on local models (which lack detailed description of the ieflue of other nodes in
the system), e.g. item 1 in Problem 3.4.2, will perform wkthie effects of the un-
modeled node interactions are present. This will guaragdeel performance of the
afore formulated overall network control goal.

The main advantage of this decentralized control approsthait a lot of com-
plexity in modeling, i.e. determining accurate descripsidhe functionsf!, which
in practice might contain a lot of uncertain and time varypagameters like uncer-
tain transportation delays between nodes, is avoided. #so a controller design
point of view this complexity reduction is beneficial esggi if one considers large
networks.

Controller design

To solve Problem 3.4.2 a model predictive control strategh feedback to distur-
bances presented in this chapter will be employed. The albetrdesign will be

spelled-out for node 1 in the previously explained manufidéicy system network.
Consider the description of the system dynamics of node21(8.74) with additive
disturbancen; as defined in (3.77) and the contrgi = [C} CZ]". Suppose that the
buffer reference level is given by

Zrlef £ [b

b}ef k
, 2 4| vk e Z, . (3.79)
ref —

Note that fowi = 0 andu} = 0 system (3.74) has the following (infinite) equilibria
A béq
zéq [bgq

The controller design methodology of this chapter can refides equilibrium point

of the closed-loop system input-to-state stable, howeavehis example one aims
at rendering equilibrium poinzrlef input-to-state stable, WitIzvrlef defined in (3.79),

therefore the controller design will be based on the systgnawhics obtained after
performing the following coordinate transformation on #tate of (3.74), i.e.

2
eR2.

2z VKkeZ,. (3.80)
This yield the following transformed system dynamics foded..

= PO UD) +We = 01 (%) + gh(RuE +wi when %€ Q) je{1,2)
(3.81)
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~ A A
whereg: (%) = X,
_ i%,k—"_l:)}(-}f 0 _ i%,k—"_l:)}(-}f O
<1 1 <1
gl(iﬁ) L ];rxl,ki'bref a ) g2(~1) L l+x1,k+bref a )
2 Xl,k+bref _ X2,l<""bref ’ 2 0 _ X2,l<""bref
145G by 145G b2 145G +bZ

of £ [Eer? |HEE<1) 032 lEer?|HgE>1),

with H3 £ [0 1] andHg, £ [0 1. Furthermorexy, u; andwy are constrained in the

setsX?, Ul andW?! for all k € Z, , respectively, i.e.
xt2 {Eer?|AE <k}, U2 {ueR? | Afu<bh],

Wlé{weR2|A}vw§ b&\,},

where
-1 0] —bL, -1 0
0 -1 —b2 0 -1
Al L , bl L ref , At]J A ’

X 1 0 X bf,— bl 1 0
0 1] b — b+ 0 1

0] -1 0 0

0 0 -1 0

bl 2 . AL 2 , bl 2 )
(V] CL:ij AN 1 O b\N CL:ij
Cin 0 1 Cin

Forw! = 0 andu® = 0 equilibriumxg, = 0 of the transformed system (3.81) then

corresponds to the equilibrium, = z\; of the system in original coordinates, i.e.
(3.74).

Note that the second componentfdfis discontinuous along} = 0. Based on a
piecewise linear approximation of (3.81) fet = 0, i.e.

(o, ub) = 9108) + GO Ul ~ At +Bluf, when xteQl, je{1,2}, (3.82)
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where
po 2@ +g(u) _|1 0
ax 0 1|’
x=0,u=0
i b}ef 0 T
Bl 2 9(91(x) +g5(x)u) .
B ax =1 i 02, |
Xx=0,u=0 i Fb,i; 1+_b,2;_
I N
1 __ref 0
B2 2 9(91(%) +gz(x)u) _ | 1by
ox 0 LR
o | e

As an illustration, in Figure 3.5 for some fixed contigl € U both the function

f1(xt,ul) and its piecewise linear approximation, i.e. (3.82), argtpt for system
parameters

b” = 7 [products]

bl = b2 = 6 [products]

Clhp = C2, =5 [products/time unit] (3.83)
biip = 30 [products]

b3 = 25 [products]

Based on this piecewise linear approximation the followiragrices

(a) Plot of f1(x¢,ul) and its piecewise linear (b) Plot of f2(xt,ut) and its piecewise linear
approximation as function of on the domain approximation as function of on the domain
Xtforut=51". Xtforut=59".

Figure 3.5:
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1| 1.0443 00447 R2 — 0.9805 —0.0242
—0.0073 09572’ - |-0.0343 09619 |’

1 |0.0475 00070 , |0.1836 00836
" 10.0090 00431’ 0.2746 03791’

1 |0.9867 -0.0150 and K2 — 0.9482 00202
0.0128 10144 |’ ~ |0.0641 10108

are obtained following the procedure in Section 3.2. Thericet R, R?, QY,
Q7, K! and K? satisfy the inequalites (3.54) of Lemma 3.2.15 for
Sevr={117,127,[21",[22"},i.e. see (3.53), angj = 0 for all [ i] € WA

Note that the disturbance $&t!, defined in (3.78), can be written 88 = S1US],
i.e.M =2 with

Sp = CO{o, wl,wz}, S, = CO{o, wz,w3},

with
1 1
15 |Cip 2 2 |Cup 32| 0
w = , W= , W= . (3.84)
[ 0 1 [CLZHJ lcgp

Now a model predictive control scheme is employed based gorhm 3.2.11. In
order to give Algorithm 3.2.11 feedback to disturbancep 8ten Algorithm 3.2.11 is
replaced by step 1 of Algorithm 3.3.3 with inequalities irg3a) and (3.67b) replaced
by

_m;jx (IRY1p) 19" (ke ki) [ p — IR Xkl p < — Q0 Xl s (3.85a)
= tr.k
_m;jx (IRVp) 19 (X Uige) + @ p — IR Xkl p + QX p— A, €€ Zpp 3.
= tr.k
(3.85h)

To simultaneously achieve item 1 and 2 in Problem 3.4.2 thevWiing model predic-
tive control costs are minimized

N-1
o1 [ON-1
L udN AL 2 |REAL + P Nkl + 20 (1% fkleo + IR U il eo)
i=
(3.86)
with
M 100
A2, RR2|0 1 o], P*2Q'2Rl2 1o
) 0 1
A2 0 01
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To obtain a computationally cheap model predictive corsitheme lep = o andN =
1, i.e see Corollary 3.2.9. The particular linear progranggroblem that follows, to
solve step 1 of Algorithm 3.3.3 with costs (3.86) and withguoalities in (3.67a) and
(3.67b) replaced by (3.85a) and (3.85a), respectiveliran given by

H 1 1 1 1
min
AL ug,el el el el {€Q+£P+£RU+€R’\}
ko Hk|k €Q ¢P: SRy Ry
subject to:
-
1 17 T 1 1 o1 1 1
Alp [/\k U & &% &R, sRJ <bjp
where
Alp (X 1) blp (X 1)
li> li>
[y, 0 0 0 0 0] 0 1
R 0 0 0 0 -1 0
-R 0 0 0 0 -1 0
0 o —1:q 0 0 0 — Q%
0 ) J_o —1M on 0 0 QX
0 P ?2J(Xk\k) 0 —1n" 0 0 —Pg1 (%)
0 Pl O 1% 0 0 Plg1 (%)
0 RL 0 0 -1v 0 0
0 —R} 0 0 -1v 0 0
0 0 -1 0 0 0 0
0 0 0o -1 0 0| > 0
0 0 0 0o -1 0 0
0 0 0 0 0o -1 0
0 gk O 0 0 0 — 9 (i) + 19 (%)
0 —gxg) O 0 0 0 9 (%) + 19 (k)
ME, (%) 0 0 0 0 —0 (%K) + 179 (xg) — @t
M&,  —9h(%k) 0 0 0 0 91 (Xqi) + 1"9) (xqk) + @
M3, 95 (X 0 0 0 0 — 01 (%K) + 1"9) (xqk) — @
ME,  —9h(%k) 0 0 0 0 03 (Xqi) + 179 (xqe) + w?
M3, (%) o o o o0 =91 (k) + 179 (xq) — @°
M3, —gh(%) 0 0 0 0 gi(xukl) + 1"13 Jj(xk\k) +o?
0 ALG (XK 0 0 0 0 by 7Axlgl(xklk)
0 Al 0 0 0 0 | L b5 ]
with
-1
ph e[ max|Rle | , M& 2 [—1”p\J/ 0 o], M2, £ [o —1p) o],
i€tk
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The set?;i‘k in the model predictive control scheme is solved as indicatStep 2 of
Algorithm 3.2.11 and involves, for this example, verifyinpether for giverx and
j the outcome of the following two tests is true or false.

test 1) Solve the following linear program

‘min (3.87)
&uw
subject to:
~ T
lelach [E u O)} < brleach
1 N T ’
Breach(Xkk- 1) [5 u w} = 01 (%K)
where
Ay 0 0 bk LT
o A} O b . N
11 s 1 2 1 N
each 0 0 A\:/LV ) breach b&v ) Breach(xk\ka J) ngXIk\k)
H}zl 0O O 0 n

If the linear programming problem (3.87) is feasible them dlitcome of test 2
is true andfalseotherwise.

test 2) Solve the following linear program

‘min (3.88)
&uw
subject to:
~ T
lezach [E u w} < brleach
1 . ~ T
Breach(®kjk: 1) [E u w} = 01(%K);
where
Al 0 0
12 hA 0 A&J (Z)L
each — 0 0 A\N
—Hi, 0 0

If the linear programming problem (3.88) is feasible thetngé, u* and w*
denote its corresponding solution. Then if

~ T
1e2ach [E* il w*} #brleach (3.89)

the outcome of test 2 Bue andfalseotherwise.
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Then,
{1,2} iftest1listrue& test 2 istrue,

Zi‘k =4 {1} iftest listrue& test 2 isfalse
{2}  iftest lisfalse& test 2 istrue.

Simulation result

System (3.74) with the system parameters given in (3.83)rsidered. For system
(3.74) in closed-loop with the designed model predictivetaaler with feedback to
disturbance, a simulation is performed. The result of theukition is shown in Fig-
ure 3.6, 3.7 and 3.8. Note that, although the controllergies performed for the
transformed system (3.81), the simulation results aresptesd in the original coordi-
natesb& andbﬁ corresponding to system (3.74), which represent the baffietents of
buffer B; andB,, respectively. The simulation result of the controllerhwiiéedback
to disturbance is compared to the response of the system) (8. €losed-loop with
Algorithm 3.2.11, i.e. no feedback to disturbance, with M&&3t as in (3.86) with
R% = 0. The closed-loop systems with feedback to disturbangeeiiturbed with
the disturbance signw& taking values ifW?. In order to indicate the input-to-state
stability property of the closed-loop system, i.e. coneaige to the equilibrium if the
external disturbance vanishes, the disturbance is talesmiaélly O starting from time
stepk = 150. The same scenario is applied to the closed-loop sysitrawtrfeedback
to disturbance. However, to the system without feedbacikstoidance, a disturbance
with a lower amplitude is employed due to feasibility prahke Note that due to
the fact that the excitation level of the closed-loop withfmedback to disturbance is
milder, the influence on the evolution of the state, i.e. &ulévels, is significantly
larger. Hence, when employing the controller with feedbiacllisturbances to con-
trol one node in a manufacturing network, given by (3.76yilt still perform well

to establish the afore formulated overall control goal, letthe performance of the
controller without feedback to disturbances will be deteted due to the persistent
disturbancen! that will be present. The persistent disturbamtei = 1,...,N, are
present due to the fact that the terhjsi = 1,...,No, in (3.76), which represent node
interactions that are hard to model in practice, are neggeict the (local) controller
design for the nodes in the overall manufacturing system.

This example illustrates an approach how one can divide gomanufacturing
network into nodes of less complexity and design a contrétleeach node individu-
ally and taking node interaction, which is hard to model ia tlase of manufacturing
systems, into consideration via a additive disturbanceds&quential the individual
controller is designed such that an individual performaregirement is met and
the un-modeled node interaction, modeled via additivaudisince, is rejected. This
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Figure 3.6: The system response for system with feedback to disturkdtick line) and with-
out (thin line). Constraints and desired reference buéfeel %, ;) is indicated with dotted and
dashed lines, respectively.

will then guarantee overall performance of the controlletiwork. A besides the
tremendous complexity reduction of the controller desgnmanufacturing systems
the benefit of this decentralized control approach is thettimputations involved for
each controller can be performedparallel such that computational time is reduced
compared to solving the control problem as one (untractabletrol problem.

3.5 Summary

An approach to design a computationally friendly sub-optimonlinear (hybrid)
model predictive control algorithm with an a priori input-$tate stability guarantee
of the closed-loop system, i.e. the to-be-controlled sysie closed-loop with the
nonlinear model predictive control algorithm, with respiecadditive disturbances is
presented. For the nonlinear model predictive contraller,input-to-state stabiliza-
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Figure 3.7: Plot of ¢ as function of time. The variablg, see (3.57), can be taken a measure
of how well the additive disturbancq{ is suppressedp, = 0 means all disturbance is rejected,
i.e. the additive disturbance} has no influence on the evolution of the state or buffer Igvels

tion constraints can be written as a finite number of lineagumlities. To enhance
robust performance, the model predictive control schemeoigified to allow for on-
line optimization of the 1SS-gain of the resulting closedy system. This induces
feedback to (additive) disturbances and results in impdgarformance. It is illus-
trated how the proposed model predictive control schemébeaemployed to solve
large scale manufacturing control problems, that possikiybit discontinuous hybrid
behaviors, in an efficient decentralized manner.
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Figure 3.8: Active modej € {1,2} as function of time
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Science has proof without any cer-
tainty. Creationists have certainty
without any proof

Ashley Montague

Robustness results for constrained
nonlinear closed-loop systems

In this chapter a result is presented that can be employeddprobustness of a state
feedback control law, in closed-loop withcanstraineddiscrete-time nonlinear con-
trol system, testate measurement errdir®m robustness tadditive disturbancesThe
result allows for possible discontinuity and set-values$nef the state feedback con-
trol law. In particular, this enables the employment of trEmresult to obtain model
predictive controllers that are robustdtate measurement erroft®m available model
predictive controllers in the literature, which are robostdditive disturbances

In practice state variables of a control system are alwaysipted bystate mea-
surement errors State measurement errocman be caused by measurement noise
present in sensor read-outs or by state estimation errasedaby the usage of ob-
servers. ltis therefore important that state feedbackrothats are designed such that
they are robust to state measurement errors. In this chéparotion of input-to-
state stability is used to study robustnesslistrete-timenonlinear systems subject
to state measurement errors. Only few results on inputat@ stability with respect
to state measurement errors are available in literatupecgally if constraints on the
state and the control have to be taken into account. In [8Thpunt-to-state stability
result is given fosmoothstate feedback control laws perturbed by state measurement
errors in closed-loop with eaontinuous-timenonlinear control system. Faliscrete-
timenonlinear systems, robustness resultstéde measurement errovgere obtained
in [69, 88]. The resultin [69] holds under the assumption tha state feedback con-
trol law is Lipschitz continuous. Although in [88] no Lipsthcontinuity of the state
feedback control law is required, constraints on the stadietlae control of the system
dynamics are not incorporated. Furthermore, the resuB8h fequires continuity of
the system dynamics with respect to the state and the control
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The aim of this chapter is to extend the above mentioned worthé case of
nonlinear control systems wittonstraintson thestateand thecontrol and possible
discontinuous and/or set-valued state feedback contsltiainclude especially those
generated via model predictive control. Indeed, to exmloé of the assets of model
predictive control in being one of the few control stratagie deal in a systematic
way with constraints, an extension of [69, 88] towacdsistrainedsystems is needed
and important. Moreover, recall that one has to includesaktedness as it can occur
in model predictive control that due to non-uniquenessefgub)optimal control se-
quence of the model predictive control optimization protlesee Section 3.1. Also
discontinuity has to be accounted for, as it is known thatehpdedictive controllers
can generate discontinuous feedbacks. Another importasbn for allowing for dis-
continuous feedbacks is the existence of nonlinear systeatsan be stabilized by
discontinuous feedbacks, but not by continuous ones.

The main result of this chapter shows how one can infer inpgtate stability
with respect tostate measurement errofer a state feedback in closed-loop with a
constrained discrete-time nonlinear system from inptgtéte stability with respect
to additive disturbancesTo stress the value of this transformation result, syrnishes
methodologies that result in closed-loop systems thatrgratito-state stable with
respect to measurement errors, especially in the field ofema@dictive control for
state and control constrained nonlinear systems, are wdnige there are relatively
many input-to-state stability results in the model preédétontrol literature omddi-
tive disturbancessee e.g. [44, 45, 46, 47] and Chapter 3 of this thesis. Al§ddh
the authors study robustness of constrained MPC to additsterbances (in a weaker
sense than ISS) and, moreover, they mention the problenatef steasurement er-
rors. In this chapter the focus is on the latter, i.e. measarg errors, and the main
result provides a direct and simple method to transform adrange of existingon-
strainedmodel predictive control results, e.g. [44, 45, 46, 47]t thenerate input-to-
state stable closed-loop systems with respeatittitive disturbancemto closed-loop
systems that are also input-to-state stable with respestiate measurement errors
Furthermore, under some additional assumptions the tsemstion result can also
be employed to draw conclusions about input-to-statelgtabf closed-loop systems
perturbed bystate measurement erroamdactuator noisesimultaneously.

This chapter is organized as follows. First the robustngsse with respect to
state measurement errors is considered in Section 4.1.cltioBet.2 the robustness
issue with respect to state measurement easactuator noise is considered. In
Section 4.3 it is explained how the results obtained in thapter can be employed in
the context of manufacturing system control to tread theeigminted-out in the end
of Section 1.5. Conclusions are summarized in Section 4.4.
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4.1 Robustness to measurement errors

Consider the constrained closed-loop system
X1 = (X, Uk) with U € K(x), kezZy, 4.1)

wherex, € X C R" andug € U C R™ are the state and the control input, respectively,
at discrete-timé& € Z. The setX andU are known sets with 0 in their interior and
represent the state and input constraints, respectivélg.fdnctionk : 2 —Uisa
set-valued state feedback law defined®nC X that is allowed to be discontinuous.
Finally, the functionf : X x U — X satisfiesf (0,0) = 0 and the following assumption.

Assumption 4.1.1 The functionf : X x U — X is uniformly continuous irx in the
sense that there exists’&-functionn; such that

[F(EL ) — (&2, ) < Ne(|E1— &7))
forall £, £2e X and ally € U.

Note that all functiond that are Lipschitz continuous iwith Lipschitz constanit ¢,
satisfy Assumption 4.1.1 with (s) = Lts. Consider the following perturbed versions
of the closed-loop system (4.1).

yw(ik,Wk), ke Z+7 (423)
Fed (X &, k), keZ,,  (4.2b)

X1 € f (X, K (X)) + Wi
X1 € f (X, K (X + €)) + di

L

whereXy, X¢ are the state variablegy € W C R", dx € D C R" the additive distur-
bancesande € E C R" thestate measurement errat discrete-timé € Z.,, respec-
tively.

Assumption 4.1.2 Let

w2 {weR” | || g)\}, forsome A € R.o. (4.3)

Supposgvthat system (4.2a) is ISS4n C X with additive disturbances iV with
0€int(2"), i.e. there exist & ¥ -functionfz and a_# -functiony¥’ such that for all

Xo € 2 andw:Z, — W all solutionsX € ., (X0, w) satisfy
%] < Bx(%o|.k) +y(IIwl),  VkeZs. (4.4)

Furthermore, assume th& is RPI for system (4.2a) witadditive disturbancem
W.
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Theorem 4.1.3 Suppose that Assumptions 4.1.1 and 4.1.2 hold and defingthe
functionn(s) = N¢(s) +s for s€ R>o. LetAe € R>p and Aq € R>o be such that
Ae+Ag < A and define

E2 {seR” | el < n{l(/\e)}a
D2 {5er |8 <A},

and2 2 2 ~E. Suppose tha € int(2"). Then, the following statements hold.

i) The setZ” C X is an RPI set for closed-loop systém2b)with state measurement
errors e: Z, — E and additive disturbances:dZ, — D;

ii) The state and input constraints are satisfied for all trajeiets of (4.2b)with initial
states ¥ in 2", measurement errors iR and additive disturbances i, i.e. for all
X€ S7,4(%0,6,d) with xo € 27, €:Z — Eand d: Z; — D it holds that x € X and
K(xx+e&) CUforallk e Zy;

iii) The equilibrium point ;= 0 of closed-loop syste(@.2b)is input-to-state stable
in 2" with respect tstate measurement errors in E andadditive disturbancesin D.
In particular, one has that for allxe 27, e: Z;, — E and d: Z, — D all solutions
X € .Zz,,(X,€d) satisfy

Xl < Bu(lxol, k) + (el + ¥ (ldl),  VkeZy, (4.5)
with Bx([xol, k) £ Bx(2/xol, k), ¥ (Ild]) = y'(2/|d]|) and
Ve(llell) = Be(2[lell, 0) + v&'(2n+ (lell)) + [lell-
Proof:
i) Leté € 27, e e Eandd € D. It will be shown that for alE € E,
[f(E,k(E+e)+8]+EC 2 (4.6)
as this would prove tha2” is RPI for (4.2b) according to Definition 2.3.1. One
proceeds by observing that
(&) +0+E=T(E W) +w VHEK(E)CU (4.7)
with E L£¢&4¢ andw 2 (& )~ f(g,u) + 0 + €. Using Assumption 4.1.1 yields
|f(€ —&,1)— F(&, )| < Nr(le]). Therefore, it holds that for al, € € E, & € D and
Eex
o] = |f(& — &, 1) = F(&, 1) + 5+ < Tt (el) +10] + €], VHek(E)CU

< firon; (Ae) +Ad+NiHAe) = Aet+Ag < A,
4.8)

88



4.1. ROBUSTNESS TO MEASUREMENT ERRORS

which shows thato € W. Employing Assumption 4.1.2, i.e2 is RPI for system
(4.2a) with additive disturbances W, (4.7) yields that for al€ € 27, €,€ € E and
0eD,

f(E,M)+6+ECZ, Yuek(E+e)CU,

which is equivalent to (4.6).

if) Due to i), it holds that for anyo € 2" and anye:Z, — E, d:Z, — D all
trajectoriesx € S Feg (x0,e,d) satisfyxx € Z7C X, xx+ee€ Z CXforallkeZ;
and thuau € k(x+e) CUforallke Z,..

i) Letxgin 2,e:Z, - E,d:Z, —Dandxe S Feg (x0,e,d). Perform the fol-
lowing coordinate change on (4.2b)

Xk = Xk — €, vkeZ,, (4.9)
which gives
Xr1 € F(X— e K(X)) +dk+ a1, KeZy, (4.10)
or
X1 € (X, K(Xk)) + W, keZ,, (4.12)
where
Wi = f (X — &, Uk) — f (R, U) + ke + &1, (4.12)

for someux € k(%) C U, &, 61 €E, dc e D, X € Z. Hence,
wkeWé{ f(g—s,u)—f(g,u)+6+§ | IJEK(E)QU,E,?EE, 5eD, e 3‘?}

The claim is thatWv C W. Indeed, ifw € W, then one can use Assumption 4.1.1 to
obtain thatforal,€ € E,d €D andg € 5&7(4 8) holds, which implies thaty C W
and therefora’/v;< € W for all k € Z... Due to the fact thaty, € W for allk € Z,. and
X+ € € Z forallke Z. (as shown in item ii) of the proof) one obtains tRaE Z
forallk € Z,. As a consequence, one can apply (4.4) of Assumption 4.1£214).
Via (4.12) and using Assumption 4.1.1 in a similar manneng4 .i8), one obtains that
foralluc e k(%) CU, e, &1 €E, de €D, X € 2 andk € ym

[Wie| < [ f (X — &, Uk) — F (X, Ux) + Ak + 1
< (X — &, Uk) — T (X, Ui) |+ [[d]| + [ €] (4.13)
<ne(llel) + llell + ld[| = n+(l[e]l) + l|d]].

Substituting the last inequality of (4.13) into (4.4) gives

1% < Bx([%ol. k) + y&' (¢ ([lell) + [Id]})- (4.14)
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Applying (4.9) and property (4.14) yields

|Xk| =R — & < X+ e <

Bx(|x0+ €ol, k) + y&'(n¢ (llell) + [|d]]) + |ed]

(1%l + |eol, k) + ¥&'(2n¢ ([lell) + w&' (2lld]]) + llell
(2Ixol,k) + Bx(2leol, k) + &' (2n ([lell)) + y&'(2l[d]) + [le]
(

(

ININIA

2|%ol, k) + Bx(2llel],0) + v'(2n+ (Jlell)) + v (2]l d]l) + [le]
%ol k) + yE(llell) + v ().

Bx
B
B
Bx

As a corollary, one can obtain a similar result for

X1 € F (X K (X + &) = Fe(Xk: &), (4.15)

which is a special case of (4.2b), where one only considessorement errore € E
and no additive disturbancdg. For illustration purposes, the corollary below consid-
ers the case wherkis Lipschitz continuous im.

Corollary 4.1.4 Suppose that Assumption 4.1.2 holds and that f is Lipscbitdrc
uous in x, i.e. Assumption 4.1.1 holds with(s) = L¢s, s€ Rxo. Let

E = {e eR"||el < (4.16)

©)
(Li+1) )
2 2 2 ~Eand supposé € int(Z"). Then, the following statements hold.

i) The set2” C X is an RPI set for closed-loop systg@h15) perturbed by state
measurement errors if;

ii) The state and input constraints are satisfied for all trageiets of (4.15)with initial
states ¥ in 2" and measurement errors I, i.e. for all xe .7z, (%o, €) with xg € 2~
ande:Z; — Eitholdsthatx € X andk (xx+ &) CUforallk € Z;;

iif) The equilibrium point ¥, = 0 of closed-loop closed-loop systém15)is input-
to-state stablein 2" with respect tastate measurement errorsin E. In particular, one
has that for all y € 2" and e: Z. — E all solutions xe .¥#,(xo, e) satisfy

Xl < Bx(xol, k) +¥(llell),  VkeZy, (4.17)
with By([xo. k) = Bx(2/%o| k) and

ve(llell) = Bx(2llell, 0) + Ve'(Lt + Dllell) + el
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Remark 4.1.5 Corollary 4.1.4 also applies in the unconstrained casewitenX =
R" andU = R™, with the unbounded disturbance s&fs=E = R" (A = ). In this
case, the above result applies far = 2° = R" and yields a global input-to-state
stability result with respect to measurement noise. A simémark can be made for
Theorem 4.1.3.

The derived results can be applied in the domain of modeligtiee control. In
[43, 45, 46, 47] model predictive control laws are propo$ed tesult in closed-loop
systems that are input-to-state stable with respect tdigediisturbances. In the set-
ting of this chapterX are the state arid are the input constraints a is the feasible
set for the model predictive control optimization problefrpplying Corollary 4.1.4
would yield directly a MPC state feedback law that is inpusstate stable i2” with
respect to measurement errordiinwhere the relation betweéiy andE is given in
(4.16).

The result of Corollary 4.1.4 is also relevant for “certgietjuivalence control,”
where one designsutputfeedback controllers that generate the control via a state
feedback law using an estimate of the state, which is obdaiioe instance, from an
observer. For linear systems, the separation principlesgévformal justification of
this approach in the absence of constraints. Such a prendipés not hold gener-
ally, when nonlinear systems and/or constraints are cernsitl In [89] one considers
for instance the constraindidear case using a particular model predictive controller,
while for unconstrainedhonlinear discrete-time systems interesting results a#-a
able in e.g. [88, 90]. In the constrained linear and nonlireese, Corollary 4.1.4
might be useful as it yields state feedbacks that are inpstdte stable with respect
to measurement errors. If observers are available thad gielbally asymptotically
stable (GAS) estimation error dynamics (or satisfy oth& Boperties), one might
apply the well-known small gain results (see e.g. [41]) toverthat the closed-loop
system is GAS see e.g. Chapter 5. For the constrained casight be necessary to
run the observer a sufficiently large period of time to enshuaéthe estimation error is
contained ink, before switching on the state feedback controller usiegettimated
state. In the unconstrained case witk- R" as discussed in Remark 4.1.5, this is not
necessary.

4.2 Robustness to measurement errors and actuator noise

Consider now the following perturbed versions of the caisd closed-loop systems
(4.1)

Xir1 € f (X K (X)) + Wk = P (Kic, W), keZy, (4.183a)
X1 € F(Xo KX+ &) +euk) Tk = Fea,d(X & €k d), KeZy, (4.18b)
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whereXy, X are the state variablesy € W C R", dy € D C R" the additive distur-
bancese, € E C R" ande,x € E C R™ the state measurement err@nd actuator
noiseat discrete-timé& € Z.., respectively. Recall that : 2 — Uis a set-valued
state feedback law defined off C X that is allowed to be discontinuous. As such,
the systems above are perturbed versions of closed-lodgnsyg.1), where (4.18b)
is affected simultaneously by state measurement errotgatac noise and additive
disturbances, and (4.18a) only by additive disturbances.

In this section it will be shown, that by tightening up Assuiops 4.1.1 and 4.1.2,
one can obtain a similar result for closed-loop system (#).48 is obtained in the pre-
vious section for closed-loop system (4.2b) based on ptiggesf closed-loop system
(4.18a)

Assumption 4.2.1 The functionf : X x U — X is uniformly continuous irx andu in
the sense that there exigt-functionsnx andns, such that

[FEN Y — (&2 1)) < (1€ = €2+ Mrulu* = )
forall £1, &2 e X and allu®, u2 € U.

Note that all functiond that are Lipschitz continuous mandu with Lipschitz con-
stantsL¢x andL ¢y, satisfy Assumption 4.1.1 with¢x(s) = Lixsandnsy(s) = LS.

Assumption 4.2.2 Let
W £ {weR” | || gx\}, for some A € Ry,

and
E, 2 {gu cRM | ley] < )\u}, forsome Ay € R.o.

Suppose thateq = 0 is an input-to-state stable equilibrium point of systen2)4vith
respect toadditive disturbances wZ, — W and initial statestg in 2" C X with
0€int(2"), i.e. there exist @ .¥-functionfz and a_# -functiony¥’ such that for all

Xo € Z andw:Z, — W all solutionsX € ., (X0, W) satisfy
X < Br([%ol, k) +y& (W), VkeZy. (4.19)

Furthermore, assume tha is RPI for system (4.2) perturbed additive distur-
banceswZ, — W and that

K(X) CU~E,  VkeZ,, (4.20)

with 0 € int(U ~ Ey).
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Remark 4.2.3 Note that in case that a model predictive control algoriterapplied,
i.e. k() = k™<(+), than (4.20) in Assumption 4.2.2 can be realized by simptiregl
the constraint

uk\k ceU~E, (421)

to the model predictive control optimization problem, eadd (4.21) to Algorithm 3.2.2.

Now the following result can be obtained.

Theorem 4.2.4 Suppose Assumptions 4.2.1 and 4.2.2 hold and defingghinction
Nix(S) = N¢x(S) +s for s€ R>p. LetAe € R>g andAq € R>o be such thafe + Ag +
Ntu(Ay) <A and define

Eé{seR”

el < nile) |,

]D)é{(SeR” E g/\d},

and 2 2 2 ~E. Suppose thdl € int(Z"). Then, the following statements hold.

i) The setZ2” € X is an RPI set for the closed-loop systédnl 8b)perturbed by state
measurement errors €, — [E, actuator noise g: Z, — E, and additive distur-
bancesd Z, — Dj

ii) The state and control constraints are satisfied for all tcapgies of (4.2b) with
initial states x in 2", measurement errors:&Z, — EE, actuator noise g: Z, — Ey
and additive disturbances:&., — D, i.e. forallxe Lz, ,(Xo,€ ey, d) withxg € 27,
e:Z, —E,e:Z  —Eyandd: Z, — Dit holds that x € X and y € K (X + &) +
ek CUforallk e Zy;

iii) The equilibrium point ¥, = 0 of systen(4.18b)is input-to-state stable with re-
spect tostate measurement errors e : Z, — E, actuator noise g, : Z, — E, and
additive disturbances d : Z, — D for initial states % in 2". In particular, one
has thatforallx € 2, e:Z. — E, ,: Z; — Ey and d: Z; — D all solutions
X € S 7y q,q(X0,€ 6y, d) satisfy

1%l < Bx([xol, )+ ¥E(lell) + ylleull + £ lldll, ke Zy, (4.22)
with Bx([xol,k) = Be(2lxol, k). v (lleull) = v (3T ru(lleul]). v (I1dll) = (3]l dl}) and
ve(llell) = Bx(2llell, 0) + &' (3nx(llell) + llell

Proof:
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i) Leté € 27, €E g € Eyandd € D. It will be shown that for alE € E,
[f(E.K(E+e) +e)+0|+EC 2 (4.23)

as this would prove tha#” is RPI for (4.18b) according to Definition 2.3.1. One
proceeds by observing that

f(E,u+e)+0+8=FfE W +w, VYuek(E)CU~E, (4.24)

with géf +eandw = f(&,u+ey)— f(g,u) + Jd+¢€. Using Assumption 4.2.1
yields|f (& —e,u+ &) — f(&, )| < Nex(l€]) + Ntu(|u]). Therefore, it holds that for
alle,cck, ek, deDandé €¢ &

| =|f(E—e.u+e)—f(E,u)+0+E, Vuek(E)CU~E,
< Aix(€]) + Trul|&al) +18] + |7 (4.25)
< Axo NrtAe) + Aru(Au) + Ad + N1t (Ae) = Ae 4+ Ad + Niu(Au),

which shows thato € W. Employing Assumption 4.2.2, i.e2” is RPI for system
(4.18a) under additive disturbances Z, — W, (4.24) yields that for al € 27,
ek, ggecEyand, oD

f(E,u+8)+0+EC 2, Vuek(E+e) CU~E,
which is equivalent to (4.23).

ii) Duetoi), it holds that foranyp € 2 andanye:Z,. — E, e,: Z; — Ey gﬂdd :
Z, — D all trajectoriex € .7z, d(Xo,€ &y, d) satisfyx, € 2" C X, x+e& € 2 CX
forallk € Z, and thus, due to (4.20) € k(% + &) +eux C Uforallke Z,.

iii) Letxgin 2",e:Zy —E,ey:Zy —Ey,d:Z, —Dandxe fge,m(xo,e,aj,d).
Perform the following coordinate change on (4.18b)

Xk = Xy — €, vk e Zy, (4.26)
which gives
S(vk+l€f(ﬁ)(k_a(aK(ﬁ)(k)+eU7k)+dk+a(+la k€Z+7

or
Xer1 € F(Ro k(X)) +Wk,  KEZy, (4.27)

where
Wi = (% — &, U) — (K, Uk — €y ) + i+ @1, (4.28)

94



4.2. ROBUSTNESS TO MEASUREMENT ERRORS AND ACTUATOR NOISE

for someeyx € Ey, Uc € K(%) +eux C U, &, &1 € E, de € D andx € €. Hence,

we W2 { F(E—eu+e)—f(Eu)+5+E|
ueK(g)gUNEu, £, ccE, 0D, ge 3?}

The claim is thatWv € W. Indeed, ifw € W,jhen one can use Assumption 4.2.1 to
obtainthatforalk, €€ E, g, € Ey, d e D andé € 3?/(4.25) holds, which implies that

W C W and thereforew, € W for allk € Z, . Due to the fact thaty, € W forallk € Z .
andx+e € 2 forall ke Z. (as shown in item ii) of the proof) one obtains that
K€ 2 forallke Z.. As a consequence, one can apply (4.19) of Assumption 4.2.2
to (4.27). Via (4.28) and employing Assumption 4.2.1 in aiimmanner as in (4.25),
one obtains that for ally € k(%) C U~ Ey, &, &1 €E, ey € Ey, dk € D, X € v
andke Z,.

Wi < [ (% — &, Uk) — f (X, Uk — €uk) + dic+ et
< (X — & i) — F (X, U — euge) [+ [[df| + [[e] (4.29)
< Nex(llell) + Nru(lleulD) + lIdl =+ llell = nex(llell) + Nru(llel)) + lld]].
Substituting the last inequality in (4.29) into (4.19) yieffor allk € Z .
%l < B([%ol, k) +¥&' (nex(llell) + nru(lleul]) + lId]) (4.30)
Applying (4.26) and property (4.30) yields

|Xk| = [R— & < %]+ |&] <

Br(I%o+ €0l ,K) +y&' (nix([l€ll) + Nru(lleull) + [[d]])

< Bx(IXoI + |eol, k) +1& (3ntx(llell) + & (3 ru(lleull)) + &' (3]ldl]) + el

< Bx(2/%0],K) + Bx(2leol, k) + y&'(3n1x(l€ll) + v (3N tu(lleull)) + v&' (3]l + el
< Bx(2/x0],k) + Bx(2] €ll,0) + &' (3ntx(llel])) + & (3N ru(lleul])) + y&' (3lldl]) + [le]
= Bu([Xol, k) + v(llel]) + Y leull + Il

[ |
Similarly as is done in Section 4.1, one can obtain a siméauit for
X1 € (X, K (X + &) + Buk) = Fe(Xk, &, €uk), (4.31)

which is a special case of (4.18b), where one only considessaorement errogg € E
and actuator noise, € E, and no additive disturbanceg. For illustration purposes,
the corollary below considers the case whéris Lipschitz continuous irx and u.
For the ease of exposition it is assumed 4t ) in Assumption 4.2.2 is linear with
respect to its argument
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Corollary 4.2.5 Suppose Assumption 4.2.2 holds and that f is Lipschitz rmootis
in x and u, i.e. Assumption 4.2.1 holds witky(s) = LtxS, Ntu(S) = LtuS, S€ R>o.

Let
A =LAy }

el —
R (.

Eé{eeR”

2 2 % ~Eand suppose € int(Z"). Then, the following statements hold.

i) The setZ” C X is an RPI set for the closed-loop systén31)perturbed by state
measurement errors:&Z, — E and actuator noiseg Z, — Ey;

ii) The state and control constraints are satisfied for all tcapgies of (4.31) with
initial states % in 2", measurement errors:&._. — E and actuator noise g Z, —
Ey, i.e. forallxe 7, (Xo,e &) Withx € 2" ande: Z; — E, &,: Z, — Ey itholds
that % € X and y € k(xc+ &) +e,x CUforallk e Z,;

iii) The equilibrium point ;= 0 of systen{4.31)is input-to-state stable with respect
to state measurement errors 8. — E, actuator noise g: Z — E, and initial states
Xo in 2. In particular, one has thatfor allxe 2, e:Z, —Eand g :Z, — E, all
solutions xc .7z, (Xo,€ €,) satisfy

X < Bx(xol k) + ¥ (llell) + v lleull, ke Zy, (4.32)
with By([xo. k) = Bx(2/%| k) and

Ve(llel) = Bx(2llell,0) + ' (Lix+2) el Wl = W'Lrulleull.

Remark 4.2.6 Corollary 4.2.5 also applies in the unconstrained caseyitenX =
R" andU = R™, with the unbounded disturbance séfs=E =E,=R" (A = A, = ).
In this case, the above result applies r= 2 =R" and yields a global input-to-
state stability result with respect to measurement noigeaatuator noise. A similar
remark can be made for Theorem 4.2.4.

4.3 Robustness in manufacturing system control

As is explained in Section 1.5, if controller synthesis faliscrete event manufac-
turing systems is performed based on the framework as @epictFigure 1.4, it is
not sufficient to design a model predictive controller thah guarantee (asymptotic)
stability of the model predictive controller in closed-pwith the (piecewise) con-
tinuous (or discrete) time (partial) differential (or @ifence) equations (on which the
controller synthesis is based on) to guarantee (asympsi#bility of the model pre-
dictive controller in closed-loop with the discrete everdmafacturing system. This
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4.3. ROBUSTNESS IN MANUFACTURING SYSTEM CONTROL

issue will be elaborated on in the sequel. Assume one hasglsmm obtained a
(piecewise) continuous (or discrete) time (partial) ddfatial (or difference) equa-
tion that describes the discrete event manufacturing syataler consideration well.
That is, the behavior of the discrete event manufacturistesy can be described (or
substituted) by a continuous (piecewise) continuous (gerdie) time (partial) differ-
ential (or difference) equation with anjector andquantizerat the input and output
as depicted in Figure 4.1, respectively.

[u(t)] _ u(t) | Continuous | x(t) [X(t)]
»  Injector »  variable » Quantizer >
system

Discrete event manufacturing system

Figure 4.1: Discrete event manufacturing system represented by a ctiggoof injector,
continuous variable system and quantizer.

Through theinjector a discreté (control) signal, denoted in Figure 4.1 fgt)],
is transformed into a real-valued signal) that is (piecewise) continuous in time.
The continuous signal(t) drives the continuous variable model which generates a
(piecewise) continuous outpxft). The signalk(t) is then quantized by quantizer
which results in a discrete output sigra(t)] representing the output of the discrete
event manufacturing system. From discrete corjtr@))] to discrete outpufix(t)] the
system depicted in Figure 4.1 can be seen as a discrete emanfawturing system.
Mathematically, ajuantizerin the context as just pointed out can be described by a
piecewise constant functian 2 C Rl — 2, where2, is a finite subset dZ with
a fixed number of elemen® We denote the elements ¢ by g}, ...,qs and refer
to them as quantization points. The s#t$ 2 {x € 7 | qx(x) = d}, i € {1,...,S}
associated with fixed values of the quantizer form a partitibthe domainz and are
called quantization regions. The sigifiglis then obtained from signalas follows

M=) =c & xe%. (4.33)

Note a change of thquantizedsignalx(t), i.e. [x(t)], represents then agvent An
injector simply associates at each tirha unique element out of the finite discrete set
U ={ul,i?...,uM} to a signal(t), i.e.u(t) = u'if [u(t)] =i.

1Here the attribute “discrete” concerns both the signalesiand the time
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The continuous variable system, as depicted in Figure 41 far example be a
system of the form

d

ax(t) = f(x(t),u(t)), X=x(t=0), teR, (4.34)
wherex € X C R" is the state and(t) € U C R™ the control. Furthermoré& andU
denote potential state and control constraint sets. Bas¢d.84) a controller synthe-
sis can be performed which then results in the followingetbkop system depicted
in Figure 4.2.

[u(t)] _ u(t) | Continuous | X(t) X(t)]
> Injector »| variable » Quantizer
system

Discrete event manufacturing system

Controller
et _
Quantizer ‘C( )|based on synthes is(c(t)

of continuous
variable system

Injector |«

Controller

Figure 4.2: Discrete event manufacturing in closed-loop with the aalfer.

Suppose that, for ease of exposition, the controller in fl€gu2 is some static
feedback law, i.e.

Ue(t) = K (Xc(t)). (4.35)

Note that due to the presence of state and control quamtizatie has that
Xe(t) = ax(x(t)) = X(t) +&x(t), (4.36a)
u(t) = du(uc(t)) = uc(t) +eu(t), (4.36b)

ex(t) = ax(x(t)) — x(t), eu(t) = qu(uc(t)) — uc(t).
Subsequential substitution of (4.36a) in (4.35) in (4.361§%.34) yields the following
closed-loop system description for the closed-loop systepicted in Figure 4.2

d

ax(t) = f(X(t), K(X(t) + ex(t)) +eu(t)), (4.37)
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4.3. ROBUSTNESS IN MANUFACTURING SYSTEM CONTROL

whereg(t) andey(t) can, from a system theoretical point of view, be seen asrdistu
bance signals. Namelgneasurement errorand actuator noise respectively. For
a successful controller design for discrete event manurfimet systems, using the
framework as depicted in Figure 1.4, one has to deal withivVBttdisturbance sig-
nals g(t) andey(t) entering the closed-loop dynamics given in (4.37) evenghoa
perfect continuous time model is available for controllgntiesis. Note that in the
previous sections it is indicated, in the discrete-timeteaork, how one can take into
consideration disturbances as measurement errors arat@atoise in the controller
design. It are these results that will be employed to desigrodel predictive con-
troller that can cope with the “fictive” disturbance signelgt) andey(t) or e,k and
euk in discrete-time, respectively. This is important sinde itvell known in literature
that nonlinear model predictive controllers that are desibjust to render theominal
closed-loop system, i.eex = 0 ande, = 0, (asymptotically) stable, do not necessar-
ily posses robustness properties, see [91, 92]. Concritlislyneans that a nonlinear
model predictive controller, designed foominalasymptotic stability, might be un-
stable in the presence of arbitrary small disturbarggsand/ore,  as is the case in
manufacturing system control employing the framework dgcited in this section.
Since, model predictive control is usually formulated isalete-time, see also
Section 3.1, the manufacturing control problem is congidar the discrete-time mod-
eling framework. That is, the model predictive controllesijn under investigation is
how to obtain robustness (input-to-state-stability) ef fibllowing closed-loop system

Xir1 € F(Xi, K" X+ k) +€uk), &kEEx, ex€Ey, keZ,, (4.38)

with respect tostate measurement errorg eand actuator noise g in some sets
Ex CR"andE, C R™, respectively.

A simple manufacturing example

In Figure 4.3, a schematic representation of a fluid modelmBaufacturing line is
presented. The line consists of a series connection of twhsiations. Each work-
station consists of a machine and a buffer. In Figure 4.3hehines and buffers
are denoted b1, M, andB;y, By, respectively. The functiorts;(t), by(t) andbgz(t)
represent the amount of fluid over time that is present indosilf;, B, andBg, respec-
tively.

®'"(t) denotes the input of the manufacturing system represeatuegtain fluid
flow. In the manufacturing context the fluid leveig(t), by(t), andbs(t) can be
thought of as a certain amount of products in buffers @fdt) can be thought of
as the rate at which products enter the manufacturing sySitemmean rate at which
machines process products is denotegibin [85] the following differential equation
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CDin(t) B,
— (b}t Mg b2(t)( Mo b3(t)

Figure 4.3: Fluid model of a manufacturing system.

is proposed to describe the dynamical behavior of the maturiag line as is shown
in Figure 4.3.

d 1 |n /Jbl(t)

&b (t) =®"(t) - 1+Dbi(t) b= 0) - b}

d _ub(t)  ubA(t) . 2

& V=1 i tk)JZ(tt %> = t:;, (4.39)
ds.  HP) At =0

a’ V=13 b2(t)

with

b'(t) € [0,bi,), bA(t) € [0,b5,)], b3(t)€[0,0), @"(t)€[0, D], WteR,,
(4.40)

herebl(t), b?(t) andb3(t) represent the state ari"(t) the control of the system.
Buffers By andB, can only contain a finite amount of products. The total amount
of products each buffeB; andB, can store, is denoted kt%p and bﬁp, respectively.
Furthermore, limitations of the product in flow rat¥(t) is taken into consideration
by constraints (4.40). The rate at which products can eheemanufacturing system
is limited by tD[Tp. It is assumed thalD[Tp is larger than the total capacity denoted
by the production rate of the manufacturing. The total capad¢ the manufacturing
system is for this example presentedihyFor more details on the derivation of (4.39)
we refer the reader to [85].

Control problem

Problem 4.3.1 Let bref( ) be a certain reference trajectory representing a desirield flu
level of bufferB; over time. Assumég,(t) satisfies the following differential equa-
tion

d
GiPrer=C, with bis(t=0) =D >0, (4.41)
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whereC is some constant such thakOC < u?. Then, the control problem can be
formulated as to leb®(t), which satisfies (4.39), track (as fast as possible) theetbsi
trajectorybd ((t) satisfying (4.41), i.eb3(t) — b3(t) — 0 fort — . Furthermore,
the fluid levels (amount of products) in buffdBs andB, should be kept as low as
possible for all times € R ;.

Controller design

To solve Problem 4.3.1 the control strategy described iti@e8.2 is applied. Before
one can apply this control strategy to tackle Problem 48¢el{ranslate the control
problem, as formulated in Problem 4.3.1, to a similar probteat can be solved by
the proposed control strategy.

The MPC control strategy in Section 3.2 is defined in the digetime setting,
therefore a time discretization of (4.39) is obtained u&inter's discretization scheme
and ZOH assumption fab™" (t) with sampling timeT. After discretization of (4.39)
one obtains

. Tubl
bic 1 = b+ TOP — 1_ﬁ bkl
k

bt ,=hbl

Tubt  Tub?2 . k=0 — "0

k k b3 —b3

b3 _ b3 TI"le 0 °

k1= O+ ?bﬁ

and the constraints read for &lE Z . as
b€ [0.biy, bfe[0.bf). bie[0.@), & [0,Pf).
The same approach is employed to the reference model in)(4.&1
bt irr =ik +TC, with b o=Db%io>0. (4.43)

The following change of coordinates is performed

IR

EANCRC)

bg,k bk - bref,k

2The constan€ in the interval 0< C < u physically means that the desired “slope* of the reference
trajectory should be strictly less than the maximal capaafithe manufacturing system (characterized by
u for this example).

101



CHAPTER 4. ROBUSTNESS RESULTS FOR CONSTRAINED NONLINEAR CLOSED-LOOP SYSTEMS

The system dynamics in the new coordinates then reads

_ Tubt
bak 1= bax+ TP — . eik
1+ be,k
Tubl, Tub? bey—0 = by
HOg HDOg . S
b2ki1 = b2k+ 1+bel - 1+b§ . with b2, _o=Dbj, (4.44)
ek ek b3 — b3 _ b3
Tubz e k=0 0 ref,0
3 _ 3 ek
beki1 = bek+ rbgk -TC

and constraints read for &le Z, as
bék € [07 bﬁp]7 bg,k € [07 bSpL bgk € [_b?ef.k7 00)7 Lﬂ € [07 cDIL?p]
The equilibria or steady state solutions of (4.44) are glwen

in in

bl _ CDSS 2 CDss
ess— in’ ess— in’
H-of - of

b€ [0,0), and ®L=C.

The goalb? — b3, — 0 for k — e formulated in Problem 4.3.1 is met if (4.44)
is asymptotically stabilized around the equilibriubi}. b2 0). However, the pro-
posed control strategy that one wants to employ deals wéthttbilization problem of
discrete-time nonlinear systems around the origin as ibqjuitn point (for 0-control).
In order to obtain a system representation which has thisquty the following coor-
dinate change is performed on (4.44)

Xl% = bé.k - béss Xﬁ = bg,k - bgss Xﬁ = b}

in in
ek Uk = Dy — Pgg

The proposed coordinate change results in a system of tloavfog form
Xerr = f (X Uk), (4.45)

where

TH(+a)

1+x+a c
_ | 2 THgta)  Tueg+a) - _

F(4e ) = | X+ 1+xE+a g+a |’ with a= u

3, THOE+a)

Xt 1é+a TC

X%+T(Uk+C)—

and the to be respected constraints are then given by

X& € [_béss bﬁp_ bésgv Xﬁ € [_bgss bﬁp_ bgsg7 Xﬁ € [_b?ef7k7°°)7

Uk € [_(Disnsv q)it?p - (Dlsrg
The obtained model in (4.45) now has the required propi(i®y0) = 0. Two other
requirements for the MPC control strategy proposed in 8e@i2 are:
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1. Compactness of the state and input constraint sets,

2. moreover the origim = 0 should be contained in the interior of in the state and
the control constraint set.

Due to the first item, one has to add the assumptiorv@wiatconstraint by some upper
boundxﬁp > 0. The practical implication of this assumption is that thiedence
between the real amount of products produced and the desimednt of products to
be produced ifinite for all discrete time stepk € Z,.. Due to the second item, one
needsf, > biss b3, > b3ss The state and input constraints (4.3) then become for all
keZ,

X£ {E € Rs ‘ El € [_béss b&p_ bés& EZ € [_bgss bﬁp_ btzesgv E3 € [—b?ef.wXS ]} )
U2 {peR [pel-ox o)~ o},
(4.46)
with bl .b%, andx3, such thabl, > blsg b, > b3sg X3, > 0.

The control objective formulated in Problem 4.3.1 is nowriatated as to stabilize
(4.45) around the equilibrium (0,0,0) and simultaneousiyespect constraints (4.46).
A numerical example is obtained for the following systemapaeters:T = 0.5

[time unit], u = 6 [products/time unit]. Furthermore, the desired productiemand
schedule corresponding to the reference trajectory defméd.43) is defined by a
production rate o€ = 4 [products/time unit] andbf'ef‘o = 175 [products]. Based on
a linearization of (4.45) around (0,0) matricksindB are obtained (see (3.15)) such
that by employing the result in Lemma 3.2.7 the following ntasQy, K andR,

005 0 O
v=|0 005 o0, K=[-14872 —05524 —0.193@,
O 0 005

—93.8703 —-4022321 —-397.2042
R/ = | 80.5989 1215665 —3196462
—8861620 148758 —3369837

can be found. Hence the obtained maRixdefines an ISS Lyapunov function, i.e.
(3.13), for Algorithm 3.2.2 in closed-loop with (4.45). As énforce the performance
requirement, i.e. low fluid level in buffers and fast tragkibehavior, as stated in
Problem 4.3.1, the following functions characterizingtbstJ for the MPC algorithm
proposed in Section 3.2, i.e. Algorithm 3.2.2, are employed

F = PX¢Njkleos L= [QXcrijkloo + [Rulictijk oo, (4.47)
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where

R=0001, N=11

)

o O
= O O

2 00 1
P=[0 2 0, Q=10
00 2 0

For initial conditiongb b3 b3] " = [4 28 0T a simulation resultis shown in Figure 4.4
for the designed controller applied on the nominal model,(#.42). By verifying the
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Figure 4.4: State and input trajectories are presented by the solid.liflke dashed and dotted

lines represent the constraints and the desired steadysiaes.

o
o

sizes of the quantization regiohene can quantify the ses, andE, and employ
Theorem 4.2.4 to conclude about the robustness properteatlosed-loop system,
i.e. (4.38) or (4.18b), which is needed to guarantee suftdesmtrol of the discrete
event manufacturing system following the framework as édated in Section 4.3.
Note that the considered manufacturing line in Figure 4j@ssa simple exam-
ple to illustrate the ideas in this chapter. A real life mautfiring line might consist

3Note that verifying the size of the quantization regionstiisan open issue and remains a subject for
future research.
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of much more series connected workstations. More seriesemed work stations
leads to expansion of the state dimension of the proposeéin®@9) which leads to
a higher computational burden. However, since the contegpears linearly in the
proposed model (4.39) the online computations can be peedmore efficiently by
relying for example on item (iii), (iv) or (v) in Corollary 3.9. Employing items (iii),
(iv) or (v) in Corollary 3.2.9 leads to more efficient onlinemaputation and preserva-
tion of the ISS property of the model predictive control goleein closed-loop with
the system, however, performance of the model predictivérobscheme might be
reduced since the employgdedictionmodel in case of items (iii) and (v) in Corol-
lary 3.2.9 is based on a linear prediction models in steadhoirdinear one.

As just illustrated the presented model predictive contmbroach can be em-
ployed to solve a tracking problem for a class of nonlineanafiacturing systems
where the to-be-tracked reference trajectory is defined @43), which corresponds
to a linear reference trajectory. Note that the in practiceight be desirable to track
a larger class of reference trajectory. That is, the pradoatemand schedule might
in practice not be of the form as defined in (4.43) due more dexfuctuating cus-
tomer demands. However, note that due to the fact that theraydynamics on which
the controller design is based on, i.e. (4.45), only dependfe desired production
capacityC andnoton b3, ., one could design multiple controllers each correspond-
ing to a certain desired production capadity Then, in case of fluctuating customer
demands, which can be approximated arbitrarily well by aeidse linear reference
trajectory, one can switch between the controllers comedmg to the currently de-
manded desired production r&le Hence, a nonlinear model predictive tracking con-
troller for a class of nonlinear manufacturing systems tzex enforce tracking with
respect to piecewise linear reference trajectory is obthin

4.4 Summary

The resultin this chapter shows that state feedback laws#merender a closed-loop
system input-to-state stable with respecatilitive disturbancesan also render the
same closed-loop system input-to-state stable with réspstate measurement errors
andadditive disturbancesFor the obtained result continuity of the system dynamics
with respect to thestateof the system is required, however, continuity with respect
to the system's control variable it required. Under the additional assumption of
continuity of the system dynamics with respect to the cdntigable, also robustness
with respect to actuator noise can be established. Herttas ibeen shown that under
mild conditions state feedback laws that can render a clismol system input-to-
state stable with respect audditive disturbancesan also render the same closed-
loop system input-to-state stable with respecstite measurement errgradditive
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disturbancesindactuator noise

Since the results hold for control and state constrainedimear discrete-time
systems and it allows for possible discontinuity and séte@ness of state feedback
laws, makes the result in particularly interesting in thédfigf model predictive con-
trol. The result enables the employment of model predictosgrollers, designed for
rendering the closed-loop system input-to-state stalf€)(with respect to additive
disturbances, in a scenario where the closed-loop systerotise rendered input-to-
state stable with respect to state measurement errors¢arater noise). The fact that
many results are available that render model predictiveérobolosed-loop systems
input-to-state stable with respect to additive disturlesrend only few for measure-
ment errors (and actuator noise), indicates the value afethdt. Furthermore, in the
context of synthesizing model predictive controllers lobse fluid models of manu-
facturing systems it is indicated how the robustness resalh be employed to cope
with the compatibility issues between fluid models of maotifang systems and the
discrete-event nature of manufacturing systems.
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A theory is something nobody
believes, except the person who
made it. An experiment is some-
thing everybody believes, except
the person who made it.

Albert Einstein

Nonlinear model predictive control:
output feedback

As is encountered in the previous chapter the proposedmrearlimodel predictive
control scheme, and many other schemes in literature, nie§nowledge of the full
state of the to-be-controlled system for feedback. Howengractice it is rarely the
case that the full state of the system is available. A possiblution to this problemis
the usage of an observer. An observer can generate an estifrthe full state using
knowledge of the output and input of the to-be-controllestegn only. The obtained
state estimate can then be employed as a substitute in éestdtmck model predictive
controller to generate the controls for the to-be-condeblystem, see Figure 5.1. The
certainty equivalence principle is a rigorous justificatfor such a substitution. If the
to-be-controlled system is linear (and detectable andlzalble) and no constraints
have to be respected, one can separately design an obséttvaisymptotically sta-
ble estimation error dynamics and a linear state feedbatkater that stabilizes the
system such that the resulting certainty equivalent cldsep system is guaranteed
to be asymptotically stable. Due to the fact sudeparation principledoes not hold
for nonlinear constrained systems, nominal stability itesior nonlinear model pre-
dictive controller and observer estimation error dynamissally do not guarantee
closed-loop stability of an interconnected model predetontroller and observer
combination. Moreover, the nominal stability result fomfinear model predictive
controllers is known to be non-robust. That is, nominal ifitalbg property of the
model predictive controller can be lost in the presencelufrary small disturbances,
like for exampleobservation error§caused by an observer) in the state, see [92, 91].
One of the potential approaches to guarantee closed-labpist in the presence of
observation errorsn the state, is to ensure that the model predictive comtral (in-
herently) robust tmbservation errors In [60] asymptotic stability of state feedback
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model predictive control is examined in face of asymptdiiyadecaying disturbances.
As is stated by the authors of [60], their results are alsdulider the solution of
the output feedback problem, although a formal proof is migsA stability result
on observer based nonlinear model predictive control,psnted in [69], under the
standing assumption that the model predictive controlevfunction and the result-
ing model predictive control law are Lipschitz continuod$he stability problem of
observer based nonlinear model predictive control is itex$n [88], where only con-
tinuity of the model predictive control value function issasned. In [88] robust global
asymptotic stability is shown under the assumption thakthee no state constraints
present in the model predictive control problem. Otherteglaesults on observer
based nonlinear model predictive control can be found if}. [$8wever, in [93] a
continuous-time perspective is taken, while here the fa&os discrete-time nonlin-
ear systems.

initial
lconditior(xo)

control (u) system output(y)

|
|
state state J |

feedbach€SIMAt ypseryey |
NMPC | (%) —
|
|

\

l_c:ontroller
initial
condition(Xp)

Figure 5.1: Basic structure of an observer-based output feedback iNealiModel Predictive
Controller (NMPC).

In this chapter stability of an observer based nonlinearehpdedictive control
scheme is investigated. The novelty of the proposed aphroassists in the fact
that a generically applicable observer design method igigeed. As opposed to the
nonlinear dead-beat observer presented in for exampl®B&nd Newton observers
in [94], a feedback mechanism is incorporated in the statmaton procedure. The
feedback mechanism is established since there is an oufpatad innovation term
present in the observer structure as it is also the case iddksical Luenberger ob-
server. Furthermore, the input-to-state stability frarodwe.g. see [41, 63] and the
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references therein, is employed to draw conclusions albeustability of the result-
ing closed-loop system. The extended observer design aeltgy from [95, 96] is
considered. The extended observer design has the advahtageworks (locally)
under a very mild condition on the system dynamics, whiclréng local observabil-
ity. However, the drawback is that future information of tantrols applied to the
system-to-be controlled are needed, which are normallyawatable and this there-
fore results in a causality problem. Since in the model mtéd control framework
predictedfuture controls are available, this framework might beahli to be em-
ployed in combination with the proposed observer theory.

The chapter is organized as follows. First, the observarthef [95, 96] is sum-
marized in Section 5.1. In Section 5.2 it is shown how one el @ith the causality
problem present in the proposed observer by employing teergbr in a model pre-
dictive control environment. The definition of the stalyilénalysis problem follows
as a consequence of it. In Section 5.3 it is point out how teriimfput-to-state stability
(robustness) with respect to observation errors (intredilxy an observer) from input-
to-state stability with respect to additive additive disances. This result enables one
to employ existing model predictive control scenarioshveh a priori input-to-state
stability guarantee with respect to additive model undetyalike the one in Chap-
ter 3, in an observer based model predictive control scendfiext, in Section 5.4
one proves input-to-state stability of the error dynamicthe observer with respect
to disturbances which are caused by imperfection optledictedfuture controls in-
jected to the observer, i.e. the predicted future contrgliseace does not coincide in
general with the real control sequence applied to the sydteBection 5.5 the stabil-
ity property of the closed-loop system, consisting of thededgredictive controller
interconnected with the observer and the system, is imgagsiil. The input-to-state
stability results obtained for the model predictive coliroand the input-to-state sta-
bility result of the error dynamics of the observer, togethigh small gain arguments,
are used to prove asymptotic stability of the proposed duipsed nonlinear model
predictive closed-loop system, which is the main resulhef thapter. In Section 5.6
the effectiveness of the scheme is illustrated on an exar@aleclusions are summa-
rized in Section 5.7.

5.1 Nonlinear observers

In this section the extended observer theory proposed ind8Bs summarized. For
notational brevity we consider the theory for the singleuingingle output case, al-
though the theory applies in the multiple input/output casevell. Consider the fol-
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lowing system

X1 =F (X, U)

Ye=0(%)

wherex, € R", ux € R andyk € R is the state, the control and the output at discrete-
timek € Z, , respectively. Furthermoré,g € C!, f : R" x R™ — R" andg: R" — R
have the property th&t(0,0) = 0 andg(0) = 0. The observer problem for (5.1) deals
with the question how to reconstruct the state trajectdryxp,u) on the basis of
knowledge of the control and the output of the system. Themes design prob-
lem is a problem that is not yet fully solved for nonlineartsyss of the form (5.1).
A proposed observer candidate applicable for a broad cfatis@ete-time nonlinear
systems is considered in this chapter. To be more preciseredr design for a class of
systems that can be expressed in the so-c&llddnded Nonlinear Observer Canon-
ical Form (ENOCF) is considered. Systems of the form (5.1) can be foamed, at
least in a local sense, into the ENOCF provided system (5.[cially strongly ob-
servable [95, 97]. In Section 5.1 more details on this issggven. Observers that are
based on the ENOCF are callegtendedbservers for shortness. One of the major
characteristics that distinguishegendedbservers form “conventional” observers, is
that not only the outputx and controly at the current timé are employed to obtain
an estimate of the statg, but, also future controls and past outputs and controls are
needed.

keZ,, (5.1)

Observers in the ENOCF

A system representation in ENOCF, or the z-dynamics foribraeads as

—Az + f [1-n,0] 7 u[l—n,O]’ u[l,n]
Zer1 =Pak z([)fin ) k k )7 KeZ,, (5.2)
Yk =hz(Czzq,u )
withczé[o .0 1],
0 ..00 [ fo(yio U up™)
1 ...00 - B f,1(y[’1’°},u[fl’o],u[l‘”fl})
AL R fz(yl[(l n.0}7ul[<1 n,O]yul[(l,n])é 21(Yk k k '
0 .. 10 _fZ,n—l(yl[(lin’Ot ul[(lin‘O] ) uk+1)
where
B T B 1T T
v ”’O]é[yk_n+1...yk] ,out ”’O]é[uk_nﬂ.--uk_ , u[kl’"}é[wﬂ...ukm} ,

andz € R" represent the past output sequence, control sequences futntrol se-
guence and state incoordinates at discrete tinkes Z_., respectively. Furthermore,
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5.1. NONLINEAR OBSERVERS

the pair(C,, A;) is anobservable paiand f;: R" x R"x R" — R", h,: R x R" — R
are nonlinear functions, whetg is, for a fixed control sequence, avertible out-
put function for the system in ENOCF. Except for the futuratcol sequence, all
other sequences are known at tilné control and output variables (measurements)
are buffered. The dependence on the future control sequarcesponds (or can
be compared to) the appearance of (also unknown) time digggaof the control in
the generalized continuous-time observer from [98]. Whysiesn representation in
ENOCF is dependent on the future control sequence in thddemesl discrete-time
context will become clear in Subsection 5.1, where detailthe existence of a sys-
tem representation in ENOCF are discussed. First the fodubewon the existence
of observers for systems in ENOCF.

Observer candidates based on the system descriptions ifCENi@ve been pro-
posed in [95]. One of the observer candidates simply cansiSt “copy” of the
z-dynamics (5.2) added with an output injected term, alsmswknas aninnovation
term, i.e.

21 = A+ Ty Ul Ut + ko(hp b (o U ™) —20), ke Zs
N— ————

Znk

(5.3)
with 2, = C;%, andh; ., , represents for a fixed input sequemfefn‘o] the inverse
function ofh; in (5.2). One of the benefits of an observer in ENOCF, like the o
in (5.3), is having an innovation term in the observer stritet The innovation term
induces a feedback mechanism in the state estimation motés feedback mech-
anism is beneficial to guarantee stability of the estimagimotess and to account for
issues as model uncertainties, encountered in practi¢aniyg the so called observer
gaink, € R" appropriately. The observer gain can be used to assignaircdytnamic
behavior of the observexerror dynamics. The-error dynamics is the dynamics

which describes the evolution of tkeerror defined at each timec Z,. as
€zk £ 70— &

Due to the fact that the starg of a system representation in ENOCF appears linearly
in the system equations and all nonlinearity enters the sgiations via the nonlinear
functionf;, depending only on the control and output sequences of 8tersy a linear
autonomoug-error dynamics is obtained. Theerror dynamics for (5.2) and (5.3)
reads as

€ k+1= Aeez,ky ke Z+7 (5-4)

where
Ae é (AZ - KOCZ) .
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Note that the paifC, A;) is by definition anobservable pair From linear control
theory it follows that this is sufficient for the existence ari observer gaim, to
renderAe Schur. Hence it is thus always possible to design an obstrvarsystem
in ENOCF.

Existence of the ENOCF

Previously, it has been shown that if the dynamics of a syseagiven in the ENOCF
(5.2), then it is always possible to design an observer fisrdhstem. However, the
following question remains open: Which systems in the garfeom (5.1) can be
transformed into the ENOCF (5.2)?

In order to answer this question, the notionstiong local observabilityin e.g.
[97], is recalled. For convenience first tiobservability magfor non-autonomous
discrete-time nonlinear systems in introduced, which Hesady been defined for
discrete-time nonlinear autonomous systems in [99, 100].

Definition 5.1.1 The observability mag of the system given by (5.1) is defined as:

9(%)

0n-2) 5 g(f1(>.q<, U))

(X, Uy , (5.5)

O™ L% s s Uin2] )

where ! (X, [Uk, ..., Ukyi-1] T) = FOF( F(F (%, Uk)s Uk 1)y oy )5 Ukpi1),  With i >
1.

Next, strong local observabilitys introduced.

Definition 5.1.2

i) System (5.1) istrongly locally observableat x, if there exists an open neigh-
borhood.# C X aroundxg such that for all stateg, e .+ and all admissible
control sequence.&%o’”fz} resulting in the same output sequence as obtained by
Xo, i.€.

(%0, U™ ) = (X, ulf" 2, (5.6)

implies thatxg = Xo.

i) System (5.1) isstrongly locally observable on a domak, if i) holds for all
Xo € X.

1The wordlocally refers to the fact that two states must be distinguishatdenigighborhood 4 around
Xo. The wordstronglyrefers to the distinguishability of the states after obseyrthe output trajectory for a
finite number of time stepstime steps, whera is dimension of the stateof the system).
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A sufficient condition for system (5.1) to Istrongly locally observable atpxs the
following rank condition,

[0,n-2]
aP(x.u )
rank{ [77?(

=n, w4y, (5.7)
X=X

whereU"1 C R"1 andy is defined as in (5.5). Condition (5.7) is sufficiéfar the
existence of an invertible map of the observability map feedi control sequences.
This follows from the inverse function theorem in [101]. Tiheerse function ofy for
a fixed control sequence is denotedygst,. Note that the existence of an invertible
mapy;;L, aroundx, for all admissible control sequences is equivalersttong local
observabilityof (5.1) atxy. Thus, if the system (5.1) istrongly locally observable
theny in (5.5) acts for fixed controls, as a (locally) invertible pnigelating stateq
satisfying (5.1) to a stats satisfying another representation of system (5.1) having
the form

Sk

SK+1 = ’ Yk = sﬂ.,ka (58)

Shk
fs(sm ul[<0.n71])
where

S 2 YUl ) o xo= gl (seu™ ),

f(so U™ ) 2 gl (ks ud™ ) ud™ ).
Note that system (5.8) is obtained by defining

-
S|V - Yk+n71} .

By definings, in this manneffuture control sequence dependence, as has been en-
countered in the previous subsection, is introduced.
Next it will be shown that if the functionls, and f; satisfy the following relation

n-1
el (8o U™ ), u™) = 3 (St Sk S Uc),  (5.9)
J:

then there exists for fixed control and output sequences\attinle mapQ : R" x
R xR"x R - R i.e.

2= Q(s&yl[(lfn.fl]y ul[(lfn.o]yul[(l,nfl]x (5.10)

2Note that the rank condition (5.7) is not necessary for iiitvility. Take for exampley(x) = x°. The
rank condition is obviously not satisfiedat= 0. However, a global (non-smooth) inverse function clearly
exists.
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relatings satisfying (5.8) andy satisfying (5.2). Indeed, if one has (5.2) and (5.8)
then by definition ok, one must have that

Sik= hz(Zn,k7U;[<lin’o])
S2kc= ez 1+ fanca(yie ™ s u ), uZ )
(5.11)
nt (~1,n-1]\ . [0,n—1]
Sk =ha(zik+ Y f2j(V-1 S-Sl )W )
j=1
and
nt on\ - [Ln]
Shk+l = hy( Z) f2 (Yk751,k+17 oo Skt U )7Uk‘ )- (5.12)
j=
Employing (5.8) one must have that
0n-1] nt on\ - [1n]
fs(a(auk’ ) = hZ(Z)fZ,j(ylﬁstkJrlw"asj,k+17uk’ )7uk‘ ) (513)
i=

Sinceh; is, for fixed control sequences, an invertible functionatieh (5.9) follows
from expression (5.13). Hence, (5.9) is a necessary conditir the existence of an
ENOCF in (5.2). Furthermore, if (5.13) (or (5.9)) is satidfiene can obtaif in
(5.10) by solving (5.11) fog, i.e.

n—-1
z1k = hy (S ULO‘nfl}) — Z T2 (Yk—1,S1k> - - - Sj ko Ul[fl’n*l})
i=

Zn-ok =Ny tea(Saie U ) — fonoa(Yi Sk Soke Ue ™) (5.14)

[3—n,2] [2—n,—1]
— fon 2" Y s P
AR SN (TNT] ) B Y (v BT )

Zn7k = hZ_,liLflxed (Sl7k7 ul[(l_ np])'
As a consequence, (5.9) is also a sufficient condition foettistence of an ENOCF,
the reader is referred to [95] for the details. Since, théways exist function$, and
f, such that condition (5.9) is satisfiethe compositiorE of Q andy (= £ Qo )

[1-n-1  [1-n0] [1,n71])

Z = E(Xk7yk 7uk 7uk (515)

3The left-hand side of (5.9) depends on the same arguments &glit-hand side, thus it is always
possible to fulfil (5.9) by an appropriate choicetgfand ;1.
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acts, for fixed control and output sequences(.,), as a (local) invertible map defined
aroundxg relating the statey from (5.1) andz from (5.2) if (5.1) isstrongly locally
observable atx One can summarize the previous discussion in the followgsglt.

Theorem 5.1.3 The systeng5.1) is strongly locally observable afxif and only if
there exist functions;f R" x R" x R" — R", h,: R x R" — R such that= in (5.15)
acts for fixed control and output sequences as an invertilslp defined in an open
neighborhood#” around x relating state x satisfying(5.1) and a state gzsatisfying
a system representation in ENOCEF in particu(&ar2).

The interested reader can find a detailed proof in [95].

Remark 5.1.4 Notions of strong local observability on a domaty i.e. Defini-
tion 5.1.1ii), extend the result in Theorem 5.1.3 from a lteglid on a neighborhood
A aroundxg to a result valid for alkg in a domainX.

Note that within relation (5.9) there are various posdikti to choose the functiorfs
andh;. This means that given system (5.1), there may exist meltigbresentations
of this system in ENOCF. Without loss of generality and foseeaf exposition, one
may assume thdt, is a linear function in its arguments, i.e. lete R, hy € R then
h; is defined as

[1-n,0]

hz(zn,ky Uk n-10)

) = sz i+ hyuy ) (5.16)

Previously, it is shown that (5.3) is an observer for a systepresentation in
ENOCF. Then, via the result established in this subsecti@noan conclude that un-
der the condition that the system (5.1)lizally strongly observabl¢he observer
given by (5.3) is a (local) observer for (5.1). Via the cooate transformation map
(5.15) the estimated state #rcoordinates can be mapped to estimates of the state in
x-coordinates. By continuity of the transformation map £, it can be shown that
asymptotic stability of the-error dynamics (5.4) implies asymptotic stability of the
the estimation error dynamics iacoordinates, which can be obtained by defining

A ~
Bk = Xk — R, keZy,

as the estimation error ixrcoordinates. Although the observer seems to be a global
observer in thez-coordinates, the observer is, in general, only locally rafiin
x-coordinates. This follows from the fact that the equivakemnelation between the
z-dynamics and the-dynamics denoted by (5.15) is not globally defined in gelnera
but only locally. Therefore, the observer candidate is inggal only locally well-
defined. However, if the transformation between the sysegmesentation (5.2) and
(5.1) is defined globally also the observer candidate will géobal observer for (5.1).
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5.2 Problem formulation

Consider the system dynamics given by (5.1). Throughoutltapter is is assumed
that the state and the controls are constrained for systdmt(bsomecompactetsX
andU, respectively, i.e.

u € UCR, Xk € XCR", VkeZ,. (5.17)

The full statex, is assumed not to be available for feedback, but only theuutp
Vk is available for feedback. Insteag, Will be employed for feedback to a state
feedback based model predictive controller. To obtain éimese of the statey the
observer theory described previously will be employed. E\asy, the observer theory
explained in Section 5.1 suffers from a causality problehatTs, at time stepe Z.,
when the model predictive controller needs an estimatee §tdao compute a control
Uk, the observer, i.e. (5.3), (5.15), neédmrecontrolsul[(l’”], that are not available at
timek, in order to generate a state estimgteFurthermore, at time stejss Zg ]
also past controls and outputs in the sequeu{;jéé"o] andyi[(lfn‘o], respectively, are
not fully known. The causality problem of the observer islteéh by using the fact
that in the model predictive control strategyedictedfuture information about the
controls is available at each time steg Z,. That is, if the prediction horizon of
the model predictive controller is sufficiently lony € Z-n), a part of thepredicted
future control sequence obtained by the model predictingrobier at every time step
ke Z., denoted byULl’"}, is employed as a guess for the unknown sequ@rﬁt’&.
The problem of not fully knowing the past control and outpedsences at time steps

k € Zjn_q is dealt with by replacingl’ "% andyl’ "% in (5.3), (5.15) by vectors

neY'CR" and neU"CR"
respectively, where
Yé{ceR | ¢=9(&), £€X}.

The vectorsnﬁ{ and ny represent state vectors from buffer systems that buffer the
output and the control, i.gy anduy, respectively. The buffer systems are defined as

’7|¥+1 :Abn|¥+bbyk7 (518a)

NMicy1 = ApMNi + Do, (5.18b)
whereA, 2 Al b, 2 [0...0 3] and the output of the system, i, and the control
Uk are inputs of the buffer systems. A precise setup of the tisgubbserver based
model predictive control scheme is then described by
e The system

X1 = F(x,u
K (% k), u € U, Xk € X, keZ,; (5.19)
Yk = 9(%)
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e Observer.

QK+1 f(Qkaykaukaul[(l ])7 ke Z-‘ra (520)
T
wheredj £ {z( n’ m‘j} :

£ [1,n] Adc+ fz(nz, n l[< ]) + KO( ;l(yk - hunl?) - 2nk)
P Yo o T ™) = Aoy + Doy . (5.21)

Apny + bl
o MPC controller:

Algorithm 5.2.1
Step 1) Givend attimek € Z; andN € Z-n, letxyy £ % and find (via optimization)
a control sequenoa{?‘”il} = [Ugics - - .,uk+N_1‘k]T that satisfies
@:E(Xkanza r’l?a[ukJrl\ka"'7uk+n\k]T)7 (522&)
uPNY € m(Re), (5.22b)

and optionally also minimize the model predictive contro$t; e.g.J (X, ul[(O N- 1]) in

(3.2).
Step 2) Let

[O,N—1]

K™ () = { [ukﬂ‘k U +n\k} e U" | u2N Y satisfies (5.22}

and
KM(Gk) = {uk‘k eU | uP™ Y satisfies (5.22}.

Furthermore, IeﬁLO’N_l] £ [Oir 1k -+ Uieen—g] | With

=
=
||l>

U™ 2 Ot - Oepni] T € REP(G) (5.23a)
Uy £ T € K"(0k), (5.23b)

denote deasiblecontrol sequence and control with respect to the optindnam’rob—
lem formulated at Step 1, respectively. Apply a control mnueU 1 and a control
uy satisfying (5.23a) and (5.23b), respectively, to the olese5.20) and the system

(5.19) and incremerk by one and go to Step 1.
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Note that the model predictive control law resulting frongétithm 5.2.1 is denoted
by (5.23) wherek'™ : Q — U" andk"* : Q — U are set-valued mappings afid=
S; x Y™ x U" with

Szé{Z eR"

{==(&,¢"pp,uf), E€X, ¢"eY", ujuf € U"}~

Remark 5.2.2 Under the assumption that is explicitly available for feedback to the
model predictive controller (and thus conversiorgplia (5.22a) in Algorithm 5.2.1
would not be necessary), one could remove constraint (pf2@a Algorithm 5.2.1.
Then under the assumption that (5.19%tmngly locally observablehe solution of
the newly obtained model predictive control algorithm (né& is explicitly avail-
able) is similar to the solution to Algorithm 5.2.1. This igedto the fact that the value
of % is, for givenZ and all fixednﬁ’, ny andui[(l’n], uniquely defined via map.

The model predictive controller (5.23) (Algorithm 5.2.h}érconnected with the ob-
server (5.20) and the system (5.19) forms the closed-loopmycs

X1 € T (%, K°(6k)), (5.24a)
k1 € T(Gk, 90%), K"(G), Ky (Gik))- (5.24Db)

In the remainder of the chapter a constructive design praesidr the model predic-
tive controller and the observer is given such that the ériiim point|[xeq qeq]T =0

of the resulting closed-loop system (5.24) is rendexgginptotically stablevith re-
spect initial statefxo Go] " in some subset &f x Q. Hence, a stabilizing output based
nonlinear model predictive control scheme is obtained. Atliree of the followed
approach is given next.

Outline of the approach

Taking into consideration Remark 5.2.2 system (5.24a) eandmsidered from the
point of view that

X1 € T KX+ 8ck)) = Fo, (X Bk), Bk € Ex, (5.25)
H}\,—/
Xk

whereEy C R" is a known compact set with®int(Ex). The stat@bservation erroin
system (5.25) is now considered as an “external” boundédrthisnce signal, e.g. state
measurement noise, exiting system (5.25). The model pheglicontroller design
question can then be formulated as to synthesize a modeakfiveccontroller such
that system (5.1) is robust to any observation egorR, — Eyx. The notion of
input-to-state stabilityas introduced in Chapter 2, is used for this purpose. Once
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Xeq = 0 is an input-to-state stable equilibrium point of systen2%} with respect to
the observation errom : R, — [E4 and initial stateg in some set, it is known that
if the observation error vanishes, igg — 0 fork — o, alsoxx — 0 for k — co. This
follows directly from the input-to-state stability propgmgiven in Definition 2.3.2.
Hence, ifxeq = 0 is an input-to-stable equilibrium point of (5.25) then dfisient
condition which will lead taasymptotic stabilityf equilibrium pointxeq= 0 of (5.25),
or similarly (5.24a), is that the observation error vanghes. e, — 0 for k — oo,
Following this approach, one in fact decouples the obsetesign problem from the
controller design problem and henceeparation principlenolds true. An approach
to synthesize a model predictive controller that rendetsliégium point xeq = 0 of
system (5.25) input-to-state stable with respe@tis given in the next section.

For the observer design one will consider the error dynarthese, \ satisfies for
allk € Z, and is given by

€1 € Fa, (Gqr ik ). KEZ, (5.26)
&k € Yo, (EqrEi),  KEZy, (5.26b)
where
e&lkn] N ul[(l | UI[(1,n]7
Qj(eq.k7euy7k ) £ {Aqeqk+ BquZ(C eyk7up7euk7uf7 uk ) IJp7IJf € Un}
e\;(e(17k7e£1]:i(n]) é {AE(eLkaZacnaey7k7“87eu7kau?aeuj( ) Z S SZ7 Cn S Yna
Hp, Hf € U”},
with,
Ae 0 —Kohs_lhu In €k Z— %
A2 |0 Ay 0 |, Be2|0|, eq? |e|2 |y "®—n!|,
00 A 0 euk| [ul MO pu

Afz(nk:eyk7nk7%kyukln 7eu k )
gltn

() + 8y E + e T + €)= fo(nf e, T ™).
D= (24, €2k, MY By MY €01 T ) 2
i

- A —1,
uyf|xed(zk+ez ks nk + eyk7 r’k + eu ks uk +e[ ]) :uy%xed(zka ’7|¥7 r’l?au|[( n]) .

Xk X
The error dynamics defined by (5.26a) and defined by (5.26h(=&26b) is in the
remainder of the chapter also referred to asctegror andx-error dynamics, respec-
tively. The error dynamics defined by (5.26a) and (5.26bnismautonomous system
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with the difference between the real future control seqaemdpredictedfuture con-
trol sequence, i.efuture predicted control error sequene&‘k”], as input. Since the
predicted future control sequence does in general not ictdneith the real future
control, the future predicted control error sige@L”] is in general a non-zero input for
system (5.26a), (5.26b). This makes, showing &at 0 fork — o, a nontrivial task.
In Section 5.4 it will be proven that equilibrium poigfeq= 0, With %, (€geq, 0) =
{0}, of the error dynamics given by (5.26a) and (5.26b) can béewrad input-to-state
stable and input-to-output stable, respectively, witlpeesto future control prediction
erroreLl‘i(”}. In Section 5.5 the closed-loop system as defined by (5.2&)risidered
from a cascade point of view of the input-to-state and irtpuutput stable observer

error dynamics (5.26a), (5.26b) and the input-to-statelestsystem (5.25), i.e.

[Xk+l‘| c [f(xkyKMPC(XkJr%J (eq.kye&f})))] a [9ex(xk7gaj (eq.k7e£,1,i<n]))

, kez,.

€gk+1 Fey (Egk: eﬂl,’kn]) Feu(Eqk.e)
(5.27)

By imposingregularity, i.e. see Definition 3.1.1, on the model predictive conéroll

and employing amall gainargument, one can show that
e € Fe (o), KEZs, (5.28)

whereZe, : X x éq— U"@U"is a set-valued mapping witfeq(0,0) = {0}, 2 CX
andéy C R3". Via interconnecting (5.27) and (5.28) it is then provert tguilibrium
point[Xeq €ged ' = O of interconnection (5.27) and (5.28) is asymptoticalabs with
respect to initial statep eqo]T in some set. From this result asymptotic stability
of the equilibrium poinfxeq Ge ' = O of the closed-loop system (5.24) with respect
initial statesxg Go] " in some subset o x Q follows.

5.3 Controller design

As explained in the previous section, one seeks for moddigtree controller schemes
that can render the equilibrium poixg, = 0 of system (5.25) input-to-state stable with
respect tmbservation errors gtaking values in some s&. To be more precise:

Assumption 5.3.1 Let Ex be a given set with & int(Ex). Suppose"™(-) is a model
predictive controller withN € Z- such that for the system (5.1) in closed-loop with
the model predictive controllex(-) the following holds: There exist & .%-
functionf and a# -functionygx such that for all initial states in an RPI setZ2 ¢(N)
with 0 € int(2"¢(N)) of system (5.25) perturbed by observation erersz, — Ex

all solutionsx € 7'z, (Xo, &) satisfy

X < Bel[xol k) + Ve (llexl), ke Zy. (5.29)
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Furthermore, let2"¢(N) be such that
2 ¢(N) C X ~ Ey. (5.30)

In Chapter 3 one can find a method how to design a model preglimintroller which
can realize the property as formulated in Assumption 5.Redcall, that in Chapter 3
it is pointed out, by the result of Corollary 4.1.4, how ona esmploy the relatively
rich literature about nonlinear model predictive contsgithesis methods, which can
a priori guarantee that equilibrium poigy = 0 of system (3.7) is input-to-state stable
with respect tadditivedisturbances, e.g. Algorithms 3.2.2, 3.3.3 and 3.2.1lexpel
out in Chapter 3, or [46], in the scenario where the equilitoripointxeq = 0 of the
closed-loop system (5.25) has to be rendered input-te-stable with respect tob-
servation erroror measurement noise as formulated in Assumption 5.3.1.

5.4 Observer design

In Section 5.2 the error dynamics (5.26a) and (5.26b) of Hsenover defined by (5.20)
(and (5.22a)) has been derived. In this section, it is prokatthe equilibrium point
€geq= 0 of the error dynamics (5.26a) and (5.26b) can be rendeped-io-state and

input-to-output stable with respect Bblk"] as input. Recall thaAaLl’k”] represents the

error present in theredictedfuture control sequena?;[(l‘n], which is obtained by the
model predictive controller (5.23) and injected to the otee(5.20) at discrete time

keZ,,ie.

1n a  [1n] [1,n]

ehk Su U keZ,. (5.31)
Due to (5.17) and the fact that Assumption 5.3.1 holds, o et
uaN e ke, = gqlelsl (532)

Then, leteg, € R~ be the smallest constant such that
U"@U" C Eq,, (5.33)
with
E%é{eeR” | |e|§eaj}. (5.34)
Hence,

e&’k”] €Eq, VKEZ,.

Assumption 5.4.1 There exists constants, andLz such that for alk € Z .

A 6k @k )| < L, (leyud + leund + e ) (5.35a)

IA=(- 00k By ks> i )| < Lz (lewkd + eyl + eul + e]). (5.35b)
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The constants s, andLz exist if the functionsf, and=_1  are Lipschitz continuous

uy fixed
with respect to all their arguments in the domaifisx U" x U" andS, x Y" x U" x U",
respectively.

Assumption 5.4.2Let Z'¢(N) C X ~ Ey with

Exé{eeR”

6] <3L= (g + 29 (L, Fies o) ) ey
(5.36)

(3(5 (Lt,, Tie, Pe, N) + szlf—epe) n 1) L=g, }

for someee, € R-o and withie € R>1, fig € R>1, pe € Rig 1) such thatA| < riepf
and|A§| < 7igp& holds for somepg € Rjg 4y and allk € Z, and where

n-1
8(sz7h97 Pe; n) £ szhe < Z)pé) . (537)
j=

Theorem 5.4.3 Let
&gl {s eR¥ | |g| < seq}
and suppose there exists a constagte R-.o such that Assumptions 5.4.1 and 5.4.2

hold and(5.1)is strongly locally observable on domaih Then the following state-
ments hold.

i) The equilibrium point gq = 0 of the g-error dynamicg5.26a)is input-to-state

stable with respect to inputeLl’”] . Zy — Eg, and initial error g0 in &, i.e. for all

€40 € &y andel" : Z, — Eq, all solutions Q € Y7, (€40, e&‘k”}) satisfy

gkl < Bey(leqol, k) + V2 lel ™|, VkeZ, (5.38)

where )
Bey([301,K) = (gl + 29 (L, Fie, e, PE™ 4™ ) ey,

A he
ngj _<8(sz7h67p67 n)+|—le_pe> .

ii) The equilibrium point gq = 0 of the x-error dynamics defined [§g.26a)and
(5.26b)is input-to-output stable with respect to input:etl’"] 1 Zy — Eg, and ini-
tial error eqo in &g, i.e. for all g € &4 and e‘[}m : Zy — Eg, all solutions g €
 Foy e, (€305 ehlfkn]) satisfy

ekl < Be(|eqol,K) e le™ ], vkeZy, (5.39)
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wheree, (|egol,K) = 3L=Pe, (legol.K),

A L=(3R + 1) (5.40)

iii) For all eq € & andel™ : Z, — Eq,

ek € Ey, vkeZ,. (5.41)

Proof:

i) Due to the structure o, appearing irq in the function%e, defining theg-error
dynamics (5.26a), one can rewrite (5.26a) as follows

€qk+1=Ag€gk+Bqvk, KEZy, (5.42)
wherevy is defined as
1

vke{Afz(cﬂey,k,uB,eu,k,u?,euj(”]) | ¢"eY", u&u?eU”}, vkeZ,. (5.43)

Note that for alk € Z.,

eyl < |ASlleyol, and [eyk| < |Af]leuol, (5.44)
with
1 for ke€Zpgn_1,
|Ag| = (0.1 (5.45)
0 for ke&Zsn.

Due to Lipschitz continuity of the functiofy,, property (5.35a) holds. Then, taking
into consideration (5.44) and (5.45) yields

[1,n]

Ly, + + , for keZpon_1,

<4 (|[f’>r/ﬂ0| |€uof + € |) on-1] (5.46)
Le,legik | for ke Zsn.

Using (5.42) and employing the diagonal structuré\g¥ields
k+1 S
|Aq"llegol + [Bq 20|Ae71||vj|7 for ke Zpn 1,
J:

legi1] < k+1 k+1-n s n—1—j gy k—n—j
ool + [Bal (186771 3 142 i+ 5 1AE ™ vyl
J= J=

for ke Zsn.
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Employing (5.46), above inequality can for klE Z. be written as
leqirl < |A§legol+

1o n—1 L ‘ k . ‘
<|A£"a*<° L, 3 A | (leyol + leuol + I61) +Lt, 3 e

(5.47)
SinceAe andAq are Schur, there exist constaritse R>1, ig € R>1, pe € Rjo,1 and
Pq € Rpg1) such thatA| < figpl and|Ay| < figp, hold for alli € Z,, see e.g. [41], and
thus (5.47) can be written as

n-1 B
leg k1| < (ﬁquJFZszhe <Z)Pé> pg Ot n)) €q.0]
J:

n-1 00 .
n szﬁe PJ pgna)(O,kJrlfn)_'_LfZ ﬁepj Hehl,n]”7
(o3 &
(5.48)
which yields that equilibrium poirgyeq= 0 of system (5.26a) is input-to-state stable
in the sense of Definition 2.3.2 with respect to inp&ﬁé‘] : Z4 — Eq, and initial error

€g,0 € &g, With 27" Z-functionand.? -functionas stated in Theorem 5.4.3.

iii) Continuing the proof by employing property (5.38), the fﬂ[ate&’kn] € Eg, for
allk € Z, andeyo € &y one has that

leqk| < ﬁeq(seqao)'f‘ygqjgeu =

h
= (o 29 (L o) oy + (8(szvﬁe,pe7 n)+ szﬁ> o,
- e
(5.49)

Note thatx, € 2"¢(N) for all k € Z, due to Assumption 5.3.1. Suppose that € Ex
for all k € Z,., then due to the fact that

5 A
R = X — Bk, keZy,

one has that
i € Z°¢(N) @ Ex, VkeZ,. (5.50)

From the hypothesis of Theorem 5.4.3, i.e. Assumption 5theze follows that
which yields, via (5.50), that

K € X, VkeZ,. (5.51)
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Hence, since (5.1) is strongly locally observable on donigix (andA=) will be
well-defined for allxg, X in X. Therefore (via Assumption 5.4.1) there exists a Lips-
chitz constant foE_ X . with respect to all its arguments in the dom&jn« Y" x UM x

uy fixed

U" such that (5.35b) is satisfied, which yields that forkedl Z .
|eck| < 3Lzlequ] + Lzllel ™ | < BLzlequ| +Lzta,- (5.52)
Substituting (5.49) in (5.52) yields that indeed
ek E€Ex VkeZ,. (5.53)
This concludes the proof of statement iii) in Theorem 5.4.3.

i) Substitution of (5.38) in (5.52) results in (5.39) with th&_#-functionand the
 -functionas stated in Theorem 5.4.3.

5.5 Interconnection results

So far, one haseparatelydesigned a model predictive controller which renders equi-
librium pointxeq = 0 of (5.25) input-to-state stable with respecbtiservation errors

& : Z. — Ex (that are present ir),"and an observer for which the equilibrium point
€geq= 0 Of its error dynamics, i.e. (5.26a) and (5.26b) is inpustate and input-to-
output stable with respect to tipeediction errorseﬁl’”] 1 Z4 — Eg, (that are presentin
alM"). In this section the focus is on the asymptotic stabilisuis of the closed-loop
system given by (5.24). Based on analysis of the cascade giwé5.27), which con-
sists of the input-to-state and input-to-output stablesolesr error dynamics given by
(5.26a) and (5.26b), cascaded with the input-to-statdestistem (5.25), an asymp-
totic stability result of closed-loop system (5.24) will bletained.

The standing assumption for the main result in this secton i

Assumption 5.5.1 The nonlinear model predictive controller admits, kjr= n, the
regularity property, in the sense of Definition 3.1.1 with respect¢oi.&. 3 61,6, €
R0 such thatuy| < 61]%| and|ui < 62[%| fori=1,2,...,n.

Regularitycan be imposed by simply includingy| < 61[%| and [Uyjx| < 62]%]
fori =1,2,...,n as additional constraints to the employed model prediatoerol
scheme, e.g. Algorithm 3.2.2, for a priori fixéd and 6,. For ease of exposition,
it is also assumed that the ISS-gain of the model predictirgroller, i.e. & (see
Assumption (5.3.1)), is linear in its argument.
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Theorem 5.5.2 Let
Eq 2 {a ERM||g| < seq},

for somege, > 0. Suppose Assumption 5.5.1 holds and Assumption 5.3.1 Wwitds
Ey as defined in(5.36) Furthermore, let(5.1) be strongly locally observable on the
domainX. Then, if

(BL+0) VR (i +1) <1, (5.54)

and constraini(5.22a)is added to a model predictive control algorithm, forming.e.
Algorithm 5.2.1, the equilibrium poirikeq Geq ' = 0 of the resulting closed-loop sys-
tem (5.24) is asymptotically stable with respect to initial statesgxe 2°¢(N) and
Go € Q such that(do — o) € &y.

Before proving the statement of Theorem 5.5.2 a technicatia will be formulated,
which will be employed later in the proof of Theorem 5.5.2.

Lemma 5.5.3 Suppose Nt R~ and Assumption 5.5.1 holds. Then, the sigaﬂlﬂ
satisfies

e < v Ix) e, ke, (5.55)
where the gaingX andy&* are defined agy, = y& = (61 + 62).

Proof:  Using regularity (Definition 3.1.1) and the triangle inequality, the in-
duced norm of the difference between the predicted futunérats and the real con-
trols can be upper bounded for &lE Z andi =1,...,n, i.e.

Ui — Uikl < [Uieri |+ [Ukpipk] < 61[Rieri] + B2/%]- (5.56)
Since (5.56) holds forakk € Z andi = 1,...,n one has that

6™ < (B1+ 8)[1R] < (61 + 6)(IX]| + el (5.57)

which concludes the proof of the statement. [ ]

Regularitythus leads to property (5.55). Employing this property, stkegement in
Theorem 5.5.2 can be proved.
Proof: The proof is divided into four major parts. The first part dstsof proving
that the input-to-state and input-to-output stability pedties of (sub)systems (5.25)
and (5.26), are preserved when they are cascaded resultogyistem (5.27). Sec-
ondly, it is proven that under condition (5.54) one has tbadfl k € Z_. (5.28) holds
with

Fey(%kseqx) 2 { X (Xl leqil) | 8 € DY, (5.58)
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whereD £ {d € R"||d| < 1} and

Xl lea) 2 VB (1 VY8 08+ 1)) (Bl 0) + (1+ 129, (44l 0)).

Then, via interconnecting (5.27) and (5.28) it is provent thquilibrium point
[Xeq €qeq | = O of interconnection (5.27), (5.58) stablewith respect to initial states
[0 €0 " in 27¢(N) x &, i.e. it is shown that (2.15) in item i) of Definition 2.2.1
is satisfied. The next part of the proof consists of showirag #quilibrium point
[Xeq €qeq | = O of interconnection (5.27), (5.58) #tractive i.e. item ii) in Defini-
tion 2.2.1 is satisfied for initial statégy ;0] " in 27®(N) x &. Based on the asymp-
totic stability result of equilibrium poinfxeq €qed " = 0 of interconnection (5.27),
(5.58), asymptotic stability of the equilibrium poiixtq Geg " = 0 of closed-loop sys-
tem consisting of (5.24a) and (5.24b) is concluded.

Part 1) Due to the hypothesis of Theorem 5.52¢(N) is RPI for system (5.25)
perturbed by : Z; — Ey. This implies that Assumption 5.4.2 holds, hence the result
of Theorem 5.4.3 hold. This then implies that for any inigalorey o in the setsy the
trajectoryey, satisfying the dynamics of system (5.26) satisfies

& € Ey, vkeZy,

which implies that the input-to-state property of systen2®, as stated in the hy-
pothesis of Theorem 5.5.2, is preserved forka#t Z., and initial conditionsxg in
Z¢(N). Hence, properties (5.29) and (5.38), (5.39) of Assumphicl and Theo-
rem 5.4.3, respectively, hold for system (5.27) wil%”] 1 Z4 — Egq, and initial states
[0 €g0]" € 278(N) x &.

Part 2) From (5.29), (5.38), (5.39) and (5.55), one can concludeftnanyk > ¢

Xl < Bellxel- k= 0) + ¥l ). (5.59)
ekl < Bay(leqel k=) -+ V& lesiy I (5.59b)
@kl < Bec(leqel k=) + & ey i (5.59¢)
el < v 1y [+ V&l - (5.59d)

Employing relation (5.59a) and (5.59c) one has

Xl < Bl k= 0+ (Bou(leqe. k= O+ &Il (5.60)
Then, using (5.59c¢), (5.59d) and (5.60) yields
el < v, Bl k=€) + V& Bl €q.l k— £)

ln i (5.61)
VN €1+ VEiBo (el k— )+ V2 el
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Sinceys, = Y& and (5.54) holds, one has

e < V8 (1 VB 08+ 1)) (Bl k=€) + (14 18) Boc(legel K~ ).
(5.62)
Letting ¢ = k, it holds that for alk € Z,

L) ve(q - s
<8 (1B 08+ 1) (B, 0)+ (14 1) Baclleqil,0))

= X (1%, [gkl)-
(5.63)
Hence, the description of the sigr@i(”}, in its most general form that satisfies (5.63),
is therefore given by (5.28), whergy, is defined by (5.58).
Part 3) LettingZ = 0 in (5.59b), (5.60) and (5.62) one can obtain

gkl < Bey (€0l 0) + V2 1€, (5.64a)
% < B([0].0) + ¥ (Bou(eqol-0) + v e ). (5.64b)

el < y&x (1— VEYR: (o + 1))_1(&(|Xo|,0) +(1+ VE‘)B@(qu,oLO))- (5.64¢)

Note that (5.64c) implies
e < x (%ol legol)- (5.65)

Furthermore, for alk € Z.; one has that

| €qk) "] < [ [Xk gkl 1% = X[+ gkl (5.66)

Employing (5.64a), (5.64b), (5.65) and (5.66) yields thoatl [Xo eg0] " € 27¢(N) x
&y all solutions of interconnection (5.27) and (5.28), satisf

6 qid 71 < (Bl 0 + v (Bolegol.0) + VX (ol egol)) ) +

2
+ (Bey(legol, 0) + v x(legol o)) < 9 (Il qal D), ke Zo,
(5.67)

whered (s) = (Be,(5.0) + V& X(5.9))% + (B(5,0) + ¥ (Be,(5.0) + Y& X (s.9)))2. Note
that the equilibrium pointgq = 0 andngq = 0 of the buffer dynamics, i.e. (5.18a)
and (5.18b), which the trajectory’ andn" satisfy, are trivially input-to-state stable
with respect toy: Z, — Y, u: Z, — U and the initial statezqg eYandng €U,
respectively. Employing this fact and using (5.28), (5.)3Bmap= in (5.22a) (with its
Lipschitz continuity property) and thegularity property, i.e. Assumption 5.5.1, item
i) in Definition 2.2.1, i.e. (2.15), for equilibrium poifteq Geg) " = O of closed-loop
system (5.24) follows.
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Part 4) Property (5.29), (5.39) and (5.55) of Assumption 5.3.1,drken 5.4.3 and
Lemma 5.5.3, respectively, imply

T [x] < (kn—m |ex,k|> , (5.682)
— — 1
I el <12 (1 71 (5.68)
i 610 <18, (7 )+ (7 ). (5.68¢)

Substitution of (5.68a) and (5.68b) in (5.68c¢) and subsetiyisubstituting (5.68a) in
the obtained expression and using the fact ffjat y&r, yields

0 < 08 (e ). 659

Due to the small gain property (5.54) in the hypothesis oforam 5.5.2 and the
fact thatlimy_,c |eLljk”]| is well-defined (due to compactnessléf, one knows that

Mo [el1i1] is finite) one has that (5.69) is true only if
fim b =o. (5.70)

Then, (5.28), with%e, defined as in (5.58), and (5.70) imply that for all initialtes
[Xo €g0] " € 28(N) x & all solutions|x ey] " satisfy

Tim |[x eqi]"| =0. (5.71)

Employing the fact that the equilibrium poinrq%q =0 andngq = 0 of the buffer dy-
namics, i.e. (5.18a) and (5.18b), are input-to-state stafth respectty: Z, — Y,
u:Z, — U and the initial states'}g’ €Y, n§ € U, respectively, and using (5.58),
(5.35b), magE in (5.22a) (with its Lipschitz continuity property) and tregularity
property, i.e. Assumption 5.5.1, item ii) for closed-logstem (5.24) follows natu-
rally for all initial statesxg € 2"¢(N) anddp € Q such tha{ o — Go) € &q. [ |

Remark 5.5.4 Note that the small gain condition (5.54) can always be fiadidy
choosing the regularity constafit, 6, small enough. However, in practice this might
deteriorate the performance of the nonlinear model priedicontroller. Also a non-
linear model predictive controller that renders the edquiilim pointxeq = 0 of system
(5.25) input-to-state stable might not exist, since impg@si tight regularity constraint
might impose restrictions on the (constrained) stabiiligitof the system. Ideally,
one would therefore like to obtain small constantsandLz, respectively, as to allow
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for a large6,, 6, and still satisfy (5.54). The constant can be reduced by choosing
the functionh; appropriately (see (5.11)). However, this might, via (5&jults in
largeLy,. A constructive way to reduce both, andLz is to reduce the Lipschitz
constant of the system (5.1){) by employing for example pre-compensation. For
details on this issue we refer the reader to [46] or [102].

5.6 Manufacturing example

Consider the manufacturing system as considered in Chdpteg. see Figure 4.3.
In Chapter 4 it is assumed that the state, jg.bZ b3]" or x, of the system dynam-
ics (4.42) or (4.45), is available for feedback. Howeveramging all components
of the state becomes impractical if the dimension of theedbacomes larger when
larger manufacturing lines are considered. In this sedtiantherefore assumed that
knowledge of the state of the system is not available, but thrd output of the manu-
facturing system is available for feedback, i.e.

Yk = 9(X%) = X3 k- (5.72)

Note thatyy corresponds, via a coordinate transformation (see Chaptey the out-
flow of products of the manufacturing system, bé(t) in Figure 4.3. The output feed-
back nonlinear model predictive controller design apphgamposed in this chapter
is employed to design an output feedback controller for thaufacturing system.

Consider the description of the dynamics of the manufautusystem as given
in (4.45) with its output equation as defined in (5.72). Ndiat tfor the considered
system the observability map, as defined in Definition 5rkdds

X3k
Tu(Xk+0a)
X —_—
ixu0™ ) 2 3kt Ty ra) TC
Xka k - T N +TH(X1,k+U)_TH(X2,k+G)+a
Y+ TU(xota) _oTCt H\ ekt Tz 7o ~ Trgyra
3,k T+ +a 1 TU(qta)  TH(+a)
X2kt THq 0 T ta
(5.73)
Hence,
(9([1 _T3IJ3
det(—) = ,
X a
with

as (1 + Xy k2% )+ T UX k — T Xk + 2X0 kX kO + ad+ 2X1 kX2 K+
2
X5 1+ X1I0G |+ X1.k07 + 2X1 kO + 40Xk + 302 + G + 2xp A + 3a>

Note that

13,3
det((;—f): Ta“ £0, W eEX, Uel,
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with X andU as defined in (4.46). This implies that the system (4.45){pis
strongly locally observable. In this case even global okslity is obtained, which
means that the system (4.45), (5.72) can be transformealtjiabto a system rep-
resentation in ENOCF. Hence, Theorem 5.1.3 implies thatesemer in ENOCF as
given in (5.3) or (5.20) witlt as in (5.15) exists and is globally well defined. That is,
the map= in (5.15) acts for fixed control and output sequences as atjjolvell de-
fined invertible map relating staig satisfying (5.1) and a stat satisfying a system
representation in ENOCF in particular a system of the froiim €5.2). The following
functionsf; andh,, i.e.

[1-n,0]

hz(zok, Uy ) = Zaks

1-n0 [1-n0]  [1, —n, —n, T
By " u ) =0 0 fanat " u " ugn)]

where
1-n, 1-n,0
fano1vie " e Ur) =
3c5+6
3(Yk-2—Yk-1) | 3cs+6 3c5+3/2up+12-352>
3 5+6 _ 4 _
“Yke1—Yk2—1 +3 3-C4 S(ykfl Yk-2+ 2) +3 5-c4+1/2u_>— 3;5:6 306 +6
yk71_4+06+ 3(‘;+6 )
3_ 3(Yk-1—Yk-2) 4 3516 Yo — Vi1 — 23cs+3/2uk,2+1273 =
Yi-1—Ye2—1 7 3—C4 k=27 Yk-1 5Cat1/2U p— 50
—C4
with

Co= (Y — ko1 — DY2 5+ (14 2y — 2ViVko1+2Y2_1)Yi—2 -+ 4k — Syk—1+
Y2 1=V~ 2%Yko1FYRYE

€3 =3(¥k — Yk—1— D¥i_»»

Ca= ((BYk-1+6+3yk—BYiYk-1+3Yk-1)Yk—2— 1519k —3Yp_1 +Ca—3YkYk-1-+3YiYe_1)
= Cz )

_ ((*GYEA*6*3Yk+GYkYk—1*3Yk—1)Yk—2+l5Yk—1*9Yk+3y§,1703+3ykyk7173ykyf,1)

Cs ) )

3(Yk—2Yk—1) o 3c5+6
R T Y e i
3(¥k—1-Yk—2) , 3c5+6 ’
3 1t e Yeatk-1+2

Ce =

satisfy (5.9) and therefore define (globally) an observehefform as in (5.20) with

= in (5.22a) defined as in (5.15). Note that in case of this eXarnie resulting ob-
server and the mappirg is not a function of the future control variabIaE(’"]) of
the system. Hence&ﬂ =O0forallke Z; or ygqu = Y& = 0. This implies that, for
any model predictive controller satisfying Assumption.%,3rheorem 5.5.2 applies
for any gains/gx, 61, 6> € R o. Hence, the regularity property of the model predictive
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controller defined in Definition 3.1.1 is not required in tiese. A controller that
satisfies Assumption 5.3.1 can be designed employing thgrdechnique explained
in Chapter 3 and employing the result obtained in Chaptee4,Gorollary 4.1.4, as
is also worked out in Section 4.3 for the considered manufagi system. Employ-
ing this controller and injecting this controller witty (i.e. Z translated to Via Z),
generated based on the designed observer in this sectiteadhof will resultin an
asymptotically stable closed-loop system.

Note that in general, and in particular when the dimensiothefconsidered sys-
tem is relatively large, future control variables will appén the observer defined by
(5.20) and=. In this case a small gain condition like the one given in Thao5.5.2
has to be satisfied to guarantee asymptotic stability of gudibrium pointXeq Geq "
of closed-loop system (5.24).

5.7 Summary

In this chapter an observer-based (output feedback) rearipredictive control ap-
proach for the class of strongly observable nonlinear disetime systems is pro-
posed. Itis proven that a separately designed controligoaserver in closed-loop
with the to-be-controlled system results in an asymptticiable closed-loop sys-
tem. Input-to-state stability notions for differentiatlnsions are employed to prove
the results. Constructive procedures for both, the desigmanput-to-state stable
state feedback model predictive controller and a nonlinbaerver, are indicated. All
the results are valid despite the possibility of discordmsiand non-unique model pre-
dictive control laws. The effectiveness of the developegotbased nonlinear model
predictive control scheme is demonstrated via an illusgahanufacturing example.
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You see things; and you say,
"Why?” But | dream things that
never were; and | say, "Why not?”

George Bernhard Shaw

Event driven manufacturing systems as
time domain control systems

As explained in Chapter 1, manufacturing systems are oftaracterized as discrete
event systems (DES). Their dynamical behaviors are drivey loy occurrences of
different type of events. See [26] for an overview of diseretent systems. One of
the major difficulties of analyzing discrete event systefmsn a control theory point
of view, is the fact that generally speaking, those systemsard to describe with
the available time domain modeling frameworks presentércitntrol systems litera-
ture. As explained in Chapter 1 and illustrated in Sectid dne of the approaches
to overcome this problem is to synthesize controllers foSDPEanufacturing systems
based on dluid modelof a manufacturing system, rather than the detailed descrip
tion of a discrete event model. Based on this approach ondamagxample, employ
the controller design approach explained in the previoaptdrs. One of the con-
sequences that this approach induces is that, for the dientsgnthesis, one has to
design for robustness with respect to (fictive) disturbarmeen though no explicit
disturbance signals are presentin the original contrdlera formulation. This issue
has been elaborated on in Section 4.3. An approach to avsightbblem is to base
the controller synthesis directly on a discrete event mofl#he manufacturing sys-
tem. However, as already has been pointed out, in the caystéms literature there
are no modeling frameworks available to which time domaintie® system theoretic
notions, required for controller synthesis, can be empldge

For some subclass of discrete event systems an algebrdltves,ao some ex-
tend, for analytical study and a system theoretical-liketagler design for discrete
event (manufacturing) systems has been developed, sedd2€] survey. Based
on this algebra some controller synthesis techniques hapeaaed, see for exam-
ple [103, 104, 105]. However, in these papers modeling amtralter synthesis is
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performed in the so calleévent domain In event domairbased modeling the evo-
lution of time labelsassociated to certaigventss considered along a discrezgent
axis. Since all system theoretic notions and control objectaresime domain related,
a compatibility and/or causality problem emerges.

In this chapter it is spelled out how a class of event drivemunf@cturing sys-
tems, modeled in an event domain setting, can be considetbd time domain con-
text. The motivation of this issue is to apply conventiomakt domain control system
theory notions as stability, robustness, controllahilityservability and time domain
based formulations of control objectives to event drivemufacturing systems mod-
eled in an event domain setting. This result makes it pass$tutilize event domain
related mathematical tools to solve time domain relatedrobproblems.

6.1 Manufacturing systems in time domain

Mathematical models of (manufacturing) systems as we earteothem in practice
may be expressed by ordinary or partial differential equetj and in the context of
manufacturing systems they may involve formal (progranghianguages, etc. It
may seem hard to find a common denominator in all this. A péreepbservation,
one which can be attributed to control theory, is to look aaforfacturing) systems,
and subsystems, &tack boxesThus, instead of trying to understand, in the tradition
of physics, how a device or manufacturing system is “put tiogie and the detalil
of how all its components and subsystems work, we are toldtcentrate on how it
behaves, on the way in which it interacts with its environtn#tis this black box point
of view which will be formalized in its ultimate generalitynd is in control systems
theory literature known as the so calleehavioralapproach to systems control theory,
see [106] for a survey. In this approach one will back off friiva usual input/output
setting in which systems are seen as being influenced bysnpating as causes,
and producing outputs through these inputs, the internglitronditions, and the
system dynamics. All variables will be considered a prioram equal footing and the
input/output as a special case which in many situations carally be deduced from
the original model.

The definition of a time domain dynamical system in the betvalicontext is
done at the set theoretic level. The strength of the behaivigoproach comes from
this formal setting and it helps in confronting a wider clagsystems and coordinate
free (model structure independent) definitions of contystem theoretic notions. A
discrete event manufacturing system in three domainbehavioral context can for
example be defined as follows.

Definition 6.1.1 A discrete event manufacturing system in timee domairis defined
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by the triple
27 =(T,Wz7,B5), (6.1)

with T = R the time axisW ; = Z" the signal space, a7 C W, i.e.
o'wy <wg VT eT
Bre dwg Rzl TN ST E 0 . i
Physical laws of the manufacturing system are satisfidd

thebehavior Hereo is a time shift operator, i.e0™ws = w4 (t — 1).

Definition 6.1.1 in words: Manufacturing system (6.1) is deél byT representing
time instances of interesty » representing the space in whietient countertake on
their values and3 5 as subset O‘W?; to which all allowable time trajectories of the
system belong to. In the context of manufacturing systembéhaviorss » that are
considered are behaviors that at least guarantee thagmadllsi » satisfying® »have
the propertyw s (t — 1) <wg(t), VT € Tso or 0'wWy < Wz, VT € T, i.€. signals
w (t) arenon-decreasingFurther restrictions o - formalize the laws of a specific
manufacturing system. Allowing onlgon-decreasingignals inB » is explained
by the fact thatv»(t) represent counter functions which count how many times a
particular event has taken place through time and cannattdmackwards through
time, i.e. once an event occurred for #h time at timet =t* € T the event cannot
occur for thek — 1-st time at time € Tx+. Furthermore, throughout this chapter it is
assumed that the considered manufacturing systems do se¢ggenoexecutions.

Definition 6.1.2 Zenoexecutions are trajectories which are characterized byfan i
nite number of events counted in a finite amount of elapsed.tibetty be the time
instance at whichv  (t, ') <w; (t;") then a Zeno trajectony  satisfies the following

property
%thrl — 1t < oo,
k=

Example 6.1.3 Consider a manufacturing system, which consists of twogssiag
units M; andM with fixed processing timed; € R.o andd, € R.q, respectively.
Raw products are coming from two sources, knowing produegst A andB. In
Figure 6.1 an iconic model of a simple manufacturing systegiven. In whichea,
eg, ey, andey, are events defined as:

e e) 2A raw product from product streamarrives.
e e 2A raw product of product streaB arrives.

e ey, =MachineM; starts processing.
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Figure 6.1: Considered manufacturing systedi  dy).

e ey, =MachineM; starts processing.

Itis given, that once a raw product arriving for tkth time through one of the product
streams it is followed by a raw product arriving for tkeh time through the other
product stream. Sindgl, processes slower thaw,, the following policy is applied:
The first raw product arriving for thk-th time, either fromA or B is processed on
M. and the second raw product arriving for tkeh time, fromA if B was first or
from B if Awas first, is processed dv;. Furthermore, the machines start processing
as soon as a raw product is available for the machines andréwiops processes
on the machines have been finished. The considered mantrfigcsystem can be
modeled in the framework defined in Definition 6.1.1. DefirmadhionswyA ‘R—7Z,

Wy R—Z, Wiy, R—Z andwyMz : R — Z. The functions areounterfunctions
that count how many times the evemis es, ey, andew, have occurred in time,
respectively. The behavi® 5 that defines the considered manufacturing system can
then be defined as

.
: 4
Bg= {Wﬂ = {WyA W Wy, WyMz} ‘R—17Z ’ o'wy <wgz, VT € T.o,

_ . d .
Wg +12wg, W, = min(o 1W9M1 +1,min(W g, W ))

— min(gd :
Wo +12wg, Wi, = min(o ZWQ-M2 +1,maxwg Wy ))

(6.2)

Remark 6.1.4 In (6.2) the “physical laws” are described relating the dadisignals

in wo via min and max relations and time shift operatianbowever the “physical
laws” defining the behavio® » of the manufacturing system could also have been
specified by a (computer) language, ed27, 28].

A basic question that one could ask oneself, concerningd&mgle the manufacturing
system considered in Example 6.1.3, is whether the manufagtsystem> » is a
dynamicor a static system. In the next definition it will be made precise when a
system is a static or dynamical system.
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Definition 6.1.5 [106] LetZs = (T,W 7,8 ») be a time invariant system. System
> 7 is said to beh-completgA € T ) if

{Wy € %g} o {(o—twg)H[im € %<7|T[—AO]7 vt € ?1‘};

if this holds for allA € T+, system> 5 is called adynamicalsystem; if it holds for
A =0, systen® » is calledstatic

A-completeness is a system property which says that if a toneaih trajectoryw
over an intervall'_y of the time axis belongs to the set of all allowable trajee®r
all defined only over aninterval Gf;_, 4, i.€. %tqh‘[i&o] C 9B s for all time instances
t € T, then the same trajectorys defined over the total (complete) domain of the
time axis also belongs to the set of all allowable trajee®idefined over the total
domainT, i.e. B .

Clearly the manufacturing system considered in Example3@sla dynamical
system withA > d, € R.4,. Animportant dynamical system related property, which
will be used later in this chapter, is the so-calledmory spawf a dynamical system.

Definition 6.1.6 [106] Let> s = (T, W5, ) be a dynamical system, théry is
said to havenemory spa (A € T-o) if Wh, W2, € B 7, wh =W, fort € Ty, ) =
w}g. /\Wé» € % 7. WhereA denotes concatenation (at timg, defined as

_jwh(t) for teT,,
(W?MW%)(U—{\@(U for LTy, (6.3)

For a systems with memory sp@none can decide to call signals on the domain
t € T, —a, thepastand the signals on the domadig Ty, thefuture. Note that then
given the system’s trajectory foe T, _ay,), with A the memory span of the system,
the past and future aiedependenof each other. Hence, any allowable past can be
concatenated with any allowable future.

6.2 Manufacturing systems in event domain

In the previous section discrete event manufacturing systere considered from a
time domain perspective. However, due to thecretenature of manufacturing sys-
tems, i.e. the system ivent driven one can complementary to the time domain
perspective, e.g. Definition 6.1.1, define a manufactumstgesn in the event domain,
ie.

Definition 6.2.1 A manufacturing system in thevent domairs defined by the triple

S =KW, By (6.4)
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with K = Z theevent axisW , = R" the signal space, aril ;- C WF;, ie.

B = {W%/ 1 Z — R"

YW S W,
“Physical laws of the manufacturing system are satisfig¢d”

thebehavior Here,y is an event shift operator, i.gw , (k) = w,, (k—1).

Definition 6.2.1 in words: Manufacturing system (6.4) is defl byK representing

an event counter axi8y » representing the space in which event driven signals, con-
taining time instancestake on their values an® ,, as subset o¥V , to which all
allowable event trajectories of the system belong to. Incthrtext of manufacturing
systems the behaviof8 , that are considered are behaviors that at least guarantee
that all signalsv , (-) satisfying®s ,» have the propertw ,, (k—1) <w , (k), vke K
oryw, <w,, ie. signalsw, (k) arenon-decreasingFurther restrictions of
formalize the laws of a specific manufacturing system. Alfayonly non-decreasing
signals in% _ is explained by the fact that the time instance an event oediuor
thek-th time cannot be earlier than the time instance the san eeeurred for the

k— 1-sttime.

Example 6.2.2 Consider again the manufacturing system in Example 6.h8.sys-
tem can be modeled in the framework of (6.4). Defmg ' Z — R, w, 1 Z — R,
vv%Ml ' Z—R andwﬁ}gM 17— R. vv%(k), vv%(k), vv%Ml (k) andvv%MZ (k) represent

time instances at whiczh the evems eg, ey, andey, occurred for thek-th time, re-
spectively. The behavidB , that defines the considered manufacturing system can
be defined as

.
: 4
By = {W%Z{WXA Worg Wit W%MJ ‘Z—R ’VW% =Wy,

(6.5)
W SWog, Wog = ma><(y\/\(}ng +di, max(W ., W . )) }

WWore < W w%,M2 = ma><(yW,gM2 +d2,min(wa,w%A))

O

A manufacturing system in (6.4) can have certain propertfesice property (6.4)
can have is for examplevent shift invariance

Definition 6.2.3 A systemZ » = (K, W _,,B ) is said to beevent shift invarianif
W, By = Yw,eBy Vel (6.6)

Note thaty“w (k) is a shorthand notation fav . (k—c).
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Definition 6.2.4 A systemZ ,, = (K, W -, ») is said to beL.-completaf for some
LeZy

{w%e%;g} & {(y*kwjg)|K[iL,o]e%%|K[ , VKEK}. (6.7)

—L0

One callsX - static ifL = 0, see Definition 6.1.5

L-completeness is a system property which says that if ant @l@nain trajectory
w,, over an intervalK_ y of the event axis belongs to the set of all allowable
trajectories defined only over an intervalf,_ v, i.e. %MK[ g € B », then the
same trajectoryv, defined over the total (complete) domain of the event axis als
belongs to the set of all allowable trajectories defined tivetotal domain, i.€B .

An interesting and very natural question is, whether, whenaan describe a man-
ufacturing system in (6.4) as a behavioral difference égnafhat is, what properties
of 2 5 allow the manufacturing system to be described by a behdeifimed as

%%:{WJ/ ' Z—R" ‘ YW S Wy,

fl(Wj{ﬁ YW, VLilefﬁ VLW%/) = fZ(Wj{ﬁ W VLilefﬁ VLW)K)

(6.8)
whereL is called theevent lagof the system. In [106] a proposition is given that an-
swers the question for discrete time dynamical system&eSimthe world of discrete
time dynamical systems the time axis is of a discrete natwléra(6.4) the event axis
K is of a discrete nature, the proposition in [106] can trivile employed in the case
of manufacturing systems defined in Definition 6.2.1.

Proposition 6.2.5 ConsiderZ ,» = (K, W ,B ») in (6.4). The following conditions
are equivalent

i) X isevent shiftinvariant and L-complete;

i) X, can be described by a behavioral difference equation widmelag L.

6.3 Interconnecting event and time domain

In this section the coupling between the modeling framewadnsidered in Sec-
tions 6.1 and 6.2 is discussed. Assume one has a manufactystem of which
a description can be obtained in the form defined in DefiniGadhl and in Defini-
tion 6.2.1. A natural question that arises is whether orm@signals obeying the laws
of (6.1) can somehow be related to the signals obeying (&dv&ce versa. If there
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exists a relation that links the signals of both domains imguwe manner, then we
call the manufacturing system considered in either (6.1%e¥) similar, i.e.

Definition 6.3.1 LetZ » = (K,W B ») andZ s = (T, W »,B ») be a description
for a timed manufacturing system, thEp andX 5 aresimilar if there exists a bijec-
tionm: W4 — W suchthatvy € B < mwy) € B 4.

For rrto be a bijection the following properties must hold, remust be

1. injective(one-to-one), that is, for every’,, w2, € B 7, m(w, (t)) = (w2, (t))
=wh (1) = w2 (t);

2. surjective(onto), that is, for every ,, (k) € B 4, there existsv (t) € B 7such
thatr(wz(t)) =w,, (K).

A necessary condition for a mapto be injective, is that the system in time domain
shouldat leastbe observed for a time spdn The time spam\ is a measure for the
memory sparof the system as defined in Definition 6.1.6. A system with mgmo
spanA must in general be observed for a time spaio be able to conclude whether
or not two signalsv’, € B 7, W2, € B 7 are equivalent, i.ew’, =w?,. Therefore,

it is necessary to observe a signal at least for a time gptnobtain the injectivity
property for a maprt.

In the following result, a magprt is proposed which maps a broad clasgiofe
domaindescriptions for manufacturing systems, i.e. descrigtiaccording to Defi-
nition 6.1.1, toevent domaimlescriptions of manufacturing systems, i.e. descriptions
according to Definition 6.2.1.

Theorem 6.3.2LetZ » = (K,W ,,B ») andX5 = (T,W 5,8 ) be a description

of a timed manufacturing system according to Definitions16.4nd 6.2.1. Further-
more, let the signals w and wz correspond to the same physical events in the timed
manufacturing system. Suppdse = (K, W ,%B ») is an even shift invariant de-
scription (Definition 6.2.3) which is L-complete (Definiti6.2.4). Then, if the timed
manufacturing system is observed over a time gpamtime and the function w(t)

is right continuou$, the maprt: W, — W - defined as,

Wi =AW ()= inf ti={L..n}, KEZ,  (6.9)
Z\)=K

is a bijection such thatw € By < MWy ) € B 4, i.e. L andZ 5 are similar.

1w<7(a+) = Wy(a), vVaeT.
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Proof: First the "specific physics of a manufacturing system” fottbevent and
time domain, see Definition 6.2.1 and Definition 6.1.1, refipely, is ignored. The
following behaviors then follow

By = {WJ{,/ 'Z—R" ‘ YW < W%} (6.10)

and
By = {Wy R—=Z"| o'wy <wg, VT E ’JI‘>0}. (6.11)

Substituting (6.9) in the property, i.ew,, < w,,, defined in the behavior given in
(6.10) leads to the following inequality

inf t] < inf t], VkeZ. (6.12)
W (1)>(k=1), teR W (t)>k, teR

Note that the inequality in (6.12) can only be satisfied fokal Z if the non-decreasing
property, i.e.c'ws <wg VT € Tso, in (6.11) is satisfied as well.

Let one now take the "specific physics of a manufacturingesystthat has been
ignored, into account. The systems beha®by under consideration is event shift
invariant and_-complete. According to Proposition 6.2.5 this means thattystems
behavior can be formulated as a difference equation with. lagthe domain defined
in Definition 6.2.1. The behavioral difference equationtingeneral form is given in
(6.8). Note that (6.9) implies

W, =T(Wz), YW, =T(Ws+1), ...,

V"—lvvx =mwgs + (L—1)1), V"V\(;g — mwiy +L1), (6.13)

wherel = [1,...,1]"T € R". Using (6.8), the relations given in (6.13) and employing
o'wgs <wg VT € T the time domain behavior must consequentially be of the form

o'wy <wg, VT e T,

%{7={W9 ‘R—2Z"
(6.14)
fzi(wz Wz +1,... Wy +(L-1)L,wy +L1) =
fzo(wz Wz +1,..., Wy + (L-1)1,wsy +L1)

The question however, is whether or not the argumentsgefand f s, as they appear

in (6.14) actually belong t&8 5. The answer is affirmative, because according to the
hypothesis in Theorem 6.3.2 the signalg- andw correspond to the same physical
events in the system, i.e.

YW, € By Ws+cleBy, Ve (6.15)

This means that the argumentsfgf; andf 7, as they appear in (6.14) belongB-.
[ |
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Example 6.3.3 Consider again the manufacturing system from Example Gde3
sented in Figure 6.1. Assume that the processing times dareomstant this time.
The processing timedy andd; vary within intervalsd; € Ri5 gy andd; € R4 5 every
time machine$/; andM, process a product, respectively. The timed manufacturing
system can be described in theent domaini.e. Definition 6.2.1, with the behavior
defined as

.
. 4
%%:{W}{/:{W%ﬁ W Wit W%MZ} :Z—R ‘W‘(}{SW%

W SWoe, i €Rpsg, W, = max(y\/\([W +di, max(W ., W . ))
YW e S Wy d2 € Ry, W%Mz = max(ywjgM2 +da, min(w%B,wa))
(6.16)
The system is event shift invariant, because for any signal-) € B  that is shifted
some arbitrary event stepéw ,, Vc € Z, the following holds

{VCW;g/ 1 Z—R* ‘ VoW, <Vow,, VO W, < Viwe, VO wo, < yow,

di € Rps g, VCV\(ml = max(y<°+1>w[M1 + Yod, max(y W, YW, ) | B
G € Rigg, VWg, = Max( YW oy, min(yow .., YWy, ) -
(6.17)
i.e. Definition 6.2.3 holds for the considered manufactyigpstem. Note that the lag
L of the manufacturing system is equal to one. All signals thgitag toB ., which are
arbitrarily event shiftedy‘w - Vc € Z) and observed over an intervel 1) of the
event axisK, also belong to the behavi@ , specified only on an intervat| .y
of the event axis. The system is thusomplete, i.e. Definition 6.2.4 holds. The
manufacturing system is event shift invariant andomplete, and hence the proposed
bijection 1T proposed in Theorem 6.3.2 can be applied to (6.16). ThidteeBua
behavior of the type considered in Definition 6.1.1, whichtfds example reads as

.
: 4
Bg= {Wﬂ = {WyA Wy Wy, WyMz} ‘R—Z" | o'Wy <wgz,VT € Tso,

Wy +12Wg, heRpgg, W = f72, (WyMl +1Wg Wy, di)
WyB +1> WyA, d; € R[415]7 W67M2 = fyzz (WyM2 +1, WyB’WyA’ dz)
(6.18)
An analytical expression fof 75, and f 7,, cannot trivially be derived. However, if
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one assumed; andd, are fixed constant processing times (6.18) can be written as

.
. 4 T
B o= {Wy = {w% W, Wﬁ’Ml WyMJ R—Z O'Wy <Wgz,VT € Ty,

Wy +12Wa, Wy = min(g% (W, +1),min(w W)
Wo, +1> W, Wy = min(o® (W, 1), maxw s, W )
(6.19)
And hence, this boils down to the derived time domain behami&xample 6.1.3.

Control is about manipulating the behavior of the to-betauled system in such a
way that it will behave through time as specified by time damealated design spec-
ifications. Therefore for successfully employing modeldabsme domaincontrol
synthesis, knowledge of the explicit structure of a time donmodel is usually re-
quired. However, one can conclude from Example 6.3.3 tlihbagh the analytical
structure of a timed manufacturing system can be derivexdgstiforwardly in the
event domaini.e. Definition 6.2.1, the analytical structure of the sarmanufacturing
system in theime domainappears to be very hard or impossible to obtain, i.e. the
explicit structure off 75, andf,, in (6.18) is hard or impossible to obtain.

If Theorem 6.3.2 applies and thus a bijective relation betwihe event domain
and time domain is known, i.gtin (6.9), it is not necessary to know the mathematical
structure of a model of the manufacturing system in time domeplicitly to conclude
about the behavior of the manufacturing system in the timmaon. That is, the
explicit knowledge of the (mathematical) structure of a wlad the event domain is,
under Theorem 6.3.2, sufficient to conclude about the tinraade behavior of the
considered manufacturing system.

6.4 Input/state models

In this section input/state models for time domain eventadrimanufacturing systems
are introduced which one will employ in the next section in@del predictive control
strategy to perform predictions of the future behavior & flystem. In section 3.1
input/state models for a class of discrete-time nonlingstiesns are also employed in
the model predictive control strategy to make a predictiche future behavior of the
system. Input/state models have a few nice propertiesighat

e The memory of a system is displayed through latent or auyiliariables called
state variables

e Thecause/effecstructure is made explicit by a suitable partitionof.
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The above properties are convenient to predict the futuneder, i.e. theeffect of
the system at the current time based on information from #s¢ gnd the given future
cause Before the class of input/state models will be formally deéi a few notions are
introduced. First the notion afiputwill be introduced into the modeling framework
presented in Section 6.1 in Definition 6.1.1.

Definition 6.4.1 [106] Consider the time domain dynamical system from Defini-
tion 6.1.1, i.e. 57 = (T,W4,B ), with Ws = Ws; x Wy, SupposeS s is
complete (Definition 6.1.5). Then, signal,, is said to befree if it is trim (i.e.
YW, € W71, W, € B 7such thaw ;4 (t1) = w,;) and memoryless.

Hence freeimplies no local constraints (trim), no memory (memory)essd no con-
straints at time¢ = +o (complete).

Definition 6.4.2 [106] Consider the time domain dynamical system from Defini-
tion 6.1.1, i.e.Z7 = (T,W5,B 5), with Wy £ W71 x Wap. Itis said thatw,,
processes Wy, if

T T1T o7 T1T
{[Wyl ""?72} 7 [Wm ""?72} € B, Why(t) =Woy(t) for te T<t1} =

{W,lﬁ’z = "\’,272}-

Processingneans thaw ., can be deduced from,, the dynamical systems laws
(B ), and the initial conditions (the past uf,,). The notion ofinput can now be
defined.

Definition 6.4.3 Consider the time domain dynamical system from Definitidh B.
.2y =(T,Wz,B7), WithWy £ Wz x Wy, If

1. w,, is free(Definition 6.4.1);
2. W, processes W, (Definition 6.4.2),
then the signal , is called aninput of system> .

The next notion that will be introduced i®nanticipation

Definition 6.4.4 [106] Consider the time domain dynamical system from Defini-
tion 6.1.1, i.e.25 = (T,W5,B 7), with W5 = W 71 x W 5. It will be said that
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W, does not anticipate w, if

T T
{ [ng W§2:| 5 [\N?;l \/\12;2} S %77 and Wl?l(t) - \Nzyl(t) fOI’ t S T<tl} =

T o717 1
{Elwy2 such that [\/\/25-l Wyz} €By and Wy, =W, for te T<t1}-

The definition ofnonanticipationtells that the past o#v, does not contain infor-
mation about the future of ,, other than the information already contained in the
dynamical lawsB 7). LetZ 7 = (T,W #,B ), With W5 2 W 71 x W andw
theinputfor Z 7. Then, if systenk ~ is nonanticipatingi.e. w ., does not anticipate
W, then itis possible to think of the input as theatisé andw ., as the #ffect?.
Next the notion oftate variablesor the state for brevity, is introduced. Once the
stateof the system at the current time is known, the future behatomether with
a possible presence of an input or other external signafjéd and no additional
information relevant for the future will be acquired by gigi further details about
past trajectories. A way of thinking about the state inveity is thatthe state should
contain sufficient information about the past so as to deiteer{together with an input
or external signal) the future behavior of the systémnfact the state variables, specify
the internal memory of a dynamical system.

Definition 6.4.5 [106] A time domairstate-space dynamical systémg, is a quadru-
ple
27(T,W7,X7,B 7s) (6.20)

whereX # is the state-space affl 7 is called thefull behaviorof the system which
satisfieghe axiom of stateThis axiom requires that

T T
{[Wl; xl;} ,{wz; xz;} € B s, teT, andxi(t) :X?y(t)} =

.
[w};(t') xg(t’)} for t' €T

.
[w?;(t') x?;(t')} for t'eTay,

—

.
T T
W Xﬂ] 6‘393}7

with [w},x]" defined as
.
wr ()T x7(1)] =

andxz (t) represents thstateof the system.

Note that the system defined in Chapter 5 in (5.2) is an exaoffdesystem description which it
nonanticipating
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The axiom of state, as given in Definition 6.4.5, required #ray trajectory from
B 7 arriving in a particular state can lsencatenatedvith any trajectory from» 7
emanating from that same state.

The input/state model, which has the two properties statetié beginning of
this section and will be employed in the next section in a radedictive control
formulation, can now be defined.

Definition 6.4.6 An input/state dynamical system is defined as a quadruple
z¢7|/S(T7U<77W¢77X¢77%<7S)7 (621)
whereB 75 C (Us x W 2,X #)T is the full behavior and ~ is the input space such

thatuy is freein (T,W 5 x X 7,8 75) and[w}.,x5;] " processes g in (T, W5 x
X7, 7). Furthermore, it is required that

1. [W} x}} ! does not anticipate ¢ in (T, Uz x W7 x X 7,8 75);
2. (T,Uz xW4,X7,B75) is astate-space dynamical system
An example of an input/state model (representation) isrgimehe sequel.
Theorem 6.4.7 LetA be the memory span of the following system
27(T,Us xWz,B7), (6.22)
with uz the input and w does not anticipate &#. Furthermore, let
X7 £ (Tiag) — Wo).

Then, system representati(®21)in Definition 6.4.6 witht5 »5 defined as

T T
%gsz{[u} w}} T—-Us xWgo, XyZT—>X{7’ [u} W}} € B,

X7 = (04W9)|T[7A‘0) €Ba T\ p0)’ vteT,,

(6.23)
is an input/state representation for systésr22)

Proof: It is trivial to show that ifws does not anticipate 4 in (T,Us x
W 7,8 ), that then also holds thaw[,,x’;]" does not anticipate 4 in (T,Uz x
W, B 7s) for B s as givenin (6.23) (i.e. item 1 in Definition 6.4.6 is thus siid).
It remains then to be shown thdt, U » x W » X &, #5) is astate-space dynamical
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system That is, it has to be proven th&@ 55 given in (6.23) satisfies thaxiom of
stategiven in Definition 6.4.5. Indeed, given a trajectory

T T
Hulg vvly} xly} €Bys
and another trajectory
T 5T 5T T
HU27 VVZ?} X27} €Bygs
and the constraint
L) = X3 (t Wi (t+1) = WAL (t T B
Xg(t)=x7) p & (W5 t+T)=W5 (t+71), T€T 20 €Bs
then, it follows that

[ur @) wh )] = [u @) {wh @), TeTiag}] L for ¥eTiay,

>
X5 (1)
(6.24)
Without loss of generality one can say thé; () = u?; (t') fort’ € Ty_ay) (due to
property of input) and therefore

U () wh )] =

= [Z ) vy (t')f: [ ) {w 1), TG[—A,O)HT, for t'e Ty py.

>
X% (1)
(6.25)
From expressions (6.24), (6.25) and Definition 6.1.6 it tfetlows that
T 4717 T o717 T 11T
W Wy | A G W] = [uf wy| e, (6.26)

with
. LT [ul;(t') wl,;(t’)ffor t' e T
[Uy(t’) Wy(t’)}Z AT (6.27)
[ug(t/) vvé(t’)} for t' €T,

which in turn implies that

T T
T T T
Huy Wﬂ} Xy} €Bys,

T T L T
H“T ] ] Hu}y(t') W}?(t’)} x}?(t’)} for t'e Ty
() wz(t)| xz(t)] = . - 3T .+ T
[[ug(t') vvé(t’)} xg(t/)} for t' e Tst.
(6.28)
Hence /B 54 satisfies the axiom of state. [ |
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Example 6.4.8 Consider a simple example of a timed manufacturing systedeas
picted in Figure 6.2. The system consist of a processingaumita buffer denoted by
M; andB;, respectively. On the processing ulit products are processed with a fixed
processing tima; € R.o. Raw products enter the system through the buffer system
Bi, which has a total capacity & € Z>, products. Incoming products wait in the
buffer until machinaV; is finished processing, a possibly present, preceding ptodu
being possessed on machiMe The buffer system is working according to a FfFO
policy, that is, the first product which enters the buffed aito be the first one to leave
the buffer system. Furthermore, machMgwill start processing a product if, a pos-
sibly present, preceding product is finished and there isa#tlone product present
in buffer B;. The above description of the manufacturing system is ftine into

© —m W (1)

Figure 6.2: An example of a manufacturing system.

a model description in the time domain, i.e. Definition 6. 1Dlef|new‘7 R—Z,

vvI R—7Z andvv‘ 'R — Z. Herew!,, (1), w, 7(t) andw,, , () represent the number
of tlmes a product |s released from some external sourdadmpt has entered buffer
Bi, a product has left the manufacturing line at timeR, respectively. The dynamics
in time domain perspective can now be described as: The nuail@oducts that
have entered the buffer at timequals the minimum of the number of available prod-
uctsvv"yl and the number of products that have left the syﬂéjsnadded with the total
capacity of the system, i.&\; + 1. Furthermore, the number of products that have left
the systenvxz{% equals the minimum of products that has entered the bw@clarand

of the number of products that had ldfttime units ago. In terms of the behaviBr,

in Definition 6.1.1 this yields for some fixéd € Z~>1 andd; € R-¢

_ | vv'g-1 W, = min(wi, W, + N +1)
=Wy & Wy | (R—Z3 | W, _mln(ad'vv'y,o W, +1) 5. (6.29)
vvi% o'W, > W, T€ Tso

One can now easily obtain the description according to Di&fimb.1.1 of a manufac-
turing system consisting of a series connectiop &f Z>, manufacturing systems as

SFIFO is an abbreviation for First In First Out.
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presented in Fig. 6.2 forming a manufacturing line. The bralefining a manufac-
turing line of a series connection pfmanufacturing systems as presented in Fig. 6.2
is then defined for some fixed € Z-1 andd; € R-o,i ={1,2,...,p} as

Wy

Z p . . . .

BLES L T2 | By Wy =wWil=wil i€Zyp g . (6.30)
p i=1
W
T

Note that (6.30) reveals thwﬂ;1 is an input of the manufacturing system and
[lez WP%’]T does not anticipate % Furthermore, thenemory spainf the man-
ufacturing system is given by somec R o for which holds

A > max di, (6.31)

IEZ[LP]

this follows from the structure OBF;. Hence, (6.21) in Definition 6.4.6 with thB 5
as defined in (6.23) is a state-space description for thaderesl manufacturing line.

6.5 A time domain MPC setup

In this section a model predictive control (MPC) setup igrfalated for the class
of input/state systems defined in Section 6.4 in Definitioh@. In contrast to the
discrete-time MPC setup in Chapter 3 in this section a captis-time MPC formu-
lation is given.

Consider system (6.21). For a fix@de R, let

X5 (t,x7 (1), U5 (1) £x7(7), TE€ T
and

W5 (t,x7 (1), U5 (1) £ Wa (1), T€ Ty,
denote the state and signal trajectory, respectively, rgéed by system (6.21) from
initial statex» (t) at timet € T and by applying the input trajectory

ubs(t) 2uz (1), 1€ Ty

The set ofadmissible input functiondefined with respect to the state-(t) is then
defined as

u®
7
UR(x7 ()2 quD [0, T = Ugs | [WE(-,xz(t),u) 6%93|[0,Tp] . (6.32)
X2 (-, Xz (t),u%)
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LetLs : Uy x W4 — R. Attimet € T, letx (t) be given. The basic continuous-time
MPC scenario consists in minimizing (via optimization) atk “sampling” instance
t a finite horizon cost function of the from

+Tp
370705 0) 2 [ L s () w (1) (6.33)

with predictionmodel (6.21), over alu(t) € %2 (xz(t)). An optimal, or from a
practical point of view more likely a suboptimal, solutiasulting from the optimiza-
tion problem at time is then denoted byT‘,’g(t). In the model predictive control prin-
ciple only the first part over a time duration between two siamgpnstances, denoted
by 9, of the (sub)optimal inpm@ (t) is injected to the system (6.21), i.e.

Uz (T) =T% () £Us(1), TE€Tyiis)- (6.34)

At the next sampling instance the optimization procedunefeated based on the
currently available knowledge of the statg (t). Due to this repetition procedure,
which is the main feature from which MPC distinguishes ftf&lm optimal control,
one can think of the MPC controller as a feedback law of thenfor

MPC MPC

Z<7 (T7U?’ 7X¢77%47 )7 (635)

whereU?, £ (Tjq 5) — Uz) and

%?C £ {U?g T —U%, x7 1 T— Xz ub(t) satisfies?(;p(Xy(t)) in (6.32)
and possibly also minimizes (6.33)
(6.36)
The system (6.21) in closed-loop with the MPC controlleB, i.e. the closed-loop
system, is then given by

CL

55 (T,U% x Uz x X7 x Wz, B5), (6.37)

MPC

5 T T
[Uy Xﬂ} €By

w2 ) gl ul - T, 5
g = Uy Uy Xy Woy .T—)UgyXU{?XX{?XW{?

(0 'uz)

.
Tos) =0, VteT, [uTg X WTQ} e%ys}.

(6.38)
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A tractable solution of the MPC setup for event driven manufacturing
systems

As explained previously, the optimization problem invahie the MPC setup for-
mulated in Section 6.5 is, in general, not solvable in a étalet manner. Recall that
in case of discrete event manufacturing systems, as defin8ddtion 6.1 in Defini-
tion 6.1.1, the involved optimization problem results inlamtractablénteger valued
infinite dimensionabptimization problem.

In this section the un-tractable MPC problem formulated écti®n 6.5 will be
reformulated. That is, a slightly different state-spaq@esentation of the system, i.e.
(6.22), will be employed. It will be shown that utilizing tmesult of Theorem 6.3.2
and employing the alternative state-space representatibe system, allows to solve
the obtained MPC problem in a tractable way .

First the alternative state-space representation ofrsy&e22) will be introduced.

Corollary 6.5.1 LetA be the memory span of the following system
27(T,Uz xWz,B5), (6.39)
with us the input and w- does not anticipate 4. Furthermore, let
Xs 2 (Tiea0) = Uz xWa). (6.40)

Then, system representati(®21)in Definition 6.4.6 withB > defined as
T _ T
B e = [UTQ W;} ' T—-UsxWgy, X9:T—Xgy ’ [u; W;} €B,

.
Ko = (a*‘ [u} W}} )‘ € %y‘ , VteTs,
T a0) T

(6.41)
is an input/state representation for systésr22)

Proof: The proof can be straightforwardly obtained following thegedure as
employed in the proof of Theorem 6.4.7. [ ]

From now on the set adfdmissible input functiorend the MPC costs are defined with
respect to the augmented state(t), i.e. X (t) in (6.32) and (6.33) is replaced by
Xz (t). The MPC problem, as explained previously, can then be meitated based
on the augmented state model resulting in the following MR@rithm.

Algorithm 6.5.2
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Step 1)
Given the stat& (t) at timet € T, find (via optimization) a control over a time
horizonT ¢, ), i.e. u(t), which satisfies

ub(t) e %E (X7 (1)) (6.42)

and optionally also minimize the MPC cakt (X7 (t),u™(t)).

Step 2)
LetT? (t) be a feasible control over a time horiz@R,, 7, calculated at € T

in Step 1. Over a time span @%,, 5, feed to system (6.21), wit¥ s defined
as in (6.23), the first piece @f} (t), i.e.

Uz (1) =T%(t) £07(1), T€ Ty (6.43)
and go to step 1 id time has elapsed.
Algorithm 6.5.2 in closed-loop with the system is then repreed by (6.38), in which
Xz (t) in (6.38) is replaced b¥~(t) andX 7, B s defined as in Corollary 6.5.1 by
(6.40) and (6.41), respectively.
In the sequel it will be shown that if the result in Theorem.B.8pplies, then the
optimization problem that has to be solved at step 1 of Athari6.5.2 can be solved

by areal valued finite dimensional optimization probleBefore this issue is treated,
first some preliminary results will have to be introduced.

Corollary 6.5.3 Consider a discrete event manufacturing system repredacisord-
ing to Definition 6.1.1, i.e.

27(T, Uy xWz,B7), (6.44)

whereT = R the time axis[U4s = Z™" the input spaceW 5 = Z™ the signal space
and®B 7 C (Us x W4)T the behavior. Supposestit) € U is the input and w
does not anticipate &. Furthermore, let

(K Ux x Wy, By), (6.45)

withK=7,U_,» =R, W, = R™ and®B_, having a special structure, i.e.

T T T
%%é{[u} W}} 7 — RN x R™W y{u} W}} < [u} W}} ,

fl(uJi/a\N:}i/ay\N:}i/w"ayL_1W}{,/7VLW}{,/): (646)

f2(u=%/7w}£/7wv:}£/7""yL_lw}i/vVLW}{/)}v
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be an event domain representation, i.e. according to Dé&fimé.2.1, of the considered
manufacturing systems. Then, under the hypothesis in @e6r3.2 we have that
(6.44)and (6.45)are similar.

Proof: Taking into account Definition 6.4.4 in relation to (6.44)etstatement
in Corollary 6.5.3 is a direct consequence of the result iacfem 6.3.2. [ ]

Lemma 6.5.4 Consider a discrete event manufacturing system repreddaytés.44)
and suppose the hypothesis in Corollary 6.5.3 holds. A-be the memory span of
(6.44)and take system representati?21) with 98 »¢ defined as in Corollary 6.5.1,
i.e. (6.23) as a state-space description of sysi@w4) Then, the following holds

{ [l %5 wh] €, [(mus)T W] eB and

W, (K)| = m(x#(t)) forsome te T} =

K | .
[ minGxs; ((07) = (L=1), min(x; (£)(07))]

{H(Wg;(t’)) =Wy (K), t'eTs }

(6.47)
where

() 2int {T e T o) | x40 <k

ke K[m}.in(xky,- (H)(07)) = (L=1), min(xs; (1)(0"))] } +t,
(6.48)
with i ={1,2,...,ny}.

Proof: The statementin Lemma 6.5.4 follows from the results in Taets 6.3.2,
6.4.7 and Corollary 6.5.3. [ |

The implication in (6.47) in words: If the input trajectony is known and at some
time instance € T part of the stat& (t) of the manufacturing, i.ex~(t), is given,
then the future signal» (t) t € T~ can be obtained taking a signal realization from
theevent domain modgile. [(r(uz)) " wl,|" € B 4 initialized according to

W (K) | = (X7 (1)), (6.49)
[min(s; ((07) = (L=1). min(xs; (1)(07))]

and subsequential employing the bijective nragefined in Theorem 6.9 to retrieve
the future time domain signal» (t) t € T-o.
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Remark 6.5.5 The termK[ in (6.49) guarantees that

min(xz (t)(07)) - (L - 1), min(xz, (t><0’)>]
the event domain model is initialized with the latestvent lagsat all timest € T, so

that at all timegd € T the prediction of the systems future behavior is based on the
most recent available knowledge present in the state ofysters.

Lemma 6.5.6 Consider a discrete event manufacturing system repreddiytés.44)
and suppose the hypothesis in Corollary 6.5.3 holds. A be the memory span of
(6.44)and take system representati@?21) with 8 »¢ defined as in Corollary 6.5.1,
i.e. (6.23) as a state-space description of sysi@w4) Furthermore, let

U (X7 (1),1) 24 Uy (K)| €B 4, i=1{12..n}, forsomek c K
o [u¢,7i<r)+1,k*]

W (K) |5 = (x7 (1)),
[min(s,(6(07) = (L= 1), minxs, (6(07))]

Uz (K) =T (uz(1)), TEt-AY),
[minGes; (0(0) +1 uz )]

]
War(UA () + 1) 2 8, min(uy (k) > 4+ Ty, [uh wl| €.

(6.50)
Then, the following holds
us(t) € ZF (X7 (1) & m(uG(t) £uf () € 20 (X7 (1).1), (6.51)

where

T AN Ty HE
rq“(ut‘,’gi(t)) = mf{r €Ty [UZM)(T) <k, ke K[u},(t)(o)’ k*} } +t, i={1,2,...,ny}.

(6.52)

Proof: Follows from Lemma 6.5.4. [ |

The set% ;) (X7 (t),t) in (6.50) denotes the class afimissible input sequences
event domain defined with respect to the augmented $tafi® and timet. The main
result of the section can now be formulated.

Theorem 6.5.7 Consider a discrete event manufacturing system repredeni®.44)
and suppose the hypothesis in Corollary 6.5.3 holds. A be the memory span of
(6.44)and take system representatif?21) with 95 -5 defined as in Corollary 6.5.1,
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i.e. (6.23) as a state-space description of systé&44) Furthermore, let
J (X7 (t),u”,(t)) be event domain costs such that

(X7 (1)U (1) =37 (X7 (1), u (1), Vul,(t) = (U5 (1) € Z2 (X7 (), 1).
(6.53)
Then, the following statements hold.

i) Step 1 in Algorithm 6.5.2 is solved by replacing Step 1 in Algm 6.5.2 by the
following Steps.

Step 1a)
Given the stat@~(t) at time te T, find via optimization an event domain
control, i.e.u”,, which satisfies

ub (t) € %} (X7 (t),t) (6.54)

and optionally also minimizes the event domain cogt§xJy (t),u”, (t)).

Step 1b)
LetT", (t) be a feasible event domain control, then a feasible contret o
atime horizorl' ¢, 1., i.e.UT;.(t), is given by

an(t) L@ (), (6.55)
wherert represents the dual relation ¢6.52)defined as
(@ 0) 2 sup{ke K | U500 <7, Tet+Tyl}, (6.56)

withi={1,2,...,ny}.

ii) The optimization problem involved in Step la is a real valfiede dimensional
optimization problem.

Proof:
i) Follows from implications in (6.51) of Lemma 6.5.6.

i) Real valued-ness follows due to the fact that the admissilglets in the event
domain are maps frofd = Z to T = R. Finite dimensional, i.e. finite amount of
design variablesin®, (t), follows due to the fact that the class of manufacturing
systems considered do not posséssoexecutions, see Definition 6.1.2. So that
k* in (6.50) is finite.
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Example 6.5.8 Consider a manufacturing line defined in Example 6.4.§fer2, i.e.
two manufacturing systems depicted in Figure 6.2 in sertezch bufferB; and B,
has a finite capacity of two products, iy = N, = 2. Furthermore, each processing
unit (or machineM; andM, has a fixed processing time df = 3 andd, = 4 time
units, respectively. The manufacturing system in the timmalin is defined in Defini-

B dp=3 B =4
W (t) = U () — e Wt =Y

W (t) W, (1) = W, () = W, (1)

Figure 6.3: Manufacturing line.

tion 6.1.1 with the behavior of the manufacturing systenofeing from the behavior
of a manufacturing line given, in its general form, in Exampl4.8 in (6.30). For
the considered manufacturing line in this example, the Wiehan (6.30) (withp = 2)
reads

Ugs w{%z = min(u%w}?3 +Ni+1)
1 i gl d

Wi% \/\/272 =min(c%w},, o 1m1292+1,

%2: S W% R—>Ze W2%+N2+1)
7=\ W2 ' w2, =min(o%w?, ,a%w?, +1)

i T3 ZX T3
)

A 1

y7 £ W5, | Wh = w5 =W, o'Wy > Wz, T €T

(6.57)

Problem 6.5.9 Given is a certain predetermined customer denrand) over a cer-

tain time horizort T4y Furthermore, based on the customer demand a product
release schedulé, (t) over a time horizob € Ty, 1, is determined by the manufac-
turer in negotiation with its suppliers. It is assumed thathy ~ (t) andu’; (t) belong

to the system’s behavior defined in (6.57). The goal is togothre manufacturing
system from any initial configuration, hidden3p-(t), to the predetermined reference
trajectories, i.e.

yz(t) —=rz(t) and ugz(t) — u}(t) (6.58)

The MPC setup, i.e. Algorithm 6.5.2, is employed to solvebtem 6.5.9. The aim
is to minimize the following MPC costs in order to enforce peaty (6.58) for the
closed-loop system, i.e. (6.38), in whigh-(t) in (6.38) is replaced b¥~(t) and
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X7, B 75 defined as in Corollary 6.5.1 by (6.40) and (6.41), respebtiv

t+Tp
17 RrO.u51) = [ {lyr(0) =17 (Do +Alus (1) = U7 (D] }dr. (659)

Note that thememory spamf the system is given by somec R ¢ such that (6.31)
holds, i.e.
A>dy,=4.

A description of the manufacturing system according to Digdim 6.2.1, i.e. a manu-
facturing system irevent domainis defined by the following behavior

U why, = max(u, YN wd, )
Wﬁl}g2 W5, = max(wh,, + di, yw?, ++c11,
Byedw, 2| " |.zRS AR 7
W?% Wz;{fg = max(W?% + b, VWZ% +d)
o
Y}Yé‘z"’z/ Wy =Wy =W, YW, W,
L 3 ] 3 Z1 Z) . ¢

(6.60)
witheventlag l=No +1=N; +1=3.
Suppose the hypothesis in Corollary 6.5.3 holds, therteait domain costatis-
fying relation (6.53) ford» defined in (6.59) is given by

C1+ACs if mjin(xz. t)(07)) <rz(t) & uzy(t™) <u,(t),
B : Ci+AC, if mjin(xz t)(07)) <rz(t) & uzy(t™)>u,(t),
(X7 (1),ul, (1) = Co+ACs if mjin(xf,-j(t)(o—))zry(t) & uz(t™) <uz(t),
Co+ACs it min(xs;(1)(07) = 17(1) & uz(t) = ur (1)
(6.61)
where
ker
Ci= max(y;g(k)—t,0)+
k=koy+1
kPr
> max( (1 (€~ 09~ Mty (9~ (4T, 0). (0¥ (9) +
k=Ke, +1
ngrTa)(tJer_y%(k)’O)’
Kpr k*
Co= max (Y. (k) =1 (K),r .z (K) = Yo (K) + ; max(t + Tp — Y. (K), 0),
k=koy+1 k=kp, +1
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ke
C3= gmax(u%(k)—t,O)Jr
k=Key+1
Kp,r
max( (U (K) = Wy (K) — max(use (K) = (t+ Tp),0)), Uy (K) — e (K) ) +
k:kcur +1
k*
max(t + Tp— Uy (K), 0).
k=Kpr +1
kpur k*
Cs= max (U (K) — Wy (K), Uy (K) = uy (K) + 5 maxt+Tp— sy (K),0),
k=Kkey+1 k=kpLlr +1

with ke, = mjin(ij 1)(07)), key 2 Uz (t7), ke 2 UL (1), ke 217 (t) andk* > kp,. In

Figure 6.4 a qualitative graphical illustration of the MP&3ts, i.eJs, J 4, is given.
One can now apply Theorem 6.5.7 to solve Step 1 of AlgorittBr26n a tractable

way. A response of the manufacturing system in closed-ladpAgorithm 6.5.2 for

0 =1, Tp =50 time units and = 1 is shown in Figure 6.5. After a disturbance, e.g.

Tp
] | | k
+--- o———=q-Kp,
< R v
@ | ¢---0 oe—o0 | - Iz
g kcur 77777 -v‘----o———a—o ——————— w‘— - Ury(t)
o© ‘ ———o ! == uﬁ(t)
I 1 B
% -3 ! cost
S kaf L
77777 - py
1--—-—- ‘k 7777777777 o-mo—o-*‘hkpr
kcrﬂf—-«‘r-"-"-4——o—o ————— T‘—
l — i
e e S .
t . . T,
time domain P

Figure 6.4: Qualitative representation of the costs in (6.59).

a machine failure or breakdown the manufacturing line rwetsid schedule, i.e. the
predetermined customer demanglt) and product release schedulg(t) is not met.
At time t = 57, for some initial configuration of the manufacturing syst(i.e. the
configuration of the manufacturing system just after themrecbreakdown which is
“hidden” in X~ (t) and is used for feedback to Algorithm 6.5.2), a recovery éoptte-
determined customer demang(t) and product release schedulg (t) is obtained
in an optimal sense due to the feedback mechanism of thesalddiPC setup.
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Figure 6.5: Above: The response of the signgis (t) andu (t) compared ta & (t) andu’, (t)
respectively. Below: Amount of products presenBin My, i.e. BMy(t) £ (wh, (t) — w2, (1))
andBy, My i.e. BMa(t) £ (W2, (t) —w>, (1)) as function of tim, respectively.

The example as just illustrated shows how the model predicintrol principle can
be employed to control a class of discrete event manufagfsgistems in a tractable
way. For a subclass of the considered manufacturing sysémsa class of cost
functions, one can even reduce the computational complbyiemploy the results
and techniques pointed out in [107]. In contrast to the fluatiel approach, followed
in Chapters 3 and 4, the controller synthesis can be dirbaigd on the discrete event
model of the manufacturing system. This has a view advastage

e One does not have to obtairflaid modelof the discrete event manufacturing
system. This is beneficial, since in general it is hard toiaka&luid model of
a manufacturing system that exhibits all characteristfahe behavior of the
manufacturing system over a broad operating range.

¢ In the controller synthesis one does not have to take intolaudictive external
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disturbances which are induced by the fact that the disenstat behavior of
the manufacturing system is approximated by a fluid modetagh, i.e. see
Chapter 4.

e The delay in the system, which is a consequence of procetigieg of the
processing units present in the manufacturing systemyih&ndM, in case of
Example 6.5.8, is hard to take into account if the contrallesign is based on
afluid modelof the manufacturing systéinHowever, in case of the approach
followed in this chapter the delay can be easily dealt with.

A major open issue is how to formally define stability and spsential to proof and
derive conditions for stability of the discrete event mawtifiring system in closed-
loop with the model predictive control setup as sketchedim¢hapter.

6.6 Summary

In this chapter a time domain modeling framework for diseretent manufacturing
systems is given. It has been shown that the discrete-evemépy of manufacturing
systems opens the opportunity to model manufacturingsysteom another domain,
namely, theevent domain It is shown that in contrast to relatively complex time
domain models, that are obtained when modeling manufagtwystems, event do-
main modeling facilitates obtaining relatively simple é&ytical) difference equations
as descriptions of discrete-event manufacturing systdrhe.relation between event
domain modeling of a class of event driven manufacturingesys and the time do-
main has been obtained. This opens possibilities to empyeiatively simple event
domain models to do controller computations for manufaetusystems controlled
in time domain. This has been illustrated on a typical cargirs time manufacturing
model predictive control problem. In manufacturing systeamtrol typically time do-
main performance requirements have to be met. This leadaéadtomain model pre-
dictive control objectives and therefore to a continuometimodel predictive control
formulation. Solving a continuous time model predictiventrol formulation leads
to an untractable infinite dimensional optimization praoble general (see e.g. Sec-
tion 1.3). In case of a class of discrete-event manufaajaystems it has been shown,
by utilizing the relation between event- and time domaimt tfthe continuous time
model predictive control problem can be solved (withoutragjmations) by a finite
dimensional optimization problem.

“Note that in case of the fluid model employed in Chapter 4 tbegssing delay is not well taken into
account, i.e. for an initially empty manufacturing systeraducts instantaneously exit the manufacturing
system if there is a non-zero arrival rate of products at gwgriming of the manufacturing line.
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The picture so far is pretty
bleak. A starting academic sci-
entist earns less than an airplane
mechanic, has less job security
than a drummer in a boy band,
and works longer hours than a Bo-
livian silver miner.

Philip Greenspun

An event domain controller design
approach for manufacturing systems

The final example in the previous chapter is concluded wighrémark that a major
open issue is how to formally define stability in the time damraodeling framework

as introduced in Section 6.1 and subsequential how to prodelarive conditions for

stability of the discrete-event manufacturing system oseb-loop with the time do-
main model predictive control setup as pointed out in Sedi®. In this chapter it is

explained how the stability issue can be treated for a pdaticlass of manufacturing
systems. The stability definition and analysis is perforinech the event domain (see
Section 6.2) perspective. The approach leads to event daroatrollers that are sta-
bilizing in the event domain. A disadvantage however is thatobtained controllers
cannot straightforwardly be employed in the time domain tdug causality problem

that emerges if the controllers are implemented in the tiorean. It is pointed out

how this causality problem can be taken care of by using aarubs

The chapter is organized as follows. In Section 7.1 an evemizdh stability defi-
nition is given. Furthermore, itis pointed out how to desagrevent domain controller
which renders the event domain closed-loop system stabte@iag to the given defi-
nition, irrespective of the possible presence of measunéareors present in the event
times that are employed for feedback to the event domainaiet In Section 7.2 it
is pointed out that a stabilizing event domain controllemwat be straightforwardly be
employed in the time domain due to a causality problem. Ini&ed@.3 an observer
design technique is proposed which can be employed to soévedusality problem
as is encountered in Section 7.2.
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7.1 Design of robustly stabilizing event domain controller

Consider a discrete event system described in the eventidaséollows.

withK=7,,U_» =R, W, = R™ and®B , defined as
A T T T T T T T T T
%Q{{: |:U)£/W)£/:| :Z+—>U%XW% V[U%WX}S[U%W%] s

Wy =AYQW,, @ By®uy o,

(7.2)
where matricesA € RP**™ andB € Ry"*™. Note that all the trajectorw ,, that
satisfyB_, defined in (7.2), admit the following difference equation

Wy (K+1) = AW, (K @B Uy(K), Wy (0)=wy, keZy,  (7.3)

for some initial conditior\r\/){0 € W with constraintu , (k—1) < u (k). LetA* be
the largestmax-plus eigenvaluef A in (7.2), see Definition 2.1.3. In classical linear
system theory, the asymptotic or limit behavior of the solubf an autonomous lin-
ear system, i.eq(k+ 1) = Aqq(k), is characterized by the eigenvalues of the matrix
Aq, see [108] for more details on this issue. A similar intetation can be given to
the largest max-plus eigenvalue A&fin (7.3) for the case that (7.3) is autonomous.
Assume that the matri& is row finite and has the largest eigenvalue> ¢ and the
corresponding max-plus eigenvectpe R™ (i.e. n is finite). Note that for thepe-
cificinitial conditionw% =n, one obtains the following solution to the autonomous
version of difference equation (7.3)

Wy (k) =2 @n =k 4wy, VKeZ..

Hence,
IimW‘L(k):)\* VieZ keZ-o. (7.4)
koo K (L] >0
Employing Lemma 2.1.4, one can prove (see [31] for a worketmof) that foreach
initial conditionw . (7.4) holds. Since in the non-autonomous system as deddribe
(7.3) event occurrences in the system can onlgddayeddue to the ternB® u_ (k),
one can conclude that the maximum mean event occurrencentsiteh in a discrete
event manufacturing system context corresponds to thermamimean throughput
[products/time unit] in the system, is characterized byrégwprocal of the maximum

max-plus eigenvalu@ * of the matrixA in (7.2). When the eigenvector &, i.e.
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n, is not finite, it can be shown that onypmecomponents of the vectov , (k) /K,
corresponding to the solution of the autonomous versiorY &)( converge towards
A*. This is stated in Theorem 3.17 in [31]. Practically thisigades that if no control
is applied to system (7.3) (i.e. no event timesup (k) are delayed via the terB®

u (K)), it might happen that the difference between differentietines might grow
unbounded. In a manufacturing context this could mean traxample the number
of products in a buffers grows unbounded. This is a typicaheple of undesirable
(unstable) system behavior which one wants to avoid by apjaie controller design.

Example 7.1.1 Consider a simple example of a timed manufacturing systedeas
picted in Figure 7.1. The system consists of processing Wit M, and M3 and
FIFO buffersBsi, By, B3 andBy, respectively. All the buffers have a capacity to store
an infinite amount of products. The processing units or magil; andM,, with
processing timed; [time units] andd, [time units], respectively, will start processing
a product if, a possibly present, preceding product on thehinas is finished and
there is at least one product present in the buffers in frbtli@machines. Products
that are finished being processed on maciheand M, will be transported, with

a transportation delay dd; andD» [time units], to bufferBz and B4, respectively.
MachineMs is an assembling machine on which products from buBgandB, are
assembled into one product. The machifg with assembling timels [time units],
will start assembling two products if, a possibly presenécpding to-be-assembled
product on machin#l; is finished and if there is at least one product present in both
buffersBz and By, respectively. The manufacturing system as depicted iargig.1
can be described by an event domain description as in (7.&ncé] the matrices
A € R¥3 andB € R$*? defining (7.1) then read

d; £ € D1®dg € W
AL £ do e|,B2 € Do dz|, Wy = |Wy, |,
Di®di®d; Dr®d®d, d3 € € W}ifg

Uz (K) 2 [z (K) Uz (K)] T withw,, (K), w, (k) andw . (k) representing event times
of the events “a products enters machind’, M, andMg for thek — 1-th time, re-
spectively. Furthermoreyy; (k) andu 4, (k) represent the event times of the events “a
product is released” into buff@; andB, for thek-th time, respectively. For parame-
tersd; =dy = 2,D; = D, =0 andds = 1, one can find thaA”* =2 andn =[33 5 '

is the maximum max-plus algebraic eigenvalue and a finitereigctor of matrixA

in (7.2), respectivefy, Hence, if no control is applied to the manufacturing system
(7.4) holds for all initial conditionsv . € R3. That s, no products will accumulate in
buffersBz andB, (for any inputu ).

1see, for example [31], for an overview of algorithms on howamputeA* andn of matrix A.
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dy
B1
Mg e
— 3
e
) _l
g — My

Figure 7.1: Example of an assembly manufacturing line.
Consider now the system parametéys=2,d, = 4,D; = 0,D, = 2, anddz = 3.
By employing Theorem 3.17 in [31], one can conclude that

w., (k w., (k w., (k
lim ‘[1( ) =2, im %( ) =4, and Ilim %3( )
k—sc0 k k—s o0 k k— o0 k

=3 (7.6)

Hence, products will accumulate in buffs, since

A < lim Wors ()

k—o0 k— 00

In the sequel it will be explained how to design an event donsantroller such that
the system (7.1) in closed-loop with an event domain coletralill be stable, i.e.

Definition 7.1.2 The recursion in (7.3), in closed-loop with an event domain-c
troller with the property

Uy (k—1) <uy(k), vkeZy, (7.7)

is calledstableif for all W € R™ there exists a constapte R, such that
. K :
lim —— =p, Vi€ Zpan,), KeZso. (7.8)

Remark 7.1.3 Due to the fact that the manufacturing system in (7.2) hapadaty
constraint characterized by the maximum eigenvaluef A, it does, from a practical
point of view, not make sense to design a controller thatgassfor ap € R .
Therefore, onlyp € R. ,« is considered in (7.8).

To guarantee that the to-be-designed event domain caattak the property as indi-
cated in (7.7), the controller design will be based on thie¥ahg recursion

Wy (k+1) =AWy (k) ®Bo Uy (K), (7.9)
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where

A B
£ E

A

[I>

, B2 [E} , W (k) £ lgjég] . zy(k) eR™

A justification for this design approach follows due to thédwing result

Lemma 7.1.4 Let initial conditions w,,(0) and uy (—1) for the recursion(7.3)and
an initial conditionW , (0) = [w,(0)" u, (—1)"]" for the recursiorn(7.9)be given.
Apply the input sequenag, and the corresponding input sequence

Uy (K) £ Uy (k—1) & Uy (K), (7.10)

to recursion(7.9) and (7.3), respectively. Then, the first,rcomponents of the se-
quencew - resulting from recursion(7.9) coincide with the sequence wresult-
ing from recursion(7.3). Furthermore the last pcomponents oiv - coincide with
uy (k—1) for all k € Z; which implies that constraine(7.7) is satisfied for all
keZ,.

Proof: The statement can be proven by induction. Ket O the statement is
obvious. Suppose that the statement is true for somé&., i.e.

2 (K) = Uy (K— 1), (7.11a)
Wy (K) =Wy (K),  i=1,...,nw. (7.11b)

In the sequel it will be proven that similar equalities, asgemted above, also hold for
k+ 1. Note that by definitiorzy (k+ 1) £ z (k) ® U (k), follows from recursion
(7.9). Then by (7.11a) and (7.10), it follows that

Zy (k+1) =uy (k).

Defineq(k) € R™ for somek € Z and letg;(k) = W (k) fori = 1...ny. Then, by
applying recursion (7.9), relation (7.11a) and (7.11b) obiins that

A®q(K) ©@B® (uy(k—1) @ U, (k) = q(k+1).
U (K)

|
In the sequel it is explained how the stability notions in Qliea 2 can be utilized to
design a controller of the form

Uy (K) = K(Wp (K) + €4 (K)), keZ,, (7.12)
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which will guarantee that (7.3) ((7.2)) in closed-loop witie event domain con-
troller defined by (7.10) and (7.12) is stable in the sense effrilion 7.1.2. Note
that&,, (k) € E C R™ M represents event domain measurement noise, i.e. the event
times inW_ (k) are assumed not to be known accurately. There is a certan err
€, (k) present in the measurements employed for feedback, thisisrassumed to
takes values in some known getith 0 € E.

Assume the maximum max-plus eigenvaluedcsatisfiesA* € R-,. Then, from
Lemma 6.3.8 in [30] it follows that there exists a max-plugeiible matrixP €
Re¥*™ suych that

(F@’l QAR P)ij <AY, Vi €Zpny. (7.13)

Define variablesv , (k) andu, as
Wy (K) 2 P @ Wy (K) — pk, (7.14a)
Uy (K) £ Uy (k) — pk. (7.14b)

Note that the functiorf,(-) £ P® (-) is homogeneousThen, due to the homogeneity
of fp(-) it follows, by employing (7.14a), that

W (k) = P@ Wy (k) + pk, (7.152)
Uy (K) =04 (k) + pk. (7.15b)

Performing the coordinate change as defined in (7.14) onviwat-@lomain recursion
in (7.3) and employing the relations in (7.15) yields thédaing recursion

Wy (k+1) =AW, (K) @B Uy (K), (7.16)

where
ALP* 'gA@P—p and BAP® ®B-p. (7.17)

Since,p > A* and (7.13) hold, it follows that the matri satisfies

Aj <0, Vi, | € Zg - (7.18)
Due to the fact that (7.18) holds, it follows from Lemma 2.thatA" exists and is
given by
_®nW*1

A'=E®A®...0A"

Note that an equilibrium point, i.w%q, of system (7.16) can be computed by solving

W oo = ARW 1, ©BR Uy, (7.19)
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wheret 4, is an input associated to an equilibri%q. According to Lemma 2.1.6
the unigue solution to (7.19) is given by

W= A ®B Uy, (7.20)
with W e being finite under the assumption that the matrix

_®nW*1

B A®@B ... A ®E} (7.21)

is row-finite. The following result can now be formulated.

Theorem 7.1.5 Let
Uy (K) = K (W (K)) (7.22)

be a control law which is Lipschitz continuous. Supposettiatontrol law in(7.22)

renders equilibrium poinw%q of systen(7.16)in closed-loop with(7.22) (at least)

exponentially stable in the sense of Definition 2.2.1 wilpeet to initial conditions
W, in R™*M. Then, the following statements hold true

i) The equilibriumw%q of the following closed-loop recursion
Wy (k+1) =AWy (k) @BOK(Wy (K +8x(K),  KeZy, (7.23)

is input-to-state stable with respect to perturbationsy : Z, — E C R™*" and
initial conditionsw . in R™ M.

ii) The recursior(7.9)in closed-loop with the control law iv.12)with
R(Wx (K)+ 82 (K) 2 k(P ® (W (k) + 8 (K) —pK) +pk (7.24)

is stablein the sense that for ai » : Z, — E and initial conditionsi ., € RMW Ny,

=P, VJ € Z[l,nw]7 ke Z-0. (725)

Proof:

i) Dueto the hypothesisin Theorem7.1.5, the equilibriumtmjjg}eq of the following
closed-loop system

W (k+1) =T (W (k) 2 f(Wy (K),k(Wr (k),  keZs, (7.26)

with f(W (K),Uy (K)) £ AW (k) DB®TU, (K), is exponentially stable with re-
spect tow ,, € R™ ™. Note that : R — R™* js Lipschitz continuous due
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to the fact that the functions: R™ — R™ and f : R™TM x RN — R™W+ gre Lip-
schitz continuous with respect to their arguments on theadosiR™ andR™ x R
with Lipschitz constantd, andL¢y,, respectively. Hence, the converse Lyapunov
statement in Theorem 2.2.5 holds. That is, there exists puyav functioriv(-) and
constants, b, c € R.q such that for alf € R+

8 W, | <V(E) <bJE—W,, |, (7.27a)
V(f(&,k(8))) =V(T(&)) V(&) —Cl& =Wy |- (7.27b)
FurthermoreY (+) is Lipschitz continuous ifR™*™ with Lipschitz constarity. Hence,
forall &, € Rt
V(f(&,k(E+¢€)—V(F(§,k(E))) <Lv|f(§,k(§+e)— (&, k(E)) <
< LuLyulk(§ +£) — K (£)| (7.28)
< LvLyylclgl
Combining inequality (7.27b) and the last inequality ir?@).yields
V(f(& k(& +e€))) SV(E) —cl& =Wy [+ LvLrulklel, (7.29)

for all £,& € RN Inequalities (7.27a) and (7.29) then prove that first siate
in Theorem 7.1.5, i.e. fora#d,, : Z, — E andv_v% € R™ M the solution of (7.23)
satisfies

W ()] < By (Wl K+ V57 (R |), VKEZs, (7.30)
where theBy,, and WV is a7 Z-functionand.# -function respectively that can be
obtained as |nd|cated in (2.35) of Theorem 2.3.4.

i) In the sequel it will be shown that by employing the coordéngttange in (7.14)
and (7.15), the feedback law in (7.12), wikhdefined in (7.24), can be transformed
into the form as in (7.23).

Substitute (7.12), witlk defined in (7.24), into (7.14b) and subsequently substiguti
(7.15a) into the obtained expression yields

Uy (k) = K(P* " & (PEWy (k) + pk-+ 8 (K) — pK) (7.:31)
or similarly (due to homogeneity)
Uy (K) = K(P? @ (P@Wy (K) +&x (K)). (7.32)

Note thatP® ' @ (PRW, (k) + €, (k) =W, in caseg (k) = 0. This fact implies,
without loss of generality, that one can state that foegllk),w (k) € R™ " there
existse » (k) € R™*+™ such that

PP @ (P@Wy (K)+ 8 (K) =Wy (K) + 8 (K). (7.33)
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Hence, (7.32) then becomes
Uy (K) = K(Wy (K) + &% (K)). (7.34)

According to the hypothesis in Theorem 7.1.5, control lavB4} renders equilib-
rium pointv—vﬁ%q of closed-loop system (7.23) input-to-state stable, ireperty (7.30)
holds. This implies, by employing (7.15a), that the follogiholds for allw . €
R+ andey : Z, — E

Wy, ()

im

ll_wo k = p7 VJ S Z[an_;’_nu], k c Z>O, (7.35)

and due to (7.32), (7.33) also for &, : Z, — E.

|
The question of how to obtain a control law as given in (7.2Rhwhe properties as
given in the hypothesis of Theorem 7.1.5 is discused in tkegsextion.

An event domain MPC setup

In this section it will be pointed out how to obtain a contrai as given in (7.22)
with the properties as given in the hypothesis of Theorenb7.1n fact this sec-
tion contains, for completeness purposes, a brief sumnfaag event domain based
model predictive control strategy proposed in [109]. Thisdel predictive control
strategy results in a control law as given in (7.22). For tleslah predictive control
setup an exponential stability result in the sense of D@imi2.2.1 in the event do-
main is obtained in [109]. Furthermore, it is proven in [1@%t the resulting event
domain model predictive control law of the form as in (7.28)dmgs to the class of
max-min-plus-scaling functions. Since max-min-plusliscgfunctions are Lipschitz
continuous, one can employ the resultin Theorem 7.1.5 tolude that the manufac-
turing system (7.1), i.e. recursion (7.3), in closed-loathwhe event domain based
controller, defined by (7.10), (7.12) and (7.24), also eithilbbustness, i.e. stability
in the sense of Definition 7.1.2 irrespective of the posgibesence of measurement
€rrorse .
For fixedN € Z>4, let

W, (W (K), Uy (K) 2 [w}(u 1/k),..., W, (k+ N|k)}T (7.36)

denote the sequence generated by the recursion (7.16)fitiah¢onditionw - (k|k) =
W~ (k) at event countek € Z and by applying the control sequence

U (K) 2 [U}(k|k),...,U}(k+N—1|k)}T. (7.37)
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The class of admissible control sequences defined with cesp@ . (k) is
UN Wy (K) 2 {u%(k)\ W, (W (K), Uy (K)) satisfies recursion (7.1}1) (7.38)

LetN € Z>1 andv—\(%q (see (7.19)) be given. Furthermore, at event couktetZ,,,
letw (k) be given. Then the basic considered event domain modelgtiregicontrol
scenario consists in minimizing, at each event couktelZ, a finite event domain
horizon cost function of the form

N-1  nw Ny
T @ (K) £ 5 (glmax{v—v%j(kﬂ) Wy, 0} uglu;g(k—kuk))—k

M
> max{W,; (k+N) —W,, .0},
=

(7.39)
whereu € R g, with event domain prediction model (7.16), over all seqesa (k)
in %% (W, (k). Thatis, for a givew , (k) € R™, solve

inf I (W (K), U (K)). (7.40)

Uy (K (W (K)

An optimal sequence of controls, if it exists, that minind4&.40) is denoted by
T
u*, (k) 2 [W}(k|k),...,W}(k+N—l|k) . (7.41)
In [109] the following result is proven.

Theorem 7.1.6 Suppose that for the tuning parameter in the cost(7.39) there
holds

HERG 1) (7.42)

Then, the optimal sequence of controls that minim{Ze#0)is given by

W () = (—H) & (@M () BW 1) = —(HT @ (—(PE W, & W),

(7.43)
where
r E ] [ E 8_
W e A B
W 2| | e [ HE ; . (7.49)
W : . )
Heq . . &
AN ~@N-1 _ = +eN-2 _ = =
A A" 9B AT ?eB B

170



7.1. DESIGN OF ROBUSTLY STABILIZING EVENT DOMAIN CONTROLLER

The optimal event domain model predictive control law isntltkenoted by a map
KYPe i R™w — RMW j.e.

W (k) 2Ty (KK) = K" (W (K), ke Zq, (7.45)

As a direct consequence of Theorem (7.1.6) one can condiatihe model predictive
control law in (7.45), resulting from the just describedmv@omain model predictive
control strategy, belongs, under the hypothesis of Thediin6), to a the class of
max-min-plus-scaling functions. That is, the event dommaaudel predictive control
law k™*=(-) is a continuous piecewise affine function of its argument.

Yet another result that is proven in [109] is the following.

Theorem 7.1.7 Let p € R, ,+, whereA* € R., represents the maximum max-plus
algebraic eigenvalue @& in recursion(7.9). Suppose that for the tuning parameter
in the cost(7.39) there holds

HERg (7.46)

)
Then, the model predictive control laf¥.45) renders the equilibrium poirw%q of

system(7.16)in closed-loop with(7.45) exponentially stable in the sense of Defini-
tion 2.2.1 with respect to initial conditions , in RMWHNu,

Note that under the results in Theorems 7.1.6 and 7.1.7, ypethesis in Theo-
rem 7.1.5 holds for the model predictive control law in (73,4Bhich is a result of
the model predictive control strategy presented in thitiGec

Next, the results that are presented in this chapter umtiyl are demonstrated via
an illustrative example.

Example 7.1.8In this example the manufacturing system as considered apteh6
in Example 6.5.8 is taken. However, the bufarin Example 6.5.8 with a capacity
for a finite number of products, i.e. two produchg (= 2), see Figure 6.3, is in this
example replaced by a buffer with a capacity for an infinitenber of products. The
resulting manufacturing system can then be described bgybstem description of
the form as defined in (7.1) witiB  in (7.2) defined by the following matrices and
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signals
£ £ £ £ ¢ 0
£ d =3 € e 0 d;=3
AL |e di+dh=7 dr=4 € €|, B2 |dh+dr=7],
£ £ 0 £ ¢ £
£ £ £ 0 ¢ £

W ()2 [Wh (k=) W, (k—1) W (k—1) WA, (k-2) wA(k-3)] .
(7.47)
The control goal is to stabilize the considered manufaatusystem in the sense of
Definition 7.1.2 in the presence of measurement n@jseFurthermore, it is required
that the signaty» = wZ,, £ Cw,,, with

Catle £ 0 & ¢, (7.48)
“tracks” the following event domain signal
dy(K) Zcqt+pk  keZy (7.49)

with p € R(g+) andcq € R. Note that the maximum max-plus algebraic eigenvalue
of Ais A* = 4, which corresponds to a maximum mean throughput of thesysf

1/4 [products/time unit]. The signaf, (k) can be seen as reference due dates, i.e.
desired time instances at which tki product should exist the manufacturing line.
The particular values farg andp in this example areg = 3 andp =5.

To establish the afore mentioned control goal the contrakfined by (7.10),
(7.12) and (7.24) is employed. The desigrkdf) in (7.24) is established by employ-
ing the model predictive control setup as described preshyoue. k (-) = k" (+).

To guarantee that the event domain contrgl satisfies the property as indicated
by (7.7), the controller synthesis is based on the systenrsam given by (7.9), see
Lemma 7.1.4 for a justification of this approach. From therioasA, B andC defined
in (7.47) and (7.48), one can obtain matride® andC. Where the matrice& andB
define recursion (7.9) and the matrix

c2 [C s} (7.50)

relates the to-be-tracked sigrig) (k) to the signalv - (k) satisfying recursion (7.9).
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A valid choice for matrixP, i.e. one that satisfies (7.13), is given by

[0 ¢ & & ¢ ¢ [0 ¢ £ £ g £

€ 27 ¢ € € ¢ e 27 ¢ £ E €

~|€E € 39 € € ¢ ola|€E € =39 ¢ £ &

P= e ¢ € 35 & ¢ Pe = £ € e -35 ¢ ¢

e € € ¢ 31 ¢ £ ¢ £ e 31 ¢

e € € € & Q] € € £ £ £ 0]
(7.51)

Hence the coordinate change in (7.14) is now defined andftrerthe recursion in
(7.16), with its matriced andB given in (7.17), is defined. Note that if one defines

v (K 2qr(k)—pk, — keZ;

and hence
Ox (K =CWy(k), keZ; (7.52)

whereC £ C® P, the afore mentioned “tracking” problem in the original cdioates,
i.e. (uy(k),w,, (k),0 (K), becomes a point stabilization problem in the new coor-
dinated, i.e.(U (k),W. (k),d (K)). This can be easily seen by defining

Oy (k) =dy (k) +pk  keZs, (7.53)
and subsequential substitution of (7.49) in (7.53), whiiehds
Oy (k)=cq  VKEZ,. (7.54)

Hence
gy (k)—cg = aqrk) —dyk), keZ,. (7.55)

In order to establish the goal in (7.55) the event domain mualictive control strat-
egy explained in this section will be employed. Since onethats(7.13) is satisfied
and the matrix defined in (7.21) is row finite, for the partazunatricesA andB in
this example, the equilibrium poim%q of the recursion (7.16) is, for givamy,, € R,
well defined by (7.20). In order to guarantee that the nornmhefsteady state error
with respect to the pointg, i.e. |0 (K) — cg|, will be as small as possible, one as-
sociates tacq the largest value fort , and corresponding equilibrium poim%q
satisfyingC@v_v){@q < ¢q. Hence, by employing Lemma 2.1.5 and relation (7.20) one
obtains

Use = —((COA @B)" @ (—cq). (7.56)

2By the largest it is meant that any other feasible v&lggq and corresponding equilibriumf%q satis-

- - =f .
ﬁesw%,eq SWo andu),,eUI S Usteq
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Under the additional assumption that the matrix

-
" ceAT .. @A™ (7.57)

is column-finite, U, is finite for givency € R. For this example one can ver-
ify that the matrix in (7.57) is column-finite. Now one can aintT,, = 1 and
Wy = [-4 —28 —36 —37 —38 — 4] by employing (7.56) and (7.20), respectively.
ChooseN and u in the model predictive control cost given in (7.39)Ms= 2 and

p = 0.4 to obtain adequate response to disturbances. Notgithd.4 € R g 1/(n-2))
andp =5 € R, «—4. Hence Theorems 7.1.6 and 7.1.7 hold, i.e. the event domain
model predictive control law*(-) is known explicitly and is Lipschitz continuous.
Furthermore, the model predictive control laX*>*(-) renders the equilibrium point

W e of system (7.16) in closed-loop with""*(-) exponentially stable in the sense

of Definition 2.2.1 with respect to initial conditio®,, in R®. Hence Theorem 7.1.5
applies, i.e. the manufacturing system (7.1), i.e. reourér.3), in closed-loop with
the event domain based controller defined by (7.10), (7.4@)@.24) is stable in the
sense of Definition 7.1.2 irrespective of the possible pres®f event times measure-
ment error€ (k) € RS.

To give an illustration of the obtained event domain comgrolan event domain
simulation of the obtained event domain closed-loop réonris performed. In Fig-
ure 6.3 and Figure 6.3 the result of the event domain closepg-bystem response
resulting from the simulation for initial condition ,, = [0 3 14 10 6 is given. For
the ease of interpretation of the result, the event domgimess, i.e.u ., g = vvz}y3
andq’,, are presented in the time domain in Figure 6.3. In Figure 6eSaan observe
that over the time interval = 0 to approximatelyt = 70 the trajectoryg, = WZ%
(q7) converges to the to-be-tracked desired trajectpyy(q’,). From approximately
t = 70 and above the event domain measurement rejse) is non-zero, i.e. for
k € Z-14 the components o, (k) consist of values chosen fromwa normal distri-
bution with zero mean and variance six. In Figure 6.3 the qan’g' I € Zpg
are presented to illustrate stability in the sense of Défimi7.1.2 irrespective Vcef the
presence of non-zero event domain measurement 8gigk), i.e. the quantities:

i € Z1 5 all converge towards the assignedwhich corresponds to the closed-loop
system’s throughput of /b [products/time unit]. Although the manufacturing sys-
tem, on which the presented theory is illustrated, is aivatsimple manufacturing
line consisting of just two machinéd; andM, with a buffer with infinite and finite
capacity in front of the machines, respectively, one camlleamanufacturing systems
with much higher complexity. That is, all manufacturingteyss that can be modeled
within the event domain modeling framework as defined in){add satisfy the made
mild assumptions in this chapter, can be handled. Sincevéiet domain model pre-
dictive control law is known explicitly, see Theorem 7.1n6,on-line optimization is
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Figure 7.2: In the figure the time domain signals of the correspondingnieslemain signals,
i.e. release times of raw products into the manufacturing Ui, (dashed), the actual event
times of products leaving the manufacturing lopg = wz(%,3 (thick grey) and the desired event
times at which products should leave the manufacturingdipe(solid) are plotted along the
time axis.

required. This makes the controller design approach algealmg for large scale (but
deterministic) manufacturing system applications. Nb# the signal space, i.e. the
dimension of the modeled manufacturing system scalesrlinedth the amount of
workstations present in a manufacturing line. This is yetther appealing argument
which makes the approach suitable to be employed to larde s@nufacturing sys-
tems. A major technical problem however is a causality poblin the next section
this causality problem will be explained in more detail.

7.2 Causality problem

The major problem of the event domain controller design aagin, as explained in
the previous sections of this chapter, is that if the obthitentroller is employed in
the time domain, one will encounter a causality problem. hia $equel it is made
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Figure 7.3: The quantitiesv% *), W—(Z (+), W—ﬁ (0), W—lf“ (A) andw—lf5 (O) presented along
the event counter axise Z-.

precise what is meant by the causality problem. Recall thetcontroller structure
that is obtained following the event domain controller syasis method explained in
the previous sections of this chapter is of the followingior

We (k1) 2 ke (M (K) up (0]T),  KeEZy. (7.58)

Recall that in the event domain the signals needed for feskdéwad the controls, i.e.
w,, (k) andu y, respectively, represent time instances of certain evémisigure 7.4
an illustration is given of the causality problem that one@amters if a controller of
the structure as in (7.58) is employed in the time domain.iduife 7.4 an example of
signal realizations, i.ew’,, , w?,, andw?,, of the manufacturing system as considered
in Example 7.1.8 of Section 7.1 is shown. Assume the hypatledheorem 6.3.2
of Chapter 6 is satisfied, then one can consider the signalsiendomain as is also
illustrated in Figure 7.4. Lef. € R, be the time instance a next event time, of for
example a product release time, i.a,»(k+ 1), has to be computed based on the
event domain control law depicted in (7.58). In the time donibe left side oftc,

i.e. t <t represents the past realization of the trajectory degicteFigure 7.4,
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while the right side of;, i.e. t > t¢, represents the future realization of the trajectory
depicted in the Figure 7.4. Note that from Figure 7.4 it beesrolear that at the

past | future

i

k+141 — JF — Li%(k—'_lL 7WZ)f/2(k) o ,Wez?f/’s(k) .
k 4+ — — Q\ iiiiiiii \ iiiiii \ -

event domain

time domairt

Figure 7.4: Graphical illustration of the causality problem.

time instance a next product release time, ug:(k+ 1), has to be computed based
on[w,, (k) uy(k)]", see (7.58), componentswf,, (k), €.9.w, (k) andw?, (k), are
not necessarily known, i.e. the event timesi,vﬁg,2 (k) andvv?}{3 (k), respectively, are not
yet known at time instandg. Hence, although an event domain stabilizing controller,
i.e. (7.58) can be obtained, one cannot straightforwandigley the controller in the
time domain.

Note that in case of manufacturing lines, like for exampke dime considered in
Example 7.1.8, it is known from a physical point of view tha event times at which
a product enters the system for tkih time, i.e. wl}yz(k), will always occur before
the other events in the system occurring for kifetime. It is this intrinsic physical
property of manufacturing lines that leads to the obviowgppsal toreconstructthe
other variables based on information\@gz(k) that is available at the time instance
the controller computation has to be performed. An algarithhich can based on
V\/}%(k) obtain anestimateof the other variables iw ,, (k) is therefore required. A
proposal on how to design such an algorithm, following améd®main observer
design approach, is pointed out in the next section.
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7.3 An event domain observer designh approach

Consider the following event domain description of a maotufang system
T =KWy xWay,By) (7.59)

with K =7Z, W1 » = R™ andW, , = R™ the signal space, arll ,, C W1 » x Wy
defined as

W.
%%/ A 17

W W
L — Wiy x Wo ’ y [Wl%] < [wlﬂ ;
o b

U%] W= A(Y) @ W, @ B(y) ® UJ{,/}

W. =
o L’f Yo =C(Y) @Wy 4

(7.60)
with A(y) € REZ*™[y], B € R?**[y] andC € R*™[y]. The notatione should be
read as “appropriate dimension”. In the sequel the operatiavill be omitted for
notational simplicity purposes. Each elemen®j, consists of a pair of trajectories
Wy, W], where

e W, , represents thebservedrajectory,
e W, , represents thto-be-deducetrajectory.

The observer design problem in this section then deals Witlytiestion how to deter-
mine theto-be-deducettajectory based on knowledge of thbservedrajectory.
Consider the following event domain description

S0 = (K, Wiy x Woy,B ), (7.61)
with each element dB - consisting of a pair of trajectorig®, , WM/]T, where

e W, , represents thebservedrajectory from system (7.59),

e \W, , represents aastimateof theto-be-deducetrajectoryw, .
Definition 7.3.1 Let [w, ,, W, ,]T € B C B, with B £ 0, then systenk

i.e. (7.61), is a dead-beat observer for syskepn, i.e. (7.59), if there exists an event
counterk* € Z and a trajectory seBSyP C B - with BS:° £ 0 such that

T 4 A
{ [Wlx sz} €BGPC By } = {Wz;{: W s/ sz}a (7.62)
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wherew; ,, AW, , denotes the concatenatiorkat i.e.

W, for k<k*

Wo . AW, ) (K) £
(Wa 0 A Wp ) (K) {sz for K>k,

for all system trajectorjw, ,, W, ]’ € BSP.

In observer design is about finding a descriptiontoy such that system (7.61) will
admit the property as described in Definition 7.3.1. In thguséa structure or de-
scription forB_, will be proposed that will make that system (7.61) is a deedtb
observer for (7.60) in the sense of Definition 7.3.1.

The following notion will be employed in the dead-beat obsedesign, i.e.

Definition 7.3.2 Let B C B with BSP=£ 0. Then, system (7.59) is callexb-
servablein %3‘}’ if the following implication holds

{ m%‘ﬂ 7 [&V,%fl € %?;;b} = {w;,g:wg,g} (7.63)
20 20
The following result can now be formulated:

Theorem 7.3.3 Let

B L { lwl%] 12— Wiy x Wy ‘ V[Wl%] < lwlf ;

Wy Wy Wy
Uy | Woyr= A(V)*B(V)U%}
W]_t Y = ) )
Yo Yo =C(Y)Wo

(7.64)
and

Bope | T e,
Wo

w.
~ 1 sub
Wo o < W o0, [W 16%%}.
2.

Suppose syste(@.59)is observable irﬁBi“gb. Then, systertv.61) with B , defined as

%t}{(é v,\\/l:%/ ZZ—>W1:%/ XWZ:%/ Wy = Uz s
Wy ‘ Yo
W = A(Y)Wy ® B(y)ur S L(Y)(C(Y)Wy B Y.r) With W, € %%},

(7.65)
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is a dead-beat observer for systém59)in the sense of Definition 7.3.1 if

(Aly) o L(Y)C(y))"B=A(y)"B(Y) (7.66)

is satisfied for a matrix [y) € Rg2**[y] for which holds I (y) # € for alli € Ziiny) €
Z1 o)-
(1e]

Proof: From the structures o3 , and B, defined in (7.65) and (7.60),
respectively, it follows that for arbitrary(y), for which holdsL;;(y) # ¢ for all
I € Zj1ny)»] € Z1,4), the following property holds: If for somee Z

Wy 4 (K) <Wp(k),  for k<K,
then there exists an event courtee Z such that
W (K) > Wy (k),  for  k>K" (7.67)

Next, it will be proven that ilL(y) is chosen such that it satisfies relation (7.66), then
the inequality in (7.67) will hold with equality. Let,”, <w, ,, i.e.

WZZ/S WZ}{,/ <~ WZZ/: Wz}{/@ W2=}£/7 (768)
which yields

ef’;’g"" £ Wy B Wy =
= A(Y)Wo @ B(y)Wy & L(Y)C(Y) (Wo & Wy ) © A(Y)W, @ B(Y)uy (7.69)
= (A(y) & L(y)C(y))e%" @ B(y)ux -

A solution to (7.69) is

e = (A(y) ®L(y)C(y))"B(y)ur- (7.70)

Since one has that, , = €% and that for giverw, ,, w, , the signale™" is unique
(due to the fact that system (7.59) is observabEB?;ib), solution (7.70) is the only so-
lution for the last expression in (7.69). According to thebthesis in Theorem 7.3.3,
the trajectoryw, ,- from the set of trajectory of interesties, i.eBi“gb, is given by
w, = A(Y)*B(y)u. Employing relation (7.70) then yields

(Aly) @ L(y)C(y))" B(y)uxr =A(y)'B(y)uy,  Vuy, (7.71)

or
(A(y) ® L(Y)C(y))"B(y) = A(y)"B(Y). (7.72)
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Hence, choosind.(y) such as described in Theorem 7.3.3 then yields that (7.67) is
satisfied with equality, i.e. for some < Z., there holds

W, (K) =Wy (k),  for K>k (7.73)

This implies that system (7.61), with  defined as in (7.65), is an observer for (7.59)
in the sense of Definition 7.3.1 f@Bj‘gb and%j‘gb as indicated in Theorem 7.3.3. 1

Under the hypothesis in Theorem 7.3.3 system (7.61), ®ithdefined as in (7.65),
is a dead-beat observer for system (7.59) if all allowab$tesy trajectories of system
(7.59), i.e.B_, defined in 7.60, are restricted to the trajectory‘Bég/b as defined in
(7.64). The physical meaning of this, is that the manufaefsystem has once started
as an empty system. That is, there has been a time instartdd¢hmanufacturing
system did not contain any products, i.e. no events havegtyet. Note that this is
a mild assumption in the sense that it is obvious that oncenlmeufacturing system
must have started up without any semi-finished or storedymtschlready present in
the system.

The issue that is treated next is about how to compute a miatyixe Rg2*®[
such that the conditions dr(y) given in Theorem 7.3.3 are satisfied.

Y]

Theorem 7.3.4 A specific I(y) € R¢2**[y] satisfying(7.66)is given by
L(y) = (A(Y)"\(A(y)"B(Y))/B(Y))/ (C(V)A(Y)"). (7.74)

Proof: Note that from the algebraic structure of expression (7d6®) has that
for arbitraryL(y) € Rz2**[y] there holds

(A(Y) ®L(Y)C(y))'B(v) > A(y)'B(y),  VL(y) € RZ™*[y.

This implies that searching for the (component wise) largestrix L(y), for which
holds

(Aly) @ L(Y)C(y))"B(y) < A(Y)"B(Y), (7.75)
will lead to a matrixL(y) for with condition (7.66) in Theorem 7.3.3 is satisfied.

(A(y) ® L(y)C(y))*B(y) < A(Y)*B(Y)

& (A LYICY)"Aly)"B(y) < A(y)"B(Y) (employing (2.3c))

& AW (LYCYAY) ) B(y) < Aly)"B(y) (employing (2.3b))

& (LYCYAW)" <AY)"\(A(Y)"B(y))/B(y)  (employing (2.12c))

& LIYCAY)" <AY)"\(Ay)"B(y))/B(Y) (employing (2.3a))

& L(y) < (AY)"\(A(y)'B())/B(y))/(C(Y)A(y)") (employing (2-12?7))76)
The largest (y) satisfying (7.75) then follows from the last inequality ih76) and is
given in (7.74) of Theorem 7.3.4. ]
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To successfully design an observer as the one proposed oréiher.3.3, observabil-
ity of system (7.59) inB;‘;b is required. In the sequel an observability test is given
from which one can conclude that system (7.59) is obsenialilee sense of Defini-
tion 7.3.2.

Theorem 7.3.5 Systen(7.59)is observable inB;‘;b in the sense of Definition 7.3.2,
with %?};bdefined as ir{7.64) if and only if the following equality holds true

A(y)"B(Y) = Aly)"B(Y) ((C(Y)AY)"B(Y)\(C(Y)A(Y)"B(Y)))- (7.77)

Proof: Can be proven based on the results obtained in [110]. ]

Example 7.3.6 Consider the manufacturing system as considered in Exampl8.
The system can be described according to the event domansyescription as
defined in (7.59) withB . in (7.60) defined by the following matrices and signals

e € € € ¢ 0
e diy € €y dy
AY) 2 (e didy doy & &), B2 k|, CN2[0 & & & ¢,
£ ¢ y € ¢ I3
£ ¢ £ y € €
T
W (k) 2 e (k) why () =y (0]

Wo(K) £ (Wl () W (k) WA (K) W (k—1) W, (k—2)]

(7.78)
Note that for notational shortness the operatieng the matricesA(y) and B(y)
are omitted, e.g.d;d>y in matrix A(y) should be read ad; ® d; ® y. The goal is
to obtain an observer for the manufacturing system of thecgire as proposed in
Theorem 7.3.3. One can verify, by for example employingrtiiemaxgdtoolbox
for Scilab 4.0, that condition (7.77) in Theorem 7.3.5 iss$etd. With theminmaxgd
toolbox one can perform analytical computations like skde¢ne star) operations,
left and right (pseudo)-inverse (Residuatian’) operations, etc. on the matrices of
the form as given in this section. Since the condition in 7Y i satisfied, one can
conclude from Theorem 7.3.3 that system (7.61), \iBth defined as in (7.65) and
L(y) € R2[y] as in (7.74) of Theorem 7.3.4, is an observer for system JArbthe
sense of Definition 7.3.1. With thminmaxgdoolbox of Scilab 4.0 one can compute

3The minmaxgd toolbox for Scilab 4.0 is downloadable from http://wwwidstiniv-
angers.fr/ hardouin/outils.html.
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L(y) € R2[y] as defined in (7.74), i.e.

0
306ya 92 @ 123 @ 15/ @ 18y° @ 21yP @ 24y’ (4y)*
L(y) = 7(4y)* . (7.79)
7y(4y)*
7y (4y)*

The example is continued by trying to put the obtained olesarva recursive form.
Note thatL(y) in (7.79) contains operations working on the signal (ﬂ’@%,y:;g/).
Consider for example the first componentity), and taking into account the observer
structure infB , one can obtain that

Wy, (K) = max(ue (K), Y. (K), Wi, (K)) (7.80)

Hence, due to the algebraic loop in above expression it iDgsiple to put the ob-
tained observer into a recursive form. Therefore the atrecof L(y) in (7.79) is
slightly altered into the following form

y
3@ 6y® 92 @ 123 @ 154 ¢ 18y° @ 21yP ¢ 24y (4y)*
L(y) = 7(4y)* . (7.81)
7y(4y)*
7y (4y)*

One can verify that the(y) in (7.81), as the one in (7.79), also satisfies (7.66) in The-
orem 7.3.3. Hence, the result in Theorem 7.3.3 still apgbeshe observer defined
with theL(y) in (7.81). Note that (7.80) now becomes

Wy, (K) = max(ue (K), Y. (K= 1), W, (k—1)). (7.82)

Hence, a recursive equation without algebraic loop is obthi Note that the terms
(4y)* in (7.81) can be interpreted as a recursive equation of tme fo

X(K) = max(x(k—1) +4,...), (7.83)

where the term that will appear on the dots depends on thestappearing in front
of (4y)* in (7.81). For more details on this issue the reader is refietw [29]. Define
now Xz (K), x2(K), x3(k) andxs(K) to obtain recursive relations, like the one in (7.83),
corresponding to the termdy)* in the second up to the last component¢f) in
(7.81), respectively. By taking into account the way yreperator is defined, one can
now obtain the following recursive relation correspondimghe obtained observer in
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this example, i.e.

(7.84)

X(K) = Aop® X (k— 1) @ Bgp@ U (k) & By @y (K),

#(K)

Cop® X (K),

Wy

where

15 18 21 24 27

12

24

NNXXNNXXX
S>> > > > > >

<l

=

X

>
™
w M~ w WO O WO W WwWwWwiww w ww ww
©
o MM WO O WO W Wwwwiww www ww
o
w W WhWw W Ww w wwwwiww wwwww
o~
ElSSESEEESSEEEESSSEE
0
W o w w e w e W W W W[eWwn W W W W
©
W Www W W W W W W W W W W W W W W W
)
WAN W W Www wwwwwwwluwwwwwww
< <
EZSSESEEESSZEEESSSEE
AR www[wwwnwwwwe e e e e W W

r
oMM~ W W

OO0 WO W Ww ww

W W ww w w

<l

a
>0

[4)

o (K=5) i, (k=7) ]

it
A

Lo (k=3) i, (k—4)

i

L (k—1) i, (k-2)

ML

i, ()

184



7.4. OBSERVER-BASED OUTPUT FEEDBACK CONTROL FOR MANUFACTURING LINES

In the next section the recursion in (7.84) will be employeddmbination with the
event domain stabilizing controller obtained in Sectidhiii.order to solve the causal-
ity problem from which the event domain controller in Sentit1 suffers if it is im-
plemented in time domain.

7.4 Observer-based output feedback control for manufac-
turing lines

As explained in Section 7.2, the event domain controlleigiheapproach followed in
Section 7.1 results in a causality problem when the comtradl implement in time
domain. Therefore, an observer-based algorithm is prabedech can solve the
causality issue encountered when controlling manufauguines based on the event
domain controller synthesis explained in Section 7.1. ideaguaranteed stabilizing
and causal controller in time domain is obtained.

Assume Theorem 6.3.2 holds for the considered manufagtliries. Hence, a
time domain representation of the form defined in Definitioh. B can be obtained.
Definey» : T — Y 7 = Z as the time domain signal corresponding to the event domain
signaly_ (k), which in case of manufacturing lines corresponds to thataimes a
product enters the manufacturing line for tkih time at the front of the line, i.e.
Y (K) 2 vvl%z(k) in case of the manufacturing line considered in the Exam@dle37
and assumed to be defined as the first component of the sign&dr manufacturing
lines of a more general form, i.e. see Definition 6.1.1. Femriiore, it is assumed that
the buffer in front of the first machine in the manufacturimglis a buffer which has
a capacity for an infinite number of products. Note that thiplies that

ur(K) =yrk), VkeZ,, (7.85)

i.e. thekth time a product is released coincides with kitetime a product enters the
manufacturing line. This property is required to guararked the time instance of
the next product release, i.8,+ (k+ 1) computed by the event domain controller of
Section 7.1, will not be before the time instance the previooducty (k) entered
the manufacturing line, for this is physically not possible

Define the signay¥ (t) as

Vo) 2ya (1), TETi sy, (7.86)

for a sufficiently larged € R-(. Note that the signq{‘;(t) contains, at all timese T,
past information ofy s over a horizon o® into the past and is assumed to contain,
at least,n € Z-¢ event lags. Recall that the event lags contained in a timeagtom
counter function corresponds to the amount of times theesponding counter func-
tion counted a particular event that has occurred.
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Let knowledge oy‘; (t) be available (for feedback) at all times T. Furthermore,
suppose that a controller, obtained based on the contsylfghesis in Section (7.1),
i.e.

# (k1) £ Ko (Wa e (K) ur (K)]T) 2w (K) @ K([waue (k) uxr (K],  (7.87)

and the observer, i.e. recursion (7.84), designed for a faatwring line, e.g. the
manufacturing line in Example 7.3.6, respectively, areegiv Then, the following
algorithm can be formulated

Algorithm 7.4.1 Letxpo=0and supposg’;(t) contains at least the number of event
lags ) that are contained in (k) defined in recursion (7.84), i.e; = 9 in case of
the system considered in Example 7.3.6.

Step 1)
Given the signay®, (t) at timet € T, wait until y,(t)(0) —y?.(t)(07) > 1. If
Y5 (1)(0) ~y5(1)(07) > 1, k=y5(t)(0) and

2 () =1(Y5 (1)),
L (K) =Y (K),
with

o (yP(t)) £ inf {T € TF&O]‘ y5(t)(1) <k, ke K[yf;(t)m)—(m—1>7y5;(t><0)]} +t.
' ' 7.88)
Furthermore, compute

X(K) = Ao ® X (K— 1) ® Bgp@ Uy (K) & BY @y (K), with x(k—1) = Xo
Wy ¢ (K) = Cob® X (K)
(7.89)
and compute the next event time of a product releasey €k + 1), with event
domain control law

U (K+1) 2 Ko ([ (k) Uz (K)] 1), (7.90)
wherek 4 (-) is defined as in (7.87) withw, (k) in (7.87) is substituted by
W, ,(K).
Step 2)
Feed
k if teT
U (t) = U T (0 (ke (7.91)
k+1 if t=uy(k+1),

as control variable to the manufacturing system and go tp Ste
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Let
Y5 £ (Ti50 — Y7), (7.92)

then Algorithm (7.4.1) can be seen as a control law of the form

MPC MPC

2,7 = (T,Ug,Y;,%{y )5 (793)
with
MPC A

B, = {Uy :T—Ugz, y% T — YP | us satisfies Algorithm 7.4.}. (7.94)

The manufacturing line of the form defined in Definition 6.inlclosed-loop with
Algorithm 7.4.1, i.e. the closed-loop system in time dom&rthen given by

55 =(T,Uz,W7,Y5, B5), (7.95)
where

MPC

cL T T
%tgé{ {u; wh Yo i T—-UsxWsx Y [u; yf’q} €By ,

-
—t __\P T T
(o wyl)hr[fé,o] =Yy, vteT, [uy Wy} € %,7}.

(7.96)
The following result can now be obtained for the manufaamiines of the type
considered in this section in closed-loop with Algorithrd.1. forming closed-loop
system (7.95)

Theorem 7.4.2 Suppose that for the considered manufacturing line theist ex
event domain observer of the form as give{irB9) Furthermore, let the hypoth-
esis in Theorem 7.1.7 be satisfied. Then, the event domaead:loop system corre-
sponding to the time domain closed-loop sys(@r5)is stable in the sense of Defi-
nition 7.1.2.

Proof: Define the event domain observer error as

e (K) £ Wy (K) — W, ,(K). (7.97)

Substitution of (7.97) in the control law (7.87), that is dayed in Algorithm 7.4.1,
yields
U (K+1) 2 Ko ([Wa e (K) + e (K) uy (k)] ). (7.98)

Then due to the result in Theorem 7.1.5 the statement in Enedr4.2 follows. ®
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Example 7.4.3 Algorithm 7.4.1 is employed to the manufacturing line cdesed in
Example 7.1.8 to achieve the control goal as formulated iangpde 7.1.8. In Exam-
ple 7.1.8 it is shown how an event domain controller, i.e87yis designed such that
the result in Theorem 7.1.7 applies. In Example 7.3.6 anrgbséor the manufac-
turing line from Example 7.1.8, resulting in recursion @),8is designed. A simu-
lation result of the manufacturing line in closed-loop wilgorithm 7.4.1 resulting
in closed-loop system (7.95) is given in Figure 7.5 the respoof the closed-loop
system trajectorg s = Wzg-3 andu - are presented and compared to the to the desired
reference trajectory,,. Att =52 [units] Algorithm 7.4.1 is switched on. Hence, the
trajectoryqs converges to the desired trajectafy. Furthermore, in Figure 7.6 one
can see that the event domain observer error defined as if) ¢b®s to zero.

T T T

w
&
T

w
o
T

N
a1
T

=
a1
T

event counter functions uz, q» andq’, —
= N
o o
T T
|

2
T
|

| : } L : 1 1 : 1 : 1 : 1 : J
4 60 80 100 120 140 160 180
time [units] —

Figure 7.5: In the figure the trajectorg (t) = w273 (t) (solid thick grey) and the control (t)
(dashed black) of the closed-loop system (7.96) are predesmid compared to the desired
reference trajectorg,; (t) (solid black).

The example as just illustrated shows how event domain nmeéelictive controller
synthesis resulting in an event domain controller strugtilmat cannot be implemented
in time domain due to a causality problem, can be employeidia tiomain by using
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Figure 7.6: Event domain observer error plotted along the eventaxis(k) —W, (k). The
first up to the last component of the event domain observer are denoted byxj, (A), (o),
(x) and @), respectively.

an observer based approach. This resulted in Algorithml.7Ak.the time instance a
controller computation has to be made the obseegmatesbased on the currently
available information, the required (future) informatittrat is required in the event
domain control law (7.87). Note that as is the case of “cotiveal controllers” Al-
gorithm 7.4.1 does not perform computation at fixed equadistime instances. For
Algorithm 7.4.1 itis only required to perform computatiohsomething happens” in
the system. Thatis, every time a new product is entering tireufacturing line, which
is the case if/%, ()(0) —y5,(t)(07) > 1, a new controller computation is performed.

7.5 Summary

To facilitate stability analysis, in this chapter a modedgictive control setup for
discrete-event manufacturing systems is formulated imteslemain. Since in the
event domain the description of the manufacturing systenadycs can be described
as difference equations (as is shown in Chapter 6) this agprallows one to employ
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"conventional” discrete-time stability analysis of thesudting event domain closed-
loop system. It is shown that the approach leads to a coniselapproach to design
event domain controllers that are robustly stabilizingie évent domain. However, a
disadvantage of this approach is that the obtained coeatsatinnot straightforwardly
be employed in the time domain due to a causality problemgiimatrges. It is pointed
out how in case of manufacturing lines this causality probtan be taken care of by
using an observer. For this purpose a dead-beat obserignaesthodology, for the
class of manufacturing systems that can be described irvém domain by max plus
linear relations, is developed.
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All truth are easy to understand
once they are discovered; the
point is to discover them.

Galileo Galilei

Conclusions and future research

In this chapter a summary of the contributions of the thesprésented. Also some
open problems and possible future directions that areagkatthe research presented
in this thesis are given.

8.1 Conclusions

Recall from the introductory chapter of this thesis thatritegn focus of the disserta-
tion is

1. The development of computationally friendly robust mgatedictive control
techniques for a class of nonlinear hybrid systems suitalenanufacturing
system control;

2. The development of observer-based output feedback npoddictive control
technigues for nonlinear systems;

3. The development of model predictive control techniqoesgiscrete-event man-
ufacturing systems.

The main contributions of this thesis can are summarizeaiibel

Robust nonlinear (hybrid) model predictive control

e An approach to design a sub-optimal nonlinear (hybrid) rhpdedictive con-
trol algorithm with an a priori input-to-state stability giantee, with respect to
additive disturbances, of the closed-loop system is ptedgerfFor the nonlin-
ear model predictive controller, the input-to-state dizdion constraints can
be written as a finite number ¢ihear inequalities. This fact facilitates, under
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some additional assumptions on the model predictive cbotsts, the pos-
sibility to obtain a computationally cheap nonlinear (Hgbmodel predictive
control algorithm.

e Robust performance of the closed-loop system, perturbeddoltive distur-
bances, can be obtained by modifying the afore mentionettaoscheme.
This can be achieved by allowing for on-line optimizationtie¢ 1SS-gain of
the closed-loop system. A small ISS-gain of the closed-Bystem, perturbed
by additive disturbances, yields additive disturbargjectionwhich results in
improved performance.

e Proposals to reduce conservativeness of the proposed mietkttive control
algorithm are given.

General robustness results for discrete-time nonlinear austrained systems

e It has been shown that state feedback laws that can rendesedeloop sys-
tem input-to-state stable with respectadditive disturbancesan also render
the same closed-loop system input-to-state stable witfert$ostate measure-
ment errorsandadditive disturbanceg~or the obtained result continuity of the
system dynamics with respect to thateof the system is required, however,
continuity with respect to the system's control variabledd required. Under
the additional assumption of continuity of the system dyiearwith respect to
the control variable, also robustness with respect to &mtuaise can be estab-
lished. Hence, it has been shown that under mild condititaie feedback laws
that can render a closed-loop system input-to-state staiterespect toad-
ditive disturbancesan also render the same closed-loop system input-to-state
stable with respect tetate measurement errgradditive disturbanceandac-
tuator noise The results allow for possible discontinuity and set-edluess of
the state feedback laws. Furthermore, the result holdsipdssible presence
of control and state constrains. The value of the obtainbdsimess result will
become clear from the next item.

e It has been shown how the robustness result can be employitize nonlin-
ear model predictive controller design techniques thatreader a closed-loop
system input-to-state stable with respect to additivaudigtnces, in a scenario
where a closed-loop system has to be rendered input-testtdile with respect
to state measurement errors (and actuator noise). Intliteranany results are
available that render model predictive controlled clokexp systems input-to-
state stable with respect to additive disturbances. Hokvewdy few results are
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known to render the model predictive controlled closedslegstems input-to-
state stable with respect to measurement errors (and actuzise). This fact
indicates the value of the robustness result mentioneceipitdvious item.

Output feedback nonlinear model predictive control

e An observer-based output feedback nonlinear predictiverobapproach for
the class of strongly observable nonlinear discrete-tiggtesns is proposed.
It is proven that aseparatelydesigned controller and observer in closed-loop
with the to-be-controlled system result in an asymptolycstiable closed-loop
system. Input to-state stability notions for differentralusions are employed
to prove the results.

e Constructive procedures for both the design of an inpugtéte stable state
feedback model predictive controller and a nonlinear oleseare indicated.

¢ All the results are valid despite the possibility of disaonbus and non-unique
model predictive control laws.

The main contributions of this thesis with respect to modetigctive controller design
for manufacturing systems can be divided into two partstiha

1. Fluid model based model predictive control design for nfacturing systems;
The discrete-event nature of the manufacturing systenpisoapmated by (piece-
wise) continuous dynamical models. Hence the productsisethrough the
manufacturing systems are considered as fluid streamgingsin dynamical
fluid models for manufacturing systems. The model predéatintrol design is
based on these fluid models of the discrete-event manuiiagteystem.

2. Discrete-event based model predictive control desigmfanufacturing sys-
tems;
The model predictive control design is directly based orsardite-event model
of the discrete-event manufacturing system.

Fluid model based model predictive control design for manudicturing systems

e ltis illustrated how input-to-state stabilizing model gigtive control with ro-
bust performance can be employed to solve a large scale anrihg control
problem, that possibly exhibits discontinuous hybrid hétis, in an efficient
decentralizednanner.
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e Due to the fact that the fluid models for controller synthesis (piecewise)
continuous and the actual to-be-controlled manufactisystem has a discrete-
event nature a quantization (or compatibility) problemmisaduced. It is indi-
cated how robustness results can be employed to synthesidel predictive
controllers based on fluid models of manufacturing systemsope with the
compatibility issues between fluid models of manufactusygtems and the
actual discrete-event nature of the real life manufactusistems.

e For a class of nonlinear manufacturing systems a model gtieelicontrol ap-
proach that establishes tracking behavior of the closeg-tystem for a class
of reference trajectory, which can typically correspondtstomer demands
over time, is developed.

Discrete-event based model predictive control design for anufacturing systems

e It has been shown that complementary to time domain modelimganufac-
turing systems the discrete-event nature of manufactiaystems enables to
model manufacturing systems from the so cakeént domairperspective. It
is shown that in contrast to relatively complex time domaiodeis, that are
obtained when modeling manufacturing systems, event domadeling facili-
tates obtaining relatively simple (analytical) differeremjuations as descriptions
of discrete-event manufacturing systems.

¢ A relation between event domain modeling and the time dommadeling of
a class of event driven manufacturing systems has beemeltaiThis result
opens possibilities to employ the relatively simple evemndin models to do
controller synthesis and perform computations for martufamy systems con-
trolled in the time domain.

e For a class of discrete-event manufacturing systems it bas shown, by uti-
lizing the relation between event- and time domain, thatdbetinuous time
model predictive control problem can be solved (withoutraggmations) by a
finite dimensional optimization problem.

e For discrete-event systems that can be described in the deerain as max-
plus linear systems a (dead-beat) observer design metimgdisl proposed.

¢ An output feedback stabilizing (MPC) tracking controller & class of discrete-
event manufacturing systems is proposed.
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8.2 Directions for future research

Some possible suggestions for future research in relatidhe topics listed in the
previous section are given in this section.

Robust nonlinear (hybrid) model predictive control

e For a given additive disturbance set, find ways to estimatéoai the region of
attraction, i.e. a robust positive invariant set of the ésdontrolled system in
closed-loop with the proposed input-to-state stabilizimgdel predictive con-
trol algorithm.

General robustness results for discrete-time nonlinear austrained systems

¢ It has been shown how state feedback laws that can rendesedeloop system
input-to-state stable with respect aolditive disturbancesan be transformed
into state feedbacks that can render the same closed-lstgnsynput-to-state
stable with respect to stateeasurement errorandadditive disturbancegand
actuator nois¢ Generalization of the robustness result for more gemtaases
of (discontinuous with respect to the state) nonlinearrdigstime systems is
recommended for future research.

Output feedback nonlinear model predictive control

e Search for less conservative small gain conditions whieh passibly, always
be satisfied irrespective of an a priori given input-to-Eaate feedback non-
linear model predictive controller.

e Explore the possibilities to drop thegularity assumption on the controller.
Since, a tight regularity constraint might impose reswits on the (constrained)
stabilizability of the to-be-controlled system, no regitlarequirement on the
controller will lead to improved feasibility of the modelattictive control prob-
lem.

e Extend the obtained asymptotic stability result of the etbfoop system to a
stronger input-to-state stability result. That is, edtkbinput-to-state stability
of the closed-loop system perturbed bytput measurement erroes distur-
bance input. This will be useful to conclude about robustnesutputmea-
surement noise which is always present in a practical gituat

e More research on the development of observer theoriesahnaiandle doybrid
model structure needs to be performed, while in particylisrithe context of
manufacturing systems hybrid model structures are enecenht

195



CHAPTER 8. CONCLUSIONS AND FUTURE RESEARCH

Fluid model based model predictive control design for manudcturing systems

e More research omnlecentralizednodel predictive controller design has to be
performed such that controller design becomes simpler anttaler compu-
tations become tractable for large scale manufacturingsys

¢ Investigate ways to quantify the quantization errors iredliby the fact that
discrete-event manufacturing systems are controlled Ioyralters which are
synthesized based on dynamical fluid models of those matumiiag systems.

Discrete-event based model predictive control design for anufacturing systems

e Extend the local convergence result for the proposed (tead) discrete-event
observer to a global result.

e Extend the proposed output feedback stabilizing (MPCkiraccontroller for
discrete-event manufacturing lines to the multiple inputput case.

Some more suggestions for future research, that are natlgirelated to one of the
afore mentioned topics, are listed in the sequel.

e It has been shown how state feedback laws that can rendeldbedeoop
system input-to-state stable with respecatiitive disturbances can be trans-
formed into state feedbacks that can render the closedslggipm input-to-state
stable with respect to stateeasurement errof@ndactuator noisg The result
applies to a class of input and state constrained nonlinisarade-time systems.
To explore the possibility to obtain a similar robustnessuhiefor continuous-
time nonlinear systems is an interesting subject for futesearch.

¢ Investigation on implementation aspects of the developedrol strategies in
industrial environments needs to be performed more thdrigug

e Performresearch in which the existing heuristic method#h® control of man-
ufacturing systems, such as material requirements plgr(M®RP) and just-in-
time production (JIT), are compared to the manufacturingrodstrategies that
are proposed in this thesis.

o Perform research on how (hybrid) control theory can coutélin solving man-
ufacturingschedulingoroblems.
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Summary

This thesis considers manufacturing systems and modedbamntroller design, as
well as their combinations. The objective of a manufactysiypstem is to create prod-
ucts from a selected group of raw materials and semifinisioedig In the field of
manufacturing systems control is an important issue ajpgat various operation
levels. At the level of fabrication, for example, controhiscessary in order to assure
properly working production processes such that produetbaing fabricated in the
desired way. At a higher level in the hierarchy of manufaomsystem control, the
productstreamsthrough the system are controlled in order to satisfy, faneple,
customer demands in an optimal way. Here, the definition ¢ifregd can be inter-
preted in various ways, such as “with the least possiblesdasierms of money” or
“in the shortest possible time”. In this research, the ditberis focussed on this higher
hierarchy level of manufacturing system control.

In the literature, many heuristic methods have been deeeléqr the control of a
manufacturing system. Nowadays, some heuristic methedgidibeing used in com-
bination with operator experience for management of ressuand planning of pro-
duction. However, as the complexity of the manufacturirgtems increases rapidly,
the (simple) heuristic methods and operator experiendeatvéome point become
incapable of finding an optimal control strategy.

In this dissertation the potential of considering manufeng system control from
a control systems point of view is investigated. The ultiengbal of the research is
to eventually obtain a more constructive way to addressrobet design for manu-
facturing systems. One control strategy from control systéheory, on which is in
particularly focused in this research, is a model-basegdiag horizon control strat-
egy, known in literature as Model Predictive Control (MPSince in manufacturing
systems a lot of physical systetonstraintsare involved, like for examplénite ma-
chine process capacitiéfinite product storage capacitiefite product arrival rates,
etc., the capability for a manufacturing control strateghandle those constraints is
a necessity. One of the key features of model predictiverobist the capability of
handling constraints in the controller design. This is oh#he major motivations to
investigate the model predictive control principle as ataarstrategy for manufac-
turing systems. Other issues that are important and thahtuel predictive control
design methodology can handle is to enforce optimalityntmoduce feedback, and
the capability of allowing for mixed continuous and diser@etodel structures. The
later are typically encountered when models of manufangsystems are derived.

The main results that are obtained in this dissertation hatdre relevant in the

context of manufacturing systems control, but are cergaiido relevant beyond this
field are:
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e One has developed an robust computationally friendly meali model predic-
tive control algorithm that can handle model structure$iwiixed continuous
and discrete dynamics. The algorithm can be designed fatiaeldisturbance
rejection purposes;

e Robustness (with respect to measurement noise) resuttarhan particulary
of interest in the field of nonlinear model predictive cohae obtained;

e An asymptotically stabilizing output based nonlinear nmqgatedictive control
scheme for a class of nonlinear discrete-time systems islojeed.

Results that are relevant in the context of manufacturistesys control are:

e ltisillustrated how the afore mentioned developed robastgutationally friendly
nonlinear model predictive control algorithm can be emptbjo solve a large
scale manufacturing control problem in an efficidatentralizednanner;

e The relation between the so-called event domain modelimgosghes for a
class of discrete-event manufacturing systems to time @omadels is derived.
This results enables one to solve seemingly untractabkedimmain formulated
optimal control problems for a class of manufacturing systén a tractable
manner;

e An observer theory for a class of discrete-event manufaglgystems is de-
veloped.
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Samenvatting

In dit proefschrift worden fabricagesystemen en modelagebrd regelaar ontwerp en
hun combinatie beschouwd. Het doel van een fabricage syssdeet creéren van pro-
ducten uit een geselecteerde groep van ruwe matrialen Eiabakaten. In de wereld
van de fabricagesystemen speelt regelen op allerlei videstale niveaus van oper-
atie een belangrijke rol. Op het niveau van product fabedagegelen bijvoorbeeld
noodzakelijk om te kunnen garanderen dat de productie psecede te produceren
producten volgens de gewenste specificaties producerege®poger niveau in de hi-
eragie van het regelen van fabricagesystemen worden dagisibmendoor het sys-
teem geregeld om bijvoorbeeld op een optimale manier agorbdtict vraag patroon
van de klanten te kunnen voldoen. De definitie van optimaahker op verschillende
manieren geinterpeteerd worden, zoals “met zo laag njkgédosten in termen van
geld” of “in een zo kort mogelijk tijd bestek”. In dit onderek, ligt de nadruk op
het regelen van fabricagesystemen op het zo net genoendegiseh hoger liggende
niveau.

In de literatuur zijn veel ontwikkelde heuristieken en ad htethoden ontwikkeld
voor het regelen van fabricagesystemen. Vandaag de dagwsoimmige van deze
heuristieken nog steeds gebruikt voor het management andgh van product stromen
door een fabriek. Maar omdat de complexiteit van fabricgstesnen snel toeneemt,
zijn de (eenvoudige) heuristieken niet meer toereikend @imaliteit de kunnen
garanderen.

In deze dissertatie wordt de potentie om voor het regelerfalaticagesystemen
een systeem regeltechnische aanpak te kiezen onderzatttoel van dit onderzoek
is om uiteindelijk een meer structurele en theoretisch dmalevde aanpak voor het
regelaar ontwerp met betrekking tot fabricagesystememteikkelen. Een van de
regelstrategién bekend vanuit de systeem theory, waamggfocuseerd in het onder-
zoek, is een modelgebaseerde regel strategie ook wel bakdaditeratuur als Model
Predictive Control (MPC). Omdat men in het geval van falgésystemen veelal met
fysische systeerheperkinger{constraints) temaken heeft, zoals bijvoorbesidlige
machine of process capaciteitemdigeproduct opslag mogelijkhedesindigeprod-
uct aankomst snelheden, enzovoort, moet een goede regelaahet regelen van
fabricagesystemen ook met deze systeem beperkingen konmgzman. Een van de
eigenschappen van de MPC regelstrategie is dat systeemklyepm, zoals net ge-
noemd, op een elegante manier kunnen worden verdiscormeertiregelaar ontwerp.
Dit is een van de voornaamste redenen om de MPC regelstategibetrekking tot
fabricagesystemen te onderzoeken. Andere belangrijkéeputie de MPC regel-
strategie biedt zijn, het afdwingen van optimaliteit, meticeren van een terugkoppel
mechanisme en de mogelijkheid om met een combinatie vanlzmménue als dis-
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crete (hybride) model structuren te kunnen omgaan. De atstlgenoemde model
structuur komt men typisch tegen als men mathematische lfendsleidt voor fab-
ricagesystemen.

De belangrijkste resultaten die uit het onderzoek naamveija gekomen en die
relevant zijn met betrekking tot het regelen van fabricggesnen, maar die zeker ook
relevant zijn voor het regeltechnische vakgebied in eermmesdr algemene zin zijn:

e Er is een robuust en niet reken intensief niet-lineair MPgbatme, dat kan
omgaan met model structuren die een combinatie zijn van lzooveinue als
discrete (hybride) dynamica, ontwikkeld. Het algoritme katworpen worden
om verstorings onderdrukking te garanderen;

e Robuustheids resultaten met betrekking tot meetruis &jkregen. Deze robu-
ustheids resultaten zijn met name interessant met betrgkad het niet-lineaire
MPC vakgebied;

e Eris een asymptotisch stabiliseerbare uitgang gebaseartdineair MPC al-
goritme ontwikkeld voor een klasse van niet-lineaire digestijd systemen.

Resultaten die relevant zijn in de context van het regelerfalaricagesystemen zijn:

e Eris geilustreert hoe de zo net genoemde ontwikkelde tayugiet reken in-
tensief niet-lineair MPC algoritme kan worden toegepaseemregel probleem
voor een grootschalig fabricagesysteem op een efficieetieaentralizeerde
manier op te lossen;

e Eriseenrelatie gevonden tussen het zo genoemde eventrdorodelleren van
een klasse van discrete-event fabricagesystemen enrtigidanodellen. Dit
resultaat maakt het mogelijk om een tijdsdomein formutgvian een optimaal
regel probleem voor een klasse van faricagesystemen atdaerraceren lijkt in
het tijdsdomain, op te lossen op een efficiente en tracezrbanier met behulp
van het event domein;

e Een waarnemer theory voor een klasse van discrete-evaitdgbsystemen is
ontwikkeld.
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1.

10.

11.

Propositions

Sub-optimal nonlinear model predictive controllershagiood disturbance re-
jection properties can be employed to solve a large scaleifaeturing control
problem in an efficient decentralized manri&his thesis, Chapter 3]

. Itis well known that for linear systems under linear sfatmback the following

statement holds: Input-to-state stability with respecadalitive disturbances
implies input-to-state stability with respect to state swgament noise. This
statement also holds for discrete-time nonlinear systdrasare continuous
with respect to the state and that are controlled by a seedahonlinear state
feedback law that is allowed to be discontinuous.

[This thesis, Chapter 4]

. A non-causal structure of state observers does not héesaanajor obstruction

in certainty equivalence output feedback model prediatomtrol.
[This thesis, Chapter 5]

. Although discrete-event manufacturing systems posisssntinuous behavior

in the time domain, a class of them can be described by canimisystem
equations in the event domaliithis thesis, Chapter 6 and 7]

. Although the optimization problem that results from atowmous-time formu-

lated model predictive control problem with finite predactihorizon is an infi-
nite dimensional problem in general, it can be convertedfioi® dimensional
optimization problem for a class of discrete-event systems

[This thesis, Chapter 6]

. A non-causal feedback control law which is robust to mesrsent errors can be

employed in combination with an anticipating observer itasyin successful
certainty equivalence output feedback contfohis thesis, Chapter 7]

. Alot of judgement/review systems are not aware that: ‘®arything that can

be counted counts, and not everything that counts can baexhln

. Apicture says more than thousand words but a formula says than a picture.

. From the proof of a statement one learns more than therstatdtself.

Understanding what is not possible is as important agnstethding what is
possible.

To some extent we are all slaves of society.
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PROPOSITIONS

12. Talent is like a marksman who hits a target that otheraaareach; genius is
like the marksman who hits a target others cannot even ség eXplains why
it is likely that the by society rejected homeless man skegpinder that bridge
is actually a genius.

Bas Roset
Eindhoven, July 2007
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