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For a successful technology, re-
ality must take precedence over
public relations, for Nature cannot
be fooled.

Richard Feynman 1
Introduction

In this thesis manufacturing systems and model-based controller design, as well as
their combinations are investigated. Due to increasing industrial complexity and the
costs involved, the need for efficient model-based manufacturing feedback control
strategies, to guarantee that the manufacturing system operates in an optimal way,
becomes stronger.

1.1 Manufacturing systems

A manufacturing system, is a transformation system in whichthe actual fabrication of
products takes place. In this sense manufacturing systems are defined as the means for
transforming or converting raw material inputs into usefulproduct outputs. The input-
conversion-output sequence is a useful way to conceptualize manufacturing systems,
beginning with the smallest unit of production activity, which one commonly refers
to as anoperation[1]. An operation is the smallest production step in the overall
process of producing a product that leads to the final output.A resourceis necessary
for the execution of an operation. Aprocessis a set of consecutive operations which
complete a significant stage in the manufacturing of a product. Material is the operand
that undergoes the process. The materials used as input to a manufacturing system are
calledraw materials, while the outputs of a manufacturing system are calledproducts.
Products are created by different operations on one or more raw materials. The way
these operations are performed is defined by arecipe. A recipe is a list of operations
that have to be executed. A recipe tells which operations have to be performed, what
raw material is involved and in which order the operations have to be executed.

A rough classification of manufacturing systems can be made by considering the
universality of the resources and the route flexibility inside the manufacturing system.
This results in the classesflow shopand job shop[2]. A flow shop is characterized
by dedicated and a fixed route. Flow shops are product-oriented manufacturing sys-
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CHAPTER 1. INTRODUCTION

tems. In a job shop there are universal resources which can beused for many different
operations and many possible routes. Job shops are process-oriented manufacturing
systems. The producing of high-volume standardized products in a flow shop results
in continuous use of the facilities. In contrast the production of small-batch variant
products in a job shop results in intermittent demand for thesystem’s facilities, and
the material flows from one process to the next is intermittently.

In order to explain the basic ”physics” of manufacturing systems a simple funnel
model is introduced. The funnel model for manufacturing systems is proposed in [3].
The model, which is based on the idea that every work station in a manufacturing
system can be abstracted into afunnel, see the left part of Figure 1.1. The funnel model
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Figure 1.1: Funnel model of manufacturing systems and throughput diagram.

can be employed as a tool to help in understanding the manufacturing process. All the
input orders want to pass the funnel, but they cannot get through at once because of the
capacity limit. The output orders correspond to the processing capacity. Hence, part
of the input orders form an inventory of waiting orders, which is depicted as work-in-
process in Figure 1.1. The mean flow time (or lead time) of an order is proportional
to the work-in-process, and it is inverse proportional to the capacity. The throughput
diagram, presented in the right part of Figure 1.1, represents the work input and output
at the work station over a period of time. At the start of the observation periodtb, one
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1.1. MANUFACTURING SYSTEMS

has to draw the input trend curve. The input trend curve is obtained by adding up the
input order work contents over time within the period. The output curve is constructed
by adding up the completed order work contents over time within the period. At the
end of the observation timete there is also a certain inventory, i.e. anend inventoryin
Figure 1.1, which can be seen as the begin inventory for the next observation period.
Further, the throughput diagram shows how the key values of work-in-process, flow
time and throughput (production rate) are related. Flow time is defined as the time
period between the time when an order arrives at the funnel and the time when it
leaves the funnel. The mean flow time is determined by calculating the arithmetic
mean of individual flow times. For a manufacturing system insteady stateoperation
the funnel model of the manufacturing system can be described by the so-called funnel
formula also known as Little’s law [4, 5]

Wm = ϕm ·δm, (1.1)

whereWm is the mean Work-In-Progress (WIP),ϕm is the mean flow time, andδm is
the mean throughput [output orders/period].

A typical manufacturing problem that one could be interested in is how to meet
the demands of customers meanwhile keeping a high profit for the company. One of
the measures is to have a reliable short delivery time of orders with a high produc-
tion rate (throughput) of the manufacturing system. Reliable short delivery times can
be ensured by reliable short flow times. The objectives of manufacturing are to ob-
tain short mean flow times of orders and reasonable high throughput of the system.
Both mean flow time and throughput can be adjusted by alteringthe mean work-in-
process. A high WIP generally results a high throughput, butleads to long flow times.
Low WIP may lead to short flow time, but it results in a low throughput. Obviously
mean throughput and mean flow time have a conflicting relation. For a manufacturing
system insteady stateoperation a graphical relation between throughput and mean
flow time as function of the mean work-in-progress can be obtained resulting in Fig-
ure 1.2 [5]. If the WIP is varied within a wide range, a corresponding variation of
the mean flow time will be the result, see Figure 1.2. The so-called critical pointson
the idealized mean flow time and throughput curves correspond to a WIP at which the
manufacturing system operates at its full capacity, i.e. maximum throughput, whereas
the flow time attains its minimum value which is equal to the mean processing or oper-
ation time. By increasing the WIP from this point the throughput does not change and
equals the capacity of the manufacturing system, but the mean flow time increases pro-
portionally with respect to the WIP. Note that the idealizedcurves in Figure 1.2 obey
Little’s law given in (1.1). By decreasing the WIP from the critical point the flow time
will remain constant and equal to the processing time of the manufacturing system,
while the throughput will proportionally decrease. Hence,the characteristic curves in
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Figure 1.2: The characteristic curves.

Figure 1.2 are divided into two parts. The shadowed part and the unshadowed part.
Within the unshadowed part machines in the manufacturing system will be idle or
waiting for orders from time to time. The shadowed part represents the case in which
the manufacturing system is always busy. The critical points indicated in Figure 1.2
are obviously the desiredsteady stateworking points. Thepractical critical points
are expected somewhat different from the theoretical ones and are more shifted to the
right (due to variability that is present in the system in practice). The dark shadowed
part indicates a desiredsteady stateworking region for the manufacturing system.
One of the goals ofcontrol in the context of manufacturing systems is to dynamically
stabilize the manufacturing system to the desiredsteady stateworking points. In the
next section control is introduced in the context of manufacturing systems.

1.2 Manufacturing systems and their control

In the field of manufacturing systems, control is an important issue, which appears
at various operation levels. At the process level, for example, control is necessary
in order to assure properly working processes. At an intermediate level, sequencing
and scheduling rules are used to decide which of the productsthat are waiting, in
front of a machine, should be processed first. At the top levelof a manufacturing
system, the product streams through the system are controlled to satisfy customer
demands in some optimal sense. Here, the definition of optimal can be interpreted
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1.2. MANUFACTURING SYSTEMS AND THEIR CONTROL

in various ways, such as “with the least possible costs in terms of money”, “in the
shortest possible time”. In this thesis, the attention is focussed on the top level of
control as just defined. The word control related to manufacturing systems should in
the remainder of the thesis therefore be interpreted in thiscontext.

Many heuristic methods such as Just-In-Time production (JIT), Kanban pull sys-
tem, Material Requirements Planning (MRP), ManufacturingResource Planning (MRP
II), Queueing Models and Load Oriented Order Release (LOOR), see e.g. [2] and ref-
erences therein, appear in the literature in relation to manufacturing system control.
From a strictly system theoretical point of view one could argue whether the word con-
trol in relation to the just mentioned heuristic is justified. In many cases the heuristic
methods do not even have a clearfeedback mechanisms, which is necessary when one
wants to react meaningfully on unforseen changes and perturbations occurring in the
system. Although the usage of the word control might be abused in relation to the
afore mentioned heuristics it is employed just for the ease of formulation.

The application of MRP to manufacturing control is considered as the big break-
through in the 1970’s within the manufacturing society. This approach ties together
in a computer program all the parts that go into complicated products. This enables
production planners to quickly adjust production schedules and inventory purchases
to meet changing demands for final products [6]. As soon as MRPconsidered re-
sources as well as materials, it was called MRP II. JIT production is clearly the major
breakthrough in manufacturing philosophy in the 1980’s. JIT is an integrated set of
activities designed to achieve high-volume production using minimal inventories of
parts that arrive at the workplace “just-in-time”. The Kanban pull system is simple
and self-regulating, which provides good management visibility. This system is de-
signed to produce only the number of parts needed by “pulling” the products through
the system. The Kanban pull system of inventory control works particularly well in
situations where standardized parts and products are cycled in the manufacturing sys-
tems, as for example in an assembly environment.

Nowadays, the afore mentioned heuristic methods are still being used in combi-
nation with operator experience for management of resources and planning of pro-
duction. However, as the complexity of the manufacturing systems rapidly increases,
the (simple) heuristic methods and operator experience will at some point become
incapable of finding an “optimal” control strategy.

In this dissertation the potential of considering manufacturing system control from
a system theoretic control point of view is investigated, with the ultimate goal of even-
tually obtaining a more constructive way to address controller design for manufactur-
ing systems. One of the famous existing theoretical controlframeworks for (discrete-
event) manufacturing systems is based on automata theory asproposed in [7]. How-
ever, one of the main drawbacks of this framework is the unsolved problem of state
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CHAPTER 1. INTRODUCTION

explosion. Among different existing control methods, in this dissertation the opti-
mal control framework with its receding horizon implementation often referred to as
Model Predictive Control (MPC), e.g. see [8, 9, 10, 11, 12] and references therein, is
chosen. The major reasons to investigate the model predictive control principle as a
control strategy for manufacturing systems are the potential of simultaneously

• to enforcingoptimality,

• to handleconstraints,

• to introducefeedback.

Since in manufacturing systems a lot of physical system constraints are involved, like
for examplefinite machine process capacities,finite product storage capacities,fi-
nite product arrival rates, etc., the capability for a manufacturing control strategy to
handle those constraints is a necessity. Furthermore, feedback is important to deal
with all kinds of unforseen or unpredictable chances or perturbations occurring in the
manufacturing system, like machine break downs. Other important motivations to in-
vestigate the model predictive control principle in relation to manufacturing systems
are

• the capability of allowing for the mixed continuous and discrete model struc-
tures. Model structures with mixed continuous and discretenature are some-
times referred to as hybrid models, which often are encountered when models
of manufacturing systems are derived.

• the intuitive principle on which the control strategy is based on and the way
manufacturers work in practice,

1.3 MPC: History and basic principle

Model Predictive Control (MPC), also referred to as receding horizon control, is a con-
trol strategy that offers appealing solutions for the control of a broad class of systems
that can be described by (piecewise) continuous (or discrete) time differential (or dif-
ference) equations. One of the key characteristic elementsof model predictive control
that distinguishes itself from other existing control strategies is the ability of handling
constraints, which are almost always present in (manufacturing) applications. Within
a relatively short time, model predictive control has reached a certain maturity because
of the continuously increasing interest for this distinctive part of control theory. This
is not only illustrated in many articles and books see, for example, [8, 9, 10, 11, 12]
and references therein, but also in many successful implementations in industry of
which some examples will follow in the sequel.

The initial model predictive control algorithms utilized only linear input/output
models. In this framework, several solutions have been proposed both in the industrial
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1.3. MPC: HISTORY AND BASIC PRINCIPLE

world and in the academic world: IDCOM - Identification and command (later MAC
- Model algorithmic control) at ADERSA [13] and DMC - Dynamicmatrix control at
Shell [14], which use step and impulse response models, MUSMAR - Multistep mul-
tivariable adaptive regulator [15] - the first model predictive control formulation that
is based on state-space linear models, and EPSAC - Extend predictive self-adaptive
control [16]. Generalized frameworks for setting up model predictive control algo-
rithms based on input/output models were also developed later on, from which the
most significant ones are GPC - Generalized predictive control [17] and UPC - Uni-
fied predictive control [18]. The next step of the academic community was to ex-
tend the model predictive control algorithms based on state-space models to continu-
ous (smooth) nonlinear systems, which includes the following approaches: nonlinear
model predictive control with zero state terminal equalityconstraint [19], dual-mode
nonlinear model predictive control [20] and quasi-infinitehorizon nonlinear model
predictive control [21]. More recent general set-ups for synthesizing stabilizing model
predictive control algorithms for smooth nonlinear systems can be found in [22, 23].
Another issue that makes model predictive control an attractive control strategy is that
it can in principle cope with hybrid model formulations. Thefirst model predictive
control approach for the control of hybrid systems has been reported quite recently
in [24, 25].

One of the reasons for the fruitful achievements of model predictive control algo-
rithms consists in the intuitive way of addressing the control problem. In comparison
with conventional control, which often uses a pre-computedstate or output feedback
control law, predictive control uses a model of the system toobtain a prediction of
its future behavior. This is done by applying a set of controltrajectory to a model,
with the measured state as initial condition, while taking into account the constraints.
An optimization problem built around a performance oriented cost function is then
solved to choose an optimal control trajectory from all feasible trajectory. A feedback
mechanism is then obtained in a receding horizon manner by applying to the system
only the first part of the computed optimal control trajectory, and repeating the whole
procedure at a next discrete-time step. Summarizing the above discussion, one can
conclude that model predictive control is built around the following principles:

• The explicit use of a model of the system to be controlled for calculating pre-
dictions of the future system behavior;

• The optimization of an objective function subject to constraints, which yields
an optimal control trajectory;

• The receding horizon strategy (which induces feedback), according to which
only the first part of the optimal control trajectory is applied on-line.

The model predictive control methodology involves solvingon-line an finite horizon
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optimal control problem subject to system and control trajectory constraints. A graph-
ical illustration of the basic concept is depicted in Figure1.3. Based on measurements
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Figure 1.3: Principle of the model predictive control strategy.

obtained at timet ∈ R+, the controller predicts the dynamic behavior of the system
over a prediction horizonTp ∈ R+ into the future and determines the control trajec-
tory such that a predetermined open-loop performance objective is minimized. If there
were no disturbances and no model mismatches, and if the optimization problem could
be solved over an infinite horizon, then the control trajectory found att = 0 could be
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1.4. MANUFACTURING SYSTEMS AS DISCRETE EVENT SYSTEMS

injected to the system for allt ∈ R+. However, due to disturbances, model mismatch,
and the finite prediction horizon the actual system behavioris different from the pre-
dicted one. To incorporate feedback, the optimal open-loopcontrol trajectory is in-
jected into the system only until the next sampling instantt + δ 1. At the next sample
instantt +δ new measurements from the physical system are available andthe whole
procedure - prediction and optimization - is repeated, moving the prediction horizon
forward.

In Figure 1.3 the open-loop optimal control trajectory is depicted as a (piecewise)
continuous function of time. To allow a numerical (approximate) solution of the open-
loop optimal control trajectory the control is often parameterized by a finite number
of basis functions, leading to a finite dimensional optimization problem. In practice
often a piecewise constant control trajectory is employed,leading toTp/δ decisions
for the control trajectory over the prediction horizon.

Depending on what kind of modeling framework one considers,there are various
ways of formalizing the model predictive control problem. Although continuous-time
models can be employed, see [9, 11] and Chapter 6 of this thesis, model predictive
control is often considered from a discrete-time perspective. One of the benefits of
considering model predictive control from a discrete-timeperspective is that the opti-
mal control trajectory does not have to be parameterized as to obtain a finite dimen-
sional optimization problem. Furthermore, the stability analysis in discrete-time is
in general less complex. One of the disadvantages of considering model predictive
control from a discrete-time perspective is the fact that itis usually hard to obtaining
discrete-time nonlinear models since, in general, the description of physical systems
leads to continuous-time models.

Clearly, modeling of the system to-be-controlled is an important issue in case the
model predictive control principle is employed. Modeling issues for control purposes
of manufacturing systems is therefore introduced next.

1.4 Manufacturing systems as discrete event systems

Manufacturing systems are mostly modeled and considered asa discrete event system
(DES), see e.g. [26]. Unlike continuous- or discrete-time dynamical systems, discrete
event systems are “driven” only byoccurrencesof different types of events instead of
time. An event, in the context of a manufacturing system, is achangeof the “mode
of being” of the manufacturing system that takes place at a certain point in time, such
as the arrival of a product at a buffer in front of a process, ora machine or process
becoming available to process a product. Note that, for example, product transport
and processing of a product by a machine are not events. They induce a changeover

1Note that in general the time between each new optimization,the sample timeδ , can vary.
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CHAPTER 1. INTRODUCTION

time in the system, however they do notchangethe “mode of being” of the system.
The start and end of such an action however are events. At eachevent the mode of
being of the manufacturing system changes; between two events the mode of being
remains unchanged.

Discrete event systems can be specified or described by logicrules, see e.g. [27,
28]. Events satisfy these logical specifications. Generally speaking, one can consider
discrete event systems that can evolve, i.e. events occur, without time elapsing. A class
of discrete event systems, which the manufacturing systemsthat are considered in this
thesis also belong to, are timed discrete event systems. In this class of discrete event
systems, some time has to elapse after some finite number of events have occurred. In
other words although the system is event driven events occurover time.

One of the major difficulties of analyzing discrete event systems from a system
theoretic point of view is the fact that those systems are hard to tackle in atime domain
based mathematical framework as there exists for continuous- or discrete-time dynam-
ical systems. However, there exists a mathematical machinery, see e.g. [29, 30, 31],
for a subclass of discrete event systems. A disadvantage, however, is that the mathe-
matical machinery can only be employed if the system modeling is performed in the
so calledevent domain. In event domaindescriptions, the evolution of time labels
associated to certain events are considered along a discrete event axis. Since, all sys-
tem theoretic notions and control objectives are time domain related a compatibility
and/or causality problem emerges. One of the contributionsof the thesis is having es-
tablished insight in the relation between the event domain and the time domain way of
modeling. This result makes it possible to utilize event domain related mathematical
tools to solve time domain control problems. This has been illustrated in the con-
text of a model predictive control problem and on an observerproblem for a class of
discrete-event manufacturing systems in Chapters 6 and 7 ofthe thesis.

1.5 Fluid models of manufacturing systems

Another way of looking at discrete-event manufacturing systems is to approximate
the relatively detailed nature of the discrete-event system description. In particularly
if there are a lot of products being processed by the manufacturing system, think for
example about mass fabrication of products, then from a modeling point of view it
could be justified to consider the product streams in the manufacturing system as fluid
streams, see e.g. [32, 33].

The idea of approximating discrete-event manufacturing systems is motivated by
the potential of the directly utilizing “conventional” existing control theory to synthe-
sis controllers for manufacturing systems. This approach is visualized in Figure 1.4,
see e.g. [34, 35]. In Figure 1.4 one can observe conversion blocks between the con-
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Figure 1.4: Framework of controller synthesis based on (piecewise) continuous model abstrac-
tion of discrete event manufacturing system.

troller and the discrete event manufacturing system. Theserepresent conversion algo-
rithms that are needed to establish compatibility between the discrete event system and
the controller. That is, discrete signals from the discreteevent system must be con-
verted to signals that are compatible with those the controller needs for feedback and
control signals the controller generates must be convertedto compatible commands,
i.e. control signals, for the discrete event system.

An important issue, which is induced by the conversion blocks, is a quantization
problem. Quantization errors are introduced due to the factthat the discrete nature
of a manufacturing system is approximated by something (piecewise) continuous of
nature. More details about this issue will follow later in the thesis, i.e. Chapter 4.

It is well known that a feedback law designed to be globally asymptotically sta-
bilizing for the system in absence of quantization errors may lead to instability if this
control law is implemented on the system where quantizationerrors are present, see
e.g. [36]. One reason for this is saturation: If the quantized signal is outside the range
of the quantizer, then the quantization error is large, and the control law designed for
the ideal case of no quantization may lead to instability. Another reason is deteriora-
tion of performance near the equilibrium: As the differencebetween the current and
the desired values of the state becomes small, higher precision is required, and so in
the presence of quantization errors asymptotic convergence is typically lost. Hence,
finding a stabilizing controller in the framework as depicted in Figure 1.4 is not suffi-
cient to guarantee stabilizing behavior of the designed controller in closed-loop with
the manufacturing system as depicted in Figure 1.4. Note that the above discussion
also holds for nonlinear model predictive controller design for manufacturing systems
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using the framework as depicted in Figure 1.4.
From the above discussion, it follows that it is important that the quantization

errors, for example, in the measurements employed in the controller are taken into
account in the controller design. However, existing (nonlinear) model predictive con-
trol schemes cannot cope with this issue. This is the motivation to investigate how to
design nonlinear model predictive control schemes in whichthis issue can be taken
into account. In Chapter 4 robustness results are obtained that can be employed in this
matter.

Recently a result on manufacturing control employing fluid models has appeared
in [37]. In [37] an LMI approach is followed to design controllers for manufacturing
systems. However, the approach followed by [37] can only capture linear fluid models
of manufacturing systems while fluid models for manufacturing systems are often non-
linear and might exhibit discontinuous, i.e. hybrid model structures. The approaches
proposed in this thesis can to some extend cope with the latermodel structures.

1.6 Objective outline and contributions

The objectives of the research presented in this thesis are

• The development of computationally friendly robust model predictive control
techniques for a class of nonlinear hybrid systems suitablefor manufacturing
system control;

• The development of observer-based output feedback model predictive control
techniques for nonlinear systems;

• The development of model predictive control techniques fordiscrete event man-
ufacturing systems.

Next it is explained how each chapter relates to the researchobjectives.
Chapter 2 “Preliminaries” In this chapter mathematical notation and definitions are
given, which will be used throughout the remainder of the thesis. Furthermore, stabil-
ity properties for discrete-time nonlinear difference inclusions such as Lyapunov sta-
bility [38, 39] and input-to-state stability [40, 41] are defined in this chapter. Sufficient
conditions for stability that allow for discontinuous system dynamics, non-uniqueness
of solutions and discontinuous candidate Lyapunov functions are given.
Chapter 3 “Nonlinear model predictive control: sub-optimality and robustness” This
chapter focuses on the synthesis of computationally friendly sub-optimal model pre-
dictive control algorithms for hybrid nonlinear with guaranteed robust stability of the
closed-loop system, i.e. input-to-state stability of the closed-loop system with re-
spect to additive disturbances. For the analysis of robustness of the to-be-controlled
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system in closed-loop with the model predictive controllerthe input-to-state stability
framework introduced in Chapter 2 is employed. Opposed to existing input-to-state
stabilizing model predictive control schemes simple stabilizing constraints, that can
be implemented as a finite number of linear inequalities, lead to a reduction of on-line
computational complexity of the controller. Besides that the designed model pre-
dictive controller renders the close-loop system input-to-state stable with respect to
additive disturbances alsosuppressionof the additive disturbance is established by in-
corporating a mechanism which gives feedback to disturbances. It is illustrated how
the developed model predictive control algorithm in this chapter can be employed to
efficiently solving a manufacturing network control problem in a decentralized way.
Chapter 4 “Robustness results for control and state constrained closed-loop systems”
The in Chapter 3 mentioned newly proposed model predictive control scheme can
a priori guarantee robustness, i.e. input-to-state stability, of the closed-loop system
with respect toadditive disturbances. However, does this also imply that the resulting
closed-loop system is, for example, input-to-state stableto state measurement errors
andactuator noise? For state and control constrained nonlinear systems controlled by
nonlinear model predictive controllers, which result in control laws that are possibly
discontinuous and/or set-valued, the mentioned question is still open. However, a re-
sult on this issue is given in this chapter. Note that the afore mentioned question is
one that does not necessarily has to be asked in the context ofmodel predictive con-
trol but can be stated in general. However, since model predictive control is one of
the few control strategies to deal in a systematic way with constraints, the result is in
particularly interesting in this field. The result in this chapter gives mild conditions
under which the afore mentioned question can be answers withyes. The value of this
result is emphasized due to the fact that nonlinear model predictive controller synthe-
sis methodologies that result in closed-loop systems that are input-to-state stable with
respect tostate measurement errors(andactuator noise) are rare, while there is a rel-
atively rich literature on how to synthesize model predictive controllers that can cope
with additive disturbances, see e.g. Chapter 3 of this thesis and [42, 43, 44, 45, 46, 47].
Then, based on the result in this chapter all model predictive control design method-
ologies in for example [42, 43, 44, 45, 46, 47] can, not only beemployed to render
the closed-loop system input-to-state stable with respectto additive disturbances, but
they can also be employed to render the closed-loop system input-to-state stable with
respect tostate measurement errorsandactuator noise. Furthermore, in the context
of manufacturing system control it is shown how the issue pointed-out in the end of
Section 1.5 can be treated employing the robustness result obtained in this chapter.
Chapter 5 “Nonlinear model predictive control: output feedback” The focus in this
part of the thesis is on how to synthesize stabilizing outputfeedback nonlinear model
predictive controllers. In contrast to Chapter 3, where knowledge of the full state of
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the to-be-controlled system is required, in this chapter one requires less information
of the to-be-controlled system to be available for feedback. That is, only knowledge
of theoutputis required. An observer-based approach is followed to solve the output
feedback nonlinear model predictive control problem. It isshown how toseparately
design a nonlinear observer and a nonlinear model predictive controller, which rep-
resents a possibly discontinuous state feedback control law, such that, by employing
the certainty equivalence principle, a stabilizingoutput feedbacknonlinear model pre-
dictive controller is obtained. For the analysis the input-to-state stability framework
introduced in Chapter 2 is employed.
Chapter 6 “Event driven manufacturing systems as time domain control systems” In
contrast to the previous chapters, i.e. Chapters 3, 4, wheremanufacturing systems are
controlled employing the model predictive control principle based onfluid modelsof
manufacturing systems, in this chapter the focus is on employing the model predictive
control principle directly based on thediscrete-eventdescription of the manufacturing
system. It is shown how besides time domain modeling, the discrete-event property of
manufacturing systems opens the opportunity to model manufacturing systems from
anevent domainperspective. It is shown that in contrast to relatively complex time
domain models, that are obtained when modeling manufacturing systems, event do-
main modeling facilitates obtaining relatively simple (analytical) difference equations
as descriptions of discrete-event manufacturing systems.Furthermore, it is shown that
under some conditions there exists a bijective mapping between the event and time do-
main modeling frameworks. This opens possibilities to employ the relatively simple
event domain models to do controller computations for manufacturing systems con-
trolled in time domain. This is illustrated on a discrete-event manufacturing system
controlled in time domain by employing the model predictivecontrol principle. A
continuous time model predictive control setup is formulated and it is shown how the
optimization problem involved can be solve via the event domain in a tractable way.
Chapter 7 “An event domain controller design approach for discrete-event manu-
facturing systems” In Chapter 6 a continuous time model predictive control setup is
formulated and it is shown how in case of discrete-event manufacturing systems the
involved optimization problem can be solved efficiently viathe event domain, which
is introduced in Chapter 6 of the thesis. However, a major open issue that remains,
is to formally prove closed-loop stability following the time domain model predictive
control setup in Chapter 6. To facilitate stability analysis, in this chapter a model
predictive control setup for discrete-event manufacturing systems is formulated in
event domain. Since in the event domain the description of the manufacturing sys-
tem dynamics can be described as difference equations (as isshown in Chapter 6)
this approach allows one to employ ”conventional” discrete-time stability analysis of
the resulting event domain closed-loop system. It is shown that the approach leads to
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1.7. INTERACTION BETWEEN CHAPTERS AND PUBLICATIONS

event domain controllers that are stabilizing in the event domain. However, a disad-
vantage of this approach is that the obtained controllers cannot straightforwardly be
employed in the time domain due to a causality problem that emerges. It is pointed
out how in case of manufacturing lines this causality problem can be taken care of by
using an observer.

1.7 Interaction between chapters and publications

The interactions between the chapters in the thesis is graphically presented by means
of a block diagram presented in Figure 1.5. Most of the material that is presented in


 



 
 







Chapter 1 Chapter 2

Chapter 3 Chapter 4 Chapter 5Chapter 6Chapter 7

Chapter 8

Figure 1.5: The interaction between chapters.

the chapters of this Ph.D. thesis is published, or accepted for publication, in journals
or conference proceedings. Some of the material has been submitted for publication
recently. Below it is indicated to which chapter of the thesis these publications belong
to.

• Chapter 3 is based on [43, 44].

• Chapter 4 is based on [48, 49].

• Chapter 5 is based on [50, 51, 52, 53].

• Chapter 6 is based on [54, 55].
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Any man whose errors take ten
years to correct is quite a man.

Robert Oppenheimer

2
Preliminaries

In this chapter stability properties for discrete-time nonlinear difference inclusions
such as Lyapunov stability and input-to-state stability are defined. Sufficient condi-
tions for stability that allow for discontinuous system dynamics, non-uniqueness of
solutions and discontinuous candidate Lyapunov functionsare given. Before treat-
ing the stability properties for discrete-time nonlinear difference inclusions, first some
mathematical notation and definitions are given, which willbe used throughout the
remainder of the thesis.

2.1 Mathematical preliminaries

In this section, some basic mathematical notation and standard definitions are given.

Sets and operations with sets

• The setsR, R+, Z andZ+ denote the set of real numbers, the set of non-negative
reals, the set of integers and the set of non-negative integers, respectively;

• For a setS ⊆ Rn or S ⊆ Zn and somen∈ Z>0.

– S≥c1 denotes the set{s∈ S |s≥ c1} for somec1 ∈ S ;

– S>c1 denotes the set{s∈ S |s> c1} for somec1 ∈ S ;

– S≤c1 denotes the set{s∈ S |s≤ c1} for somec1 ∈ S ;

– S<c1 denotes the set{s∈ S |s< c1} for somec1 ∈ S ;

– S[c1,c2] denotes the set{s∈ S |c1 ≤ s≤ c2} for somec1 ∈ S , c2 ∈ S≥c1;

– S(c1,c2] denotes the set{s∈S |c1 < s≤ c2} for somec1 ∈S , c2 ∈ S>c1;

– S[c1,c2) denotes the set{s∈S |c1 ≤ s< c2} for somec1 ∈S , c2 ∈ S>c1;
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– S(c1,c2) denotes the set{s∈S |c1 < s< c2} for somec1 ∈S , c2 ∈S>c1;

• For two arbitrary setsS1 andS2, S1 ⊂ S2 denotes “S1 is a subset of but not
equal to,S2”, S1 ⊆ S2 denotes “S1 is a subset of, or equal toS2”, S1∪S2

denotes theirunion, S1∩S2 denotes theirintersection, S1 \S2 denotes their
set difference;

• For a setS , S n denotes theCartesian productS ×S × . . .×S , whereS

appearsn times andn∈ Z≥1;

• The notationS P is a shorthand notation to denote the set of all maps fromP

to S ;

• For a setS ⊆ Rn, int(S ) denotes theinterior of S , cl(S ) denotes theclosure
of S , card(S ) denotes the number of elements ofS and Co(S ) denotes the
convex hullof S ;

• A polyhedron(or a polyhedral set) inRn is a set obtained as the intersection of
a finite number of open and/or closed half-spaces.

• Given(n+1) affinely independentpoints{s0,s1, . . . ,sn} of Rn, i.e. [1 s0⊤ ]⊤, . . . ,

[1 sn⊤ ]⊤ are linear independent inRn+1, asimplexS is defined as

S ,Co
{

s0, . . . ,sn
}

,

{
ξ ∈ Rn

∣∣ ξ =
n

∑
i=0

µis
i ,

n

∑
i=0

µi = 1, µi ∈ R≥0, for i = 0,1, . . . ,n
}
,

where Co{·} denotes theconvex hull.

• For two arbitrary setsS1 ⊆ Rn andS2 ⊆ Rn,

S1 ∼ S2 ,

{
x∈ Rn

∣∣ x+S2 ⊆ S1

}

denotes theirPontryagin differenceand

S1⊕S2 ,

{
x+y

∣∣ x∈ S1,y∈ S2

}

denotes theirMinkowski sum.

• A closed hyperball of dimensionn∈R≥1 with centerc∈Rn and radiusr ∈R>0

is defined by

Br(c) ,

{
ξ ∈ Rn

∣∣ |ξ −c|p ≤ r
}

.

• A singleton set, i.e. a setS having exactly one elements, is denoted by{s}.
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Vectors, matrices and norms

• For anyx∈ Rn, xi with i ∈ {1,2, ...,n} stands for theith component ofx;

• For a real numbera∈ R, |a| denotes its absolute value;

• The Hölderp-norm of a vectorx∈ Rn is defined as:

|x|p ,

{
(|x1|

p + . . .+ |xn|
p)

1
p , p∈ Z[1,∞)

max
i

|xi |, p = ∞,

where|x|2 is also known as the Euclidean norm and|x|∞ is also called the infin-
ity norm;

• For any matrixA the notationAi j is used to denote thei j -th entry ofA;

• For any matrixA∈ Rn×m andp∈ Z≥1 or p = ∞

|A|p , sup
x6=0

|Ax|p
|x|p

,

denotes its induced matrix norm. Forp = 2 the quantity supx6=0 |Ax|p/|x|p is
equal to themaximal singular valueof A, which is denoted byλ (A). Further-
more,

|A|∞ = max
1≤i≤m

n

∑
j=1

|Ai j |;

• In the sequel of the thesis one uses for anyx∈ Rn |x| as the shorthand notation
for an arbitrary norm onRn;

• A shorthand notation for ann×n identity matrix, i.e.I ∈ Rn×n, is denoted by
In;

• For any matrixA∈ Rn×m, di([A]N) denotes a block diagonal matrix of appropri-
ate dimension with the matricesA, ...,A appearingN ∈ Z≥1 times on the main
diagonal, i.e.

di([A]N) ,




A 0 . . . 0

0
...

...
...

...
. . .

. . . 0
0 . . . 0 A




︸ ︷︷ ︸
N times

;

• For a matrixA∈ Rm×n, A⊤ denotes its transpose;
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• For a matrixA∈ Rn×n, A−1 denotes its inverse (if it exists);

• For a matrixA ∈ Rn×n, A > 0 means “A is positive definite”, i.e. for all x ∈

Rn \ {0} it holds thatx⊤Ax> 0, andA = A⊤;

• For a matrixA∈ Rm×n with full-column rank,A−L , (A⊤A)−1A⊤ denotes the
Moore-Penrose inverse ofA, which satisfiesA−LA = In;

• A pair of matrices(C,A) ∈ Rp×n×Rn×n is called anobservable pairif

rank




C
CA
...

CAn−1




= n;

• A matrix A∈ Rn×n is calledSchurif all its eigenvalues are within the unit disk.

Functions and function classes

• A function γ : R+ → R+ is aK -functionif it is continuous, strictly increasing
andγ(0) = 0;

• A functionγ : R+ → R+ is aK∞-functionif it is a K -functionand in addition
it is radially unbounded, i.e.γ(s) → ∞ ass→ ∞;

Remark 2.1.1 If γ is of classK∞ then the inverse functionγ−1 is well defined
and is again of classK∞.

• A functionβ : R+×R+ → R+ is aK L -functionif, for each fixedk∈ R+, the
functionβ (·,k) is aK -function, and for each fixeds∈ R+, the functionβ (s, ·)
is non-increasing andβ (s,k) → 0 ask→ ∞;

• Composition of two functionsf : Rn →Rm andg : Rv →Rn is denoted byf ◦g;

• For a functionf : R → R, theright limit of f (x) asx approachesa is denoted
by

f (a+) , lim
x→a+

f (x).

In words: f (a+) is the value the functionf (x) approaches, if any, asx values
larger thana get close toa;
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• For a functionf : R → R, theleft limit of f (x) asx approachesa is denoted by

f (a−) , lim
x→a−

f (x).

In words: f (a−) is the value the functionf (x) approaches, if any, asx values
smaller thana get close toa;

• A function f : Rn → Rn is calledhomogeneousif

∀ξ ∈ Rn, ∀h∈ R, f (ξ +h) = f (ξ )+h;

• The space of continuously differentiable functions is denoted byC1;

• A function φ : Z+ → Rn, i.e. φ(k), is for shorthand notational purposes also
denoted asφk;

• The notationlim
k→∞

φk is a shorthand notation for limsup
k→∞

φk;

• For a functionφ : Z+ → Rn, ‖φ‖ is defined as

‖φ‖ , sup
k∈Z+

|φk| (if it exists);

• For anyk∈ Z+ and any functionφ : Z+ → Rn, φ〈k] denotes thetruncationof φ
at k, i.e.,φ〈k]( j) = φ( j) if j ∈ Z[0,k], andφ〈k]( j) = 0 if j ∈ Z>k.

• For anyk ∈ Z+ and any functionφ : Z+ → Rn, φ[k〉 denotes thepre-truncation
of φ at k, i.e.,φ[k〉( j) = φ( j) if j ∈ Z≥k, andφ[k〉( j) = 0 if j ∈ Z[0,k).

• A function q : X×S → Rn with X ⊆ Rnx andS ⊆ Rns is Lipschitz continuous
with respect tox in the domainX×S, if there exists a constantLq such that for
all x1, x2 ∈ X and for alls∈ S,

|q(x1,s)−q(x2,s)| ≤ Lq|x
1−x2|. (2.1)

The constantLq is called theLipschitz constantof q with respect tox.

• By the notationF : X →֒ Y for X ⊆ Rnx andY ⊆ Rny, it is meant thatF is a
set-valued function fromX to Y, i.e.F (x) ⊆ Y for eachx∈ X.

25



CHAPTER 2. PRELIMINARIES

Max-plus algebra

Defineε , −∞ and denoteRε , R∪{ε}. For elementsx,y∈ Rε , one can define the
operations max-plus addition, i.e.⊕, and max-plus multiplication, i.e.⊗ as

x⊕y, max{x,y} and x⊗y, x+y.

The setRε together with the operations⊕ and⊗ is calledmax-plus algebraand is
denoted byRε = (Rε ,⊕,⊗,ε,0). It can be shown that the max-plus algebraRε =

(Rε ,⊕,⊗,ε,0) is an algebraic structure calledsemiring. That is, the sum⊕ is associa-
tive (∀a,b,c∈ Rε , (a⊕b)⊕c= a⊕ (b⊕c)), commutative(∀a,b∈ Rε , a⊕b= b⊕a),
idempotent(∀a∈ Rε , a⊕a = a) and admits aneutralelementε (∀a∈ Rε ,a⊕ ε = a).
Furthermore, the product⊗ is associative, distributes over the sum (∀a,b,c ∈ Rε ,
(a⊕b)⊗c = (a⊗c)⊕ (b⊗c), c⊗ (a⊕b) = (c⊗a)⊕ (c⊗b)), admits a neutral ele-
ment 0 andε is absorbing for the product (∀a∈ Rε , a⊗ ε = ε). The main reason to
employ, in the max-plus algebra, the symbols⊕ and⊗ for max and+, from the “con-
ventional” algebra, respectively, is the analogy that thenarises with the conventional
algebra, like eigenvectors and eigenvalues, etc.

For anyx∈ Rε define

x⊗
k
, x⊗x⊗ . . .⊗x︸ ︷︷ ︸

k times

, ∀k∈ Z≥1, x⊗
0
, 0.

Note thatx⊗
k

corresponds tokx in conventional algebra.
The set ofm×n matrices with entries inRε is denoted byRm×n

ε . For matrices
A,B∈Rm×n

ε andC∈R
n×p
ε one can extend the max-plus operations in the conventional

manner.

(A⊕B)i j , Ai j ⊕Bi j = max
{

Ai j ,Bi j

}
, ∀i ∈ Z[1,n], j ∈ Z[1,m],

(A⊗C)iℓ ,

n⊕

k=1

Aik ⊗Ckℓ = max
k∈Z[1,n]

{
Aik +Ckℓ

}
, ∀i ∈ Z[1,n], ℓ ∈ Z[1,p].

The matrixE ∈ Rn×n
ε is the identity matrix in max-plus algebra, i.e.Ei j , 0, for all

i ∈Z[1,n] andEi j , ε, for all i 6= j and the “zero” matrix is denoted asε whereε i j , ε.
For any matrixA∈ Rn×n

ε , thekth max-plus power ofA is denoted with

A⊗k
, A⊗A⊗ . . .⊗A︸ ︷︷ ︸

k times

, ∀k∈ Z≥1, A⊗0
, E.

Moreover, defineA∗, whenever it exists, by

A∗ , lim
k→∞

E⊕A⊕ . . .⊕A⊗k
. (2.2)

26



2.1. MATHEMATICAL PRELIMINARIES

The star operator as defined in (2.2) is also known as theKleene staroperator. Some
properties of the Kleene star operator, if it exists, are:∀A,B∈ Rn×n

ε

(A∗)∗ = A∗, (2.3a)

A(BA)∗ = (AB)∗A, (2.3b)

(A⊕B)∗ = (A∗B)∗A∗ = B∗(AB∗)∗ = (A⊕B)∗A∗ = B∗(A⊕B)∗, (2.3c)

A∗A∗ = A∗. (2.3d)

Note that in above relations the operation⊗ is omitted for notational simplicity pur-
poses.

The following statement is proven in [31].

Lemma 2.1.2 Suppose that A∈ Rn×n
ε such that Ai j < 0 for all i , j ∈ Z[1,n]. Then the

following relations hold:

i)
lim
k→∞

A⊗k
= ε ;

ii) The matrix A∗ defined in(2.2)exists and is given by

A∗ = E⊕A⊕ . . .⊕A⊗n−1
.

A matrix P∈ Rn×n
ε is invertible in the max-plus algebraic sense if there exists a matrix

P⊗−1
∈ Rn×n

ε such thatP⊗−1
⊗P= P⊗P⊗−1

= E.

Definition 2.1.3 Let A ∈ Rn×n
ε . Then,λ ∈ Rε is amax-plus eigenvalueandη ∈ Rε

(whereη has at least one finite entry) is a max-plus eigenvector if

A⊗η = λ ⊗η .

Note that a square matrix might have more than one max-plus eigenvalue. The largest
max-plus eigenvalue of a square matrix is denoted asλ ⋆. A matrix A∈ Rn×m

ε is row-
finite if for any row i ∈ Z[1,n],

max
j∈Z[1,m]

Ai j > ε.

Matrix A∈ Rn×m
ε is column-finiteif for any column j ∈ Z[1,m]

max
i∈Z[1,n]

Ai j > ε.

The following statement is proven in [31].
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Lemma 2.1.4 Let A∈ Rm×n
ε be a matrix which is row-finite, then

|(A⊗x)− (A⊗y)|∞ ≤ |x−y|∞, ∀x,y∈ Rm.

Define the notation

x⊕
′
, min{x,y}, and x⊗

′
y , x+y, (2.4)

where the operations⊗ and⊗
′
differ only in that(−∞)⊗ (+∞) ,−∞, while (−∞)⊗

′

(+∞) , +∞. The matrix multiplication and addition for(⊕
′
,⊗

′
) are defined similarly

as to the case that one defined for(⊕,⊗).

Some more basic max-plus algebraic results from [56, 29, 31]are

Lemma 2.1.5 Suppose A∈ Rn×n
ε and b∈ Rm

ε . Then, the inequality

A⊗x≤ b

has the largest solution given by

x̆ = (−A⊤)⊗
′
b = −(A⊤⊗ (−b)).

By largest solution it is meant that for all x satisfying A⊗x≤ b one has that x≤ x̆.

Lemma 2.1.6 Suppose A∈ Rn×n
ε and b∈ Rn

ε . If Ai j ≤ 0 for all i , j ∈ Z[1,n], then the
equation

x = A⊗x⊕b

has a solution

x = A∗⊗b. (2.5)

Furthermore, if Ai j < 0 for all i , j ∈ Z[1,n], then the solution in(2.5) is unique

Lemma 2.1.7 Suppose A∈ Rn×n
ε and b∈ Rn

ε . If A∗ exists, then the “least solution”
of the equation

x = A⊗x⊕b (2.6)

is given by

x = A∗⊗b. (2.7)

With the “least solution” is meant that for any other possible solution of(2.6), denoted
by x̃, there holds̃x≥ A∗⊗b.
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Residuation theory

Residuation allows one to define a (pseudo)-inverse operation in the max-plus algebra
to solve an equation of for example typea⊗ x = b with a,b∈ Rε . In the sequel one
will, for notational simplicity purposes, omitted⊗. In the max-plus algebra, the left
and right quotients are defined as follows

a\b , max{x | ax≤ b} (2.8)

a/b , max{x | xb≤ a} (2.9)

a\b/c, max{x | axc≤ b} (2.10)

Some examples of residuation in max-plus algebra are

a\b = b−a if a andb are finite,
a\(+∞) = (+∞) for all a,

a\ε = ε for all a finite,
ε\a = +∞ for all a,

(+∞)\a = ε if a 6= +∞.

(2.11)

The left and right quotients defined for scalars in the max-plus algebra by (2.8), (2.9)
and (2.10) can also be extended to matrices. Consider the following linear equations
in X ∈ Rn×m

ε

AX = B, XC= D, AXC= F

whereX,A,B,C,D andF are matrices inR•×•
ε , where• should be read as “appropriate

dimensions”. The left and right quotients for matrices are then defined as

A\B,
∨{

X
∣∣AX≤ B

}
, (2.12a)

D/C ,
∨{

X
∣∣XC≤ D

}
, (2.12b)

A\F/C ,
∨{

X
∣∣AXC≤ F

}
, (2.12c)

where
∨

should be read as the “greatest”. The following relations relate the residua-
tion of matrices to scalars

(A\B)i j , min
k

{
Aki\Bk j

}
,

(D/C)i j , min
ℓ

{
Aiℓ/Cjℓ

}
,

(A\F/C)i j , min
kℓ

{
Aki\Fkℓ/Cjℓ

}
.
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Assume one has the following matricesA∈R
p×n
ε , B∈R

n×p
ε , M ∈R

p×p
ε andN∈Rn×n

ε .
Then some properties of matrix residuation are

A\A= (A\A)∗

B/B= (B/B)∗

A\(M∗A) = (M∗A)\(M∗A) = (A\(M∗A))∗

(AN∗)/A = (AN∗)/(AN∗) = ((AN∗)/A)∗

(2.13)
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2.2 Lyapunov stability

The Lyapunov stability property of a continuous-time nonlinear systems, introduced
in the work [38], is a well known system property studied in control systems theory.
Practically, the goal of any controller design methodologyis to obtain a closed-loop
system which is at least Lyapunov stable. Examples of references where extensions of
Lyapunov stability to discrete-time nonlinear systems have been considered are [57]
and [58], whose work is summarized in [39]. Lyapunov stability for discrete-time
systems became more important in control applications whendigital computers came
into the picture. Furthermore, an interesting property that is encountered in discrete-
time, is that the candidate Lyapunov function, as in contrast to continuous-time, and
the system dynamics do not necessarily have to be continuous. Only continuity at the
equilibrium point is required. This is pointed-out and formally proven in [25]. This
property is very interesting for hybrid systems, as in this case the system dynamics
can be discontinuous. In this section the Lyapunov stability notion is formulated for
the class of nonlinear difference inclusions that are allowed to be discontinuous.

Consider an autonomous system described by the following discrete-time nonlin-
ear difference inclusion

xk+1 ∈ F (xk), k∈ Z+, (2.14)

wherexk ∈ Rn is the state at discrete timek ∈ Z+, F : Rn →֒ Rn is a set-valued
mapping that is allowed to be discontinuous andF (ξ ) 6= /0 for all ξ ∈ Rn. The latter
condition guarantees that for each initial statex0 at timek = 0 there exists a solution,
not necessarily unique, to system (2.14). The set of corresponding solutions of the
difference inclusion (2.14) is denoted bySF (x0). Furthermore, a pointxeq∈ Rn is an
equilibrium point of system (2.14) ifF (xeq) = {xeq}.

Definition 2.2.1 Let xeq∈ Rn be an equilibrium point of system (2.14) and letX ⊆

Rn be a set withxeq∈ int(X ). Then, the equilibrium pointxeq is

i) (Lyapunov) stablewith respect to initial statesx0 in X if for any ε ∈ R>0 there
exists aδ = δ (ε) ∈ R>0 such that for eachx0 ∈ X all solutionsx∈ SF (x0) satisfy
the following implication

|x0−xeq| ≤ δ ⇒ |xk−xeq| ≤ ε, ∀k∈ Z+.

Or equivalently, see [59]:

(Lyapunov) stablewith respect to initial statesx0 in X if there exists aK -functionϕ
such that for eachx0 ∈ X all solutionsx∈ SF (x0) satisfy

|xk−xeq| ≤ ϕ(|x0−xeq|), ∀k∈ Z+. (2.15)
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ii) Attractivewith respect to initial states inX if for eachx0 ∈ X all solutionsx ∈

SF (x0) satisfy

lim
k→∞

|xk−xeq| = 0.

iii) Asymptotically stablewith respect to initial statesx0 in X if it is both (Lyapunov)
stableandattractivefor initial statesx0 in X , respectively.

iv) Exponentially stablewith respect to initial statesx0 in X if there existsK ∈ R>0

andρ ∈ R[0,1) such that for eachx0 ∈ X all solutionsx∈ SF (x0) satisfy

|xk−xeq| ≤ Kρk|x0−xeq|, ∀k∈ Z+.

Definition 2.2.2 A setP ⊆ Rn is calledPositively Invariant(PI) for system (2.14) if
for all ξ ∈ P it holds thatF (ξ ) ⊆ P.

In the sequel sufficient conditions for the given stability properties in Definition 2.2.1
of an equilibrium point of the autonomous system, describedby discrete-time nonlin-
ear difference inclusion in (2.14), is formulated.

Theorem 2.2.3LetX ⊆Rn be a bounded PI set for system(2.14)with xeq∈ int(X )

and letα1, α2 andα3 be classK -functions. Suppose there exists a function V: X →

R+ with V(xeq) = 0 such that for allξ ∈ X the following inequalities hold

α1(|ξ −xeq|) ≤V(ξ ) ≤ α2(|ξ −xeq|), (2.16a)

sup
φ∈F (ξ )

V(φ) ≤V(ξ )−α3(|ξ −xeq|). (2.16b)

Then the following results hold:

i) The equilibrium point xeq of system(2.14) is asymptotically stablewith respect to
initial states x0 in X .

ii) If the inequalities in(2.16)hold with α1(s) , asλ , α2(s) , bsλ andα3(s) , csλ

for some constants a,b,c,λ ∈ R>0, then the equilibrium point xeq of system(2.14)is
exponentially stablewith respect to initial states x0 in X .

Proof:

i) (Lyapunov) stability:Let xk represent a solution of (2.14) a timek ∈ Z+ obtained
from the initial conditionx0 at timek= 0. Take aϑ ∈R>0 such that the ballBϑ (xeq),

{ξ ∈ Rn | |ξ −xeq| ≤ ϑ} satisfiesBϑ (xeq) ⊆ X . Sinceα1, α2 ∈ K one can choose
for anyε ∈ R(0,ϑ ] a δ ∈ R(0,ε) such thatα2(δ ) < α1(ε). Due topositive invariance
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of X , from (2.16a) and (2.16b) it then follows that for anyx0 ∈ Bδ (xeq) ⊆ X all
solutionsx∈ SF (x0) satisfy

. . . ≤V(xk+1) ≤V(xk) ≤ . . .V(x0) ≤ α2(|x0−xeq|) ≤ α2(δ ) ≤ α1(ε). (2.17)

Since that, due to (2.16a), one has thatV(ξ ) ≥ α1(ε) for all ξ ∈ X \Bε(xeq) it
follows that for allx0 ∈ Bδ (xeq) all solutionsx∈ SF (x0) satisfyxk ∈ Bε (xeq) for all
k∈ Z+. Hence, the equilibrium pointxeq of (2.14) is(Lyapunov) stable.

Attractivity: Since∆(xk) ,V(xk+1)−V(xk) ≤ 0 andV(·) is lower bounded by zero, it
follows that lim

k→∞
V(xk) = VL ≥ 0 exists. Then,

lim
k→∞

∆V(xk) = VL −VL = 0.

Since 0≤ α3(|xk−xeq|) ≤ ∆V(xk), it follows that

lim
k→∞

α3(|xk−xeq|) = 0. (2.18)

Assume by contradiction that for a solutionx |xk − xeq| 9 0 for k → ∞. Then there
would exists a subsequenceq, i.e. qℓ = xk+ℓ for ℓ ∈ Z+ and somek ∈ Z+ such that
|qℓ−xeq| > µ > 0 for all ℓ ∈ Z+, which by monotonicity and positivity ofα3 implies
that α3(|qℓ − xeq|) ≤ α3(µ) > 0 for all ℓ ∈ Z+. Hence, one reached a contradiction
of convergence ofα3(|xk − xeq|) to zero as in (2.18). Hence, for eachx0 ∈ X all
solutionsx∈ SF (x0) satisfy

lim
k→∞

|xk−xeq| = 0,

which implies thatxeq is attractivewith respect to initial states inX and thus, the
equilibrium pointxeq of system (2.14) isasymptotic stablewith respect to initial states
in X .

ii) Exponentially stability: Due topositive invarianceof X , from (2.16a) and (2.16b)
it follows that for eachx0 ∈X all solutionsx∈SF (x0) satisfyV(xk)≤α2(|xk−xeq|)

andV(xk+1)−V(xk)≤−α3(|xk−xeq|) for all k∈Z+. Then, one has that for allk∈Z+

V(xk+1)−V(xk) ≤−c|xk−xeq|
λ = −

c
b

α2(|xk−xeq|) ≤−
c
b

V(xk).

This implies that for allx0 ∈ X

V(xk) ≤
(

1−
c
b

)k
V(x0), ∀k∈ Z+.

To show that
(
1− c

b

)
∈ R[0,1) the inequalities in (2.16) are employed, which yields

0≤V(xk+1) ≤V(xk)−c|xk−xeq|
λ ≤

≤ α2(|xk−xeq|)−c|xk−xeq|
λ = (b−c)|xk−xeq|

λ .
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Hence, it follows thatc∈R(0,b]. Then, one has thatρ̆ ,
(
1− c

b

)
∈R[0,1). From (2.16a)

it follows that for allx0 ∈ X

a|xk−xeq|
λ ≤V(xk) ≤ ρ̆kV(x0) ≤ ρ̆kb|x0−xeq|

λ , ∀k∈ Z+.

Hence, for allx0 ∈ X

|xk−xeq| ≤ Kρk|x0−xeq|, ∀k∈ Z+,

with

K ,

(
b
a

) 1
λ
∈ R>0 and ρ , ρ̆

1
λ ∈ R[0,1).

This means that the equilibrium pointxeq is exponentially stablewith respect to initial
statesx0 in X .

Definition 2.2.4 A function V(·) that satisfies the hypothesis of Theorem 2.2.3 is
called aLyapunov function.

Another result that will be employed later in the thesis is the following converse Lya-
punov statement, which is obtained in [60].

Theorem 2.2.5SupposeF (xk) in (2.14)is defined as

F (xk) = {Γ(xk)}, (2.19)

with Γ : Rn → Rn is Lipschitz continuous in the domainRn with Lipschitz constant
LΓ. Let xeq be an equilibrium point of(2.14), i.e. Γ(xeq) = xeq, which isexponentially
stablewith respect to initial states x0 in X = Rn. Then, there exists a Lipschitz
continuous Lyapunov function V(·) and constants a,b,c ∈ R>0 and λ ∈ R≥1, such
that for all ξ ∈ X = Rn

a|ξ −xeq|
λ ≤V(ξ ) ≤ b|ξ −xeq|

λ , (2.20a)

V(Γ(ξ )) ≤V(ξ )−c|ξ −xeq|
λ . (2.20b)

Proof: Let xk represent the solution of (2.14) at timek corresponding to initial
statex0 at timek = 0. As the system isexponentially stablewith respect to initial
statesx0 in Rn, there exist constantsK ∈ R>0 andρ ∈ R[0,1), such that

|xk+ j −xeq| ≤ Kρ j |xk−xeq|, for all xk ∈ Rn and j,k∈ Z+. (2.21)
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ChooseN such thatKρN+1 < 1, which is possible sinceρ < 1. In the sequel it will be
proven that the candidate Lyapunov function

V(xk) =
k+N

∑
j=k

|x j −xeq| (2.22)

satisfies inequalities (2.20a) and (2.20b). The choice of the candidate Lyapunov func-
tion (2.22) immediately leads to

V(xk) ≤ K1|xk−xeq|, ∀k∈ Z+, (2.23)

with K1 , K(1+ ρ + ρ2+ . . .+ ρN). Also

V(xk) ≥ |xk−xeq| ∀k∈ Z+. (2.24)

Inequality (2.23) and (2.24) proves that (2.20a) is satisfied for the candidate Lyapunov
function (2.22) for constantsa= 1, b= K1 andλ = 1. Next, for allk∈ Z+ there holds

V(Γ(xk))−V(xk) =V(xk+1)−V(xk) = |xk+N+1−xeq|− |xk−xeq|

≤ −K2|xk−xeq|,
(2.25)

in whichK2 ,
(
1−KρN+1

)
∈R>0 due to the fact thatN is chosen such thatKρN+1 <

1. Inequality in (2.25) proves that (2.20b) is satisfied for the candidate Lyapunov
function (2.22) forc = K2. HenceV(·) in (2.22) is a Lyapunov function.

To complete the proof, one has to show that the Lyapunov function in (2.22) is
Lipschitz continuous inRn. Define

Γ( j) , Γ◦Γ◦ . . .◦Γ︸ ︷︷ ︸
j times

. (2.26)

Utilizing the Lipschitz property ofΓ, one has that for allξ1,ξ2 ∈ Rn and j ∈ Z[1,N]

there holds
|Γ( j)(ξ1)| ≤ L j

Γ|ξ1|, and |Γ( j)(ξ2)| ≤ L j
Γ|ξ2|. (2.27)

This leads to

V(ξ1)−V(ξ2) = (|ξ1−xeq|− |ξ2−xeq|)+ (|Γ(ξ1)−xeq|− |Γ(ξ2)−xeq|)+ . . .+

(|Γ(N)(ξ1)−xeq|− |Γ(N)(ξ2)−xeq|)

≤ |ξ1− ξ2|+ |Γ(ξ1)−Γ(ξ2)|+ . . .+ |Γ(N)(ξ1)−Γ(N)(ξ2)|

≤ LV |ξ1− ξ2|,
(2.28)

with the Lipschitz constantLV defined as

LV = 1+LΓ + ...+LN
Γ . (2.29)
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2.3 Input-to-state stability

For continuous-time nonlinear systems affected byexternal disturbances, the input-
to-state stability (ISS) framework has been introduced in [40, 61, 62, 63, 64]. This
framework generalizes the Lyapunov stability concept to systems affected by external
disturbances, like measurement noise, uncertainty in models modeled by for exam-
ple an external disturbance. Extensions of the input-to-state stability framework to
discrete-time nonlinear systems has been developed recently in [41, 65, 66]. Similarly
to the Lyapunov stability property, sufficient conditions for input-to-state stability can
be derived in terms of a so-called candidate ISS Lyapunov function which must en-
joy certain properties. In this chapter a particular case ofthe more general sufficient
conditions of [41] is considered to establish explicit bounds on the evolution of the
perturbed system’s state. Furthermore, it will be shown that continuity at the equi-
librium point alone, rather than continuity on a neighborhood of the equilibrium is
sufficient for input-to-state stability for discrete-timesystems. This has been pointed
out in [25]. In this section the input-to-state stability notion, and a related notion
known as input-to-output stability, is formulated for the class of nonlinear difference
inclusions that are allowed to be discontinuous.

Consider a non-autonomous system described by the discrete-time nonlinear dif-
ference inclusion

xk+1 ∈ F (xk,vk), k∈ Z+, (2.30a)

yk ∈ G (xk,vk), k∈ Z+, (2.30b)

wherexk ∈X ⊆Rn is the state,vk ∈V ⊆Rnv a disturbance andyk ∈ Rny the output at
discrete-timek∈Z+, respectively. The setV is assumed to be a known set with 0∈ V.
Furthermore,F : X ×V →֒ X and G : X ×V →֒ Rny are set-valued mappings
with F (ξ ,υ) 6= /0 andG (ξ ,υ) 6= /0 for all ξ ∈ X and all υ ∈ V. Hence, for all
ξ ∈ X and allυ ∈ V one has that /0= F (ξ ,υ) ⊆ X which guarantees that for each
initial statex0 ∈ X at timek = 0 and disturbance functionv : Z+ → V there exists
a global solution, not necessarily unique, to system (2.30). The set of corresponding
solutions of the state and output of difference inclusion (2.30) is denoted bySF (x0,v)
andSFG (x0,v), respectively. A pointxeq ∈ X is an equilibrium point of system
(2.30) if F (xeq,0) = {xeq} andG (xeq,0) = {yeq} for someyeq∈ Rny. The condition
F (ξ ,υ) ⊆ X for all ξ ∈ X and allυ ∈ V is related to robust positive invariance.

Definition 2.3.1 Given a disturbance setV, a setP ∈ Rn is calledRobust Positively
Invariant (RPI) for system (2.30) if for allξ ∈ P it holds thatF (ξ ,υ) ⊆ P for all
υ ∈ V.
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Definition 2.3.2 For given setsX̂ ⊆ X andV ⊆ Rnv, with xeq ∈ int(X̂ ), the the
equilibrium pointxeq is called

i) Input-to-State Stable (ISS)with respect to disturbancesv : Z+ →V and initial states
x0 in X̂ , if there exist aK L -functionβx and aK -functionγv

x such that for each
functionv : Z+ → V and eachx0 ∈ X̂ all solutionsx∈ SF (x0,v) satisfy

|xk−xeq| ≤ βx(|x0−xeq|,k)+ γv
x(‖v‖), ∀k∈ Z+. (2.31)

ii) Input-to-Output Stable (IOS)with respect to disturbancesv : Z+ → V and initial
statesx0 in X̂ , if there exist aK L -functionβy and aK -functionγv

y such that for

each functionv : Z+ → V and eachx0 ∈ X̂ all solutionsy∈ SFG (x0,v) satisfy

|yk−yeq| ≤ βy(|x0−xeq|,k)+ γv
y(‖v‖), ∀k∈ Z+. (2.32)

In the remainder of the thesisγv
x andγv

y in (2.31) and (2.32) are referred to as the ISS-
and IOS-gain of the system, respectively. To differentiatebetween variousK L - and
K -functions, we will adopt the convention to use sub- and superscripts to indicate
between which variables the functions apply, e.g.γv

x indicates that it is an ISS-gain
function fromv to x.

Note that by causality of (2.30), the same definition of ISS would result if one
would replace (2.31) by

|xk−xeq| ≤ βx(|x0−xeq|,k)+ γv
x(‖v〈k−1]‖), ∀k∈ Z+. (2.33)

Remark 2.3.3 Note that in case the external disturbancesv : Z+ → V in (2.30) con-
verges to zero, i.e.vk → 0 for (at least)k → ∞, the input-to-state stability property of
the equilibrium pointxeq = 0 for system (2.30) implies asymptotic stability of equi-
librium pointxeq = 0.

Next, sufficient conditions for the input-to-state stability in Definition 2.3.2 of an equi-
librium point of the non-autonomous system, described by discrete-time nonlinear
difference inclusion in (2.30), is given.

Theorem 2.3.4 Let V ⊆ Rnv. Moreover, letX̂ ⊆ X with xeq ∈ int(X̂ ) be an RPI
set for system(2.30)perturbed by disturbance v: Z+ → V. Supposeα1 , asλ , α2 ,

bsλ ∈ K∞ and α3 , csλ ∈ K for some constants a,b,c,λ ∈ R>0. Let σ ∈ K and
suppose there exists a function V: X̂ → R+ with V(xeq) = 0 such that for allξ ∈ X̂

and allυ ∈ V the following inequalities hold

α1(|ξ −xeq|) ≤V(ξ ) ≤ α2(|ξ −xeq|), (2.34a)

sup
φ∈F (ξ ,υ)

V(φ) ≤V(ξ )−α3(|ξ −xeq|)+ σ(|υ |). (2.34b)
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Then, equilibrium point xeq of system(2.30) is input-to-state stablewith respect to
disturbances v: Z+ → V and initial states x0 in X̂ . Furthermore, the ISS property of
Definition 2.3.2 holds with

βx(|ξ0|,k) , α−1
1 (2ρkα2(|ξ0|)), γv

x(‖v‖) , α−1
1 (2σ(‖v‖)

1
1−ρ

), (2.35)

whereρ ,
(
1− c

b

)
∈ R[0,1).

Proof: From the hypothesis one has that inequality (2.34a) holds for all ξ ∈ X̂ .
Due to the fact thatV(ξ ) ≤ α2(|ξ −xeq|) for all ξ ∈ X̂ implies that

V(ξ )

α2(|ξ −xeq|)
≤ 1 for all ξ ∈ X̂ \ {xeq},

one obtains that

V(ξ )−α3(|ξ −xeq|) ≤

(
1−

α3(|ξ −xeq|)

α2(|ξ −xeq|)

)
V(ξ ) = ρV(ξ ), ∀ξ ∈ X̂ \ {xeq},

(2.36)
whereρ , 1− c

b. Next it will be shown thatρ ∈ R[0,1). Since inequalities (2.34a) and

(2.34b) hold forυ = 0 it follows that for allξ ∈ X̂

0≤ sup
φ∈F (ξ ,0)

V(φ) ≤V(ξ )−c|ξ −xeq| ≤ (b−c)|ξ −xeq|
λ .

Hence,c∈R(0,b] and thereforeρ ∈ R[0,1). SinceV(xeq)−α3(|xeq−xeq|) = ρV(xeq) =

0, one obtains, by utilizing (2.36), thatV(ξ )−α3(|ξ −xeq|) ≤ ρV(ξ ) for all ξ ∈ X̂ .
Then,

V(xk+1) ≤ sup
φ∈F (xk,vk)

V(φ) ≤ ρV(xk)+ σ(|vk|), ∀xk ∈ X̂ , vk ∈ V, k∈ Z+.

Due torobust positive invarianceof X̂ one can employ the above inequality repeti-
tively, which yields

V(xk+1) ≤ ρk+1V(x0)+ ρkσ(|v0|)+ ρk−1σ(|v1|)+ . . .+ σ(|vk|),

for all x0 ∈ X̂ , vk ∈ V, k∈ Z+. Then, it follows that

α1(|xk+1−xeq|) ≤V(xk+1) ≤ ρk+1α2(|x0−xeq|)+
k

∑
i=0

ρ iσ(|vk−i |)

≤ ρk+1α2(|x0−xeq|)+ σ(‖v〈k]‖)
1

1−ρ
,
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for all x0 ∈ X̂ , v〈k] ∈ Vk+1, k ∈ Z+. Taking into consideration thatα1 ∈ K∞ implies
thatα−1

1 is well-defined and is also of classK∞ and thatσ ∈ K one obtains

|xk+1−xeq| ≤ α−1
1

(
ρk+1α2(|x0−xeq|)+ σ(‖v〈k]‖)

1
1−ρ

)

≤ α−1
1

(
2max

(
ρk+1α2(|x0−xeq|),σ(‖v〈k]‖)

1
1−ρ

))

≤ α−1
1

(
2ρk+1α2(|x0−xeq|)

)
+ α−1

1

(
2σ(‖v〈k]‖)

1
1−ρ

)
,

for all x0 ∈ X̂ , v〈k] ∈ Vk+1, k ∈ Z+. In the sequel two situations are considered,
namelyρ = 0 andρ ∈ R(0,1).

If ρ = 0 there holds

|xk−xeq| ≤ α−1
1 (σ(‖v〈k−1]‖)) ≤ βx(|x0−xeq|,k)+ α−1

1 (σ(‖v〈k−1]‖))

≤ βx(|x0−xeq|,k)+ α−1
1 (2σ(‖v〈k−1]‖)),

for anyβx ∈ K L , k∈ Z≥1. By causality of the system (2.30a) one obtains

|xk−xeq| ≤ βx(|x0−xeq|,k)+ α−1
1 (2σ(‖v‖)),

for anyβx ∈ K L , k∈ Z+.
For ρ ∈ R(0,1), let βx(|x0 − xeq|,k) , α−1

1 (2ρkα2(s)). For a fixedk ∈ Z+, one
has thatβx(·,k) ∈ K due toα2 ∈ K∞ andα−1

1 ∈ K∞ andρ ∈ R(0,1). For a fixeds,
it follows that βx(s, ·) is non-increasing and lim

k→∞
βx(s,k) = 0, due toρ ∈ R(0,1) and

α−1
1 ∈ K∞. Therefore, it follows thatβx ∈ K L .

Now letγv
x(s) , α−1

1 (2σ(s) 1
1−ρ ). Since 1

1−ρ ∈ R>0, it follows thatγv
x ∈K due to

α−1
1 ∈ K∞ andσ ∈ K . Hence, the equilibriumxeq of system (2.30) isinput-to-state

stablewith respect to disturbancesv : Z+ → V and initial statesx0 in X in the sense
of Definition 2.3.2, withβx andγv

x as given in (2.35).

Definition 2.3.5 A functionV : X̂ →R+ that satisfies the hypothesis of Theorem 2.3.4
is called anISS Lyapunov function.
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Everything is vague to a degree
you do not realize till you have
tried to make it precise.

Bertrand Russell

3
Nonlinear model predictive control:

sub-optimality and robustness

One of the most studied properties of nonlinear model predictive control is the stability
of the resulting closed-loop system. Perhaps the most embraced stabilization method
is the so-called terminal cost and constraint set approach,see, for example, the sur-
vey [9] for an overview. This method uses the value function of the model predictive
control cost functional as a candidate Lyapunov function for the closed-loop system
and achieves stability via a particular terminal cost and anadditional constraint on the
terminal state, i.e. the predicted state at the end of the prediction horizon. Its advantage
consists in the fact that initial feasibility of the optimization problem, which has to be
solved at every sample instant in the nonlinear model predictive control strategy, im-
plies recursive feasibilityand, the finite horizon model predictive control cost can be
a good approximation of the infinite horizon model predictive control costs. However,
these properties are only guaranteed under the standing assumptions that aglobal opti-
mumof the model predictive control optimization problem is attained at each sampling
instant. Clearly, when dealing with nonlinear prediction models and hard constraints,
it is difficult if not impossible to guarantee that this assumption holds in practice,
where numerical solvers usually provide (in the limited computational time available)
a feasible, sub-optimal control sequence as solution to thenonlinear model predictive
control optimization problem. Such a sub-optimal control sequence needs to have cer-
tain properties to still guarantee stability of the to-be-controlled system in closed-loop
with the model predictive controller. Therefore, in practice, there is a need for sub-
optimal nonlinear model predictive control algorithms based on simpler optimization
problems, which can be solved faster, and can still a priori guarantee stability.

An important result regarding sub-optimal nonlinear modelpredictive control was
presented in [67], where it is shown thatfeasibilityof the nonlinear model predictive
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control optimization problem rather than optimality is sufficient for stability. To be
precise, in [67], stability is achieved without requiring optimality via an additional
constraint which forces the model predictive control valuefunction to decrease at
each sampling-instant. However, when nonlinear prediction models are employed,
this constraint becomes highly nonlinear and difficult to implement from a computa-
tional point of view, as the model predictive control value function depends on the
whole sequence of predicted future controls. Recursive feasibility is guaranteed for
the nominal case in [67] by adding a terminal equality or inequality constraint. Re-
garding the model predictive control algorithms of [67], two issues remain to be in-
vestigated: how to guarantee robust stability for the closed-loop system and how to
decrease the computational burden, so that implementationbecomes possible for rel-
atively fast systems, e.g. motion systems, or relatively complex systems such as for
example manufacturing systems.

In this chapter a new method for the design of an input-to-state stabilizing sub-
optimal model predictive control algorithm, which is computationally friendly, is pro-
posed. This is achieved via new, simpler stabilizing constraints, that can be imple-
mented as a finite number of linear inequalities. The proposed control design resorts
to a (infinity) norm basedartificial ISS Lyapunov function. The proposed input-to-
state stabilizing model predictive control algorithm belongs to the category ofinher-
ently robust1 model predictive controllers, as opposed to min-max model predictive
control [9]. That is, the knowledge about disturbances is not taken into account when
computing the model predictive control law. However, in thecase of disturbances that
take values in a bounded, polyhedral set, it is shown how the model predictive con-
trol scheme based on the proposed artificial ISS Lyapunov function can be modified
to incorporate feedback to disturbances. This is achieved via additional constraints
that allow for online optimization of the ISS-gain of the to-be-controlled system in
closed-loop with the model predictive controller. The modified model predictive con-
trol algorithm results in better performance in the presence of disturbances, while the
feedback input-to-state constraints can still be specifiedas a finite number of linear
inequalities.

The chapter is organized as follows. First, a discrete-timenonlinear model pre-
dictive control formulation and terminologies are introduced in Section 3.1. In Sec-
tion 3.2 the proposed computational friendly nonlinear (hybrid) model predictive con-
troller is presented. In Section 3.3 the model predictive controller scheme presented in
Section 3.2 is adopted such that the scheme can give feedbackto disturbances which
results in disturbance rejection properties of the closed-loop system. In Section 3.4
it is illustrated how the proposed nonlinear model predictive control scheme can be

1By theinherentlyrobustness property it is meant that a stabilizing controller has some robustness in the
presence of arbitrarily small disturbances induced by for example model mismatch, etc.

42



3.1. A DISCRETE-TIME MPC FORMULATION

employed to control a complex manufacturing system networkin a decentralized way.
In Section 3.5 a summary of the achievement obtained in the chapter are summarized.

3.1 A discrete-time MPC formulation

Consider the following nominal and perturbed discrete-time nonlinear systems

xk+1 = f (xk,uk), k∈ Z+, (3.1a)

x̃k+1 = f (x̃k,uk)+wk, k∈ Z+, (3.1b)

wherexk, x̃k ∈ Rn anduk ∈ Rm are the state and the control at discrete-timek ∈ Z+,
respectively. Furthermore,f : Rn×Rm → Rn and f : Rn×Rm → Rn are a possibly
discontinuous nonlinear functions withf (0,0) = 0 and f (0,0) = 0, i.e. xeq = 0 is an
equilibrium point for both (3.1a) and (3.1b) forw = 0 andu = 0. The vectorwk ∈

W ⊆ Rn denotes an unknown additive disturbance andW is assumed to be a known
set. The nominal discrete-time nonlinear system (3.1a) will be used in a nonlinear
model predictive control scheme to make anN ∈ Z≥1 time steps ahead prediction of
the system’s behavior. The system given by (3.1b) represents a perturbed discrete-
time system to which the nonlinear model predictive controller based on the nominal
model (3.1a) will be applied. Throughout the chapter it is assumed that the state and
the controls are constrained for both systems (3.1a) and (3.1b) to somecompactsets
X andU, respectively, i.e.

uk ∈ U ⊆ Rm, xk, x̃k ∈ X ⊆ Rn, ∀k∈ Z+.

Furthermore,U andX are assumed to have zero in their interior, i.e. 0∈ int(U) and
0∈ int(X), respectively.

For a fixedN ∈ Z≥1, let

x[1,N]
k (x̃k,u

[0,N−1]
k ) ,

[
x⊤k+1|k, . . . ,x

⊤
k+N|k

]⊤

denote the state sequence generated by the nominal system (3.1a) from initial state
xk|k , x̃k at timek∈ Z+ and by applying the control sequence

u[0,N−1]
k ,

[
u⊤k|k, . . . ,u

⊤
k+N−1|k

]⊤
∈ UN.

The class ofadmissible control sequencesdefined with respect to the statex̃k ∈ X is

UN(x̃k) ,

{
u[0,N−1]

k ∈ UN
∣∣ x[1,N]

k (x̃k,u
[0,N−1]
k ) ∈ XN

}
.

Let N∈ Z≥1 be given and letF : Rn → R+ with F(0) = 0 andL : Rn×Rm→R+ with
L(0,0) = 0 be continuous bounded mappings. At timek ∈ Z+, let x̃k ∈ X be given.
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The basic model predictive control scenario consists in minimizing, via optimization,
at each timek∈ Z+ a finite horizon cost function of the form

J(x̃k,u
[0,N−1]
k ) , F(xk+N|k)+

N−1

∑
i=0

L(xk+i|k,uk+i|k), (3.2)

with prediction model (3.1a), over all sequencesu[0,N−1]
k in UN(x̃k). In the nonlin-

ear model predictive control literatureF, L andN are called the terminal cost, the
stage cost and the prediction horizon, respectively. A state x̃k ∈ X is calledfeasibleif
UN(x̃k) 6= /0. Let X f (N) ⊆ X denote the set offeasible initial stateswith respect to
the mentioned optimization problem. ThenVMPC : X f (N) → R+,

VMPC(x̃k) , inf
u[0,N−1]

k ∈UN(x̃k)

J(x̃k,u
[0,N−1]
k ) (3.3)

is the nonlinear model predictive control value function corresponding to the cost
(3.2). If there exists an optimal sequence of controls

u[0,N−1]⋆
k ,

[
u⋆⊤

k|k,u
⋆⊤
k+1|k, . . . ,u

⋆⊤
k+N−1|k

]⊤

that minimizes (3.3), the infimum in (3.3) is a minimum and

VMPC(x̃k) = J(x̃k,u
[0,N−1]⋆
k ). (3.4)

In [68] one can find sufficient conditions for the existence ofsuch an optimal sequence
of controls. In case of anuniqueglobal optimum, theoptimalmodel predictive control
law is denoted by a mapκMPC⋆ : X f (N) → U, i.e.

uk , u⋆
k|k = κMPC⋆(x̃k), k∈ Z+.

Stability, or stronger input-to-state stability, of the resulting model predictive control
closed-loop system, i.e.

x̃k+1 = f (x̃k,κMPC⋆(x̃k))+wk, wk ∈ W ⊆ Rn, k∈ Z+, (3.5)

is usually guaranteed by adding a particular constraint on the so-calledterminalstate,
i.e. xN|k, see, for example [9], [46] and [47]. Recall from the introduction of this chap-
ter, that in practice numerical solvers usually provide a feasible,sub-optimalsequence

u[0,N−1]
k ,

[
u⊤k|k,u

⊤
k+1|k, . . . ,u

⊤
k+N−1|k

]⊤
,

with resulting value function

VMPC(x̃k) , J(x̃k,u
[0,N−1]
k ).
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Sub-optimality, but also the existence of a non-unique global optimum, induces possi-
bly non-uniqueness of solutions to the optimization problem and therefore in that case
the model predictive control law is denoted by a set-valued mapκMPC : X f (N) →֒ U

that is allowed to be discontinuous, i.e.

uk , uk|k ∈ κMPC(x̃k), k∈ Z+. (3.6)

Thesub-optimalmodel predictive control law (3.6), can be substituted in (3.1b) and
yields closed-loop system

x̃k+1 ∈ f (x̃k,κMPC(x̃k))+wk , Fw(x̃k,wk), wk ∈ W ⊆ Rn, k∈ Z+. (3.7)

In the remainder of this chapter sub-optimal model predictive control is considered.
In case ofsub-optimality, stability of the model predictive control closed-loop system
may be unclear, or may even be lost. Recall that one of the purposes of this chapter
is to present a model predictive control design methodologywhich can, irrespective
whether or not an optimal solution to the model predictive control optimization prob-
lem is found, a priori guarantee input-to-state stability.

A well known property, which is often employed to prove stability of model pre-
dictive control schemes, see for example [67], isregularityof the controller.

Definition 3.1.1 Let N ∈ Z≥1 be the prediction horizon of the model predictive con-
troller. Then a model predictive controller is calledregular over a certain horizon
Nr ∈ Z[1,N) if the predictedfuture controls, predicted by the model predictive con-
troller over a horizonNr , satisfy the following relation

|uk|k|p ≤ θ1|xk|k|p,

|uk+i|k|p ≤ θ2|xk|k|p, for i = 1, . . . ,Nr ,
(3.8)

with θ1,θ2 ∈ R>0.

3.2 Input-to-state stable nonlinear MPC

In the robust model predictive control literature there areseveral ways for designing
robust model predictive controllers for perturbed nonlinear systems. One way is to
rely on the inherent robustness properties of nominally stabilizing nonlinear model
predictive controllers, e.g. which is done in [60, 69], however their results rely on
the very strict assumption that the nonlinear model predictive control law isLipschitz
continuous. Another approach is to incorporate knowledge about the disturbances in
the model predictive control problem formulation via open-loop worst case scenar-
ios. This includes model predictive control algorithms based on open-loop min-max
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optimization problems, e.g. see the survey [9]. To incorporate feedback to the distur-
bances, the closed-loop or feedback min-max model predictive control problem set-up
has been introduced in [70] and further developed in [45, 71,72]. The main drawback
of min-max based model predictive control algorithms is thelarge online computa-
tional burden. Yet another approach to incorporate the robustness issue in the model
predictive controller design is to synthesize model predictive controllers that, based on
a nominal model of the system, render the closed-loop systeminput-to-state-stable.
The input-to-state stability framework related to nonlinear model predictive control
has been introduced first in [46]. One year later the input-to-state stability framework
related to model predictive control forlinear systems has been considered in [73].
In [46] a nonlinear model predictive control scheme is proposed to render closed-
loop system (3.7) input-to-state stable with respect toadditive disturbances wk. A
tightened constraint set approach is employed in [46] in order to ensurerecursive fea-
sibility. Furthermore, the input-to-state stability property of the closed-loop system is
obtained using the so-called terminal cost and constraint set approach2. This method
uses the value function, i.e. (3.4), of the model predictivecontrol cost as a candidate
ISS Lyapunov function. However, as in the case of stabilizing model predictive con-
trol mentioned in the introductory part of this chapter, theterminal cost and constraint
set approach to render the closed-loop system (3.7) input-to-state stable only works
under the standing assumption that aglobaloptimum of the model predictive control
optimization problem is attained at each sampling instant.For the model predictive
control approach that will be proposed in the sequel asub-optimalor feasible solu-
tion to model predictive control optimization problem, instead of a global optimum,
is sufficient to show input-to-state stability of the closed-loop system. Compared to
the sub-optimal model predictive control scheme of [67], the proposed model predic-
tive control scheme cannot guarantee that initial feasibility implies feasibility for all
following sample instants, i.e. recursive feasibility. However, note that in this chap-
ter systems perturbed by additive disturbances are considered. In this case, recursive
feasibility is also not guaranteed for the algorithms of [67].

The material in this chapter is based on the work in [43, 44], however in this
chapter a generalization of the model predictive controller design approach in [43, 44]
is obtained. Furthermore, a proposal to reduce conservatism of the proposed model
predictive control design approach is given. The model predictive controller design
approach proposed in this chapter is based on the idea to resort to anartificial ISS
Lyapunov function based approach. The artificial Lyapunov function based approach
in model predictive control has been treated in, for example, [74] and [75] for con-
trol and state constrained linear discrete-time systems and for unconstrained nonlinear

2The so-called terminal cost and constraint set approach is also an embraced method for synthesizing
stabilizing model predictive control schemes, see for example [9].
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continuous-time systems, respectively. In [75] the so called artificial Lyapunov based
approach is mentioned as the CLF (Control Lyapunov Function, see e.g. [76]) based
approach. Furthermore, in [77] the approach is called the auxiliary Lyapunov-based
approach. One of the key elements of theartificial Lyapunov approach is that one “ar-
tificially” imposes that a certain function is a Lyapunov function for the closed-loop
system by introducing additional constraints to the model predictive control optimiza-
tion problem. Opposed to the existing approaches in this section there are constraints
impose to a model predictive controller such that a certain function is an ISS Lyapunov
function instead of just a Lyapunov function. This consequentially guarantees robust-
ness, i.e. input-to-state stability, of the closed-loop system with respect to additive
disturbances.

Consider a candidate ISS Lyapunov function that satisfies the following assump-
tion.

Assumption 3.2.1Let W ⊆ Rn with 0∈ W. Supposeα1 , asλ andα2 , bsλ ∈ K∞
for some constantsa,b,λ ∈ R>0. Let αV ∈ K andV : X → R+ with V(0) = 0 be
such that for all̃ξ ∈ Rn andω ∈ W the following inequalities and equality holds

α1(|ξ̃ |) ≤V(ξ̃ ) ≤ α2(|ξ̃ |), (3.9a)

V(ξ̃ + ω)≤V(ξ̃ )+V(ω), (3.9b)

αV(ξ̃ ) = αV(−ξ̃ ). (3.9c)

Consider the following algorithm.

Algorithm 3.2.2

Step 1)
Given the statẽxk at time k ∈ Z+, let xk|k , x̃k and find a control sequence

u[0,N−1]
k , [u⊤k|k, . . . ,u

⊤
k+N−1|k]

⊤ that satisfies

V( f (xk|k,uk|k))−V(xk|k) ≤−αV(xk|k), (3.10a)

u[0,N−1]
k ∈ UN(x̃k) (3.10b)

and optionally also minimizes the costJ(x̃k,u
[0,N−1]
k ) in (3.2).

Step 2)
Let

κMPC(x̃k) ,

{
uk|k ∈ U

∣∣ u[0,N−1]
k satisfies (3.10)

}
.
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Furthermore, letu[0,N−1]
k , [u⊤k|k, . . . ,u

⊤
k+N−1|k]

⊤ with uk|k ∈ κMPC(x̃k) denote a
feasible sequence of controls with respect to the optimization problem formu-
lated at Step 1. Apply an input

uk = uk|k ∈ κMPC(x̃k)

to the perturbed system (3.1b), incrementk by one and go to Step 1.

The following result can be obtained for nonlinear system (3.1b) in closed-loop with
Algorithm 3.2.2 forming system (3.7).

Theorem 3.2.3Suppose Assumption 3.2.1 holds. LetX f (N) be the set of states̃xk ∈

X for which the optimization problem in Step1 of Algorithm 3.2.2 is feasible and let
X̃ f (N) ⊆ X f (N) be an RPI set with0 ∈ int(X̃ f (N)) for closed-loop system(3.7)
perturbed by additive disturbances w: Z+ → W. Then, equilibrium point̃xeq = 0 of
closed-loop system(3.7)is input-to-state stable with respect to disturbances w: Z+ →

W and initial states̃x0 in X̃ f (N).

Proof: The proof consists of showing that the ISS Lyapunov candidate in As-
sumption 3.2.1 is actually an ISS Lyapunov function for system (3.7). Note that in-
equality (3.9a) holds for all̃ξ ∈ X. Hence,V(·) satisfies condition (2.34a) of The-
orem 2.3.4. From constraint (3.10a) and using properties (3.9a), (3.9b) and (3.9c)
from Assumption 3.2.1, one has that for allξ̃ ∈ X̃ f (N) ⊆ X, ω ∈ W and any feasible

u[0,N−1]
k , or for anyµ ∈ κMPC(ξ̃ ):

V( f (ξ̃ ,µ)+ ω)−V(ξ̃ ) ≤V( f (ξ̃ ,µ))+V(ω)−V(ξ̃ )

≤−αV(ξ̃ )+V(ω)

≤−α3(|ξ̃ |)+ σ(|ω |),

(3.11)

whereα3(s) , αQV (s) whereαQV (s) ∈ K is such thatαV(ξ̃ ) ≥ αQV (|ξ̃ |) for all ξ̃ ∈

Rn andσ(s) , α2(s). Since the last inequality in (3.11) holds for anyµ ∈ κMPC(ξ̃ ) one
has that

sup
φ∈Fw(ξ ,ω)

V(φ) ≤V(ξ̃ )−α3(|ξ̃ |)+ σ(|ω |)

for all ξ̃ ∈ X̃ f (N), ω ∈ W. Hence, the statement of Theorem 3.2.3 then follows from
Theorem 2.3.4.

Remark 3.2.4 Note if there are no additive disturbances present, i.e.w = 0, and
V is a Lyapunov function under theoptimalcontrol, i.e. the optimal control obtained
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under infinite horizon (N = ∞) model predictive control (without constrained (3.10a)),
then Algorithm 3.2.2 can recover (forN = ∞) the performance of the optimal infinite
horizon model predictive controller.

Remark 3.2.5 In Step 1 of Algorithm 3.2.2, one has to search for a feasible sequence
of inputs, which is sufficient for guaranteeing input-to-state stability of the closed-
loop system, as stated in Theorem 3.2.3. In other words, recursive feasibility implies
input-to-state stability of the closed-loop system with respect to additive disturbances.

Selecting a functionV in Algorithm 3.2.2 that satisfies Assumption 3.2.1 is critical,
since it has a direct influence on the feasibly and performance of Algorithm 3.2.2.
Furthermore, the structure ofV also has a direct influence on the computational com-
plexity of the optimization problem that is involved in Algorithm 3.2.2. A proposal to
properly compute aV is explained next.

Let QV ∈ Rqv×n andPV ∈ Rpv×n denote matrices with full-column rank. Suppose
the functionαV(·) in Assumption 3.2.1 is given by

αV(x̃k) , |QV x̃k|, (3.12)

andV(·)

V(x̃k) , |PV x̃k|. (3.13)

A direct consequence of the result in (3.2.3) is the following

Corollary 3.2.6 SupposeαV(·) and V(·) are of the form as given in(3.12)and(3.13).
LetX f (N) be the set of states̃xk ∈ X for which the optimization problem in Step 1 of
Algorithm 3.2.2 is feasible and let̃X f (N)⊆X f (N) be an RPI set with0∈ int(X̃ f (N))

for closed-loop system(3.7)perturbed by additive disturbances w: Z+ → W. Then,
equilibrium pointx̃eq = 0 of closed-loop system(3.7) is input-to-state stable with re-
spect to disturbances w: Z+ → W and initial states̃x0 in X̃ f (N).

Proof: Due to the fact thatPV has full-column rank, there existc2 ≥ c1 > 0 such
that c1|ξ̃ |p ≤ |PV ξ̃ | ≤ c2|ξ̃ | for all ξ̃ ∈ Rn. Hence,V(·) satisfies condition (3.9a) in

Assumption 3.2.1 forα1(|ξ̃ |) , c1|ξ̃ | andα2(|ξ̃ |) , c2|ξ̃ |. Note by definitionV(·)

andαV(·) in (3.13) and (3.12) satisfy condition (3.9b) and (3.9c), respectively. The
result in Corollary 3.2.6 then follows from the result in Theorem 3.2.3 withα3 , ςQV s

(ςQV ∈ R>0 is such that|QV ξ̃ | ≥ ςQV |ξ̃ |) andσ(s) , c2s.

With the result from Corollary 3.2.6 a constructive method for computing an ISS Lya-
punov functionV(·) of the particular form given in (3.13)off-line is presented. Let

xk+1 = Axk +Buk, k∈ Z+, (3.14)
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with A ∈ Rn×n, B ∈ Rn×m, be a linearapproximationof (3.1b) around(0,0,0), i.e.
A0+B0= f (0,0) and in a neighborhoodN ⊂ X aroundx = 0 one has

Axk +Buk ≈ f (xk,uk), (3.15)

for all xk ∈ N anduk ∈ U. In order to compute the matricesQV andPV the following
linear state-feedbackuk = Kxk, K ∈ Rm×n, k∈ Z+, is introduced. Then, the following
result can be employed to find a matrixPV , which then defines an ISS Lyapunov
function of the form in (3.13) for the closed-loop system (3.7), with κMPC, derived
from Algorithm 3.2.2.

Lemma 3.2.7 Suppose that the matrices PV , QV and K satisfy

1−|PV(A+BK)P−L
V |− |QVP−L

V | ≥ 0, (3.16a)

P⊤
V PV > 0, (3.16b)

Q⊤
V QV > 0, (3.16c)

where P−L
V , (P⊤

V PV)−1P⊤
V is a left Moore-Penrose inverse of PV . Then, it holds that

|PV(A+BK)ξ |− |PVξ | ≤ −|QVξ | for all ξ . Hence, the function V(x̃k) = |PV x̃k| is an
ISS Lyapunov function for the closed-loop systemx̃k+1 = (A+BK)x̃k +wk.

Proof: Inequalities (3.16b), (3.16c) guarantee thatrank(PV) = rank(QV) = n.
Multiplication of (3.16a) with|PVξ | yields

0≤ |PVξ |− |PV(A+BK)P−L
V ||PVξ |− |QVP−L

V ||PVξ |, ∀ξ
≤ |PVξ |− |PV(A+BK)P−L

V PVξ |− |QVP−L
V PVξ |, ∀ξ ⇒

⇒ |PVξ |− |PV(A+BK)ξ | ≤ −|QVξ |, ∀ξ .

Numerically the matricesPV , QV andK in (3.16) can be obtained by constructing,
for example, a zero cost optimization problem, which can be solved with for example
fminconof Matlab or other nonlinear optimization tools. The nonlinear nature of the
obtained optimization problem is not critical, since it is solvedoff-line.

Remark 3.2.8 The hypothesis of Theorem 3.2.3 and Corollary 3.2.6 assume robust
feasibility of the problem in Step 1 of Algorithm 3.2.2, which cannot be guaranteed
a priori in general. In practice, the constraintxk+1|k ∈ X ∼ W can be added to the
optimization problem to ensure that the closed-loop system’s state, i.e.̃xk+1 = xk+1|k+

wk, k ∈ Z+, does not violate the state constraints at timek+1 for any disturbance in
W.
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Computational aspects

In this subsection it is shown that the norm based artificial ISS Lyapunov function
defined in (3.13) has some nice advantages when it comes to computational issues of
the proposed model predictive controller defined in Algorithm 3.2.2. The standing
assumption throughout this section is that every vector norm | · | is an infinity norm
| · |p=∞. Note that this assumption can be made without loss of generality of the results
presented so far in this chapter.

Corollary 3.2.9 SupposeαV(·) and V(·) in Assumption 3.2.1 are of the form as given
in (3.12)and (3.13). Consider infinity norms (p= ∞) and assume the setsX, U (and
W) are polyhedral. Furthermore, let the functions F(x) and L(x,u), defining the model
predictive control cost(3.2), be defined as

F(x) , |Px|∞ and L(x,u) , |Qx|∞ + |Ruu|∞,

where P∈ Rnp×n, Q∈ Rnq×n and Ru ∈ Rru×m are assumed to be known matrices that
have full-column rank, i.e. F(x) and L(x,u) are therefore bounded mappings on the
domainsX andX×U, respectively. Then,

i) if the system(3.1b)and the prediction model(3.1a)are affine with respect to the
control u, i.e.

xk+i+1|k = f (xk+i|k,uk+i|k) = f
1
(xk+i|k)+ f

2
(xk+i|k)uk+i|k, i = 0, . . . ,N−1,

(3.17)
and

f (x̃k,uk) = f 1(x̃k)+ f 2(x̃k)uk, k∈ Z+ (3.18)

with f1 : Rn →Rn, f2 : Rn →Rn×m, f
1

: Rn →Rn and f
2

: Rn →Rn×m possibly
discontinuous mappings then, for N= 1, the optimization problem that has to
be solved at Step 1 of Algorithm 3.2.2 can be formulated as alinear program;

ii) if the system(3.1b) is affine with respect to the control u, i.e. as in(3.18), and if
prediction model(3.1a)is a well-posed piecewise affine system3 (e.g. a well-
posed piecewise affine approximation of(3.18)), i.e.

f
1
(xk+i|k) = A jxk+i|k +b j , f

2
(xk+i|k) = B j , when xk+i|k ∈ Ω j , (3.19)

where Aj ∈Rn×n, Bj ∈Rn×m, bj ∈Rn, j ∈S withS , Z[1,s], for some s∈Z>1,
is a finite set of indices, then, for N∈ Z>1, the optimization problem that has
to be solved at Step 1 of Algorithm 3.2.2 can be formulated as amixed integer
linear program;

3A piecewise affine systemxk+1 = A jxk + B juk + bj for xk ∈ Ω j is called well-posed if for specifiedxk

anduk, xk+1 is uniquely defined.
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iii) if the system(3.1b) is affine with respect to the control u, i.e. as in(3.18), and
if prediction model(3.1a)in Algorithm 3.2.2 is replaced by a linearization of
(3.1b) (if it exists) around the statẽxk at time k∈ Z+ and the zero control or
uk−1, i.e.

xk+i+1|k = A (x̃k)xk+i|k + f
2
(x̃k)uk+i|k, i = 0, . . . ,N−1, (3.20)

whereA (x̃k) ,
∂ ( f 1(x̃)+ f 2(x̃)u)

∂ x̃

∣∣
x̃=x̃k,u=0 or u=uk−1

, then, for N∈ Z>1, the opti-
mization problem that has to be solved at Step 1 of Algorithm 3.2.2 can be
formulated as alinear program;

iv) if the system(3.18)and the prediction model(3.17)are linear with respect to the
control, i.e. f2(x̃k) = B∈ Rn×m and f

2
(x̃k|k) = B∈ Rn×m, then, for N= 1, the

optimization problem that has to be solved at Step 1 of Algorithm 3.2.2 can be
formulated as solving amulti-parametric linear program. Furthermore, the
model predictive control law uk = κMPC(x̃k) can be obtained explicitly and is of
the form

uk = K j




f
1
(x̃k)

f 1(x̃k)

x̃k

|PV x̃k|∞ −|QV x̃k|∞


+q j , if C j




f
1
(x̃k)

f 1(x̃k)

x̃k

|PV x̃k|∞ −|QV x̃k|∞


≤ c j ,

(3.21)
j ∈ S K whereS K , Z[1,s], for some s∈ Z>0. The index setS K and matrices
K j ∈ Rm×(3n+1), qj ∈ Rm, Cj ∈ Rnc×(3n+1) and cj ∈ Rnc result from the to be
solved multi-parametric linear program;

v) if the system(3.18)and the prediction model(3.17)are linear with respect to the
control, i.e. f2(x̃k) = f

2
(xk|k) = B∈ Rn×m, and if

f
1
(xk+i|k) = Axk+i|k,

where A,
∂ f 1(x̃)

∂ x̃

∣∣
x̃=0 (if it exists), then, for N∈ Z>1, the optimization problem

that has to be solved at Step 1 of Algorithm 3.2.2 can be formulated as solving
a multi-parametric linear program. Furthermore, the model predictive control
law uk = κMPC(x̃k) can be obtained explicitly and is of the form

uk = K j




f 1(x̃k)

x̃k

|PV x̃k|∞ −|QV x̃k|∞


+q j , if C j




f 1(x̃k)

x̃k

|PV x̃k|∞ −|QV x̃k|∞


≤ c j ,

(3.22)
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j ∈ S K whereS K , Z[1,s], for some s∈ Z>0. The index setS K and matrices
K j ∈ Rm×(2n+1), qj ∈ Rm, Cj ∈ Rnc×(2n+1) and cj ∈ Rnc result from the to be
solved multi-parametric linear program;

Proof: For the system dynamics of the form (3.18), the functionV in (3.10a)
defined as in (3.13) and considering infinity norms (p= ∞), one can rewrite inequality
(3.10a), for any fixedxk|k, as a set of linear constraints with respect touk|k. Indeed,
inequality (3.10a) can be written as

|PV( f 1(xk|k)+ f 2(xk|k)uk|k)|∞ ≤ ϑ(xk|k), (3.23)

where

ϑ(xk|k) , |PVxk|k|∞ −|QVxk|k|∞.

By definition of| · |∞ inequality (3.23) can be equivalently expressed as

−1pvϑ(xk|k) ≤±PV( f 1(xk|k)+ f 2(xk|k)uk|k),

or [
PV f 2(xk|k)

−PV f 2(xk|k)

]
uk|k ≤

[
−PV

PV

]
f 1(xk|k)+

[
1pv

1pv

]
ϑ(xk|k), (3.24)

where1pv is a shorthand notation for1pv = [1, ...,1]⊤ ∈ Rpv. Hence, inequality (3.24)
is, for any fixedxk|k, linear with respect touk|k.

According to the hypothesis in Corollary 3.2.9 the constraint setsX andU are
polyhedral, i.e.

X , {ξ ∈ Rn | AXξ ≤ bX} ,

U , {µ ∈ Rm | AU µ ≤ bU} ,

with real valued matricesAX, bX, AU andbU having appropriate dimensions. There-
fore one has that

AXxk+i+1|k ≤ bX, i = 0, . . . ,N−1,

AUuk+i|k ≤ bU , i = 0, . . . ,N−1.
(3.25)

Note that for the prediction model as defined in (3.17) and forF = |Pxk+N|k|∞ and
L = |Qxk+i|k|∞ + |Ruuk+i|k|∞ with i = 0, . . . ,N− 1, as defined in the Corollary 3.2.9,
Step 1 in Algorithm 3.2.2 can be formulated as solving the following optimization
problem

min
u[0,N−1]

k ,εQ,i ,ε,εRu,i

{
ε +

N−1

∑
i=0

εQ,i +
N−1

∑
i=0

εRu,i

}
, (3.26)
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subject to:

−1npε ≤−Pxk+N|k, ε ≥ 0, (3.27a)

−1npε ≤ Pxk+N|k, (3.27b)

−1nqεQ,i ≤−Qxk+i|k, εQ,i ≥ 0, i = 0, . . . ,N−1, (3.27c)

−1nqεQ,i ≤ Qxk+i|k, i = 0, . . . ,N−1, (3.27d)

−1ruεRu,i ≤−Ruuk+i|k, εRu,i ≥ 0, i = 0, . . . ,N−1, (3.27e)

−1ruεRu,i ≤ Ruuk+i|k, i = 0, . . . ,N−1, (3.27f)

xk+i+1|k = f
1
(xk+i|k)+ f

2
(xk+i|k)uk+i|k, i = 0, . . . ,N−1, (3.27g)

inequality (3.25) and (3.24). (3.27h)

ForN = 1 one can, by substitution of (3.27g) in (3.27a) and (3.27b),rewrite optimiza-
tion problem defined by (3.26) and (3.27) in the following form

min
uk|k,εQ,0,ε,εRu,0

{
ε + εQ,0 + εRu,0

}
, (3.28)

subject to:

ALP1(xk|k)
[
uk|k εQ,0 ε εRu,0

]⊤
≤ bLP1(xk|k), (3.29)

where

ALP1(xk|k) =




0 −1nq 0 0
0 −1nq 0 0

Pf
2
(xk|k) 0 −1n 0

−Pf
2
(xk|k) 0 −1n 0

Ru 0 0 −1ru

−Ru 0 0 −1ru

0 −1 0 0
0 0 −1 0
0 0 0 −1

PV f 2(xk|k) 0 0 0
−PV f 2(xk|k) 0 0 0

AX f
2
(xk|k) 0 0 0

AU 0 0 0




, bLP1(xk|k) =




−Qxk|k

Qxk|k

−Pf
1
(xk|k)

Pf
1
(xk|k)

0
0
0
0
0

−PV f 1(xk|k)+1pvϑ (xk|k)

PV f 1(xk|k)+1pvϑ (xk|k)

bX −AX f
1
(xk|k)

bU




,

which can, for all fixedxk|k, be recognized as alinear programmingproblem. This
proves item i) form Corollary 3.2.9.

In case the prediction model (3.27g) is replaced by a linearization of (3.27g)
around the (measured) statexk|k , x̃k, i.e. (3.20), one can, forN ∈ Z>1, rewrite the
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optimization problem defined by (3.26) and (3.27) in the following form

min
u[0,N−1]

k ,εQ,i ,ε,εRu,i

{
ε +

N−1

∑
i=0

εQ,i +
N−1

∑
i=0

εRu,i

}
, (3.30)

subject to:

ALPN(xk|k)
[
u[0,N−1]⊤

k [εQ,0, . . . ,εQ,N−1,ε]⊤ [εRu,0, . . . ,εRu,N−1]
⊤
]⊤

≤ bLPN(xk|k),

(3.31)
where

ALPN(xk|k) ,
︷ ︸︸ ︷


±

[
0

Q̃H(xk|k)

] [
di([−1nq ]N) 0

0 −1np

]
0

±di([Ru]N) 0 di([−1ru ]N)

0 −I(N+1) 0
0 0 −IN

PV f 2(xk|k)Ĩm 0 0
−PV f 2(xk|k)Ĩm 0 0

di([AX ]N)H(xk|k) 0 0
di([AU ]N) 0 0




,

bLPN(xk|k) ,
︷ ︸︸ ︷


±

[
−Qxk|k

−Q̃Φ(xk|k)xk|k

]

0
0
0

−PV f 1(xk|k)+1pvϑ (xk|k)

PV f 1(xk|k)+1pvϑ (xk|k)

b̃X −di([AX ]N)Φ(xk|k)xk|k

b̃U




,

with

Φ(xk|k),




A (xk|k)

A 2(xk|k)
...

A N(xk|k)




, H(xk|k),




f
2
(xk|k) 0 . . . 0

A (xk|k) f
2
(xk|k)

. . .
. ..

...
...

. . .
. .. 0

A (xk|k)
N−1 f

2
(xk|k) . . . A (xk|k) f

2
(xk|k) f

2
(xk|k)




,

Q̃ ,

[
di([Q]N) 0

0 P

]
, b̃X ,




bX
...

bX


, b̃U ,




bU
...

bU


, Ĩm ,

[
Im 0 . . . 0

]
and N , N−1.

Note that optimization problem defined by (3.30) and (3.29) is alinear programming
problem for all fixedxk|k. Hence, item iii) from Corollary 3.2.9 is proven.

Since the prediction model (3.1a), i.e. (3.27g), in item ii)of Corollary 3.2.9 is
assumed to be a well-possed piecewise affine system and the input and state constraint
setsU and X are assumed to compact, one can equivalently rewrite the piecewise
affine prediction model into a mixed logical dynamical (MLD)form, i.e.

xk+i+1|k = Mxk+i|k +Guuk+i|k +Gdδk+i|k +Gzzk+i|k, i = 0, . . . ,N−1, (3.32a)

Exk+i|k +Euuk+i|k +Edδk+i|k +Ezzk+i|k ≤ g, i = 0, . . . ,N−1, (3.32b)

whereδk+i|k ∈ {0,1}nδ andzk+i|k ∈ Rnz are binary and real valued auxiliary variables,
respectively. This statement follows directly from proposition 4 in [78], which is
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proven in [79]. Note that as mixed logical dynamical models only allow for non-strict
inequalities in (3.32b), rewriting a discontinuous piecewise affine system as a mixed
logical dynamical system strict inequalities likexk+i|k < 0 must be approximated by
xk+i|k ≤ −ς for someς > 0 (typically the machine (computer) precision), with the
assumption that−ς < xk+i|k < 0 cannot occur due to the finite number of bits used
for representing real numbers. Note that no problem exists when the piecewise affine
model is continuous, where the strict inequality can in thiscase be equivalently rewrit-
ten as non-strict, i.e.ς = 0. See [24] for more details. Define

d[0,N−1]
k ,

[
δ⊤

k|k,δ
⊤
k+1|k, . . . ,δ

⊤
k+N−1|k

]⊤
,

and

z[0,N−1]
k ,

[
z⊤k|k,z

⊤
k+1|k, . . . ,z

⊤
k+N−1|k

]⊤
.

Replacing equality (3.27g) by equality (3.32a) and add inequality (3.32b) to the opti-
mization problem defined by (3.26), (3.27a), (3.27b), (3.27c), (3.27d), (3.27e), (3.27f),
(3.32a) and (3.27h) yields the following optimization problem.

min
u[0,N−1]

k ,εQ,i ,ε,εRu,i ,d
[0,N−1]
k ,z[0,N−1]

k

{
ε +

N−1

∑
i=0

εQ,i +
N−1

∑
i=0

εRu,i

}
, (3.33)

subject to:

AMILPN(xk|k)
[

u[0,N−1]⊤

k [εQ,0, . . . ,εQ,N−1,ε]⊤

[εRu,0, . . . ,εRu,N−1]
⊤ d[0,N−1]⊤

k z[0,N−1]⊤

k

]⊤
≤ bMILPN(xk|k),

(3.34)

where
AMILPN(xk|k) ,

︷ ︸︸ ︷


±

[
0

Q̃Hu

] [
di([−1nq ]N) 0

0 −1np

]
0 ±

[
0

Q̃Hd

]
±

[
0

Q̃Hz

]

±di([Ru]N) 0 di([−1ru ]N) 0 0
0 −I(N+1) 0 0 0
0 0 −IN 0 0

PV f 2(xk|k)Ĩm 0 0 0 0
−PV f 2(xk|k)Ĩm 0 0 0 0
di([AX ]N)Hu 0 0 di([AX ]N)Hd di([AX ]N)Hz

di([AU ]N) 0 0 0 0

di([Eu]N)+di([E]N)H
u

0 0 di([Ed]N)+di([E]N)H
d

di([Ez]N)+di([E]N)H
z



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bMILPN(xk|k) ,
︷ ︸︸ ︷


±

[
−Qxk|k

−Q̃ΦMxk|k

]

0
0
0

−PV f 1(xk|k)+1pvϑ (xk|k)

PV f 1(xk|k)+1pvϑ (xk|k)

b̃X −di([AX ]N)ΦMxk|k

b̃U

g̃−di([E]N)ΦMxk|k




, with H
e
,




0 . . . . . . . . . 0

Ge
. . .

...

MGe
. . .

. . .
...

...
. . .

. . .
. . .

...
MN−2Ge . . . MGe Ge 0




e∈ {u,d,z},

He ,




Ge 0 . . . 0

MGe
. . .

. . .
...

...
. . .

. . . 0
MN−1Ge . . . MGe Ge




e∈ {u,d,z}, ΦM ,




M
M2

...
MN



, ΦM ,




In
M
M2

...
MN−1



, and g̃ ,




g
...
g


.

Note that optimization problem defined by (3.33) and (3.34) is, for all fixedxk|k, a
mixed integer linear programmingproblem. Hence, this concludes the proof of item
ii) from Corollary 3.2.9.

If f 2(xk|k) = B holds, then, the optimization problem defined by (3.28) and (3.29)
can be rewritten as

min
uk|k,εQ,0,ε,εRu,0

{
ε + εQ,0 + εRu,0

}
, (3.35)

subject to:

AmpLP1

[
u⊤k|k εQ,0 ε εRu,0

]⊤
≤ bmpLP1+WmpLP1θk, (3.36)

with θk , [θ 1⊤ θ 2⊤ x⊤k|k θ 4⊤ ]⊤ ∈ R3n+1 ⊆ O1×O2×X×O4, where

O1 ,

{
ζ ∈ Rn

∣∣ ζ = f
1
(ξ ), ξ ∈ X

}
, (3.37a)

O2 ,

{
ζ ∈ Rn

∣∣ ζ = f 1(ξ ), ξ ∈ X

}
, (3.37b)

O4 ,

{
ζ ∈ R

∣∣ ζ = ϑ(ξ ), ξ ∈ X

}
, (3.37c)
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AmpLP1 ,




0 −1nq 0 0
0 −1nq 0 0

PB 0 −1n 0
−PB 0 −1n 0
Ru 0 0 −1ru

−Ru 0 0 −1ru

0 −1 0 0
0 0 −1 0
0 0 0 −1

PVB 0 0 0
−PVB 0 0 0
AXB 0 0 0
AU 0 0 0




, bmpLP1 ,




0
0
0
0
0
0
0
0
0
0
0

bX

bU




, WmpLP1 ,




0 0 −Q 0
0 0 Q 0
−P 0 0 0
P 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 −PV 0 1pv

0 PV 0 1pv

−AX 0 0 0
0 0 0 0




.

Note that problem defined by (3.35) and (3.36) is amulti-parametric linear programming prob-
lem. If problem defined by (3.35) and (3.36) is solvable on the domainO1×O2×X×O4, then

it is well known that the solution, i.e.
[
u∗k|k ε∗Q,0 ε∗ ε∗Ru,0

]⊤
is a piecewise affine function of

the parameters inθk. Hence, the controluk , u∗k|k is solved explicitly and is given by

uk = K jθk +q j , if C jθk ≤ c j , j ∈ S
K , (3.38)

whereS K , Z[1,s], for somes∈ Z>0 and matricesK j ∈ Rm×(3n+1), q j ∈ Rm, C j ∈ Rnc×(3n+1)

andc j ∈ Rnc follow by solving the multi-parametric linear programmingproblem defined by
(3.35) and (3.36). Note that the parameters inθk are related toxk|k = x̃k as follows

θk ,




f
1
(x̃k)

f 1(x̃k)

x̃k

|PV x̃k|∞ −|QV x̃k|∞


 . (3.39)

Substitution of (3.39) in (3.38) yields (3.21) and concludes the proof of item iv) from Corol-
lary 3.2.9.

If f 2(x̃) = f
2
(xk|k) = B ∈ Rn×m, then, the optimization problem defined by (3.30) and

(3.31) can be rewritten as

min
u[0,N−1]

k ,εQ,i ,ε ,εRu,i

{
ε +

N−1

∑
i=0

εQ,i +
N−1

∑
i=0

εRu,i

}
, (3.40)

subject to:

AmpLPN(xk|k)
[
u[0,N−1]⊤

k

[
εQ,0, . . . ,εQ,N−1,ε

]⊤ [
εRu,0, . . . ,εRu,N−1

]⊤]⊤ ≤ bmpLPN+WmpLPNθk,

(3.41)
with θk , [θ 2⊤ xk|k θ 4⊤ ]⊤ ∈R(2n+1) ⊆O2×X×O4, whereO2 andO4 are defined as in (3.37b)

and (3.37c), respectively. Furthermore,AmpLPN is obtained by substitution off
2
(xk|k), f 2(xk|k)
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andA (xk|k) in ALPN, Φ(xk|k) andH(xk|k) by matricesB, B andA, respectively. The matrices
bmpLPN andWmpLPN in (3.41) are defined as

bmpLPN ,




0
0
0
0
0
0
0
0
0

b̃X

b̃U




, WmpLPN ,




0 −Q 0
0 −Q̃Φ 0
0 Q 0
0 Q̃Φ 0
0 0 0
0 0 0
0 0 0

−PV 0 1pv

PV 0 1pv

0 −di([AX ]N)Φ 0
0 0 0




.

Note that problem defined by (3.40) and (3.41) is amulti-parametric linear programming prob-
lem. If problem defined by (3.40) and (3.41) is solvable on the domain O2×X×O4, then it is
well known that the solution, i.e.

[
u[0,N−1]∗⊤

k

[
ε∗Q,0, . . . ,ε

∗
Q,N−1,ε

∗
]⊤ [

ε∗Ru,0
, . . . ,ε∗Ru,N−1

]⊤]⊤

is a piecewise affine function of the parameters inθk. Hence, the controluk , u∗k|k is solved
explicitly and is given by

uk = K j θk +q j , if C j θk ≤ c j , j ∈ S
K , (3.42)

whereS K , Z[1,s], for somes∈ Z>0 and matricesK j ∈ Rm×(2n+1), q j ∈ Rm, C j ∈ Rnc×(2n+1)

andc j ∈ Rnc follow by solving the multi-parametric linear programmingproblem defined by
(3.40) and (3.41). Note that the parameters inθk are related toxk|k = x̃k as follows

θk ,




f 1(x̃k)

x̃k

|PV x̃k|∞ −|QV x̃k|∞


 . (3.43)

Substitution of (3.43) in (3.42) yields (3.22) and concludes the proof of item v) from Corol-
lary 3.2.9.

Reducing conservatism

The proposed model predictive control scheme given in Algorithm 3.2.2 withV(·) de-
fined as in is based on acommonISS Lyapunov function of the form given in (3.13).
The common ISS Lyapunov function is computed based on a linear approximationof
the system dynamics (3.1b). Due to the fact that acommonISS Lyapunov approach
based on a linearapproximationof the system dynamics (3.1b) is employed, constraint
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(3.10a) in combination with (3.13) might be conservative. That is, the input-to-state
stabilizing constraint in (3.10a) in combination with (3.13) might, due to conserva-
tiveness induced by the common ISS Lyapunov (3.13) functionapproach, deteriorate
performance of the model predictive control algorithm. In this section an altered ver-
sion of Algorithm 3.2.2 is presented, for a slightly stricter class of systems, in which
conservativeness of constraint (3.10a) can be reduced. Thesubclass of systems in
(3.1b) that is considered is defined as

x̃k+1 = f (x̃k,uk)+wk , g j(x̃k,uk)+wk when x̃k ∈ Ω j , k∈ Z+ (3.44)

where j ∈ S with S , Z[1,s], for somes∈ Z>1, is afinite setof indices. An index
j ∈ S is referred to as amodeof system (3.44). The collection{Ω j | j ∈ S } defines
a partition ofX, that is

∪ j∈S Ω j = X and int(Ωi)∩ int(Ω j) = /0 for i 6= j.

Each setΩ j is assumed to be apolyhedronwhich is not necessarily closed. Let
S0 , { j ∈ S | 0∈ cl(Ω j)} andS1 , { j ∈ S | 0 6∈ cl(Ω j)}, so thatS = S0∪S1.
Furthermore,g j : Rn ×Rm → Rn is allowed to adiscontinuousmap. It is assumed
thatxeq = 0 is an equilibrium point for (3.44) withu = 0 andw = 0. Therefore, it is
required thatg j(0,0) = 0 for all j ∈ S0. Let

Q ji ,

{
ξ ∈ Ω j

∣∣ ∃µ ∈ U : g j(ξ ,µ) ∈ Ωi ∼ W

}
, [ j i ]⊤ ∈ S ×S (3.45)

and let
Str ,

{
[ j i ]⊤ ∈ S ×S

∣∣ Q ji 6= /0
}
.

Furthermore, let
S

j
tr ,

{
i ∈ S

∣∣ [ j i ]⊤ ∈ Str

}
.

Note that the set of pairs of indicesStr defines allmodetransitions that can occur
in system (3.44), i.e. if[ j i ]⊤ ∈ Str then a transition fromΩ j to Ωi can occur. For
a givenmode jthe set of indicesS j

tr defines to whichmodes i∈ S a transition can
occur, i.e. given a modej ∈ S transition fromΩ j to Ωi with i ∈ S

j
tr can occur. Once

Q ji is computedStr andS
j

tr are easy to determine. For a fixedj, Q ji in (3.52) is also
known in literature as theone-step reachable setunder the disturbancesw : Z+ → W,
e.g. see [80].

Remark 3.2.10 In caseg j(x̃k,uk) in (3.44) is piecewise affine (PWA), i.e.

g j(x̃k,uk) = A j x̃k +B juk +b j , when x̃k ∈ Ω j ,

whereA j ∈ Rn×n, B j ∈ Rn×m, b j ∈ Rn, j ∈ S , b j = 0 for j ∈ S0 andW, defined in
Section 3.1, is assumed to be polyhedron then the set of pairsof indicesStr can be
easily determined by solvings2 linear programs.
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In the sequel an altered version of Algorithm 3.2.2, with potentially less conservatism,
for the afore specified system class, i.e. (3.44), is presented. Consider a candidate ISS
Lyapunov function of the form

V(x̃k) , |P j
V x̃k|, x̃k ∈ Ω j , j ∈ S . (3.46)

whereP j
V ∈ R

pvj ×n with j ∈ S are full-column rank matrices. LetQ j
V ∈ R

qvj ×n with
j ∈ S denote a known matrix with full-column rank.

Algorithm 3.2.11

Step 1)
Given the statẽxk at timek∈ Z+, find the indexj ∈ S for which holds̃xk ∈ Ω j

and letxk|k , x̃k.

Step 2)
i) For givenxk|k and j compute the one-step reachable set, i.e.

X j(xk|k) ,

{
ξ̃ ∈ X

∣∣ ξ̃ = g j(xk|k,µ)+ ω , µ ∈ U, ω ∈ W

}
. (3.47)

ii) If X j(xk|k)∩Ωi 6= /0 for i ∈ S , then add the indexi to a set of indicesS j
tr,k.

Step 3)
find a control sequenceu[0,N−1]

k , [u⊤k|k, . . . ,u
⊤
k+N−1|k]

⊤ that satisfies

max
i∈S

j
tr,k

(
|Pi

V |
)
|g j(xk|k,uk|k)|− |P j

Vxk|k| ≤ −|Q j
Vxk|k|, (3.48a)

u[0,N−1]
k ∈ UN(x̃k) (3.48b)

and optionally also minimizes the costJ(x̃k,u
[0,N−1]
k ) in (3.2).

Step 4)
Let

κMPC(x̃k) ,

{
uk|k ∈ U

∣∣ u[0,N−1]
k satisfies (3.48)

}
.

Furthermore letu[0,N−1]
k , [u⊤k|k, . . . ,u

⊤
k+N−1|k]

⊤ with uk|k ∈ κMPC(x̃k) denote a
feasible sequence of controls with respect to the optimization problem formu-
lated at Step 1. Apply a control

uk = uk|k ∈ κMPC(x̃k)

to the perturbed system (3.1b), incrementk by one and go to Step 1.
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The following result can be obtained for nonlinear system (3.44) in closed-loop with
Algorithm 3.2.11 forming system (3.7).

Theorem 3.2.12Let X f (N) be the set of states̃xk ∈ X for which the optimization
problem in Step1 of Algorithm 3.2.11 is feasible and let̃X f (N) ⊆ X f (N) be an RPI
set with0 ∈ int(X̃ f (N)) for closed-loop system(3.7) perturbed by additive distur-
bances w: Z+ → W. Then, equilibrium point̃xeq = 0 of closed-loop system(3.7) is
input-to-state stable with respect to disturbances w: Z+ → W and initial states̃x0 in
X̃ f (N).

Proof: The proof consists in showing that the ISS Lyapunov candidate in (3.46)
is actually an ISS Lyapunov function for system (3.7). SincePVj has full-column

rank for all j ∈ S , there existc2 ≥ c1 > 0 such thatc1|ξ̃ | ≥ |P j
V ξ̃ | ≥ c2|ξ̃ | for all ξ̃

and j ∈ S . Hence,V(·) in (3.46) satisfies condition (2.34a) from Theorem 2.3.4 for
c2 ≥ maxj∈S |P j

V |. From constraint (3.48a) and using the triangle inequality, one has

that for allξ̃ ∈ X̃ f (N), ω ∈ W and any feasibleu[0,N−1]
k , or for anyµ ∈ κMPC(ξ̃ ):

V( f (ξ̃ ,µ)+ ω)−V(ξ̃ ) =

= |Pi
V(g j(ξ̃ ,µ)+ ω)|− |P j

Vξ̃ |, when ξ̃ ∈ Ω j , g j(ξ̃ ,µ)+ ω ∈ Ωi

≤ |Pi
V ||g

j(ξ̃ ,µ)+ ω |− |P j
Vξ̃ |, when ξ̃ ∈ Ω j , g j(ξ̃ ,µ)+ ω ∈ Ωi

≤ |Pi
V ||g

j(ξ̃ ,µ)|+ |Pi
V||ω |− |P j

Vξ̃ |, when ξ̃ ∈ Ω j , g j(ξ̃ ,µ) ∈ Ωi ∼ W

≤ max
i∈S

j
tr,k

(
|Pi

V |
)
|g j(ξ̃ ,µ)|+ max

i∈S
j

tr,k

(
|Pi

V |
)
|ω |− |P j

Vξ̃ |, when ξ̃ ∈ Ω j

≤−|Q j
V ξ̃ |+ max

i∈S
j

tr,k

(
|Pi

V |
)
|ω |,

(3.49)

whereα3(s) , ς
Qj

V
s (ς

Qj
V
∈ R>0 is such that|Q j

V ξ̃ | ≥ ς
Qj

V
|ξ̃ | for all ξ̃ ) andσ(s) ,

max
i∈S

j
tr,k

(
|Pi

V |
)

s. Since the last inequality in (3.49) holds for anyµ ∈ κMPC(ξ̃ ) one

has that

sup
φ∈Fw(ξ ,ω)

V(φ) ≤V(ξ̃ )−α3(|ξ̃ |)+ σ(|ω |)

for all ξ̃ ∈ X̃ f (N), ω ∈W. Hence, the statement of Theorem 3.2.12 then follows from
Theorem 2.3.4.

Remark 3.2.13 Note that ifg j in (3.44) is affine with respect to the controlu, i.e.

g j(x̃k,uk) = g j
1(x̃k)+g j

2(x̃k)uk, for j ∈ S
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with g j
1 : Rn → Rn, g j

2 : Rn → Rn×m possibly discontinuous mappings and the sets
U andW are polyhedral, then the problem that has to be solved at step2 of Algo-
rithm 3.2.11 involves solving card(S ) linear programmingproblems. Furthermore, if
in addition infinity norms are considered (p = ∞) the constraint (3.48a) can be written
as a finite number oflinear inequality constraints. Note that therefore, for the opti-
mization problem that has to be solved at step 3 of Algorithm 3.2.11, Corollary 3.2.9
of Section 3.2 applies (with step 1 in Corollary 3.2.9 replaced by step 3).

Remark 3.2.14 A possibility to reduce theon-linecomputational burden is to remove
step 2 from Algorithm 3.2.11 and replaceStr,k in (3.48a) byStr . Then, instead of
computingStr,k on-line one computesStr off-line. But sinceStr,k ⊆ Str , the off-
line computation might lead to more conservativeness compared to online performing
step 2 in Algorithm 3.2.11.

Next, a method for computing the ISS Lyapunov function (3.46) off-line is presented.
Let

xk+1 = A jxk +B juk +b j , when xk ∈ Ω j , k∈ Z+, (3.50)

with A j ∈ Rn×n, B j ∈ Rn×m, b j ∈ Rn, j ∈ S , b j = 0 for j ∈ S0, be a piecewise
affine (PWA)approximationof (3.44) around(0,0,0), i.e. A j0+B j0+b j = f (0,0) =

g j(0,0), for j ∈ S0 and

A jxk +B juk +b j ≈ f (xk,uk) = g j(xk,uk), when xk ∈ Ω j , (3.51)

for all xk ∈ XT ⊆ X, with 0∈ int(XT), anduk ∈ U. Let

Q
PWA
ji ,

{
ξ ∈ Ω j

∣∣ ∃µ ∈U : A jξ +B j µ +b j ∈ Ωi ∼W

}
, [ j i ]⊤ ∈S ×S (3.52)

and let
S

PWA
tr ,

{
[ j i ]⊤ ∈ S ×S

∣∣ Q
PWA
ji 6= /0

}
. (3.53)

In order to compute the matricesQ j
V andP j

V the following linear state-feedbackuk =

K jxk, K j ∈ Rm×n, k ∈ Z+, is introduced. Then, the following result can be employed
to find a matrixP j

V , which then defines an ISS Lyapunov function of the form in (3.46)
for closed-loop system (3.7), withκMPC, representing Algorithm 3.2.11.

Lemma 3.2.15Suppose that the following matrices Pj
V , Qj

V , K j and scalarsτ ji ∈

R[0,1) satisfy

|Pi
V(A j +B jK j)(P j

V)−L|+ |Q j
V(P j

V)−L| ≤ 1− τ ji , [ j i ]⊤ ∈ S
PWA

tr , (3.54a)

|Pi
V(b j)| ≤ τ ji |P

j
Vξ |, ∀ξ ∈ XT ∩Ω j , [ j i ]⊤ ∈ S

PWA
tr , (3.54b)

(P j
V)⊤P j

V > 0, ∀ j ∈ S , (3.54c)

(Q j
V)⊤Q j

V > 0, ∀ j ∈ S . (3.54d)

63



CHAPTER 3. NONLINEAR MODEL PREDICTIVE CONTROL: SUB-OPTIMALITY AND ROBUSTNESS

Then, for allξ ∈ XT it holds that

|Pi
V((A j +B jK j)ξ +b j)|− |P j

Vξ | ≤ −|Q j
Vξ |. (3.55)

Hence, the function V(·) in (3.46) is a Lyapunov function for closed-loop system
xk+1 = (A j +B jK j)xk +b j when xk ∈ Ω j , j ∈ S .

Proof: Inequalities (3.54c) and (3.54d) guarantee thatrank(P j
V) = rank(Q j

V) = n
for all j ∈ S . Furthermore, since{P j

V ,K j ,Q j
V ,τ ji | [ j i ]⊤ ∈ S PWA

tr } satisfy (3.54a) it
follows that

|Pi
V(A j +B jK j)(P j

V)−L|+ |Q j
V(P j

V)−L|+ τ ji −1≤ 0, [ j i ]⊤ ∈ S
PWA

tr (3.56)

Multiplying (3.56) with |P j
Vξ | yields that for[ j i ]⊤ ∈ S PWA

tr

0≥ |Pi
V(A j +B jK j)(P j

V)−L||P j
Vξ |+ |Q j

V(P j
V)−L||P j

Vξ |+ τ ji |P
j

Vξ |− |P j
Vξ |, ∀ξ

≥ |Pi
V(A j +B jK j)(P j

V)−LP j
V ξ̃ |+ |Q j

V(P j
V)−LP j

Vξ |+ |Pi
Vb j |− |P j

Vξ |, ∀ξ ∈ XT

≥ |Pi
V((A j +B jK j)ξ +b j)|− |P j

Vξ |+ |Q j
Vξ |, ∀ξ ∈ XT .

Hence, (3.55) follows.

3.3 Feedback to disturbances

The input-to-state stable sub-optimal model predictive scheme that is presented in
the previous sections can be categorized as belonging to theinherently robust model
predictive control framework, as opposed to the min-max model predictive control
framework [9]. By this, one means that knowledge about disturbances is not incorpo-
rated in the computation of the controlu. For example, in the case of Algorithm 3.2.2
for V andαV as given in (3.13) and (3.12), respectively, the ISS-gainγw

x̃ of the closed-
loop system (3.7) will depend onσ(·), i.e. the constantc2 (see the proof of Corol-
lary 3.2.6), via the relation (2.35). As the constantc2 can be taken equal to|PV | (due
to |PVξ | ≤ |PV ||ξ | for all ξ ∈ Rn), one could minimize|PV | off-line, when computing
the matrixPV . However, this might lead to an increase in the conservativeness of the
input-to-state stabilizability constraint (3.10a). Furthermore, when it is known that the
disturbances take value at all times in a polyhedral setW, it would be desirable to use
this knowledge to minimize the ISS-gainγw

x̃ by minimizingσ(·) on-lineand therefore,
introduce feedback to disturbances. This yields better performance, i.e. suppression
of the effect of additive disturbances on the evolution of the state trajectory.

An obvious solution for achieving the afore mentioned goal is to consider a spe-
cific type ofK -functionfor example,σ(s) , ϕks with ϕk ∈ R>0 for all k ∈ Z+, and
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the following constraint added to Algorithm 3.2.2

|PV( f (xk|k,uk|k)+wk)|− |PVxk|k|+ |QVxk|k|−ϕk|wk| ≤ 0, ∀wk ∈ W. (3.57)

Then, at every time instantk ∈ Z+ one can minimize gainϕk in (3.57) in order to
obtain a minimal ISS-gainγw

x̃ . Unfortunately, the above constraint cannot be specified
as a finite number of (linear) inequalities. Furthermore, the left-hand term in (3.57)
contains the difference of two convex functions ofω , i.e. |PV( f (xk|k,uk|k)+wk)| and
ϕk|wk|, which is in general not convex.

To incorporate feedback to disturbances and still preservethe computational ad-
vantages of Algorithm 3.2.2, the following modification to Algorithm 3.2.2 is pro-
posed. Letϖe, with e∈ Z[1,E], be the vertices ofW and letλ e

k ∈ R≥0, k ∈ Z+, be
optimization variables associated with each vertexϖe. Add the following constraints
to the optimization problem in Step 1 of Algorithm 3.2.2

|PV( f (xk|k,uk|k)+ ϖe)|− |PVxk|k|+ |QVxk|k|−λ e
k ≤ 0, e= 1, . . . ,E, (3.58)

where one aims at obtaining “small” values forλ e
k . Before formally stating the result-

ing sub-optimal model predictive control algorithm with constraint (3.58), it will be
made precise how the variablesλ e

k are related to the gainϕk in (3.57).
SinceW is a polyhedron, it can be written as a finite union of simplicesS1, . . . ,SM

for someM ∈ Z≥1, i.e.

W =
M⋃

i=1

Si , (3.59)

with each simplexSi equal to the convex hull of a subset of vertices ofW and the
origin, i.e.w = 0. More precisely,

Si = Co
{

0,ϖei,1, . . . ,ϖei,n

}
(3.60)

with n the dimension of the disturbance setW and{ϖei,1, . . . ,ϖei,n} ⊆ {ϖ1, . . . ,ϖE}

(i.e. {ei,1, . . . ,ei,n} ⊆ {1, . . . ,E}) with vectorsϖei,1, . . . ,ϖei,n linearly independent.

Example 3.3.1 In Figure 3.1 a simple graphical representation of a given disturbance
setW is given. The set can be divided in, for example,M = 5 simplices, i.e.S1, . . . ,S5

which are all five equal to the convex hull of a subset of vertices ofW. Take for
example the simplexS3 from the setW in Figure 3.1. The simplexS3 is spanned by
w = 0, ϖe3,1, ϖe3,2, with e3,1 = 2 ande3,2 = 3.

For each simplexSi one can define the matrixWi , [ϖei,1 . . .ϖei,n] ∈ Rn×n, which is
invertible.
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S1

S2

S3S4

S5

ϖ1

ϖ2

ϖ3

ϖ4

ϖ5

0

Figure 3.1: A 2-D example of the disturbance setW with verticesϖ1, . . . ,ϖ5 (E=5).

Lemma 3.3.2 If for k ∈ Z+ and the measured statẽxk = xk|k there exist uk|k andλ e
k ,

e∈ Z[1,E], such that(3.58)holds, then(3.57)holds with

ϕk , max
i∈R[1,M]

|λ
i
kW

−1
i |, (3.61)

whereλ
i
k , [λ ei,1

k . . .λ ei,n
k ] ∈ R1×n and| · | is the corresponding induced matrix norm.

Proof: Let xk|k be given and suppose (3.58) holds forλ e
k , e∈ Z[1,E]. Let wk ∈

W =
⋃M

i=1Si . Hence, there exists ani ∈Z[1,M] such thatwk ∈Si = Co{0,ϖei,1, . . . ,ϖei,n},
which means that there exist nonnegative realsµ1, . . . ,µn with

n

∑
j=1

µ j ≤ 1 and wk =
n

∑
j=1

µ jϖei, j .

In matrix notation one has that

wk = Wi




µ1
...

µn


 ⇔




µ1
...

µn


= W−1

i wk. (3.62)

Multiplying each inequality in (3.58) corresponding to theindexei, j with µ j ∈ R>0,
summing up, employing the fact that∑n

j=1 µ j ≤ 1 yields

|PV( f (xk|k,uk|k)+wk)|− |PVxk|k|+ |QVxk|k|−
n

∑
j=1

µ jλ
ei, j
k ≤ 0, (3.63)

or equivalently,

|PV( f (xk|k,uk|k)+wk)|− |PVxk|k|+ |QVxk|k|−λ i
k




µ1
...

µn


≤ 0. (3.64)
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Furthermore, employing (3.62),µ j ∈ R>0 andλ ei, j
k ∈ R≥0, one obtains (3.57) for the

indicatedϕk in (3.61).

Note that, according to Theorem 2.3.4, ifϕk ≤ ϕ⋆ such that for allk∈ Z≥k⋆ for some
k⋆ ∈ Z+ andϕ⋆ ∈ R≥0, an ISS-gain is guaranteed via expression (2.35). Sinceϕk is
coupled toλ e

k , e∈ Z[1,E], via (3.61), smallλ e
k , e∈ Z[1,E], will result in a small ISS-

gain of the closed-loop system (3.7). Hence, optimized robustness of the closed-loop
system to additive disturbancesw : Z+ → W is obtained.

Algorithm 3.2.2 as it is, is beneficial as it focusses on performance and it also pro-
vides guaranteed input-to-state stability with a possiblylarge ISS-gain. This gain is
ensured via constraint (3.10a), which yields afixedϕk so to speak (i.e. independent
of xk|k and equal to|PV |). In the new model predictive control scheme, presented in
the sequel, one aims at performing atrade-off between robustness (suppressing dis-
turbances adequately) via a smallϕk on one hand and performance on the other. This
will be done by adding constraint (3.58) to Algorithm 3.2.2 and minimizing a weighted
sum of the performance costs and disturbance attenuation. On-line improvement of
robustness, i.e. a reduction of the effect of additive disturbances on the evolution of
the state trajectory, is then guaranteed.

Define

Λk ,

[
λ 1

k . . . λ E
k

]⊤
(3.65)

and letRλ be a known real-valued full-column rank matrix of appropriate dimensions.
Note that relation (3.61) can provide an indication for how to chooseRλ . Consider the
following cost

J(x̃k,u
[0,N−1]
k ,Λk) , |Rλ Λk|+ |Pxk+N|k|+

N−1

∑
i=0

(
|Qxk+i|k|+ |Ruuk+i|k|

)
. (3.66)

The input-to-state stabilizing sub-optimal model predictive control algorithm, which
provides feedback to additive disturbances, is then formulated as

Algorithm 3.3.3

Step 1)
Given the statẽxk at time k ∈ Z+, let xk|k , x̃k and find a control sequence

u[0,N−1]
k , [u⊤k|k, . . . ,u

⊤
k+N−1|k]

⊤ and a vectorΛk that minimize the cost (3.66)
and satisfy

|PV( f (xk|k,uk|k))|− |PVxk|k| ≤ −|QVxk|k|, (3.67a)

|PV( f (xk|k,uk|k)+ ϖe)|− |PVxk|k|+ |QVxk|k|−λ e
k ≤ 0, e∈ Z[1,E], (3.67b)

λ e
k ≥ 0, e∈ Z[1,E], (3.67c)

u[0,N−1]
k ∈ UN(x̃k). (3.67d)
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Step 2)
Let

κMPC(x̃k) ,

{
uk|k ∈ U

∣∣ u[0,N−1]
k satisfies (3.67)

}
.

Furthermore, letu[0,N−1]
k , [u⊤k|k, . . . ,u

⊤
k+N−1|k]

⊤ with uk|k ∈ κMPC(x̃k) denote a
feasible sequence of controls with respect to the optimization problem formu-
lated at Step 1. Apply a control

uk = uk|k ∈ κMPC(x̃k)

to the perturbed system (3.1b), incrementk by one and go to Step 1.

Besides enhancing robustness, the constraint (3.67b) alsoensures that Algorithm 3.3.3
recovers performance if the state of the closed-loop system(3.7) approaches̃xeq = 0
ε-close, i.e.|x̃k| ≤ ε. If |x̃k| ≤ ε one can consider thatxk|k ≈ 0. Then, Algorithm 3.3.3
will produce a controluk|k ≈ 0 and constraint (3.67b) yields|PVϖe| − λ e

k ≤ 0, e∈

Z[1,E]. Therefore, Algorithm 3.3.3 cannot minimize each variableλ e
k below the corre-

sponding value|PVϖe|, e∈ Z[1,E] leaving more “freedom” in constraint (3.67b) which
the controller might use to generate performance. This property is desirable, since
it is known from min-max model predictive control [9] that considering aworst-case
disturbance scenario in model predictive control algorithms leads to poor performance
when the disturbance is small or possibly vanishes.

In other words, the constraint (3.67b) automatically switches off the feedback to
disturbances when the closed-loop state approaches the equilibrium x̃eq = 0 ε-close
and therefore, the scheme performs as if there are no or a negligible effects of ad-
ditive disturbances. For the scenarioε-close tox̃eq = 0 one, in principle, obtains
Algorithm 3.2.2. Whenever the state is notε-close tox̃eq = 0, which is the case dur-
ing transient (possibly caused by disturbances), the constraint (3.67b) automatically
incorporates feedback to disturbances. That is,λ e

k , e∈ Z[1,E] can be minimized be-
low |PVϖe| which results in less freedom in constraint (3.67b), but a smaller gainϕk

(and coupled to it a smaller ISS-gain) which results in better suppression of additive
disturbancesw : Z+ → W.

Remark 3.3.4 Note that in case the to-be-controlled system (3.1b) is affine in the
control variable, i.e. (3.18) and infinity norms are considered (p = ∞), the additional
input-to-state constraints (3.67b) can as constraint (3.67a) in the previously presented
control algorithms be specified via a finite number of linear inequalities in the vari-
ablesuk|k,λ 1

k , . . . ,λ E
k and therefore Corollary 3.2.9 holds also for Algorithm 3.3.3.

Remark 3.3.5 In order to possibly reduce conservativeness of constraints (3.67a) and
(3.67b), the approach in Section 3.2 as it is employed to Algorithm 3.2.2 to reduce
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conservativeness of constraint (3.10a) can straightforwardly also be employed to Al-
gorithm 3.3.3 to relax constraints (3.67a) and (3.67b).

3.4 Decentralized manufacturing control

In this section it is illustrated how the presented control theory presented in this chap-
ter can be employed to control a manufacturing system in a decentralized manner.
That is, the overall manufacturing system under control is sub-divided into simpler
subsystems. For each subsystem a (local) controller is designed according to the the-
ory presented in this chapter with the goal to reach an overall control goal when all
the controllers are implemented on the total manufacturingsystem.

Since the analysis and design of large-scale manufacturingsystems are in general
difficult, it is desirable to adopt a relatively simple and tractable model to capture the
key performance-related issues, such machine capacity constraints buffer size limita-
tions, blockingbehavior, etc. In this section one takes up the challenge of applying
the theory addressed in this chapter to a network manufacturing systems, in order
to specifically address the nonlinearities, possibly discontinuous, that are typically
present in manufacturing system dynamics as one will encounter later in this section.
Furthermore, the possibility of taking into account machine capacity constraints an
buffer size limitations makes the presented MPC algorithm in this chapter an attrac-
tive control strategy to tackle a manufacturing systems control problem.

Modeling for control purposes

Consider the queuing system (manufacturing system) as depicted in Figure 3.2. Here

Ci(t)
Bi

Mi
vi(t)

bi(t)

µ i(bi(t))

Figure 3.2: An example of a simple queuing system.

Mi is a processing unit (machine) on which for example productsare being processed.
In front of the machine one has a first in first out buffer systemdenoted byBi . The
buffer system collects incoming products entering the system over time with a certain
average arrival rate [products/time unit]vi : R+ →R+. The machineMi processes over
time with a certain (to-be-assigned) average production rate or production capacity
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[products/time unit]Ci : R+ →R[0,Ci
up]

, whereCi
up is the the maximal possible capacity

that can be assigned to the machineMi . The average amount of products that are
present in the buffer over time is denoted bybi : R+ → R[0,bi

up]
wherebi

up∈ Z>0 is the
maximal allowable products that can be stored in the bufferBi . It is verified in [81]
through simulations, and under the condition that the arrival and processing rate are
Poisson, that

µ i(bi(t)) =

(
bi(t)

1+bi(t)

)
Ci(t), (3.68)

see Figure 3.2, is a valid choice for modeling the average departure rate (i.e. [prod-
ucts/time unit]) for a wide range of communication networksand queuing systems,
e.g. the system depicted in Figure 3.2. Based on relation (3.68) and applying the
law of mass conservation one can obtain the following basic dynamic model for the
queuing system depicted in Figure 3.2

d
dt

bi(t) = vi(t)− µ i(bi(t)), t ∈ R+

bi(t) ∈ R[0,bi
up]

,

Ci(t) ∈ R[0,Ci
up]

.

(3.69)

This model has been introduced in [82]. Recently, the authors of [81], [83] and [84]
have been considering this model for the purpose of network performance evalua-
tion and control undernon-stationaryconditions. Furthermore, in [85] a model of
the form as in (3.69) followed from PDE-based modeling of manufacturing systems.
From (3.69), it follows that in the special case of aconstantaverage arrival and pro-
duction rates, i.e.vi(t) = vi

ssandCi(t) =Ci
ss for all timest ∈ R+, respectively, that the

correspondingsteady stateaverage amount of products, i.e.bi
ss, is given by

bi
ss=

vi
ss

Ci
ss−vi

ss
. (3.70)

Note that (3.70) is the classical formula of queueing theoryfor first in first out queuing
systems as depicted in Figure 3.2, see e.g. [86].

To apply the control strategy explained in this chapter a discrete-time version of
(3.69) is obtained employing Euler’s discretization scheme with sample timeT = 1
and ZOH, i.e.

bi
k+1 = bi

k +vi
k− µ i(bi

k), k∈ Z+, (3.71)

with

µ i(bi
k) =

(
bi

k

1+bi
k

)
Ci

k (3.72)

and constraints
bi

k ∈ R[0,bi
up]

, Ci
k ∈ R[0,Ci

up]
. (3.73)
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Based on the basic queuing model (3.71) one can model more complex manufacturing
systems. Consider for example the manufacturing system in Figure 3.3. The system

s


C1
k

C2
k

B1

B2

M1

M2

v1
k

ṽ2
k

b1
k

µ1(b1
k)

b2
k

µ2(b2
k)

Figure 3.3: An example of a manufacturing system based on an interconnection of two simple
queuing systems.

in Figure 3.3 consists of two basic manufacturing systems asdepicted in Figure 3.2.
The two systems are decoupled if the average buffer contentsof B2, i.e. b2

k is above a

certain valueb
2
∈ Z>0. However, if the buffer contents ofB2 is equal or smaller than

the certain levelb
2
∈ Z>0, there will be a coupling, i.e. products from machineM1

with the average departure rateµ1(b1
k) will enter bufferB2 with average arrival rate

µ1(b1
k). The system dynamics can be described by

[
b1

k+1

b2
k+1

]
=





[
b1

k +v1
k − µ1(b1

k)

b2
k +v2

k − µ2(b2
k)

]
, with v2

k = ṽ2
k + µ1(b1

k), if b2
k ≤ b

2
,

[
b1

k +v1
k − µ1(b1

k)

b2
k +v2

k − µ2(b2
k)

]
, with v2

k = ṽ2
k, otherwise.

(3.74)

Suppose the system, as depicted in Figure 3.3, is a so callednodeof many nodes in
a manufacturing system network. Then, assume that each nodein the network can
be described based on basic interconnections of the simple queuing model description
in (3.69), resulting in for example a system of the form in (3.74). Each node in the
network is possibly connected to other nodes in the network,i.e. incoming product
streams as for example arrival ratesv1

k andṽ2
k of the node in Figure 3.3 are fractions

of departure rates of other nodes in the network (or from the node itself), which might
be time delayeddue to, for example, transportation times of products from one node
to another. See Figure 3.4 for an example of such a network. Let No be the total
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1 2

3 4

v1
ext,k

v2
ext,k

Figure 3.4: An example of a manufacturing system network consisting four-nodes and two
external sources of inflow of products at nodes 1 and 2 with average arrival ratesv1

ext,k and
v2

ext,k, respectively.

number of nodes in the network and letzℓ
k ∈ Rnℓ anduℓ

k ∈ Rmℓ with ℓ ∈ Z[1,No] for
someNo ∈ Z≥1 be the state and control of each node in the network at discrete-time
k∈ Z+, respectively. Furthermore, letvℓ

ext,k ∈ Rnv
ℓ be average arrival rates of products

from some external source entering nodeℓ at discrete timek∈ Z+ . The controluℓ
k of

each node in the network contains allCi
k of the basic queuing systems, contained in

each node. Consider a node, i.e. node 1, e.g. represented by (3.74). Note that then
z1
k , [b1

k b2
k]
⊤ andu1

k , [C1
k C2

k ] are the state and the control of that particular node at
discrete-timek ∈ Z+. Thenv1

k andṽ2
k possibly depend on stateszℓ

k ∈ Rnℓ , which are
possibly time delayed, and the external average arrival ratesvℓ

ext,k, i.e.

[
v1

k

ṽ2
k

]
= h1

v(k,v
1
ext,k,z

1
k−δ11

, . . . ,zNo
k−δNo1

), (3.75)

whereδ jℓ ∈ Z+ with j, ℓ ∈ Z[1,No] represent the time delay caused by for example
transportation time of products between nodesℓ, j. Substituting expression in (3.75)
in (3.74) forms the description of the dynamics of node 1 which possibly depends on
states of other nodes in the system and external arrival rates. Then, for all nodes one
can derive comparable descriptions of the node dynamics forming the total description
of the dynamics of the network i.e.,




z1
k+1
...

zNo
k+1


=




h1(z1
k,u

1
k)+h1

v(k,v
1
ext,k,z

1
k−δ11

, . . . ,zNo
k−δNo1

)

...
hNo(zNo

k ,uNo
k )+hNo

v (k,vNo
ext,k,z

1
k−δ1No

, . . . ,zNo
k−δNoNo

)


 , k∈ Z+. (3.76)
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Control problem

Let zℓ
re f ∈ Rnℓ denote pre-specified buffer levels in all nodes of the system, i.e. the

buffers levels of buffersBi in the network. Suppose that the state, i.e.zℓ
k ∈ Rnℓ with

ℓ ∈ Z[1,No] at discrete timek ∈ Z+ is available for feedback. Then, the control goal
is to assign production ratesCi

k to each machine in the network such thatzℓ
k goes

to zℓ
re f as fast as possible but taking into consideration that assigning a high average

production rate, i.e.Ci
k, to the machines in the network is costly and has to be taken

into consideration, e.g. penalized, in the controller design.
To solve the afore mentioned control goal adecentralizedcontrol approach is fol-

lowed. That is, for each node an individual (i.e. local) control problem is formulated
and a controller is designed to reach the afore mentioned overall (global) control goal.
As to formulate a local control problem a single node is considered, e.g. node 1, and
is isolated from all the other nodes by considering only the description of that sin-
gle node, e.g. (3.74), and considering the arrival rates, e.g. v1

k and ṽ2
k, asadditive

disturbances wℓk, e.g.

w1
k ,

[
v1

k

ṽ2
k

]
= h1

v(k,v
1
ext,k,z

1
k−δℓ1

, . . . ,zNo
k−δNo1

). (3.77)

Assume that the arrival rates at each note are upper-boundedby some known bound.
Then one has thatwℓ ∈ Wℓ, whereWℓ is some known compact set, e.g.

w1
k ∈ W1 , R[0,C1

up]
×R[0,C2

up]
. (3.78)

Remark 3.4.1 Note that assuming there is an upper-bound for the arrival rates in the
network is a mild assumption due to the factCi

k ∈ R[0,Ci
up]

are finite for allk∈ Z+ and
due to the fact that relation (3.72) has the following nice property

0≤ µ i(ξ ) < Ci
up, ∀ξ ∈ R+.

The following local control problem is now considered.

Problem 3.4.2 For someℓ ∈ Z[1,No], let zℓ
re f ∈ Rnℓ andzℓ

k be given at discrete-time
k∈ Z+. Design a controller that based on the state in nodeℓ, i.e. zℓ

k, assignsCi
k to the

each machine in nodeℓ such that

1. zℓ
k goes tozℓ

re f as fast as possible while penalizing that high average production
ratesCi

k are assigned to the machines in the network

2. Additive disturbanceswℓ : Z+ → Wℓ are rejected.
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A good disturbance rejection property of the local controllers, i.e. item 2 in Prob-
lem 3.4.2, will guarantee that the local controllers designed for performance based
on local models (which lack detailed description of the influence of other nodes in
the system), e.g. item 1 in Problem 3.4.2, will perform well if the effects of the un-
modeled node interactions are present. This will guaranteegood performance of the
afore formulated overall network control goal.

The main advantage of this decentralized control approach is that a lot of com-
plexity in modeling, i.e. determining accurate descriptions the functionsf ℓ

v , which
in practice might contain a lot of uncertain and time varyingparameters like uncer-
tain transportation delays between nodes, is avoided. Alsofrom a controller design
point of view this complexity reduction is beneficial especially if one considers large
networks.

Controller design

To solve Problem 3.4.2 a model predictive control strategy with feedback to distur-
bances presented in this chapter will be employed. The controller design will be
spelled-out for node 1 in the previously explained manufacturing system network.
Consider the description of the system dynamics of node 1, i.e. (3.74) with additive
disturbancew1

k as defined in (3.77) and the controlu1
k , [C1

k C2
k ]⊤. Suppose that the

buffer reference level is given by

z1
re f ,

[
b1

re f

b2
re f = b

2
−1

]
, ∀k∈ Z+. (3.79)

Note that forw1
k = 0 andu1

k = 0 system (3.74) has the following (infinite) equilibria

z1
eq ,

[
b1

eq

b2
eq

]
∈ R2

+.

The controller design methodology of this chapter can render 0 as equilibrium point
of the closed-loop system input-to-state stable, however in this example one aims
at rendering equilibrium pointz1

re f input-to-state stable, withz1
re f defined in (3.79),

therefore the controller design will be based on the system dynamics obtained after
performing the following coordinate transformation on thestate of (3.74), i.e.

x̃1
k , z1

k −z1
re f , ∀k∈ Z+. (3.80)

This yield the following transformed system dynamics for node 1.

x̃1
k+1 = f 1(x̃1

k,u
1
k)+w1

k = g1(x̃
1
k)+g j

2(x̃
1
k)u

1
k +w1

k when x̃1
k ∈ Ω j , j ∈ {1,2}

(3.81)
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whereg1(x̃k) , x̃1
k,

g1
2(x̃

1
k) ,



−

x̃1
1,k+b1

re f

1+x̃1
1,k+b1

re f
0

x̃1
1,k+b1

re f

1+x̃1
1,k+b1

re f
−

x̃1
2,k+b2

re f

1+x̃1
2,k+b2

re f


 , g2

2(x̃
1
k) ,



−

x̃1
1,k+b1

re f

1+x̃1
1,k+b1

re f
0

0 −
x̃1
2,k+b2

re f

1+x̃1
2,k+b2

re f


 ,

Ω1
1 ,

{
ξ̃ ∈ R2

∣∣ H1
Ω1

ξ̃ ≤ 1
}
, Ω1

2 ,

{
ξ̃ ∈ R2

∣∣ H1
Ω2

ξ̃ > 1
}
,

with H1
Ω1

, [0 1] andH1
Ω2

, [0 1]. Furthermore,̃x1
k, u1

k andw1
k are constrained in the

setsX1, U1 andW1 for all k∈ Z+, respectively, i.e.

X1 ,

{
ξ̃ ∈ R2 | A1

X ξ̃ ≤ b1
X

}
, U1 ,

{
µ ∈ R2 | A1

U µ ≤ b1
U

}
,

W1 ,

{
ω ∈ R2 | A1

Wω ≤ b1
W

}
,

where

A1
X ,




−1 0
0 −1
1 0
0 1


 , b1

X ,




−b1
re f

−b2
re f

b1
up−b1

re f

b2
up−b2

re f


 , A1

U ,




−1 0
0 −1
1 0
0 1


 ,

b1
U ,




0
0

C1
up

C2
up


 , A1

W ,




−1 0
0 −1
1 0
0 1


 , b1

W ,




0
0

C1
up

C2
up


 .

For w1 = 0 andu1 = 0 equilibrium x̃1
eq = 0 of the transformed system (3.81) then

corresponds to the equilibriumz1
eq = z1

re f of the system in original coordinates, i.e.
(3.74).

Note that the second component off 1 is discontinuous alongx1
2 = 0. Based on a

piecewise linear approximation of (3.81) forw1 = 0, i.e.

f 1(x1
k,u

1
k) = g1(x

1
k)+g j

2(x
1
k)u

1
k ≈Ax1

k +B ju1
k, when x1

k ∈Ω1
j , j ∈ {1,2}, (3.82)
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where

A ,
∂ (g1(x)+g j(x)u)

∂x

∣∣∣∣∣
x=0,u=0

=

[
1 0
0 1

]
,

B1 ,
∂ (g1(x)+g2

2(x)u)

∂x

∣∣∣∣∣
x=0,u=0

=



−

b1
re f

1+b1
re f

0

b1
re f

1+b1
re f

−
b2

re f

1+b2
re f


 ,

B2 ,
∂ (g1(x)+g1

2(x)u)

∂x

∣∣∣∣∣
x=0,u=0

=



−

b1
re f

1+b1
re f

0

0 −
b2

re f

1+b2
re f


 ,

As an illustration, in Figure 3.5 for some fixed controlu1
k ∈ U1 both the function

f 1(x1
k,u

1
k) and its piecewise linear approximation, i.e. (3.82), are plotted for system

parameters

b
2
= 7 [products],

b1
re f = b2

re f = 6 [products],
C1

up = C2
up = 5 [products/time unit],

b1
up = 30 [products],

b2
up = 25 [products].

(3.83)

Based on this piecewise linear approximation the followingmatrices

(a)Plot of f 1
1 (x1

k,u
1
k) and its piecewise linear

approximation as function ofx1
k on the domain

X1 for u1
k = [5 1]⊤.

(b) Plot of f 1
2 (x1

k,u
1
k) and its piecewise linear

approximation as function ofx1
k on the domain

X1 for u1
k = [5 5]⊤.

Figure 3.5:
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P1
V =

[
1.0443 0.0447
−0.0073 0.9572

]
, P2

V =

[
0.9805 −0.0242
−0.0343 0.9619

]
,

Q1
V =

[
0.0475 0.0070
0.0090 0.0431

]
, Q2

V =

[
0.1836 0.0836
0.2746 0.3791

]
,

K1 =

[
0.9867 −0.0150
0.0128 1.0144

]
, and K2 =

[
0.9482 0.0202
0.0641 1.0108

]

are obtained following the procedure in Section 3.2. The matrices P1
V , P2

V , Q1
V ,

Q2
V , K1 and K2 satisfy the inequalities (3.54) of Lemma 3.2.15 for

S PWA
tr = {[1 1]⊤, [1 2]⊤, [2 1]⊤, [2 2]⊤}, i.e. see (3.53), andτ ji = 0 for all [ j i ] ∈S PWA

tr .
Note that the disturbance setW1, defined in (3.78), can be written asW1 = S1

1∪S1
2,

i.e. M = 2 with

S1 = Co
{

0,ϖ1,ϖ2
}
, S2 = Co

{
0,ϖ2,ϖ3

}
,

with

ϖ1 ,

[
C1

up

0

]
, ϖ2 ,

[
C1

up

C2
up

]
, ϖ3 ,

[
0

C2
up

]
. (3.84)

Now a model predictive control scheme is employed based on Algorithm 3.2.11. In
order to give Algorithm 3.2.11 feedback to disturbances step 3 in Algorithm 3.2.11 is
replaced by step 1 of Algorithm 3.3.3 with inequalities in (3.67a) and (3.67b) replaced
by

max
i∈S

j
tr,k

(
|Pi

V |p
)
|g j(xk|k,uk|k)|p−|P j

Vxk|k|p ≤−|Q j
Vxk|k|p, (3.85a)

max
i∈S

j
tr,k

(
|Pi

V |p
)
|g j(xk|k,uk|k)+ ϖe|p−|P j

Vxk|k|p + |Q j
Vxk|k|p−λ e, e∈ Z[1,3].

(3.85b)

To simultaneously achieve item 1 and 2 in Problem 3.4.2 the following model predic-
tive control costs are minimized

J1(x̃1
k,u

[0,N−1]
k ,Λ1

k) , |R1
λ Λ1

k|∞ + |P1xk+N|k|∞ +
N−1

∑
i=0

(
|Q1xk+i|k|∞ + |R1

uuk+i|k|∞
)

(3.86)
with

Λ1
k ,




λ 1
k
...

λ 3
k


 , R1

λ ,




1 0 0
0 1 0
0 0 1


 , P1 , Q1 , R1

u ,

[
1 0
0 1

]
.
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To obtain a computationally cheap model predictive controlscheme letp= ∞ andN =

1, i.e see Corollary 3.2.9. The particular linear programming problem that follows, to
solve step 1 of Algorithm 3.3.3 with costs (3.86) and with inequalities in (3.67a) and
(3.67b) replaced by (3.85a) and (3.85a), respectively, is then given by

min
Λ1

k,uk|k,ε1
Q,ε1

P,ε1
Ru

,ε1
Rλ

{
ε1

Q + ε1
P + ε1

Ru
+ ε1

Rλ

}

subject to:

A1
LP

[
Λ1⊤

k u⊤k|k ε1
Q ε1

P ε1
Ru

ε1
Rλ

]⊤
≤ b1

LP

where

A1
LP(xk|k, j)

,

︷ ︸︸ ︷


−Irλ 0 0 0 0 0
R1

λ 0 0 0 0 −1rλ

−R1
λ 0 0 0 0 −1rλ

0 0 −1nq 0 0 0
0 0 −1nq 0 0 0
0 P1gj

2(xk|k) 0 −1np 0 0
0 −P1gj

2(xk|k) 0 −1np 0 0
0 R1

u 0 0 −1ru 0
0 −R1

u 0 0 −1ru 0
0 0 −1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1
0 gj

2(xk|k) 0 0 0 0

0 −gj
2(xk|k) 0 0 0 0

M1
PV

gj
2(xk|k) 0 0 0 0

M1
PV

−gj
2(xk|k) 0 0 0 0

M2
PV

gj
2(xk|k) 0 0 0 0

M2
PV

−gj
2(xk|k) 0 0 0 0

M3
PV

gj
2(xk|k) 0 0 0 0

M3
PV

−gj
2(xk|k) 0 0 0 0

0 A1
Xgj

2(xk|k) 0 0 0 0
0 A1

U 0 0 0 0




,

b1
LP(xk|k, j)

,

︷ ︸︸ ︷


0
0
0

−Q1xk|k

Q1xk|k

−P1g1(xk|k)

P1g1(xk|k)

0
0
0
0
0
0

−gj
1(xk|k)+1nϑ j (xk|k)

gj
1(xk|k)+1nϑ j (xk|k)

−gj
1(xk|k)+1nϑ j (xk|k)−ϖ1

gj
1(xk|k)+1nϑ j (xk|k)+ϖ1

−gj
1(xk|k)+1nϑ j (xk|k)−ϖ2

gj
1(xk|k)+1nϑ j (xk|k)+ϖ2

−gj
1(xk|k)+1nϑ j (xk|k)−ϖ3

gj
1(xk|k)+1nϑ j (xk|k)+ϖ3

b1
X −A1

Xgj
1(xk|k)

b1
U




,

with

ρ j
V ,


max

i∈S
j

tr,k

|Pi
V |∞




−1

, M1
PV

,

[
−1nρ j

V 0 0
]
, M2

PV
,

[
0 −1nρ j

V 0
]
,

M3
PV

,

[
0 0 −1nρ j

V

]
, ϑ j(xk|k) , ρ j

V

(
|P j

Vxk|k|∞ −|Q j
Vxk|k|∞

)
, rλ , 3.
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3.4. DECENTRALIZED MANUFACTURING CONTROL

The setS j
tr,k in the model predictive control scheme is solved as indicated in Step 2 of

Algorithm 3.2.11 and involves, for this example, verifyingwhether for givenxk|k and
j the outcome of the following two tests is true or false.

test 1) Solve the following linear program

min
ξ̃ ,µ,ω

(3.87)

subject to:

A11
reach

[
ξ̃ µ ω

]⊤
≤ b1

reach

B1
reach(xk|k, j)

[
ξ̃ µ ω

]⊤
= g1(xk|k)

,

where

A11
reach,




A1
X 0 0
0 A1

U 0
0 0 A1

W

H1
Ω1

0 0


 , b1

reach,




b1
X

b1
U

b1
W

0


 , B1

reach(xk|k, j),




In
g j

2(xk|k)

−In




⊤

.

If the linear programming problem (3.87) is feasible then the outcome of test 2
is true andfalseotherwise.

test 2) Solve the following linear program

min
ξ̃ ,µ,ω

(3.88)

subject to:

A12
reach

[
ξ̃ µ ω

]⊤
≤ b1

reach

B1
reach(xk|k, j)

[
ξ̃ µ ω

]⊤
= g1(xk|k),

where

A12
reach,




A1
X 0 0
0 A1

U 0
0 0 A1

W

−H1
Ω2

0 0


 .

If the linear programming problem (3.88) is feasible then let ξ̃ ⋆, µ⋆ andω⋆

denote its corresponding solution. Then if

A12
reach

[
ξ̃ ⋆ µ⋆ ω⋆

]⊤
6= b1

reach, (3.89)

the outcome of test 2 istrue andfalseotherwise.
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Then,

S
j

tr,k =





{1,2} if test 1 istrue& test 2 istrue,

{1} if test 1 istrue& test 2 isfalse,

{2} if test 1 isfalse& test 2 istrue.

Simulation result

System (3.74) with the system parameters given in (3.83) is considered. For system
(3.74) in closed-loop with the designed model predictive controller with feedback to
disturbance, a simulation is performed. The result of the simulation is shown in Fig-
ure 3.6, 3.7 and 3.8. Note that, although the controller design is performed for the
transformed system (3.81), the simulation results are presented in the original coordi-
natesb1

k andb2
k corresponding to system (3.74), which represent the buffercontents of

buffer B1 andB2, respectively. The simulation result of the controller with feedback
to disturbance is compared to the response of the system (3.74) in closed-loop with
Algorithm 3.2.11, i.e. no feedback to disturbance, with MPCcost as in (3.86) with
R1

λ = 0. The closed-loop systems with feedback to disturbance, isperturbed with
the disturbance signalw1

k taking values inW1. In order to indicate the input-to-state
stability property of the closed-loop system, i.e. convergence to the equilibrium if the
external disturbance vanishes, the disturbance is taken identically 0 starting from time
stepk= 150. The same scenario is applied to the closed-loop system without feedback
to disturbance. However, to the system without feedback to disturbance, a disturbance
with a lower amplitude is employed due to feasibility problems. Note that due to
the fact that the excitation level of the closed-loop without feedback to disturbance is
milder, the influence on the evolution of the state, i.e. buffer levels, is significantly
larger. Hence, when employing the controller with feedbackto disturbances to con-
trol one node in a manufacturing network, given by (3.76), itwill still perform well
to establish the afore formulated overall control goal, while the performance of the
controller without feedback to disturbances will be deteriorated due to the persistent
disturbancew1 that will be present. The persistent disturbancewi , i = 1, . . . ,No are
present due to the fact that the termshi

v, i = 1, . . . ,No, in (3.76), which represent node
interactions that are hard to model in practice, are neglected in the (local) controller
design for the nodes in the overall manufacturing system.

This example illustrates an approach how one can divide a complex manufacturing
network into nodes of less complexity and design a controller for each node individu-
ally and taking node interaction, which is hard to model in the case of manufacturing
systems, into consideration via a additive disturbances. Subsequential the individual
controller is designed such that an individual performancerequirement is met and
the un-modeled node interaction, modeled via additive disturbance, is rejected. This
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Figure 3.6: The system response for system with feedback to disturbances (tick line) and with-
out (thin line). Constraints and desired reference buffer level (z1

re f ) is indicated with dotted and
dashed lines, respectively.

will then guarantee overall performance of the controlled network. A besides the
tremendous complexity reduction of the controller design for manufacturing systems
the benefit of this decentralized control approach is that the computations involved for
each controller can be performed inparallel such that computational time is reduced
compared to solving the control problem as one (untractable) control problem.

3.5 Summary

An approach to design a computationally friendly sub-optimal nonlinear (hybrid)
model predictive control algorithm with an a priori input-to-state stability guarantee
of the closed-loop system, i.e. the to-be-controlled system in closed-loop with the
nonlinear model predictive control algorithm, with respect to additive disturbances is
presented. For the nonlinear model predictive controller,the input-to-state stabiliza-
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Figure 3.7: Plot of ϕk as function of time. The variableϕk, see (3.57), can be taken a measure
of how well the additive disturbancew1

k is suppressed (ϕk = 0 means all disturbance is rejected,
i.e. the additive disturbancew1

k has no influence on the evolution of the state or buffer levels)

tion constraints can be written as a finite number of linear inequalities. To enhance
robust performance, the model predictive control scheme ismodified to allow for on-
line optimization of the ISS-gain of the resulting closed-loop system. This induces
feedback to (additive) disturbances and results in improved performance. It is illus-
trated how the proposed model predictive control scheme canbe employed to solve
large scale manufacturing control problems, that possiblyexhibit discontinuous hybrid
behaviors, in an efficient decentralized manner.
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Figure 3.8: Active mode j ∈ {1,2} as function of time
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Science has proof without any cer-
tainty. Creationists have certainty
without any proof

Ashley Montague

4
Robustness results for constrained

nonlinear closed-loop systems

In this chapter a result is presented that can be employed to infer robustness of a state
feedback control law, in closed-loop with aconstraineddiscrete-time nonlinear con-
trol system, tostate measurement errorsfrom robustness toadditive disturbances. The
result allows for possible discontinuity and set-valuedness of the state feedback con-
trol law. In particular, this enables the employment of the main result to obtain model
predictive controllers that are robust tostate measurement errorsfrom available model
predictive controllers in the literature, which are robustto additive disturbances.

In practice state variables of a control system are always corrupted bystate mea-
surement errors. State measurement errorscan be caused by measurement noise
present in sensor read-outs or by state estimation errors caused by the usage of ob-
servers. It is therefore important that state feedback controllers are designed such that
they are robust to state measurement errors. In this chapterthe notion of input-to-
state stability is used to study robustness ofdiscrete-timenonlinear systems subject
to state measurement errors. Only few results on input-to-state stability with respect
to state measurement errors are available in literature, especially if constraints on the
state and the control have to be taken into account. In [87] aninput-to-state stability
result is given forsmoothstate feedback control laws perturbed by state measurement
errors in closed-loop with acontinuous-timenonlinear control system. Fordiscrete-
timenonlinear systems, robustness results tostate measurement errorswere obtained
in [69, 88]. The result in [69] holds under the assumption that the state feedback con-
trol law is Lipschitz continuous. Although in [88] no Lipschitz continuity of the state
feedback control law is required, constraints on the state and the control of the system
dynamics are not incorporated. Furthermore, the result in [88] requires continuity of
the system dynamics with respect to the state and the control.
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The aim of this chapter is to extend the above mentioned work to the case of
nonlinear control systems withconstraintson thestateand thecontrol and possible
discontinuous and/or set-valued state feedback control laws to include especially those
generated via model predictive control. Indeed, to exploitone of the assets of model
predictive control in being one of the few control strategies to deal in a systematic
way with constraints, an extension of [69, 88] towardsconstrainedsystems is needed
and important. Moreover, recall that one has to include set-valuedness as it can occur
in model predictive control that due to non-uniqueness of the (sub)optimal control se-
quence of the model predictive control optimization problem, see Section 3.1. Also
discontinuity has to be accounted for, as it is known that model predictive controllers
can generate discontinuous feedbacks. Another important reason for allowing for dis-
continuous feedbacks is the existence of nonlinear systemsthat can be stabilized by
discontinuous feedbacks, but not by continuous ones.

The main result of this chapter shows how one can infer input-to-state stability
with respect tostate measurement errorsfor a state feedback in closed-loop with a
constrained discrete-time nonlinear system from input-to-state stability with respect
to additive disturbances. To stress the value of this transformation result, synthesis
methodologies that result in closed-loop systems that are input-to-state stable with
respect to measurement errors, especially in the field of model predictive control for
state and control constrained nonlinear systems, are rare,while there are relatively
many input-to-state stability results in the model predictive control literature onaddi-
tive disturbances, see e.g. [44, 45, 46, 47] and Chapter 3 of this thesis. Also in[42]
the authors study robustness of constrained MPC to additivedisturbances (in a weaker
sense than ISS) and, moreover, they mention the problem of state measurement er-
rors. In this chapter the focus is on the latter, i.e. measurement errors, and the main
result provides a direct and simple method to transform a broad range of existingcon-
strainedmodel predictive control results, e.g. [44, 45, 46, 47], that generate input-to-
state stable closed-loop systems with respect toadditive disturbancesinto closed-loop
systems that are also input-to-state stable with respect tostate measurement errors.
Furthermore, under some additional assumptions the transformation result can also
be employed to draw conclusions about input-to-state stability of closed-loop systems
perturbed bystate measurement errorsandactuator noisesimultaneously.

This chapter is organized as follows. First the robustness issue with respect to
state measurement errors is considered in Section 4.1. In Section 4.2 the robustness
issue with respect to state measurement errorsand actuator noise is considered. In
Section 4.3 it is explained how the results obtained in this chapter can be employed in
the context of manufacturing system control to tread the issue pointed-out in the end
of Section 1.5. Conclusions are summarized in Section 4.4.
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4.1. ROBUSTNESS TO MEASUREMENT ERRORS

4.1 Robustness to measurement errors

Consider the constrained closed-loop system

xk+1 = f (xk,uk) with uk ∈ κ(xk), k∈ Z+, (4.1)

wherexk ∈ X ⊆ Rn anduk ∈ U ⊆ Rm are the state and the control input, respectively,
at discrete-timek∈ Z+. The setsX andU are known sets with 0 in their interior and
represent the state and input constraints, respectively. The functionκ : X̃ →֒ U is a
set-valued state feedback law defined oñX ⊆ X that is allowed to be discontinuous.
Finally, the functionf : X×U→X satisfiesf (0,0) = 0 and the following assumption.

Assumption 4.1.1The function f : X×U → X is uniformly continuous inx in the
sense that there exists aK -functionη̃ f such that

| f (ξ 1,µ)− f (ξ 2,µ)| ≤ η̃ f (|ξ 1− ξ 2|)

for all ξ 1, ξ 2 ∈ X and allµ ∈ U.

Note that all functionsf that are Lipschitz continuous inx with Lipschitz constantL f ,
satisfy Assumption 4.1.1 with̃η(s) = L f s. Consider the following perturbed versions
of the closed-loop system (4.1).

x̃k+1 ∈ f (x̃k,κ(x̃k))+wk , Fw(x̃k,wk), k∈ Z+, (4.2a)

xk+1 ∈ f (xk,κ(xk +ek))+dk , Fe,d(xk,ek,dk), k∈ Z+, (4.2b)

wherex̃k,xk are the state variables,wk ∈ W ⊆ Rn, dk ∈ D ⊆ Rn the additive distur-
bancesandek ∈ E ⊆ Rn thestate measurement errorat discrete-timek∈ Z+, respec-
tively.

Assumption 4.1.2Let

W ,

{
ω ∈ Rn

∣∣ |ω | ≤ λ
}
, for some λ ∈ R>0. (4.3)

Suppose that system (4.2a) is ISS iñX ⊆ X with additive disturbances inW with
0∈ int(X̃ ), i.e. there exist aK L -functionβx̃ and aK -functionγw

x̃ such that for all
x̃0 ∈ X̃ andw : Z+ → W all solutions̃x∈ SFw(x̃0,w) satisfy

|x̃k| ≤ βx̃(|x̃0|,k)+ γw
x̃ (‖w‖), ∀k∈ Z+. (4.4)

Furthermore, assume that̃X is RPI for system (4.2a) withadditive disturbancesin
W.
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Theorem 4.1.3Suppose that Assumptions 4.1.1 and 4.1.2 hold and define theK∞-
functionη f (s) = η̃ f (s) + s for s∈ R≥0. Let λe ∈ R≥0 and λd ∈ R≥0 be such that
λe+ λd ≤ λ and define

E ,

{
ε ∈ Rn

∣∣ |ε| ≤ η−1
f (λe)

}
,

D ,

{
δ ∈ Rn

∣∣ |δ | ≤ λd

}
,

andX , X̃ ∼ E. Suppose that0∈ int(X ). Then, the following statements hold.

i) The setX ⊆ X is an RPI set for closed-loop system(4.2b)with state measurement
errors e: Z+ → E and additive disturbances d: Z+ → D;

ii) The state and input constraints are satisfied for all trajectories of (4.2b)with initial
states x0 in X , measurement errors inE and additive disturbances inD, i.e. for all
x∈ SFe,d(x0,e,d) with x0 ∈ X , e: Z+ → E and d: Z+ → D it holds that xk ∈ X and
κ(xk +ek) ⊆ U for all k ∈ Z+;

iii) The equilibrium point xeq= 0 of closed-loop system(4.2b)is input-to-state stable
in X with respect tostate measurement errors in E andadditive disturbances in D.
In particular, one has that for all x0 ∈ X , e : Z+ → E and d: Z+ → D all solutions
x∈ SFe,d(x0,e,d) satisfy

|xk| ≤ βx(|x0|,k)+ γe
x(‖e‖)+ γd

x (‖d‖), ∀k∈ Z+, (4.5)

with βx(|x0|,k) , βx̃(2|x0|,k), γd
x (‖d‖) , γw

x̃ (2‖d‖) and

γe
x(‖e‖) , βx̃(2‖e‖,0)+ γw

x̃ (2η f (‖e‖))+‖e‖.

Proof:

i) Let ξ ∈ X , ε ∈ E andδ ∈ D. It will be shown that for allε ∈ E,

[ f (ξ ,κ(ξ + ε))+ δ ]+ ε ⊆ X̃ (4.6)

as this would prove thatX is RPI for (4.2b) according to Definition 2.3.1. One
proceeds by observing that

f (ξ ,µ)+ δ + ε = f (ξ̃ ,µ)+ ω , ∀µ ∈ κ(ξ̃ ) ⊆ U (4.7)

with ξ̃ , ξ + ε andω , f (ξ ,µ)− f (ξ̃ ,µ)+ δ + ε. Using Assumption 4.1.1 yields
| f (ξ̃ − ε,µ)− f (ξ̃ ,µ)| ≤ η̃ f (|ε|). Therefore, it holds that for allε,ε ∈ E, δ ∈ D and

ξ̃ ∈ X̃

|ω | = | f (ξ̃ − ε,µ)− f (ξ̃ ,µ)+ δ + ε| ≤ η̃ f (|ε|)+ |δ |+ |ε|, ∀µ ∈ κ(ξ̃ ) ⊆ U

≤ η̃ f ◦η−1
f (λe)+ λd + η−1

f (λe) = λe+ λd ≤ λ ,
(4.8)
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which shows thatω ∈ W. Employing Assumption 4.1.2, i.e.̃X is RPI for system
(4.2a) with additive disturbances inW, (4.7) yields that for allξ ∈ X , ε,ε ∈ E and
δ ∈ D,

f (ξ ,µ)+ δ + ε ⊆ X̃ , ∀µ ∈ κ(ξ + ε) ⊆ U,

which is equivalent to (4.6).

ii) Due to i), it holds that for anyx0 ∈ X and anye : Z+ → E, d : Z+ → D all
trajectoriesx∈ SFe,d(x0,e,d) satisfyxk ∈ X ⊆ X, xk + ek ∈ X̃ ⊆ X for all k ∈ Z+

and thusuk ∈ κ(xk +ek) ⊆ U for all k∈ Z+.

iii) Let x0 in X , e : Z+ → E, d : Z+ → D andx ∈ SFe,d(x0,e,d). Perform the fol-
lowing coordinate change on (4.2b)

xk = x̃k−ek, ∀k∈ Z+, (4.9)

which gives
x̃k+1 ∈ f (x̃k−ek,κ(x̃k))+dk +ek+1, k∈ Z+, (4.10)

or
x̃k+1 ∈ f (x̃k,κ(x̃k))+wk, k∈ Z+, (4.11)

where
wk , f (x̃k−ek,uk)− f (x̃k,uk)+dk +ek+1, (4.12)

for someuk ∈ κ(x̃k) ⊆ U, ek,ek+1 ∈ E, dk ∈ D, x̃k ∈ X̃ . Hence,

wk ∈W ,

{
f (ξ̃ −ε,µ)− f (ξ̃ ,µ)+δ +ε

∣∣ µ ∈ κ(ξ̃ )⊆U,ε,ε ∈E, δ ∈D, ξ̃ ∈ X̃

}
.

The claim is thatW ⊆ W. Indeed, ifω ∈ W, then one can use Assumption 4.1.1 to
obtain that for allε,ε ∈ E, δ ∈ D andξ̃ ∈ X̃ (4.8) holds, which implies thatW ⊆ W

and thereforewk ∈ W for all k ∈ Z+. Due to the fact thatwk ∈ W for all k ∈ Z+ and
xk +ek ∈ X̃ for all k∈ Z+ (as shown in item ii) of the proof) one obtains thatx̃k ∈ X̃

for all k∈ Z+. As a consequence, one can apply (4.4) of Assumption 4.1.2 to(4.11).
Via (4.12) and using Assumption 4.1.1 in a similar manner as in (4.8), one obtains that
for all uk ∈ κ(x̃k) ⊆ U, ek,ek+1 ∈ E, dk ∈ D, x̃k ∈ X̃ andk∈ Z+

|wk| ≤ | f (x̃k−ek,uk)− f (x̃k,uk)+dk +ek+1|

≤ | f (x̃k−ek,uk)− f (x̃k,uk)|+‖d‖+‖e‖

≤ η̃ f (‖e‖)+‖e‖+‖d‖= η f (‖e‖)+‖d‖.

(4.13)

Substituting the last inequality of (4.13) into (4.4) gives

|x̃k| ≤ βx̃(|x̃0|,k)+ γw
x̃ (η f (‖e‖)+‖d‖). (4.14)
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Applying (4.9) and property (4.14) yields

|xk| = |x̃k−ek| ≤ |x̃k|+ |ek| ≤

≤ βx̃(|x0 +e0|,k)+ γw
x̃ (η f (‖e‖)+‖d‖)+ |ek|

≤ βx̃(|x0|+ |e0|,k)+ γw
x̃ (2η f (‖e‖))+ γw

x̃ (2‖d‖)+‖e‖

≤ βx̃(2|x0|,k)+ βx̃(2|e0|,k)+ γw
x̃ (2η f (‖e‖))+ γw

x̃ (2‖d‖)+‖e‖

≤ βx̃(2|x0|,k)+ βx̃(2‖e‖,0)+ γw
x̃ (2η f (‖e‖))+ γw

x̃ (2‖d‖)+‖e‖

= βx(|x0|,k)+ γe
x(‖e‖)+ γd

x (‖d‖).

As a corollary, one can obtain a similar result for

xk+1 ∈ f (xk,κ(xk +ek)) , Fe(xk,ek), (4.15)

which is a special case of (4.2b), where one only considers measurement errorsek ∈ E

and no additive disturbancesdk. For illustration purposes, the corollary below consid-
ers the case wheref is Lipschitz continuous inx.

Corollary 4.1.4 Suppose that Assumption 4.1.2 holds and that f is Lipschitz contin-
uous in x, i.e. Assumption 4.1.1 holds withη̃ f (s) = L f s, s∈ R≥0. Let

E ,

{
ε ∈ Rn

∣∣∣ |ε| ≤ λ
(L f +1)

}
, (4.16)

X , X̃ ∼ E and suppose0∈ int(X ). Then, the following statements hold.

i) The setX ⊆ X is an RPI set for closed-loop system(4.15) perturbed by state
measurement errors inE;

ii) The state and input constraints are satisfied for all trajectories of (4.15)with initial
states x0 in X and measurement errors inE, i.e. for all x∈ SFe(x0,e) with x0 ∈ X

and e: Z+ → E it holds that xk ∈ X andκ(xk +ek) ⊆ U for all k ∈ Z+;

iii) The equilibrium point xeq = 0 of closed-loop closed-loop system(4.15) is input-
to-state stable in X with respect tostate measurement errors in E. In particular, one
has that for all x0 ∈ X and e: Z+ → E all solutions x∈ SFe(x0,e) satisfy

|xk| ≤ βx(|x0|,k)+ γe
x(‖e‖), ∀k∈ Z+, (4.17)

with βx(|x0|,k) , βx̃(2|x0|,k) and

γe
x(‖e‖) , βx̃(2‖e‖,0)+ γw

x̃ ((L f +1)‖e‖)+‖e‖.
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Remark 4.1.5 Corollary 4.1.4 also applies in the unconstrained case, i.e. whenX =

Rn andU = Rm, with the unbounded disturbance setsW = E = Rn (λ = ∞). In this
case, the above result applies for̃X = X = Rn and yields a global input-to-state
stability result with respect to measurement noise. A similar remark can be made for
Theorem 4.1.3.

The derived results can be applied in the domain of model predictive control. In
[43, 45, 46, 47] model predictive control laws are proposed that result in closed-loop
systems that are input-to-state stable with respect to additive disturbances. In the set-
ting of this chapter,X are the state andU are the input constraints and̃X is the feasible
set for the model predictive control optimization problem.Applying Corollary 4.1.4
would yield directly a MPC state feedback law that is input-to-state stable inX with
respect to measurement errors inE, where the relation betweenW andE is given in
(4.16).

The result of Corollary 4.1.4 is also relevant for “certainty equivalence control,”
where one designsoutput feedback controllers that generate the control via a state
feedback law using an estimate of the state, which is obtained, for instance, from an
observer. For linear systems, the separation principle gives a formal justification of
this approach in the absence of constraints. Such a principle does not hold gener-
ally, when nonlinear systems and/or constraints are considered. In [89] one considers
for instance the constrainedlinear case using a particular model predictive controller,
while for unconstrainednonlinear discrete-time systems interesting results are avail-
able in e.g. [88, 90]. In the constrained linear and nonlinear case, Corollary 4.1.4
might be useful as it yields state feedbacks that are input-to-state stable with respect
to measurement errors. If observers are available that yield globally asymptotically
stable (GAS) estimation error dynamics (or satisfy other ISS properties), one might
apply the well-known small gain results (see e.g. [41]) to prove that the closed-loop
system is GAS see e.g. Chapter 5. For the constrained case, itmight be necessary to
run the observer a sufficiently large period of time to ensurethat the estimation error is
contained inE, before switching on the state feedback controller using the estimated
state. In the unconstrained case withE = Rn as discussed in Remark 4.1.5, this is not
necessary.

4.2 Robustness to measurement errors and actuator noise

Consider now the following perturbed versions of the constrained closed-loop systems
(4.1)

x̃k+1 ∈ f (x̃k,κ(x̃k))+wk , Fw(x̃k,wk), k∈ Z+, (4.18a)

xk+1 ∈ f (xk,κ(xk +ek)+eu,k)+dk , Fe,eu,d(xk,ek,eu,k,dk), k∈ Z+, (4.18b)
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wherex̃k,xk are the state variables,wk ∈ W ⊆ Rn, dk ∈ D ⊆ Rn the additive distur-
bances, ek ∈ E ⊆ Rn andeu,k ∈ E ⊆ Rm the state measurement errorandactuator
noiseat discrete-timek ∈ Z+, respectively. Recall thatκ : X̃ →֒ U is a set-valued
state feedback law defined oñX ⊆ X that is allowed to be discontinuous. As such,
the systems above are perturbed versions of closed-loop system (4.1), where (4.18b)
is affected simultaneously by state measurement errors, actuator noise and additive
disturbances, and (4.18a) only by additive disturbances.

In this section it will be shown, that by tightening up Assumptions 4.1.1 and 4.1.2,
one can obtain a similar result for closed-loop system (4.18b) as is obtained in the pre-
vious section for closed-loop system (4.2b) based on properties of closed-loop system
(4.18a)

Assumption 4.2.1The functionf : X×U → X is uniformly continuous inx andu in
the sense that there existK -functionsη̃ f x andη̃ f u such that

| f (ξ 1,µ1)− f (ξ 2,µ2)| ≤ η̃ f x(|ξ 1− ξ 2|)+ η̃ f u(|µ1− µ2|)

for all ξ 1,ξ 2 ∈ X and allµ1,µ2 ∈ U.

Note that all functionsf that are Lipschitz continuous inx andu with Lipschitz con-
stantsL f x andL f u, satisfy Assumption 4.1.1 with̃η f x(s) = L f xsandη̃ f u(s) = L f us.

Assumption 4.2.2Let

W ,

{
ω ∈ Rn

∣∣ |ω | ≤ λ
}
, for some λ ∈ R>0,

and
Eu ,

{
εu ∈ Rm

∣∣ |εu| ≤ λu

}
, for some λu ∈ R>0.

Suppose thatxeq = 0 is an input-to-state stable equilibrium point of system (4.2) with
respect toadditive disturbances w: Z+ → W and initial states̃x0 in X̃ ⊆ X with
0∈ int(X̃ ), i.e. there exist aK L -functionβx̃ and aK -functionγw

x̃ such that for all
x̃0 ∈ X̃ andw : Z+ → W all solutions̃x∈ SFw(x̃0,w) satisfy

|x̃k| ≤ βx̃(|x̃0|,k)+ γw
x̃ (‖w‖), ∀k∈ Z+. (4.19)

Furthermore, assume that̃X is RPI for system (4.2) perturbed byadditive distur-
bances w: Z+ → W and that

κ(x̃k) ⊆ U ∼ Eu, ∀k∈ Z+, (4.20)

with 0∈ int(U ∼ Eu).
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Remark 4.2.3 Note that in case that a model predictive control algorithm is applied,
i.e. κ(·) = κMPC(·), than (4.20) in Assumption 4.2.2 can be realized by simply adding
the constraint

uk|k ∈ U ∼ Eu (4.21)

to the model predictive control optimization problem, e.g.add (4.21) to Algorithm 3.2.2.

Now the following result can be obtained.

Theorem 4.2.4 Suppose Assumptions 4.2.1 and 4.2.2 hold and define theK∞-function
η f x(s) = η̃ f x(s)+s for s∈ R≥0. Let λe ∈ R≥0 andλd ∈ R≥0 be such thatλe+ λd +

η̃ f u(λu) ≤ λ and define

E ,

{
ε ∈ Rn

∣∣∣ |ε| ≤ η−1
f x (λe)

}
,

D ,

{
δ ∈ Rn

∣∣∣ |δ | ≤ λd

}
,

andX , X̃ ∼ E. Suppose that0∈ int(X ). Then, the following statements hold.

i) The setX ⊂ X is an RPI set for the closed-loop system(4.18b)perturbed by state
measurement errors e: Z+ → E, actuator noise eu : Z+ → Eu and additive distur-
bances d: Z+ → D;

ii) The state and control constraints are satisfied for all trajectories of (4.2b)with
initial states x0 in X , measurement errors e: Z+ → E, actuator noise eu : Z+ → Eu

and additive disturbances d: Z+ →D, i.e. for all x∈SFe,eu,d(x0,e,eu,d) with x0 ∈X ,
e : Z+ → E, eu : Z+ → Eu and d: Z+ → D it holds that xk ∈ X and uk ∈ κ(xk +ek)+

eu,k ⊆ U for all k ∈ Z+;

iii) The equilibrium point xeq = 0 of system(4.18b)is input-to-state stable with re-
spect tostate measurement errors e : Z+ → E, actuator noise eu : Z+ → Eu and
additive disturbances d : Z+ → D for initial states x0 in X . In particular, one
has that for all x0 ∈ X , e : Z+ → E, eu : Z+ → Eu and d : Z+ → D all solutions
x∈ SFe,eu,d(x0,e,eu,d) satisfy

|xk| ≤ βx(|x0|,k)+ γe
x(‖e‖)+ γeu

x ‖eu‖+ γd
x‖d‖, ∀k∈ Z+, (4.22)

with βx(|x0|,k) , βx̃(2|x0|,k), γeu
x (‖eu‖) , γw

x̃ (3η̃ f u(‖eu‖), γd
x (‖d‖) , γw

x̃ (3‖d‖) and

γe
x(‖e‖) , βx̃(2‖e‖,0)+ γw

x̃ (3η f x(‖e‖))+‖e‖.

Proof:
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i) Let ξ ∈ X , ε ∈ E εu ∈ Eu andδ ∈ D. It will be shown that for allε ∈ E,

[ f (ξ ,κ(ξ + ε)+ εu)+ δ ]+ ε ⊆ X̃ (4.23)

as this would prove thatX is RPI for (4.18b) according to Definition 2.3.1. One
proceeds by observing that

f (ξ ,µ + εu)+ δ + ε = f (ξ̃ ,µ)+ ω , ∀µ ∈ κ(ξ̃ ) ⊆ U ∼ Eu (4.24)

with ξ̃ , ξ + ε andω , f (ξ ,µ + εu)− f (ξ̃ ,µ) + δ + ε. Using Assumption 4.2.1
yields| f (ξ̃ − ε,µ + εu)− f (ξ̃ ,µ)| ≤ η̃ f x(|ε|)+ η̃ f u(|εu|). Therefore, it holds that for

all ε,ε ∈ E, εu ∈ Eu, δ ∈ D andξ̃ ∈ X̃

|ω | = | f (ξ̃ − ε,µ + εu)− f (ξ̃ ,µ)+ δ + ε|, ∀µ ∈ κ(ξ̃ ) ⊆ U ∼ Eu

≤ η̃ f x(|ε|)+ η̃ f u(|εu|)+ |δ |+ |ε|
≤ η̃ f x◦η−1

f x (λe)+ η̃ f u(λu)+ λd + η−1
f x (λe) = λe+ λd + η f u(λu),

(4.25)

which shows thatω ∈ W. Employing Assumption 4.2.2, i.e.̃X is RPI for system
(4.18a) under additive disturbancesw : Z+ → W, (4.24) yields that for allξ ∈ X ,
ε ∈ E, εu ∈ Eu and,δ ∈ D

f (ξ ,µ + εu)+ δ + ε ⊆ X̃ , ∀µ ∈ κ(ξ + ε) ⊆ U ∼ Eu,

which is equivalent to (4.23).

ii) Due to i), it holds that for anyx0 ∈ X and anye : Z+ → E, eu : Z+ → Eu andd :
Z+ →D all trajectoriesx∈SFe,eu,d(x0,e,eu,d) satisfyxk ∈X ⊆X, xk+ek ∈ X̃ ⊆X

for all k∈ Z+ and thus, due to (4.20),uk ∈ κ(xk +ek)+eu,k ⊆ U for all k∈ Z+.

iii) Let x0 in X , e : Z+ → E, eu : Z+ → Eu, d : Z+ → D andx∈ SFe,eu,d(x0,e,eu,d).
Perform the following coordinate change on (4.18b)

xk = x̃k−ek, ∀k∈ Z+, (4.26)

which gives

x̃k+1 ∈ f (x̃k−ek,κ(x̃k)+eu,k)+dk +ek+1, k∈ Z+,

or
x̃k+1 ∈ f (x̃k,κ(x̃k))+wk, k∈ Z+, (4.27)

where
wk , f (x̃k−ek,uk)− f (x̃k,uk−eu,k)+dk +ek+1, (4.28)
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for someeu,k ∈ Eu, uk ∈ κ(x̃k)+eu,k ⊆ U, ek,ek+1 ∈ E, dk ∈ D andx̃k ∈ X̃ . Hence,

wk ∈ W ,

{
f (ξ̃ − ε,µ + εu)− f (ξ̃ ,µ)+ δ + ε

∣∣

µ ∈ κ(ξ̃ ) ⊆ U ∼ Eu, ε,ε ∈ E, δ ∈ D, ξ̃ ∈ X̃

}
.

The claim is thatW ⊆ W. Indeed, ifω ∈ W, then one can use Assumption 4.2.1 to
obtain that for allε,ε ∈E, εu ∈ Eu, δ ∈D andξ̃ ∈ X̃ (4.25) holds, which implies that
W⊆W and thereforewk ∈W for all k∈Z+. Due to the fact thatwk ∈W for all k∈Z+

andxk + ek ∈ X̃ for all k ∈ Z+ (as shown in item ii) of the proof) one obtains that
x̃k ∈ X̃ for all k ∈ Z+. As a consequence, one can apply (4.19) of Assumption 4.2.2
to (4.27). Via (4.28) and employing Assumption 4.2.1 in a similar manner as in (4.25),
one obtains that for alluk ∈ κ(x̃k) ⊆ U ∼ Eu, ek,ek+1 ∈ E, eu,k ∈ Eu, dk ∈ D, x̃k ∈ X̃

andk∈ Z+

|wk| ≤ | f (x̃k−ek,uk)− f (x̃k,uk−eu,k)+dk +ek+1|

≤ | f (x̃k−ek,uk)− f (x̃k,uk−eu,k)|+‖d‖+‖e‖

≤ η̃ f x(‖e‖)+ η̃ f u(‖eu‖)+‖d‖+‖e‖= η f x(‖e‖)+ η̃ f u(‖eu‖)+‖d‖.

(4.29)

Substituting the last inequality in (4.29) into (4.19) yields for allk∈ Z+

|x̃k| ≤ βx̃(|x̃0|,k)+ γw
x̃ (η f x(‖e‖)+ η̃ f u(‖eu‖)+‖d‖) (4.30)

Applying (4.26) and property (4.30) yields

|xk| = |x̃k−ek| ≤ |x̃k|+ |ek| ≤

≤ βx̃(|x0 +e0|,k)+ γw
x̃ (η f x(‖e‖)+ η̃ f u(‖eu‖)+‖d‖)

≤ βx̃(|x0|+ |e0|,k)+ γw
x̃ (3η f x(‖e‖))+ γw

x̃ (3η̃ f u(‖eu‖))+ γw
x̃ (3‖d‖)+‖e‖

≤ βx̃(2|x0|,k)+ βx̃(2|e0|,k)+ γw
x̃ (3η f x(‖e‖))+ γw

x̃ (3η̃ f u(‖eu‖))+ γw
x̃ (3‖d‖)+‖e‖

≤ βx̃(2|x0|,k)+ βx̃(2‖e‖,0)+ γw
x̃ (3η f x(‖e‖))+ γw

x̃ (3η̃ f u(‖eu‖))+ γw
x̃ (3‖d‖)+‖e‖

= βx(|x0|,k)+ γe
x(‖e‖)+ γeu

x ‖eu‖+ γd
x‖d‖.

Similarly as is done in Section 4.1, one can obtain a similar result for

xk+1 ∈ f (xk,κ(xk +ek)+eu,k) , Fe(xk,ek,eu,k), (4.31)

which is a special case of (4.18b), where one only considers measurement errorsek ∈E

and actuator noiseeu ∈ Eu and no additive disturbancesdk. For illustration purposes,
the corollary below considers the case wheref is Lipschitz continuous inx andu.
For the ease of exposition it is assumed thatγw

x̃ (·) in Assumption 4.2.2 is linear with
respect to its argument
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Corollary 4.2.5 Suppose Assumption 4.2.2 holds and that f is Lipschitz continuous
in x and u, i.e. Assumption 4.2.1 holds withη̃ f x(s) = L f xs, η̃ f u(s) = L f us, s∈ R≥0.
Let

E ,

{
ε ∈ Rn

∣∣∣ |ε| ≤ λ −L f uλu

(L f x +1)

}
,

X , X̃ ∼ E and suppose0∈ int(X ). Then, the following statements hold.

i) The setX ⊂ X is an RPI set for the closed-loop system(4.31)perturbed by state
measurement errors e: Z+ → E and actuator noise eu : Z+ → Eu;

ii) The state and control constraints are satisfied for all trajectories of (4.31)with
initial states x0 in X , measurement errors e: Z+ → E and actuator noise eu : Z+ →

Eu, i.e. for all x∈SFe,eu
(x0,e,eu) with x0 ∈X and e: Z+ →E, eu : Z+ →Eu it holds

that xk ∈ X and uk ∈ κ(xk +ek)+eu,k ⊆ U for all k ∈ Z+;

iii) The equilibrium point xeq= 0 of system(4.31)is input-to-state stable with respect
to state measurement errors e: Z+ →E, actuator noise eu : Z+ →Eu and initial states
x0 in X . In particular, one has that for all x0 ∈ X , e: Z+ → E and eu : Z+ → Eu all
solutions x∈ SFe,eu

(x0,e,eu) satisfy

|xk| ≤ βx(|x0|,k)+ γe
x(‖e‖)+ γeu

x ‖eu‖, ∀k∈ Z+, (4.32)

with βx(|x0|,k) , βx̃(2|x0|,k) and

γe
x(‖e‖) , βx̃(2‖e‖,0)+ γw

x̃ (L f x +2)‖e‖, γeu
x ‖eu‖ , γw

x̃ L f u‖eu‖.

Remark 4.2.6 Corollary 4.2.5 also applies in the unconstrained case, i.e. whenX =

Rn andU = Rm, with the unbounded disturbance setsW = E = Eu = Rn (λ = λu = ∞).
In this case, the above result applies for̃X = X = Rn and yields a global input-to-
state stability result with respect to measurement noise and actuator noise. A similar
remark can be made for Theorem 4.2.4.

4.3 Robustness in manufacturing system control

As is explained in Section 1.5, if controller synthesis for adiscrete event manufac-
turing systems is performed based on the framework as depicted in Figure 1.4, it is
not sufficient to design a model predictive controller that can guarantee (asymptotic)
stability of the model predictive controller in closed-loop with the (piecewise) con-
tinuous (or discrete) time (partial) differential (or difference) equations (on which the
controller synthesis is based on) to guarantee (asymptotic) stability of the model pre-
dictive controller in closed-loop with the discrete event manufacturing system. This
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issue will be elaborated on in the sequel. Assume one has, somehow, obtained a
(piecewise) continuous (or discrete) time (partial) differential (or difference) equa-
tion that describes the discrete event manufacturing system under consideration well.
That is, the behavior of the discrete event manufacturing system can be described (or
substituted) by a continuous (piecewise) continuous (or discrete) time (partial) differ-
ential (or difference) equation with aninjector andquantizerat the input and output
as depicted in Figure 4.1, respectively.

Discrete event manufacturing system

Injector
u(t) x(t) [x(t)][u(t)]

Quantizer
Continuous

variable
system

Figure 4.1: Discrete event manufacturing system represented by a composition of injector,
continuous variable system and quantizer.

Through theinjector a discrete1 (control) signal, denoted in Figure 4.1 as[u(t)],
is transformed into a real-valued signalu(t) that is (piecewise) continuous in time.
The continuous signalu(t) drives the continuous variable model which generates a
(piecewise) continuous outputx(t). The signalx(t) is then quantized by aquantizer,
which results in a discrete output signal[x(t)] representing the output of the discrete
event manufacturing system. From discrete control[u(t)] to discrete output[x(t)] the
system depicted in Figure 4.1 can be seen as a discrete event manufacturing system.

Mathematically, aquantizerin the context as just pointed out can be described by a
piecewise constant functionq : D ⊂ Rn

+ →Qx, whereQx is a finite subset ofZ+ with
a fixed number of elementsS. We denote the elements ofQx by q1

x, . . . ,q
S
x and refer

to them as quantization points. The setsW i
x , {x ∈ D | qx(x) = qi

x}, i ∈ {1, . . . ,S}
associated with fixed values of the quantizer form a partition of the domainD and are
called quantization regions. The signal[x] is then obtained from signalx as follows

[x] = qx(x) = qi
x ⇔ x∈ W

i
x . (4.33)

Note a change of thequantizedsignalx(t), i.e. [x(t)], represents then anevent. An
injector simply associates at each timet a unique element out of the finite discrete set
U = {u1,u2, . . . ,uM} to a signalu(t), i.e. u(t) = ui if [u(t)] = i.

1Here the attribute “discrete” concerns both the signal values and the time

97



CHAPTER 4. ROBUSTNESS RESULTS FOR CONSTRAINED NONLINEAR CLOSED-LOOP SYSTEMS

The continuous variable system, as depicted in Figure 4.1, can for example be a
system of the form

d
dt

x(t) = f (x(t),u(t)), x0 = x(t = 0), t ∈ R+ (4.34)

wherex∈ X ⊆ Rn is the state andu(t) ∈ U ⊆ Rm the control. Furthermore,X andU

denote potential state and control constraint sets. Based on (4.34) a controller synthe-
sis can be performed which then results in the following closed-loop system depicted
in Figure 4.2.

Discrete event manufacturing system

Controller

Injector

Injector
u(t) x(t)

uc(t) xc(t)

[x(t)][u(t)]
Quantizer

Quantizer

Controller
based on synthesis

of continuous
variable system

Continuous
variable
system

Figure 4.2: Discrete event manufacturing in closed-loop with the controller.

Suppose that, for ease of exposition, the controller in Figure 4.2 is some static
feedback law, i.e.

uc(t) = κ(xc(t)). (4.35)

Note that due to the presence of state and control quantization one has that

xc(t) = qx(x(t)) = x(t)+ex(t), (4.36a)

u(t) = qu(uc(t)) = uc(t)+eu(t), (4.36b)

i.e.
ex(t) , qx(x(t))−x(t), eu(t) , qu(uc(t))−uc(t).

Subsequential substitution of (4.36a) in (4.35) in (4.36b)in (4.34) yields the following
closed-loop system description for the closed-loop systemdepicted in Figure 4.2

d
dt

x(t) = f (x(t),κ(x(t)+ex(t))+eu(t)), (4.37)
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whereex(t) andeu(t) can, from a system theoretical point of view, be seen as distur-
bance signals. Namelymeasurement errorsand actuator noise, respectively. For
a successful controller design for discrete event manufacturing systems, using the
framework as depicted in Figure 1.4, one has to deal with “fictive” disturbance sig-
nals ex(t) andeu(t) entering the closed-loop dynamics given in (4.37) even though, a
perfect continuous time model is available for controller synthesis. Note that in the
previous sections it is indicated, in the discrete-time framework, how one can take into
consideration disturbances as measurement errors and actuator noise in the controller
design. It are these results that will be employed to design amodel predictive con-
troller that can cope with the “fictive” disturbance signalsex(t) andeu(t) or ex,k and
eu,k in discrete-time, respectively. This is important since itis well known in literature
that nonlinear model predictive controllers that are designed just to render thenominal
closed-loop system, i.e.ex = 0 andeu = 0, (asymptotically) stable, do not necessar-
ily posses robustness properties, see [91, 92]. Concretelythis means that a nonlinear
model predictive controller, designed fornominalasymptotic stability, might be un-
stable in the presence of arbitrary small disturbancesex,k and/oreu,k as is the case in
manufacturing system control employing the framework as indicated in this section.

Since, model predictive control is usually formulated in discrete-time, see also
Section 3.1, the manufacturing control problem is considered in the discrete-time mod-
eling framework. That is, the model predictive controller design under investigation is
how to obtain robustness (input-to-state-stability) of the following closed-loop system

xk+1 ∈ f (xk,κMPC(xk +ex,k)+eu,k), ex,k ∈ Ex, eu,k ∈ Eu, k∈ Z+, (4.38)

with respect tostate measurement errors ex,k and actuator noise eu,k in some sets
Ex ⊆ Rn andEu ⊆ Rm, respectively.

A simple manufacturing example

In Figure 4.3, a schematic representation of a fluid model of amanufacturing line is
presented. The line consists of a series connection of two workstations. Each work-
station consists of a machine and a buffer. In Figure 4.3, themachines and buffers
are denoted byM1, M2 andB1, B2, respectively. The functionsb1(t), b2(t) andb3(t)
represent the amount of fluid over time that is present in buffersB1, B2 andB3, respec-
tively.

Φin(t) denotes the input of the manufacturing system representinga certain fluid
flow. In the manufacturing context the fluid levelsb1(t), b2(t), and b3(t) can be
thought of as a certain amount of products in buffers andΦin(t) can be thought of
as the rate at which products enter the manufacturing system. The mean rate at which
machines process products is denoted byµ . In [85] the following differential equation

99



CHAPTER 4. ROBUSTNESS RESULTS FOR CONSTRAINED NONLINEAR CLOSED-LOOP SYSTEMS

M1 M2

µµ
B1 B2 B3

b1(t) b2(t) b3(t)
Φin(t)

Figure 4.3: Fluid model of a manufacturing system.

is proposed to describe the dynamical behavior of the manufacturing line as is shown
in Figure 4.3.

d
dt

b1(t) = Φin(t)−
µb1(t)

1+b1(t)

d
dt

b2(t) =
µb1(t)

1+b1(t)
−

µb2(t)
1+b2(t)

d
dt

b3(t) =
µb2(t)

1+b2(t)

, with
b1(t = 0) = b1

0

b2(t = 0) = b2
0,

b3(t = 0) = b3
0

(4.39)

with

b1(t) ∈ [0,b1
up], b2(t) ∈ [0,b2

up], b3(t) ∈ [0,∞), Φin(t) ∈ [0,Φin
up], ∀t ∈ R+,

(4.40)
hereb1(t), b2(t) andb3(t) represent the state andΦin(t) the control of the system.
Buffers B1 andB2 can only contain a finite amount of products. The total amount
of products each bufferB1 andB2 can store, is denoted byb1

up andb2
up, respectively.

Furthermore, limitations of the product in flow rateΦin(t) is taken into consideration
by constraints (4.40). The rate at which products can enter the manufacturing system
is limited by Φin

up. It is assumed thatΦin
up is larger than the total capacity denoted

by the production rate of the manufacturing. The total capacity of the manufacturing
system is for this example presented byµ . For more details on the derivation of (4.39)
we refer the reader to [85].

Control problem

Problem 4.3.1 Letb3
re f(t) be a certain reference trajectory representing a desired fluid

level of bufferB3 over time. Assumeb3
re f (t) satisfies the following differential equa-

tion
d
dt

b3
re f (t) = C, with b3

re f(t = 0) = b3
re f ,0 ≥ 0, (4.41)
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whereC is some constant such that 0≤ C < µ2. Then, the control problem can be
formulated as to letb3(t), which satisfies (4.39), track (as fast as possible) the desired
trajectoryb3

re f(t) satisfying (4.41), i.e.b3(t)−b3
re f (t) → 0 for t → ∞. Furthermore,

the fluid levels (amount of products) in buffersB1 andB2 should be kept as low as
possible for all timest ∈ R+.

Controller design

To solve Problem 4.3.1 the control strategy described in Section 3.2 is applied. Before
one can apply this control strategy to tackle Problem 4.3.1,we translate the control
problem, as formulated in Problem 4.3.1, to a similar problem that can be solved by
the proposed control strategy.

The MPC control strategy in Section 3.2 is defined in the discrete-time setting,
therefore a time discretization of (4.39) is obtained usingEuler’s discretization scheme
and ZOH assumption forΦin(t) with sampling timeT. After discretization of (4.39)
one obtains

b1
k+1 = b1

k +TΦin
k −

Tµb1
k

1+b1
k

b2
k+1 = b2

k +
Tµb1

k

1+b1
k

−
Tµb2

k

1+b2
k

b3
k+1 = b3

k +
Tµb2

k

1+b2
k

, with
b1

k=0 = b1
0

b2
k=0 = b2

0,

b3
k=0 = b3

0

(4.42)

and the constraints read for allk∈ Z+ as

b1
k ∈ [0,b1

up], b2
k ∈ [0,b2

up], b3
k ∈ [0,∞), Φin

k ∈ [0,Φin
up].

The same approach is employed to the reference model in (4.41), i.e.

b3
re f ,k+1 = b3

re f ,k +TC, with b3
re f ,k=0 = b3

re f ,0 ≥ 0. (4.43)

The following change of coordinates is performed




b1
e,k

b2
e,k

b3
e,k


,




b1
k

b2
k

b3
k−b3

re f ,k


 .

2The constantC in the interval 0≤ C < µ physically means that the desired “slope“ of the reference
trajectory should be strictly less than the maximal capacity of the manufacturing system (characterized by
µ for this example).
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The system dynamics in the new coordinates then reads

b1
e,k+1 = b1

e,k +TΦin
k −

Tµb1
e,k

1+b1
e,k

b2
e,k+1 = b2

e,k +
Tµb1

e,k

1+b1
e,k

−
Tµb2

e,k

1+b2
e,k

b3
e,k+1 = b3

e,k +
Tµb2

e,k

1+b2
e,k

−TC

, with

b1
e,k=0 = b1

0

b2
e,k=0 = b2

0,

b3
e,k=0 = b3

0−b3
re f ,0

(4.44)

and constraints read for allk∈ Z+ as

b1
e,k ∈ [0,b1

up], b2
e,k ∈ [0,b2

up], b3
e,k ∈ [−b3

re f ,k,∞), Φin
k ∈ [0,Φin

up].

The equilibria or steady state solutions of (4.44) are givenby

b1
ess=

Φin
ss

µ −Φin
ss

, b2
ess=

Φin
ss

µ −Φin
ss

, b3
ess∈ [0,∞), and Φin

ss= C.

The goalb3
k − b3

re f ,k → 0 for k → ∞ formulated in Problem 4.3.1 is met if (4.44)
is asymptotically stabilized around the equilibrium(b1

ess,b
2
ess,0). However, the pro-

posed control strategy that one wants to employ deals with the stabilization problem of
discrete-time nonlinear systems around the origin as equilibrium point (for 0-control).
In order to obtain a system representation which has this property the following coor-
dinate change is performed on (4.44)

x1
k = b1

e,k−b1
ess, x2

k = b2
e,k−b2

ess, x3
k = b3

e,k, uk = Φin
k −Φin

ss.

The proposed coordinate change results in a system of the following form

xk+1 = f (xk,uk), (4.45)

where

f (xk,uk) =




x1
1 +T(uk +C)−

Tµ(x1
k+α)

1+x1
k+α

x2
k +

Tµ(x1
k+α)

1+x1
k+α −

Tµ(x2
k+α)

1+x2
k+α

x3
k +

Tµ(x2
k+α)

1+x2
k+α −TC




, with α =
C

µ −C

and the to be respected constraints are then given by

x1
k ∈ [−b1

ess,b
1
up−b1

ess], x2
k ∈ [−b2

ess,b
2
up−b2

ess], x3
k ∈ [−b3

re f ,k,∞),

uk ∈ [−Φin
ss,Φ

in
up−Φin

ss].

The obtained model in (4.45) now has the required propertyf (0,0) = 0. Two other
requirements for the MPC control strategy proposed in Section 3.2 are:
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1. Compactness of the state and input constraint sets,

2. moreover the originx = 0 should be contained in the interior of in the state and
the control constraint set.

Due to the first item, one has to add the assumption thatx3
k is constraint by some upper

boundx3
up > 0. The practical implication of this assumption is that the difference

between the real amount of products produced and the desiredamount of products to
be produced isfinite for all discrete time stepsk ∈ Z+. Due to the second item, one
needsb1

up≥ b1
ess, b2

up≥ b2
ess. The state and input constraints (4.3) then become for all

k∈ Z+

X ,

{
ξ ∈ R3

∣∣∣ ξ1 ∈ [−b1
ess,b

1
up−b1

ess], ξ2 ∈ [−b2
ess,b

2
up−b2

ess], ξ3 ∈ [−b3
re f ,k,x

3
up]
}

,

U ,
{

µ ∈ R
∣∣ µ ∈ [−Φin

ss,Φin
up−Φin

ss]
}

,
(4.46)

with b1
up ,b2

up andx3
up such thatb1

up≥ b1
ess, b2

up≥ b2
ess, x3

up > 0.

The control objective formulated in Problem 4.3.1 is now formulated as to stabilize
(4.45) around the equilibrium (0,0,0) and simultaneously to respect constraints (4.46).

A numerical example is obtained for the following system parameters:T = 0.5
[time unit], µ = 6 [products/time unit]. Furthermore, the desired production demand
schedule corresponding to the reference trajectory definedin (4.43) is defined by a
production rate ofC = 4 [products/time unit] andb3

re f ,0 = 175 [products]. Based on
a linearization of (4.45) around (0,0) matricesA andB are obtained (see (3.15)) such
that by employing the result in Lemma 3.2.7 the following matricesQV , K andPV

QV =




0.05 0 0
0 0.05 0
0 0 0.05


 , K =

[
−1.4872 −0.5524 −0.1936

]
,

PV =



−93.8703 −402.2321 −397.2042
80.5989 121.5665 −319.6462

−886.1620 14.8758 −336.9837


 ,

can be found. Hence the obtained matrixPV defines an ISS Lyapunov function, i.e.
(3.13), for Algorithm 3.2.2 in closed-loop with (4.45). As to enforce the performance
requirement, i.e. low fluid level in buffers and fast tracking behavior, as stated in
Problem 4.3.1, the following functions characterizing thecostJ for the MPC algorithm
proposed in Section 3.2, i.e. Algorithm 3.2.2, are employed.

F = |Pxk+N|k|∞, L = |Qxk+i|k|∞ + |Ruuk+i|k|∞, (4.47)

103



CHAPTER 4. ROBUSTNESS RESULTS FOR CONSTRAINED NONLINEAR CLOSED-LOOP SYSTEMS

where

P =




2 0 0
0 2 0
0 0 2


 , Q =




1 0 0
0 1 0
0 0 1


 , R= 0.001, N = 11

For initial conditions[b1
0 b2

0 b3
0]
⊤ = [4 28 0]⊤ a simulation result is shown in Figure 4.4

for the designed controller applied on the nominal model, i.e. (4.42). By verifying the
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Figure 4.4: State and input trajectories are presented by the solid lines. The dashed and dotted
lines represent the constraints and the desired steady state values.

sizes of the quantization regions3 one can quantify the setsEx andEu and employ
Theorem 4.2.4 to conclude about the robustness property of the closed-loop system,
i.e. (4.38) or (4.18b), which is needed to guarantee successful control of the discrete
event manufacturing system following the framework as is indicated in Section 4.3.

Note that the considered manufacturing line in Figure 4.3 isjust a simple exam-
ple to illustrate the ideas in this chapter. A real life manufacturing line might consist

3Note that verifying the size of the quantization regions is still an open issue and remains a subject for
future research.
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of much more series connected workstations. More series connected work stations
leads to expansion of the state dimension of the proposed model (4.39) which leads to
a higher computational burden. However, since the controlu appears linearly in the
proposed model (4.39) the online computations can be performed more efficiently by
relying for example on item (iii), (iv) or (v) in Corollary 3.2.9. Employing items (iii),
(iv) or (v) in Corollary 3.2.9 leads to more efficient online computation and preserva-
tion of the ISS property of the model predictive control scheme in closed-loop with
the system, however, performance of the model predictive control scheme might be
reduced since the employedpredictionmodel in case of items (iii) and (v) in Corol-
lary 3.2.9 is based on a linear prediction models in stead of anonlinear one.

As just illustrated the presented model predictive controlapproach can be em-
ployed to solve a tracking problem for a class of nonlinear manufacturing systems
where the to-be-tracked reference trajectory is defined as in (4.43), which corresponds
to a linear reference trajectory. Note that the in practice it might be desirable to track
a larger class of reference trajectory. That is, the production demand schedule might
in practice not be of the form as defined in (4.43) due more complex fluctuating cus-
tomer demands. However, note that due to the fact that the system dynamics on which
the controller design is based on, i.e. (4.45), only dependson the desired production
capacityC andnot on b3

re f ,k, one could design multiple controllers each correspond-
ing to a certain desired production capacityC. Then, in case of fluctuating customer
demands, which can be approximated arbitrarily well by a piecewise linear reference
trajectory, one can switch between the controllers corresponding to the currently de-
manded desired production rateC. Hence, a nonlinear model predictive tracking con-
troller for a class of nonlinear manufacturing systems thatcan enforce tracking with
respect to piecewise linear reference trajectory is obtained.

4.4 Summary

The result in this chapter shows that state feedback laws that can render a closed-loop
system input-to-state stable with respect toadditive disturbancescan also render the
same closed-loop system input-to-state stable with respect to state measurement errors
andadditive disturbances. For the obtained result continuity of the system dynamics
with respect to thestateof the system is required, however, continuity with respect
to the system‘s control variable isnot required. Under the additional assumption of
continuity of the system dynamics with respect to the control variable, also robustness
with respect to actuator noise can be established. Hence, ithas been shown that under
mild conditions state feedback laws that can render a closed-loop system input-to-
state stable with respect toadditive disturbancescan also render the same closed-
loop system input-to-state stable with respect tostate measurement errors, additive
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disturbancesandactuator noise.
Since the results hold for control and state constrained nonlinear discrete-time

systems and it allows for possible discontinuity and set-valuedness of state feedback
laws, makes the result in particularly interesting in the field of model predictive con-
trol. The result enables the employment of model predictivecontrollers, designed for
rendering the closed-loop system input-to-state stable (ISS) with respect to additive
disturbances, in a scenario where the closed-loop system has to be rendered input-to-
state stable with respect to state measurement errors (and actuator noise). The fact that
many results are available that render model predictive control closed-loop systems
input-to-state stable with respect to additive disturbances and only few for measure-
ment errors (and actuator noise), indicates the value of theresult. Furthermore, in the
context of synthesizing model predictive controllers based on fluid models of manu-
facturing systems it is indicated how the robustness results can be employed to cope
with the compatibility issues between fluid models of manufacturing systems and the
discrete-event nature of manufacturing systems.

106



A theory is something nobody
believes, except the person who
made it. An experiment is some-
thing everybody believes, except
the person who made it.

Albert Einstein 5
Nonlinear model predictive control:

output feedback

As is encountered in the previous chapter the proposed nonlinear model predictive
control scheme, and many other schemes in literature, require knowledge of the full
state of the to-be-controlled system for feedback. However, in practice it is rarely the
case that the full state of the system is available. A possible solution to this problem is
the usage of an observer. An observer can generate an estimate of the full state using
knowledge of the output and input of the to-be-controlled system only. The obtained
state estimate can then be employed as a substitute in a statefeedback model predictive
controller to generate the controls for the to-be-controlled system, see Figure 5.1. The
certainty equivalence principle is a rigorous justification for such a substitution. If the
to-be-controlled system is linear (and detectable and stabilizable) and no constraints
have to be respected, one can separately design an observer with asymptotically sta-
ble estimation error dynamics and a linear state feedback controller that stabilizes the
system such that the resulting certainty equivalent closed-loop system is guaranteed
to be asymptotically stable. Due to the fact such aseparation principledoes not hold
for nonlinear constrained systems, nominal stability results for nonlinear model pre-
dictive controller and observer estimation error dynamicsusually do not guarantee
closed-loop stability of an interconnected model predictive controller and observer
combination. Moreover, the nominal stability result for nonlinear model predictive
controllers is known to be non-robust. That is, nominal stabilizing property of the
model predictive controller can be lost in the presence of arbitrary small disturbances,
like for exampleobservation errors(caused by an observer) in the state, see [92, 91].
One of the potential approaches to guarantee closed-loop stability in the presence of
observation errorsin the state, is to ensure that the model predictive controller is (in-
herently) robust toobservation errors. In [60] asymptotic stability of state feedback
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model predictive control is examined in face of asymptotically decaying disturbances.
As is stated by the authors of [60], their results are also useful for the solution of
the output feedback problem, although a formal proof is missing. A stability result
on observer based nonlinear model predictive control, is reported in [69], under the
standing assumption that the model predictive control value function and the result-
ing model predictive control law are Lipschitz continuous.The stability problem of
observer based nonlinear model predictive control is revisited in [88], where only con-
tinuity of the model predictive control value function is assumed. In [88] robust global
asymptotic stability is shown under the assumption that there are no state constraints
present in the model predictive control problem. Other related results on observer
based nonlinear model predictive control can be found in [93]. However, in [93] a
continuous-time perspective is taken, while here the focusis on discrete-time nonlin-
ear systems.

system

initial
condition(x0)

initial
condition(x̂0)

controller

state
feedback
NMPC

state
estimate

(x̂)
observer

control(u) output(y)

Figure 5.1: Basic structure of an observer-based output feedback Nonlinear Model Predictive
Controller (NMPC).

In this chapter stability of an observer based nonlinear model predictive control
scheme is investigated. The novelty of the proposed approach consists in the fact
that a generically applicable observer design method is provided. As opposed to the
nonlinear dead-beat observer presented in for example [88,94] and Newton observers
in [94], a feedback mechanism is incorporated in the state estimation procedure. The
feedback mechanism is established since there is an output injected innovation term
present in the observer structure as it is also the case in theclassical Luenberger ob-
server. Furthermore, the input-to-state stability framework, e.g. see [41, 63] and the
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references therein, is employed to draw conclusions about the stability of the result-
ing closed-loop system. The extended observer design methodology from [95, 96] is
considered. The extended observer design has the advantagethat it works (locally)
under a very mild condition on the system dynamics, which is strong local observabil-
ity. However, the drawback is that future information of thecontrols applied to the
system-to-be controlled are needed, which are normally notavailable and this there-
fore results in a causality problem. Since in the model predictive control framework
predictedfuture controls are available, this framework might be suitable to be em-
ployed in combination with the proposed observer theory.

The chapter is organized as follows. First, the observer theory of [95, 96] is sum-
marized in Section 5.1. In Section 5.2 it is shown how one can deal with the causality
problem present in the proposed observer by employing the observer in a model pre-
dictive control environment. The definition of the stability analysis problem follows
as a consequence of it. In Section 5.3 it is point out how to infer input-to-state stability
(robustness) with respect to observation errors (introduced by an observer) from input-
to-state stability with respect to additive additive disturbances. This result enables one
to employ existing model predictive control scenarios, with an a priori input-to-state
stability guarantee with respect to additive model uncertainty, like the one in Chap-
ter 3, in an observer based model predictive control scenario. Next, in Section 5.4
one proves input-to-state stability of the error dynamics of the observer with respect
to disturbances which are caused by imperfection of thepredictedfuture controls in-
jected to the observer, i.e. the predicted future control sequence does not coincide in
general with the real control sequence applied to the system. In Section 5.5 the stabil-
ity property of the closed-loop system, consisting of the model predictive controller
interconnected with the observer and the system, is investigated. The input-to-state
stability results obtained for the model predictive controller and the input-to-state sta-
bility result of the error dynamics of the observer, together with small gain arguments,
are used to prove asymptotic stability of the proposed output based nonlinear model
predictive closed-loop system, which is the main result of this chapter. In Section 5.6
the effectiveness of the scheme is illustrated on an example. Conclusions are summa-
rized in Section 5.7.

5.1 Nonlinear observers

In this section the extended observer theory proposed in [95, 96] is summarized. For
notational brevity we consider the theory for the single input single output case, al-
though the theory applies in the multiple input/output caseas well. Consider the fol-
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lowing system
xk+1 = f (xk,uk)

yk =g(xk)
, k∈ Z+, (5.1)

wherexk ∈ Rn, uk ∈ R andyk ∈ R is the state, the control and the output at discrete-
timek∈ Z+, respectively. Furthermore,f ,g∈C1, f : Rn×Rm → Rn andg : Rn → R

have the property thatf (0,0) = 0 andg(0) = 0. The observer problem for (5.1) deals
with the question how to reconstruct the state trajectoryx(·,x0,u) on the basis of
knowledge of the control and the output of the system. The observer design prob-
lem is a problem that is not yet fully solved for nonlinear systems of the form (5.1).
A proposed observer candidate applicable for a broad class of discrete-time nonlinear
systems is considered in this chapter. To be more precise, observer design for a class of
systems that can be expressed in the so-calledExtended Nonlinear Observer Canon-
ical Form (ENOCF) is considered. Systems of the form (5.1) can be transformed, at
least in a local sense, into the ENOCF provided system (5.1) is locally strongly ob-
servable [95, 97]. In Section 5.1 more details on this issue is given. Observers that are
based on the ENOCF are calledextendedobservers for shortness. One of the major
characteristics that distinguishesextendedobservers form “conventional” observers, is
that not only the outputyk and controluk at the current timek are employed to obtain
an estimate of the statexk, but, also future controls and past outputs and controls are
needed.

Observers in the ENOCF

A system representation in ENOCF, or the z-dynamics for brevity, reads as

zk+1 =Azzk + fz(y
[1−n,0]
k ,u[1−n,0]

k ,u[1,n]
k )

yk =hz(Czzk,u
[1−n,0]
k )

, k∈ Z+, (5.2)

with Cz ,

[
0 . . . 0 1

]
,

Az,




0 . . . 0 0
1 . . . 0 0
...

...
...

...
0 . . . 1 0




, fz(y
[1−n,0]
k ,u[1−n,0]

k ,u[1,n]
k ),




fz,0(yk,uk,u
[1,n]
k )

fz,1(y
[−1,0]
k ,u[−1,0]

k ,u[1,n−1]
k )

...

fz,n−1(y
[1−n,0]
k ,u[1−n,0]

k ,uk+1)




,

where

y[1−n,0]
k ,

[
yk−n+1 . . . yk

]⊤
, u[1−n,0]

k ,

[
uk−n+1 . . . uk

]⊤
, u[1,n]

k ,

[
uk+1 . . . uk+n

]⊤
,

andzk ∈ Rn represent the past output sequence, control sequence, future control se-
quence and state inz-coordinates at discrete timek ∈ Z+, respectively. Furthermore,
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the pair(Cz,Az) is anobservable pairand fz : Rn×Rn×Rn → Rn, hz : R×Rn → R

are nonlinear functions, wherehz is, for a fixed control sequence, aninvertible out-
put function for the system in ENOCF. Except for the future control sequence, all
other sequences are known at timek if control and output variables (measurements)
are buffered. The dependence on the future control sequencecorresponds (or can
be compared to) the appearance of (also unknown) time derivatives of the control in
the generalized continuous-time observer from [98]. Why a system representation in
ENOCF is dependent on the future control sequence in the considered discrete-time
context will become clear in Subsection 5.1, where details on the existence of a sys-
tem representation in ENOCF are discussed. First the focus will be on the existence
of observers for systems in ENOCF.

Observer candidates based on the system descriptions in ENOCF have been pro-
posed in [95]. One of the observer candidates simply consists of a “copy” of the
z-dynamics (5.2) added with an output injected term, also known as aninnovation
term, i.e.

ẑk+1 = Azẑk + fz(y
[1−n,0]
k ,u[1−n,0]

k ,u[1,n]
k )+ κo(h

−1
z,u fixed(yk,u

[1−n,0]
k )

︸ ︷︷ ︸
zn,k

−ẑn,k), k∈ Z+

(5.3)
with ẑn,k = Czẑk, andh−1

z,u fixed represents for a fixed input sequenceu[1−n,0]
k the inverse

function of hz in (5.2). One of the benefits of an observer in ENOCF, like the one
in (5.3), is having an innovation term in the observer structure. The innovation term
induces a feedback mechanism in the state estimation process. This feedback mech-
anism is beneficial to guarantee stability of the estimationprocess and to account for
issues as model uncertainties, encountered in practice, bytuning the so called observer
gainκo ∈ Rn appropriately. The observer gain can be used to assign a certain dynamic
behavior of the observerz-error dynamics. Thez-error dynamics is the dynamics
which describes the evolution of thez-error defined at each timek∈ Z+ as

ez,k , zk− ẑk.

Due to the fact that the statezk of a system representation in ENOCF appears linearly
in the system equations and all nonlinearity enters the state equations via the nonlinear
function fz, depending only on the control and output sequences of the system, a linear
autonomousz-error dynamics is obtained. Thez-error dynamics for (5.2) and (5.3)
reads as

ez,k+1 = Aeez,k, k∈ Z+, (5.4)

where

Ae , (Az−κoCz) .
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Note that the pair(Cz,Az) is by definition anobservable pair. From linear control
theory it follows that this is sufficient for the existence ofan observer gainκo to
renderAe Schur. Hence it is thus always possible to design an observerfor a system
in ENOCF.

Existence of the ENOCF

Previously, it has been shown that if the dynamics of a systemis given in the ENOCF
(5.2), then it is always possible to design an observer for this system. However, the
following question remains open: Which systems in the general from (5.1) can be
transformed into the ENOCF (5.2)?

In order to answer this question, the notion ofstrong local observability, in e.g.
[97], is recalled. For convenience first theobservability mapfor non-autonomous
discrete-time nonlinear systems in introduced, which has already been defined for
discrete-time nonlinear autonomous systems in [99, 100].

Definition 5.1.1 The observability mapψ of the system given by (5.1) is defined as:

ψ(xk,u
[0,n−2]
k ) ,




g(xk)

g( f 1(xk,uk))
...

g( f n−1(xk, [uk, ...,uk+n−2]
⊤))




, (5.5)

where f i(xk, [uk, ...,uk+i−1]
⊤) = f ( f (... f ( f (xk,uk),uk+1), ...,),uk+i−1), with i ≥

1.

Next,strong local observabilityis introduced.

Definition 5.1.2

i) System (5.1) isstrongly locally observable1 at x0, if there exists an open neigh-
borhoodN ⊂ X aroundx0 such that for all states ˘x0 ∈ N and all admissible
control sequencesu[0,n−2]

0 resulting in the same output sequence as obtained by
x0, i.e.

ψ(x0,u
[0,n−2]
0 ) = ψ(x̆0,u

[0,n−2]
0 ), (5.6)

implies thatx0 = x̆0.

ii) System (5.1) isstrongly locally observable on a domainX, if i) holds for all
x0 ∈ X.

1The wordlocally refers to the fact that two states must be distinguishable inaneighborhoodN around
x0. The wordstronglyrefers to the distinguishability of the states after observing the output trajectory for a
finite number of time steps (n time steps, wheren is dimension of the statex of the system).
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A sufficient condition for system (5.1) to bestrongly locally observable at x0 is the
following rank condition,

rank

{
∂ψ(x,u[0,n−2]

0 )

∂x

∣∣∣∣
x=x0

}
= n, ∀u[0,n−2]

0 ∈ Un−1, (5.7)

whereUn−1 ⊆ Rn−1 andψ is defined as in (5.5). Condition (5.7) is sufficient2 for the
existence of an invertible map of the observability map for fixed control sequences.
This follows from the inverse function theorem in [101]. Theinverse function ofψ for
a fixed control sequence is denoted asψ−1

u fixed. Note that the existence of an invertible
mapψ−1

u fixed aroundx0 for all admissible control sequences is equivalent tostrong local
observabilityof (5.1) atx0. Thus, if the system (5.1) isstrongly locally observable,
thenψ in (5.5) acts for fixed controls, as a (locally) invertible map relating statexk

satisfying (5.1) to a statesk satisfying another representation of system (5.1) having
the form

sk+1 =




s2,k
...

sn,k

fs(sk,u
[0,n−1]
k )




, yk = s1,k, (5.8)

where
sk , ψ(xk,u

[0,n−2]
k ) ⇔ xk = ψ−1

u fixed(sk,u
[0,n−2]
k ),

fs(sk,u
[0,n−1]
k ) , g( f n(ψ−1

u fixed(sk,u
[0,n−2]
k ),u[0,n−1]

k )).

Note that system (5.8) is obtained by defining

sk ,

[
yk . . . yk+n−1

]⊤
.

By definingsk in this mannerfuture control sequence dependence, as has been en-
countered in the previous subsection, is introduced.

Next it will be shown that if the functionshz and fz satisfy the following relation

h−1
z,u fixed( fs(sk,u

[0,n−1]
k ),u[1,n]

k ) =
n−1

∑
j=0

fz, j(s1,k,s2,k, ...,sj+1,k,u
[0,n]
k ), (5.9)

then there exists for fixed control and output sequences an invertible mapΩ : Rn ×

Rn−1×Rn×Rn−1 → Rn, i.e.

zk = Ω(sk,y
[1−n,−1]
k ,u[1−n,0]

k ,u[1,n−1]
k ), (5.10)

2Note that the rank condition (5.7) is not necessary for invertibility. Take for exampleψ(x) = x3. The
rank condition is obviously not satisfied atx0 = 0. However, a global (non-smooth) inverse function clearly
exists.
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relatingsk satisfying (5.8) andzk satisfying (5.2). Indeed, if one has (5.2) and (5.8)
then by definition ofsk one must have that

s1,k = hz(zn,k,u
[1−n,0]
k )

s2,k = hz(zn−1,k + fz,n−1(y
[1−n,−1]
k ,s1,k,u

[1−n,1]
k ),u[2−n,1]

k )

...

sn,k = hz(z1,k +
n−1

∑
j=1

fz, j (yk−1,s1,k, . . . ,sj ,k,u
[−1,n−1]
k ),u[0,n−1]

k )

(5.11)

and

sn,k+1 = hz(
n−1

∑
j=0

fz, j (yk,s1,k+1, . . . ,sj ,k+1,u
[0,n]
k ),u[1,n]

k ). (5.12)

Employing (5.8) one must have that

fs(sk,u
[0,n−1]
k ) = hz(

n−1

∑
j=0

fz, j(yk,s1,k+1, . . . ,sj ,k+1,u
[0,n]
k ),u[1,n]

k ). (5.13)

Sincehz is, for fixed control sequences, an invertible function, relation (5.9) follows
from expression (5.13). Hence, (5.9) is a necessary condition for the existence of an
ENOCF in (5.2). Furthermore, if (5.13) (or (5.9)) is satisfied one can obtainΩ in
(5.10) by solving (5.11) forzk, i.e.

z1,k = h−1
z,u fixed(sn,k,u

[0,n−1]
k )−

n−1

∑
j=1

fz, j (yk−1,s1,k, . . . ,sj ,k,u
[−1,n−1]
k )

...

zn−2,k = h−1
z,u fixed(s3,k,u

[3−n,2]
k )− fz,n−1(y

[2−n,−1]
k ,s1,k,s2,k,u

[2−n,2]
k )

− fz,n−2(y
[2−n,−1]
k ,s1,k,u

[2−n,2]
k )

zn−1,k = h−1
z,u fixed(s2,k,u

[2−n,1]
k )− fz,n−1(y

[1−n,−1]
k ,s1,k,u

[1−n,1]
k )

zn,k = h−1
z,u fixed(s1,k,u

[1−n,0]
k ).

(5.14)

As a consequence, (5.9) is also a sufficient condition for theexistence of an ENOCF,
the reader is referred to [95] for the details. Since, there always exist functionshz and
fz such that condition (5.9) is satisfied3 the compositionΞ of Ω andψ (Ξ , Ω◦ψ)

zk = Ξ(xk,y
[1−n,−1]
k ,u[1−n,0]

k ,u[1,n−1]
k ), (5.15)

3The left-hand side of (5.9) depends on the same arguments as its right-hand side, thus it is always
possible to fulfil (5.9) by an appropriate choice ofhz and fz,n−1.
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acts, for fixed control and output sequences (Ξuy fixed), as a (local) invertible map defined
aroundx0 relating the statexk from (5.1) andzk from (5.2) if (5.1) isstrongly locally
observable at x0. One can summarize the previous discussion in the followingresult.

Theorem 5.1.3 The system(5.1) is strongly locally observable at x0, if and only if
there exist functions fz : Rn×Rn×Rn → Rn, hz : R×Rn → R such thatΞ in (5.15)
acts for fixed control and output sequences as an invertible map defined in an open
neighborhoodN around x0 relating state xk satisfying(5.1)and a state zk satisfying
a system representation in ENOCF in particular(5.2).

The interested reader can find a detailed proof in [95].

Remark 5.1.4 Notions of strong local observability on a domainX, i.e. Defini-
tion 5.1.1 ii), extend the result in Theorem 5.1.3 from a result valid on a neighborhood
N aroundx0 to a result valid for allx0 in a domainX.

Note that within relation (5.9) there are various possibilities to choose the functionsfz
andhz. This means that given system (5.1), there may exist multiple representations
of this system in ENOCF. Without loss of generality and for ease of exposition, one
may assume thathz is a linear function in its arguments, i.e. leths∈ R, hu ∈R1×n then
hz is defined as

hz(zn,k,u
[1−n,0]
k ) , hszn,k +huu

[n−1,0]
k . (5.16)

Previously, it is shown that (5.3) is an observer for a systemrepresentation in
ENOCF. Then, via the result established in this subsection one can conclude that un-
der the condition that the system (5.1) islocally strongly observablethe observer
given by (5.3) is a (local) observer for (5.1). Via the coordinate transformation map
(5.15) the estimated state inz-coordinates can be mapped to estimates of the state in
x-coordinates. By continuity of the transformation map (5.15), it can be shown that
asymptotic stability of thez-error dynamics (5.4) implies asymptotic stability of the
the estimation error dynamics inx-coordinates, which can be obtained by defining

ex,k , xk− x̂k, k∈ Z+,

as the estimation error inx-coordinates. Although the observer seems to be a global
observer in thez-coordinates, the observer is, in general, only locally defined in
x-coordinates. This follows from the fact that the equivalence relation between the
z-dynamics and thex-dynamics denoted by (5.15) is not globally defined in general
but only locally. Therefore, the observer candidate is in general only locally well-
defined. However, if the transformation between the system representation (5.2) and
(5.1) is defined globally also the observer candidate will bea global observer for (5.1).
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5.2 Problem formulation

Consider the system dynamics given by (5.1). Throughout thechapter is is assumed
that the state and the controls are constrained for system (5.1) to somecompactsetsX
andU, respectively, i.e.

uk ∈ U ⊆ R, xk ∈ X ⊆ Rn, ∀k∈ Z+. (5.17)

The full statexk is assumed not to be available for feedback, but only the output
yk is available for feedback. Instead, ˆxk will be employed for feedback to a state
feedback based model predictive controller. To obtain an estimate of the statexk the
observer theory described previously will be employed. However, the observer theory
explained in Section 5.1 suffers from a causality problem. That is, at time stepk∈Z+,
when the model predictive controller needs an estimated state x̂k to compute a control
uk, the observer, i.e. (5.3), (5.15), needsfuturecontrolsu[1,n]

k , that are not available at
timek, in order to generate a state estimate ˆxk. Furthermore, at time stepsk∈ Z[0,n−1]

also past controls and outputs in the sequencesu[1−n,0]
k andy[1−n,0]

k , respectively, are
not fully known. The causality problem of the observer is dealt with by using the fact
that in the model predictive control strategypredictedfuture information about the
controls is available at each time stepk ∈ Z+. That is, if the prediction horizon of
the model predictive controller is sufficiently long (N ∈ Z>n), a part of thepredicted
future control sequence obtained by the model predictive controller at every time step
k ∈ Z+, denoted byu[1,n]

k , is employed as a guess for the unknown sequenceu[1,n]
k .

The problem of not fully knowing the past control and output sequences at time steps
k∈ Z[0,n−1] is dealt with by replacingu[1−n,0]

k andy[1−n,0]
k in (5.3), (5.15) by vectors

ηy
k ∈ Yn ⊆ Rn and ηu

k ∈ Un ⊆ Rn,

respectively, where

Y ,

{
ς ∈ R

∣∣ ς = g(ξ ), ξ ∈ X

}
.

The vectorsηy
k and ηu

k represent state vectors from buffer systems that buffer the
output and the control, i.e.yk anduk, respectively. The buffer systems are defined as

ηy
k+1 = Abηy

k +bbyk, (5.18a)

ηu
k+1 = Abηu

k +bbuk, (5.18b)

whereAb , A⊤
z , bb , [0. . .0 1]⊤ and the output of the system, i.e.yk, and the control

uk are inputs of the buffer systems. A precise setup of the resulting observer based
model predictive control scheme is then described by
• The system:

xk+1 = f (xk,uk)

yk = g(xk)
, uk ∈ U, xk ∈ X, k∈ Z+; (5.19)
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• Observer:

q̂k+1 = f̂ (q̂k,yk,uk,u
[1,n]
k ), k∈ Z+, (5.20)

whereq̂k ,

[
ẑk ηy

k ηu
k

]⊤
,

f̂ (q̂k,yk,uk,u
[1,n]
k ) ,




Azẑk + fz(ηy
k ,ηu

k ,u[1,n]
k )+ κo(h−1

s (yk−huηu
k )− ẑn,k)

Abηy
k +bbyk

Abηu
k +bbuk


; (5.21)

• MPC controller :

Algorithm 5.2.1

Step 1) Givenq̂k at timek∈ Z+ andN∈Z>n, letxk|k , x̂k and find (via optimization)

a control sequenceu[0,N−1]
k , [uk|k, . . . ,uk+N−1|k]

⊤ that satisfies

ẑk = Ξ(x̂k,η
y
k ,ηu

k , [uk+1|k, . . . ,uk+n|k]
⊤), (5.22a)

u[0,N−1]
k ∈ UN(x̂k), (5.22b)

and optionally also minimize the model predictive control cost, e.g.J(x̂k,u
[0,N−1]
k ) in

(3.2).

Step 2) Let

κ̃MPC
u (q̂k) ,

{[
uk+1|k . . . uk+n|k

]⊤
∈ Un

∣∣ u[0,N−1]
k satisfies (5.22)

}

and
κ̃MPC(q̂k) ,

{
uk|k ∈ U

∣∣ u[0,N−1]
k satisfies (5.22)

}
.

Furthermore, letu[0,N−1]
k , [uk+1|k, . . . ,uk+N−1|k]

⊤ with

u[1,n]
k , [uk+1|k, . . . ,uk+n|k]

⊤ ∈ κ̃MPC
u (q̂k), (5.23a)

uk , uk|k ∈ κ̃MPC(q̂k), (5.23b)

denote afeasiblecontrol sequence and control with respect to the optimization prob-
lem formulated at Step 1, respectively. Apply a control sequenceu[1,n]

k and a control
uk satisfying (5.23a) and (5.23b), respectively, to the observer (5.20) and the system
(5.19) and incrementk by one and go to Step 1.
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Note that the model predictive control law resulting from Algorithm 5.2.1 is denoted
by (5.23) wherẽκMPC

u : Q →֒ Un andκ̃MPC : Q →֒ U are set-valued mappings andQ ,

Sz×Yn×Un with

Sz ,

{
ζ ∈ Rn

∣∣∣ ζ = Ξ(ξ ,ςn,µn
p,µn

f ), ξ ∈ X, ςn ∈ Yn, µn
p,µn

f ∈ Un
}

.

Remark 5.2.2 Under the assumption that ˆxk is explicitly available for feedback to the
model predictive controller (and thus conversion of ˆqk via (5.22a) in Algorithm 5.2.1
would not be necessary), one could remove constraint (5.22a) from Algorithm 5.2.1.
Then under the assumption that (5.19) isstrongly locally observable, the solution of
the newly obtained model predictive control algorithm (where x̂k is explicitly avail-
able) is similar to the solution to Algorithm 5.2.1. This is due to the fact that the value
of x̂k is, for givenẑk and all fixedηy

k , ηu
k andu[1,n]

k , uniquely defined via mapΞ.

The model predictive controller (5.23) (Algorithm 5.2.1) interconnected with the ob-
server (5.20) and the system (5.19) forms the closed-loop dynamics

xk+1 ∈ f (xk, κ̃MPC(q̂k)), (5.24a)

q̂k+1 ∈ f̂ (q̂k,g(xk), κ̃MPC(q̂k), κ̃MPC
u (q̂k)). (5.24b)

In the remainder of the chapter a constructive design procedure for the model predic-
tive controller and the observer is given such that the equilibrium point[xeq q̂eq]

⊤ = 0
of the resulting closed-loop system (5.24) is renderedasymptotically stablewith re-
spect initial states[x0 q̂0]

⊤ in some subset ofX×Q. Hence, a stabilizing output based
nonlinear model predictive control scheme is obtained. An outline of the followed
approach is given next.

Outline of the approach

Taking into consideration Remark 5.2.2 system (5.24a) can be considered from the
point of view that

xk+1 ∈ f (xk,κMPC(xk +ex,k︸ ︷︷ ︸
x̂k

)) , Fex(xk,ex,k), ex,k ∈ Ex, (5.25)

whereEx ⊆Rn is a known compact set with 0∈ int(Ex). The stateobservation errorin
system (5.25) is now considered as an “external” bounded disturbance signal, e.g. state
measurement noise, exiting system (5.25). The model predictive controller design
question can then be formulated as to synthesize a model predictive controller such
that system (5.1) is robust to any observation errorex : R+ → Ex. The notion of
input-to-state stability, as introduced in Chapter 2, is used for this purpose. Once
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xeq = 0 is an input-to-state stable equilibrium point of system (5.25) with respect to
the observation errorsex : R+ → Ex and initial statesx0 in some set, it is known that
if the observation error vanishes, i.e.ex,k → 0 for k→ ∞, alsoxk → 0 for k→ ∞. This
follows directly from the input-to-state stability property given in Definition 2.3.2.
Hence, ifxeq = 0 is an input-to-stable equilibrium point of (5.25) then a sufficient
condition which will lead toasymptotic stabilityof equilibrium pointxeq= 0 of (5.25),
or similarly (5.24a), is that the observation error vanishes, i.e. ex,k → 0 for k → ∞.
Following this approach, one in fact decouples the observerdesign problem from the
controller design problem and hence aseparation principleholds true. An approach
to synthesize a model predictive controller that renders equilibrium point xeq = 0 of
system (5.25) input-to-state stable with respect toex is given in the next section.

For the observer design one will consider the error dynamics, thatex,k satisfies for
all k∈ Z+ and is given by

eq,k+1 ∈ Feu(eq,k,e
[1,n]
u,k ), k∈ Z+, (5.26a)

ex,k ∈ Geu(eq,k,e
[1,n]
u,k ), k∈ Z+, (5.26b)

where

e[1,n]
u,k , u[1,n]

k −u[1,n]
k ,

Feu(eq,k,e
[1,n]
u,k ) ,

{
Aqeq,k +Bq∆ fz(ςn,ey,k,µn

p,eu,k,µn
f ,e

[1,n]
u,k )

∣∣∣ ςn ∈ Yn, µn
p,µn

f ∈ Un
}
,

Geu(eq,k,e
[1,n]
u,k ) ,

{
∆Ξ(ez,k,ζ ,ςn,ey,k,µn

p,eu,k,µn
f ,e

[1,n]
u,k )

∣∣∣ ζ ∈ Sz, ςn ∈ Yn,

µn
p,µn

f ∈ Un
}
,

with,

Aq ,




Ae 0 −κoh−1
s hu

0 Ab 0
0 0 Ab


 , Bq ,




In
0
0


 , eq,k ,




ez,k

ey,k

eu,k


,




zk− ẑk

y[1−n,0]
k −ηy

k

u[1−n,0]
k −ηu

k


 ,

∆ fz(ηy
k ,ey,k,ηu

k ,eu,k,u
[1,n]
k ,e[1,n]

u,k ) ,

fz(ηy
k +ey,k,ηu

k +eu,k,u
[1,n]
k +e[1,n]

u,k )− fz(ηy
k ,η

u
k ,u[1,n]

k ),

∆Ξ(ẑk,ez,k,η
y
k ,ey,k,ηu

k ,eu,k,u
[1,n]
k ,e[1,n]

u,k ) ,

Ξ−1
uy fixed(ẑk +ez,k,η

y
k +ey,k,ηu

k +eu,k,u
[1,n]
k +e[1,n]

u,k )
︸ ︷︷ ︸

xk

−Ξ−1
uy fixed(ẑk,η

y
k ,ηu

k ,u[1,n]
k )

︸ ︷︷ ︸
x̂k

.

The error dynamics defined by (5.26a) and defined by (5.26a) and (5.26b) is in the
remainder of the chapter also referred to as theq-error andx-error dynamics, respec-
tively. The error dynamics defined by (5.26a) and (5.26b) is anon-autonomous system
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with the difference between the real future control sequence andpredictedfuture con-
trol sequence, i.e.future predicted control error sequencee[1,n]

u,k , as input. Since the
predicted future control sequence does in general not coincide with the real future
control, the future predicted control error signale[1,n]

u,k is in general a non-zero input for
system (5.26a), (5.26b). This makes, showing thatex → 0 for k→ ∞, a nontrivial task.

In Section 5.4 it will be proven that equilibrium pointeqeq= 0, withGeu(eqeq,0) =

{0}, of the error dynamics given by (5.26a) and (5.26b) can be rendered input-to-state
stable and input-to-output stable, respectively, with respect to future control prediction
errore[1,n]

u,k . In Section 5.5 the closed-loop system as defined by (5.24) isconsidered
from a cascade point of view of the input-to-state and input-to-output stable observer
error dynamics (5.26a), (5.26b) and the input-to-state stable system (5.25), i.e.
[

xk+1

eq,k+1

]
∈

[
f (xk,κMPC(xk +Geu(eq,k,e

[1,n]
u,k )))

Feu(eq,k,e
[1,n]
u,k )

]
,

[
Fex(xk,Geu(eq,k,e

[1,n]
u,k ))

Feu(eq,k,e
[1,n]
u,k )

]
, k∈Z+.

(5.27)
By imposingregularity, i.e. see Definition 3.1.1, on the model predictive controller
and employing asmall gainargument, one can show that

e[1,n]
u,k ∈ Feq(xk,eq,k), k∈ Z+, (5.28)

whereFeq : X̃ ×Eq→Un⊕Un is a set-valued mapping withFeq(0,0)= {0}, X̃ ⊆X

andEq ⊆ R3n. Via interconnecting (5.27) and (5.28) it is then proven that equilibrium
point [xeq eqeq]

⊤ = 0 of interconnection (5.27) and (5.28) is asymptotically stable with
respect to initial states[x0 eq0]

⊤ in some set. From this result asymptotic stability
of the equilibrium point[xeq q̂eq]

⊤ = 0 of the closed-loop system (5.24) with respect
initial states[x0 q̂0]

⊤ in some subset ofX×Q follows.

5.3 Controller design

As explained in the previous section, one seeks for model predictive controller schemes
that can render the equilibrium pointxeq= 0 of system (5.25) input-to-state stable with
respect toobservation errors ex taking values in some setEx. To be more precise:

Assumption 5.3.1Let Ex be a given set with 0∈ int(Ex). SupposeκMPC(·) is a model
predictive controller withN ∈ Z>n such that for the system (5.1) in closed-loop with
the model predictive controllerκMPC(·) the following holds: There exist aK L -
functionβx and aK -functionγex

x such that for all initial statesx0 in an RPI setX e(N)

with 0∈ int(X e(N)) of system (5.25) perturbed by observation errorsex : Z+ → Ex

all solutionsx∈ SFex
(x0,ex) satisfy

|xk| ≤ βx(|x0|,k)+ γex
x (‖ex‖), ∀k∈ Z+. (5.29)
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Furthermore, letX e(N) be such that

X
e(N) ⊆ X ∼ Ex. (5.30)

In Chapter 3 one can find a method how to design a model predictive controller which
can realize the property as formulated in Assumption 5.3.1.Recall, that in Chapter 3
it is pointed out, by the result of Corollary 4.1.4, how one can employ the relatively
rich literature about nonlinear model predictive control synthesis methods, which can
a priori guarantee that equilibrium pointx̃eq= 0 of system (3.7) is input-to-state stable
with respect toadditivedisturbances, e.g. Algorithms 3.2.2, 3.3.3 and 3.2.11 spelled-
out in Chapter 3, or [46], in the scenario where the equilibrium pointxeq = 0 of the
closed-loop system (5.25) has to be rendered input-to-state stable with respect toob-
servation errorsor measurement noise as formulated in Assumption 5.3.1.

5.4 Observer design

In Section 5.2 the error dynamics (5.26a) and (5.26b) of the observer defined by (5.20)
(and (5.22a)) has been derived. In this section, it is provedthat the equilibrium point
eqeq= 0 of the error dynamics (5.26a) and (5.26b) can be rendered input-to-state and

input-to-output stable with respect toe[1,n]
u,k as input. Recall thate[1,n]

u,k represents the

error present in thepredictedfuture control sequenceu[1,n]
k , which is obtained by the

model predictive controller (5.23) and injected to the observer (5.20) at discrete time
k∈ Z+, i.e.

e[1,n]
u,k , u[1,n]

k −u[1,n]
k k∈ Z+. (5.31)

Due to (5.17) and the fact that Assumption 5.3.1 holds, one has that

u[1,n]
k ,u[1,n]

k ∈ Un, ∀k∈ Z+ ⇒ e[1,n]
u,k ∈ Un⊕Un. (5.32)

Then, letεeu ∈ R>0 be the smallest constant such that

Un⊕Un ⊆ Eeu , (5.33)

with
Eeu ,

{
ε ∈ Rn

∣∣ |ε| ≤ εeu

}
. (5.34)

Hence,
e[1,n]

u,k ∈ Eeu , ∀k∈ Z+.

Assumption 5.4.1There exists constantsL fz andLΞ such that for allk∈ Z+

|∆ fz(·,ey,k, ·,eu,k, ·,e
[1,n]
u,k )| ≤ L fz

(
|ey,k|+ |eu,k|+ |e[1,n]

u,k |
)

, (5.35a)

|∆Ξ(·,ez,k, ·,ey,k, ·,eu,k, ·,e
[1,n]
u,k )| ≤ LΞ

(
|ez,k|+ |ey,k|+ |eu,k|+ |e[1,n]

u,k |
)
. (5.35b)
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The constantsL fz andLΞ exist if the functionsfz andΞ−1
uy fixed are Lipschitz continuous

with respect to all their arguments in the domainsYn×Un×Un andSz×Yn×Un×Un,
respectively.

Assumption 5.4.2Let X e(N) ⊆ X ∼ Ex with

Ex ,

{
ε ∈ Rn

∣∣∣ |ε| ≤3LΞ

(
ℏq +2ϑ(L fz,ℏe,ρe,n)

)
εeq+

(
3
(

ϑ(L fz,ℏe,ρe,n)+L fz
ℏe

1−ρe

)
+1
)

LΞεeu

}
,

(5.36)

for someεeq ∈ R>0 and withℏe ∈ R≥1, ℏq ∈ R≥1, ρe ∈ R[0,1) such that|Ak
e| ≤ ℏeρk

e

and|Ak
q| ≤ ℏqρk

q holds for someρq ∈ R[0,1) and allk∈ Z+ and where

ϑ(L fz,ℏe,ρe,n) , L fzℏe

(
n−1

∑
j=0

ρ j
e

)
. (5.37)

Theorem 5.4.3Let
Eq ,

{
ε ∈ R3n

∣∣ |ε| ≤ εeq

}

and suppose there exists a constantεeq ∈ R>0 such that Assumptions 5.4.1 and 5.4.2
hold and(5.1) is strongly locally observable on domainX. Then the following state-
ments hold.

i) The equilibrium point eqeq = 0 of the q-error dynamics(5.26a)is input-to-state

stable with respect to inputse[1,n]
u : Z+ → Eeu and initial error eq,0 in Eq, i.e. for all

eq,0 ∈ Eq ande[1,n]
u : Z+ → Eeu all solutions eq ∈ SFeu

(eq,0,e
[1,n]
u,k ) satisfy

|eq,k| ≤ βeq(|eq,0|,k)+ γeu
eq
‖e[1,n]

u ‖, ∀k∈ Z+, (5.38)

where
βeq(|eq,0|,k) ,

(
ℏqρk

q +2ϑ(L fz,ℏe,ρe,n)ρmax(0,k+1−n)
e

)
|eq,0|,

γeu
eq

,

(
ϑ(L fz,ℏe,ρe,n)+L fz

ℏe

1−ρe

)
.

ii) The equilibrium point eqeq = 0 of the x-error dynamics defined by(5.26a)and

(5.26b) is input-to-output stable with respect to inputse[1,n]
u : Z+ → Eeu and ini-

tial error eq,0 in Eq, i.e. for all eq,0 ∈ Eq and e[1,n]
u : Z+ → Eeu all solutions ex ∈

SFeuGeu
(eq,0,e

[1,n]
u,k ) satisfy

|ex,k| ≤ βex(|eq,0|,k)+ γeu
ex
‖e[1,n]

u ‖, ∀k∈ Z+, (5.39)
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whereβex(|eq,0|,k) , 3LΞβeq(|eq,0|,k),

γeu
ex

, LΞ(3γeu
eq

+1). (5.40)

iii) For all eq,0 ∈ Eq ande[1,n]
u : Z+ → Eeu

ex,k ∈ Ex, ∀k∈ Z+. (5.41)

Proof:

i) Due to the structure ofAb appearing inAq in the functionFeu defining theq-error
dynamics (5.26a), one can rewrite (5.26a) as follows

eq,k+1 = Aqeq,k +Bqvk, k∈ Z+, (5.42)

wherevk is defined as

vk ∈
{

∆ fz(ςn,ey,k,µn
p,eu,k,µn

f ,e
[1,n]
u,k )

∣∣ ςn ∈ Yn, µn
p,µn

f ∈ Un
}

, ∀k∈ Z+. (5.43)

Note that for allk∈ Z+

|ey,k| ≤ |Ak
b||ey,0|, and |eu,k| ≤ |Ak

b||eu,0|, (5.44)

with

|Ak
b| ,

{
1 for k∈ Z[0,n−1],

0 for k∈ Z≥n.
(5.45)

Due to Lipschitz continuity of the functionfz, property (5.35a) holds. Then, taking
into consideration (5.44) and (5.45) yields

|vk| ≤





L fz

(
|ey,0|+ |eu,0|+ |e[1,n]

u,k |
)

, for k∈ Z[0,n−1],

L fz|e
[1,n]
u,k |, for k∈ Z≥n.

(5.46)

Using (5.42) and employing the diagonal structure ofAq yields

|eq,k+1| ≤





|Ak+1
q ||eq,0|+ |Bq|

k

∑
j=0

|Ak− j
e ||v j |, for k∈ Z[0,n−1],

|Ak+1
q ||eq,0|+ |Bq|

(
|Ak+1−n

e |
n−1

∑
j=0

|An−1− j
e ||v j |+

k−n

∑
j=0

|Ak−n− j
e ||v j+n|

)
,

for k∈ Z≥n.
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Employing (5.46), above inequality can for allk∈ Z+ be written as

|eq,k+1| ≤ |Ak+1
q ||eq,0|+(

|Amax(0,k+1−n)
e |L fz

n−1

∑
j=0

|An−1− j
e |

(
|ey,0|+ |eu,0|+ |e[1,n]

u, j |
)

+L fz

k

∑
j=0

|Ak− j
e ||e[1,n]

u, j |

)
.

(5.47)
SinceAe andAq are Schur, there exist constantsℏe ∈ R≥1, ℏq ∈ R≥1, ρe ∈ R[0,1) and
ρq ∈ R[0,1) such that|Ai

e| ≤ ℏeρ i
e and|Ai

q| ≤ ℏqρ i
q hold for all i ∈ Z+, see e.g. [41], and

thus (5.47) can be written as

|eq,k+1| ≤

(
ℏqρk

q +2L fzℏe

(
n−1

∑
j=0

ρ j
e

)
ρmax(0,k+1−n)

e

)
|eq,0|

+

(
L fzℏe

(
n−1

∑
j=0

ρ j
e

)
ρmax(0,k+1−n)

e +L fz

∞

∑
j=0

ℏeρ j
e

)
‖e[1,n]

u ‖,

(5.48)
which yields that equilibrium pointeqeq= 0 of system (5.26a) is input-to-state stable

in the sense of Definition 2.3.2 with respect to inputse[1,n]
u : Z+ →Eeu and initial error

eq,0 ∈ Eq, with K L -functionandK -functionas stated in Theorem 5.4.3.

iii) Continuing the proof by employing property (5.38), the factthat e[1,n]
u,k ∈ Eeu for

all k∈ Z+ andeq,0 ∈ Eq one has that

|eq,k| ≤ βeq(εeq,0)+ γeu
eq

εeu =

=
(

ℏq +2ϑ(L fz,ℏe,ρe,n)
)

εeq +

(
ϑ(L fz,ℏe,ρe,n)+L fz

ℏe

1−ρe

)
εeu .

(5.49)
Note thatxk ∈ X e(N) for all k∈ Z+ due to Assumption 5.3.1. Suppose thatex,k ∈ Ex

for all k∈ Z+, then due to the fact that

x̂k , xk−ex,k, k∈ Z+,

one has that
x̂k ∈ X

e(N)⊕Ex, ∀k∈ Z+. (5.50)

From the hypothesis of Theorem 5.4.3, i.e. Assumption 5.4.2, there follows that

X
e(N) ⊆ X ∼ Ex ⇒ X

e(N)⊕Ex ⊆ (X ∼ Ex)⊕Ex ⊆ X,

which yields, via (5.50), that

x̂k ∈ X, ∀k∈ Z+. (5.51)
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Hence, since (5.1) is strongly locally observable on domainX, Ξ (and∆Ξ) will be
well-defined for all ˆxk, xk in X. Therefore (via Assumption 5.4.1) there exists a Lips-
chitz constant forΞ−1

uy fixed with respect to all its arguments in the domainSz×Yn×Un×

Un such that (5.35b) is satisfied, which yields that for allk∈ Z+

|ex,k| ≤ 3LΞ|eq,k|+LΞ‖e[1,n]
u ‖ ≤ 3LΞ|eq,k|+LΞεeu . (5.52)

Substituting (5.49) in (5.52) yields that indeed

ex,k ∈ Ex ∀k∈ Z+. (5.53)

This concludes the proof of statement iii) in Theorem 5.4.3.

ii) Substitution of (5.38) in (5.52) results in (5.39) with theK L -functionand the
K -functionas stated in Theorem 5.4.3.

5.5 Interconnection results

So far, one hasseparatelydesigned a model predictive controller which renders equi-
librium pointxeq = 0 of (5.25) input-to-state stable with respect toobservation errors
ex : Z+ → Ex (that are present in ˆx), and an observer for which the equilibrium point
eqeq= 0 of its error dynamics, i.e. (5.26a) and (5.26b) is input-to-state and input-to-

output stable with respect to theprediction errorse[1,n]
u : Z+ → Eeu (that are present in

u[1,n]). In this section the focus is on the asymptotic stability issue of the closed-loop
system given by (5.24). Based on analysis of the cascade given by (5.27), which con-
sists of the input-to-state and input-to-output stable observer error dynamics given by
(5.26a) and (5.26b), cascaded with the input-to-state stable system (5.25), an asymp-
totic stability result of closed-loop system (5.24) will beobtained.

The standing assumption for the main result in this section is

Assumption 5.5.1The nonlinear model predictive controller admits, forNr = n, the
regularity property, in the sense of Definition 3.1.1 with respect to ˆxk, i.e. ∃ θ1,θ2 ∈

R>0 such that|uk|k| ≤ θ1|x̂k| and|uk+i|k| ≤ θ2|x̂k| for i = 1,2, ...,n.

Regularitycan be imposed by simply including|uk|k| ≤ θ1|x̂k| and |uk+i|k| ≤ θ2|x̂k|

for i = 1,2, ...,n as additional constraints to the employed model predictivecontrol
scheme, e.g. Algorithm 3.2.2, for a priori fixedθ1 andθ2. For ease of exposition,
it is also assumed that the ISS-gain of the model predictive controller, i.e. γex

x (see
Assumption (5.3.1)), is linear in its argument.
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Theorem 5.5.2Let

Eq ,

{
ε ∈ R3n

∣∣ |ε| ≤ εeq

}
,

for someεeq > 0. Suppose Assumption 5.5.1 holds and Assumption 5.3.1 holdswith
Ex as defined in(5.36). Furthermore, let(5.1)be strongly locally observable on the
domainX. Then, if

(θ1 + θ2)γeu
ex

(γex
x +1) < 1, (5.54)

and constraint(5.22a)is added to a model predictive control algorithm, forming e.g.
Algorithm 5.2.1, the equilibrium point[xeq q̂eq]

⊤ = 0 of the resulting closed-loop sys-
tem (5.24) is asymptotically stable with respect to initial states x0 ∈ X e(N) and
q̂0 ∈ Q such that(q0− q̂0) ∈ Eq.

Before proving the statement of Theorem 5.5.2 a technical lemma will be formulated,
which will be employed later in the proof of Theorem 5.5.2.

Lemma 5.5.3 Suppose N∈ R>n and Assumption 5.5.1 holds. Then, the signale[1,n]
u,k

satisfies

|e[1,n]
u,k | ≤ γx

eu
‖x‖+ γex

eu
‖ex‖, ∀k∈ Z+, (5.55)

where the gainsγx
eu

andγex
eu are defined asγx

eu
= γex

eu , (θ1 + θ2).

Proof: Using regularity (Definition 3.1.1) and the triangle inequality, the in-
duced norm of the difference between the predicted future controls and the real con-
trols can be upper bounded for allk∈ Z+ andi = 1, . . . ,n, i.e.

|uk+i −uk+i|k| ≤ |uk+i |+ |uk+i|k| ≤ θ1|x̂k+i |+ θ2|x̂k|. (5.56)

Since (5.56) holds for allk∈ Z+ andi = 1, . . . ,n one has that

‖e[1,n]
u ‖ ≤ (θ1 + θ2)‖x̂‖ ≤ (θ1 + θ2)(‖x‖+‖ex‖) (5.57)

which concludes the proof of the statement.

Regularitythus leads to property (5.55). Employing this property, thestatement in
Theorem 5.5.2 can be proved.
Proof: The proof is divided into four major parts. The first part consists of proving
that the input-to-state and input-to-output stability properties of (sub)systems (5.25)
and (5.26), are preserved when they are cascaded resulting into system (5.27). Sec-
ondly, it is proven that under condition (5.54) one has that for all k∈ Z+ (5.28) holds
with

Feq(xk,eq,k) ,

{
δ χ(|xk|, |eq,k|)

∣∣ δ ∈ D

}
, (5.58)
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whereD , {d ∈ Rn | |d| ≤ 1} and

χ(|xk|, |eq,k|) , γex
eu

(
1− γex

eu
γeu
ex

(γex
x +1)

)−1(
βx(|xk|,0)+ (1+ γex

x )βex(|eq,k|,0)
)
.

Then, via interconnecting (5.27) and (5.28) it is proven that equilibrium point
[xeq eqeq]

⊤ = 0 of interconnection (5.27), (5.58) isstablewith respect to initial states
[x0 eq,0]

⊤ in X e(N)× Eq, i.e. it is shown that (2.15) in item i) of Definition 2.2.1
is satisfied. The next part of the proof consists of showing that equilibrium point
[xeq eqeq]

⊤ = 0 of interconnection (5.27), (5.58) isattractive, i.e. item ii) in Defini-
tion 2.2.1 is satisfied for initial states[x0 eq,0]

⊤ in X e(N)×Eq. Based on the asymp-
totic stability result of equilibrium point[xeq eqeq]

⊤ = 0 of interconnection (5.27),
(5.58), asymptotic stability of the equilibrium point[xeq q̂eq]

⊤ = 0 of closed-loop sys-
tem consisting of (5.24a) and (5.24b) is concluded.

Part 1) Due to the hypothesis of Theorem 5.5.2,X e(N) is RPI for system (5.25)
perturbed byex : Z+ →Ex. This implies that Assumption 5.4.2 holds, hence the results
of Theorem 5.4.3 hold. This then implies that for any initialerroreq,0 in the setEq the
trajectoryex, satisfying the dynamics of system (5.26) satisfies

ek ∈ Ex, ∀k∈ Z+,

which implies that the input-to-state property of system (5.25), as stated in the hy-
pothesis of Theorem 5.5.2, is preserved for allk ∈ Z+ and initial conditionsx0 in
X e(N). Hence, properties (5.29) and (5.38), (5.39) of Assumption5.3.1 and Theo-
rem 5.4.3, respectively, hold for system (5.27) withe[1,n]

u : Z+ → Eeu and initial states
[x0 eq,0]

⊤ ∈ X e(N)×Eq.
Part 2)From (5.29), (5.38), (5.39) and (5.55), one can conclude that for anyk≥ ℓ

|xk| ≤ βx(|xℓ|,k− ℓ)+ γex
x (‖ex,[ℓ〉‖), (5.59a)

|eq,k| ≤ βeq(|eq,ℓ|,k− ℓ)+ γeu
eq
‖e[1,n]

u,[ℓ〉
‖, (5.59b)

|ex,k| ≤ βex(|eq,ℓ|,k− ℓ)+ γeu
ex
‖e[1,n]

u,[ℓ〉
‖, (5.59c)

|e[1,n]
u,k | ≤ γx

eu
‖x[ℓ〉‖+ γex

eu
‖ex,[ℓ〉‖. (5.59d)

Employing relation (5.59a) and (5.59c) one has

|xk| ≤ βx(|xℓ|,k− ℓ)+γex
x

(
βex(|eq,ℓ|,k− ℓ)+γeu

ex
‖e[1,n]

u,[ℓ〉‖
)
. (5.60)

Then, using (5.59c), (5.59d) and (5.60) yields

‖e[1,n]
u,[ℓ〉‖ ≤ γx

eu
βx(|xℓ|,k− ℓ)+ γx

eu
γex
x βex(|eq,ℓ|,k− ℓ)

+ γx
eu

γex
x γeu

ex
‖e[1,n]

u,[ℓ〉
‖+ γex

eu
βex(|eq,ℓ|,k− ℓ)+ γex

eu
γeu
ex
‖e[1,n]

u,[ℓ〉
‖.

(5.61)
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Sinceγx
eu

= γex
eu and (5.54) holds, one has

‖e[1,n]
u,[ℓ〉

‖ ≤ γex
eu

(
1− γex

eu
γeu
ex

(γex
x +1)

)−1(
βx(|xℓ|,k− ℓ)+

(
1+ γex

x

)
βex(|eq,ℓ|,k− ℓ)

)
.

(5.62)
Lettingℓ = k, it holds that for allk∈ Z+

|e[1,n]
u,k | ≤ γex

eu

(
1− γex

eu
γeu
ex

(γex
x +1)

)−1(
βx(|xk|,0)+

(
1+ γex

x

)
βex(|eq,k|,0)

)
,

, χ(|xk|, |eq,k|).
(5.63)

Hence, the description of the signale[1,n]
u,k , in its most general form that satisfies (5.63),

is therefore given by (5.28), whereFeq is defined by (5.58).
Part 3)Lettingℓ = 0 in (5.59b), (5.60) and (5.62) one can obtain

|eq,k| ≤ βeq(|eq,0|,0)+ γeu
eq
‖e[1,n]

u ‖, (5.64a)

|xk| ≤ βx(|x0|,0)+ γex
x

(
βex(|eq,0|,0)+ γeu

ex
‖e[1,n]

u ‖
)
, (5.64b)

‖e[1,n]
u ‖ ≤ γex

eu

(
1− γex

eu
γeu
ex

(γex
x +1)

)−1(
βx(|x0|,0)+ (1+ γex

x )βex(|eq,0|,0)
)
. (5.64c)

Note that (5.64c) implies
‖e[1,n]

u ‖ ≤ χ(|x0|, |eq,0|). (5.65)

Furthermore, for allk∈ Z+ one has that

|[xk eq,k]
⊤| ≤ |[xk eq,k]

⊤|2 , |xk|
2 + |eq,k|

2. (5.66)

Employing (5.64a), (5.64b), (5.65) and (5.66) yields that for all [x0 eq,0]
⊤ ∈X e(N)×

Eq all solutions of interconnection (5.27) and (5.28), satisfy

|[xk eq,k]
⊤| ≤

(
βx(|x0|,0)+ γex

x

(
βex(|eq,0|,0)+ γeu

ex
χ(|x0|, |eq,0|)

))2
+

+
(

βeq(|eq,0|,0)+ γeu
eq

χ(|eq,0|, |x0|)
)2

≤ ϕ(|[x0 eq,0]
⊤|), ∀k∈ Z+,

(5.67)
whereϕ(s) = (βeq(s,0)+ γeu

eq
χ(s,s))2 +(βx(s,0)+ γex

x (βex(s,0)+ γeu
ex

χ(s,s)))2. Note
that the equilibrium pointsηy

eq = 0 andηu
eq = 0 of the buffer dynamics, i.e. (5.18a)

and (5.18b), which the trajectoryηy andηu satisfy, are trivially input-to-state stable
with respect toy : Z+ → Y, u : Z+ → U and the initial statesηy

0 ∈ Y andηu
0 ∈ U,

respectively. Employing this fact and using (5.28), (5.35b), mapΞ in (5.22a) (with its
Lipschitz continuity property) and theregularityproperty, i.e. Assumption 5.5.1, item
i) in Definition 2.2.1, i.e. (2.15), for equilibrium point[xeq q̂eq]

⊤ = 0 of closed-loop
system (5.24) follows.
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Part 4)Property (5.29), (5.39) and (5.55) of Assumption 5.3.1, Theorem 5.4.3 and
Lemma 5.5.3, respectively, imply

lim
k→∞

|xk| ≤γex
x

(
lim
k→∞

|ex,k|

)
, (5.68a)

lim
k→∞

|ex,k| ≤γeu
ex

(
lim
k→∞

|e[1,n]
u,k |

)
, (5.68b)

lim
k→∞

|e[1,n]
u,k | ≤γx

eu

(
lim
k→∞

|xk|

)
+ γex

eu

(
lim
k→∞

|ex,k|

)
. (5.68c)

Substitution of (5.68a) and (5.68b) in (5.68c) and subsequently substituting (5.68a) in
the obtained expression and using the fact thatγx

eu
= γex

eu , yields

lim
k→∞

|e[1,n]
u,k | ≤ γex

eu
γeu
ex

(γex
x +1)

(
lim
k→∞

|e[1,n]
u,k |

)
. (5.69)

Due to the small gain property (5.54) in the hypothesis of Theorem 5.5.2 and the
fact thatlimk→∞ |e[1,n]

u,k | is well-defined (due to compactness ofEeu one knows that

limk→∞ |e[1,n]
u,k | is finite) one has that (5.69) is true only if

lim
k→∞

|e[1,n]
u,k | = 0. (5.70)

Then, (5.28), withFeq defined as in (5.58), and (5.70) imply that for all initial states
[x0 eq,0]

⊤ ∈ X e(N)×Eq all solutions[x eq]
⊤ satisfy

lim
k→∞

|[xk eq,k]
⊤| = 0. (5.71)

Employing the fact that the equilibrium pointsηy
eq = 0 andηu

eq = 0 of the buffer dy-
namics, i.e. (5.18a) and (5.18b), are input-to-state stable with respect toy : Z+ → Y,
u : Z+ → U and the initial statesηy

0 ∈ Y, ηu
0 ∈ U, respectively, and using (5.58),

(5.35b), mapΞ in (5.22a) (with its Lipschitz continuity property) and theregularity
property, i.e. Assumption 5.5.1, item ii) for closed-loop system (5.24) follows natu-
rally for all initial statesx0 ∈ X e(N) andq̂0 ∈ Q such that(q0− q̂0) ∈ Eq.

Remark 5.5.4 Note that the small gain condition (5.54) can always be satisfied by
choosing the regularity constantθ1, θ2 small enough. However, in practice this might
deteriorate the performance of the nonlinear model predictive controller. Also a non-
linear model predictive controller that renders the equilibrium pointxeq = 0 of system
(5.25) input-to-state stable might not exist, since imposing a tight regularity constraint
might impose restrictions on the (constrained) stabilizability of the system. Ideally,
one would therefore like to obtain small constantsL fz andLΞ, respectively, as to allow
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for a largeθ1, θ2 and still satisfy (5.54). The constantLΞ can be reduced by choosing
the functionhz appropriately (see (5.11)). However, this might, via (5.9)results in
largeL fz. A constructive way to reduce bothL fz andLΞ is to reduce the Lipschitz
constant of the system (5.1) (L f ) by employing for example pre-compensation. For
details on this issue we refer the reader to [46] or [102].

5.6 Manufacturing example

Consider the manufacturing system as considered in Chapter4, e.g. see Figure 4.3.
In Chapter 4 it is assumed that the state, i.e.[b1

k b2
k b3

k]
⊤ or xk of the system dynam-

ics (4.42) or (4.45), is available for feedback. However, measuring all components
of the state becomes impractical if the dimension of the state becomes larger when
larger manufacturing lines are considered. In this sectionit is therefore assumed that
knowledge of the state of the system is not available, but only the output of the manu-
facturing system is available for feedback, i.e.

yk = g(xk) = x3,k. (5.72)

Note thatyk corresponds, via a coordinate transformation (see Chapter4), to the out-
flow of products of the manufacturing system, i.e.b3(t) in Figure 4.3. The output feed-
back nonlinear model predictive controller design approach proposed in this chapter
is employed to design an output feedback controller for the manufacturing system.

Consider the description of the dynamics of the manufacturing system as given
in (4.45) with its output equation as defined in (5.72). Note that for the considered
system the observability map, as defined in Definition 5.1.1,reads

ψ(xk,u
[0,n−2]
k ) ,




x3,k

x3,k +
Tµ(x2,k+α)

(1+x2,k+α)−TC

x3,k +
Tµ(x2,k+α)

1+x2,k+α −2TC+
Tµ
(

x2,k+
Tµ(x1,k+α)

1+x1,k+α −
Tµ(x2,k+α)

1+x2,k+α +α
)

1+x2,k+
Tµ(x1,k+α)

1+x1,k+α −
Tµ(x2,k+α)

1+x2,k+α +α




.

(5.73)
Hence,

det
(∂ψ

∂x

)
=

−T3µ3

a
,

with

a ,

(
1+x1,k +2x2,k +Tµx1,k−Tµx2,k +2x2,kx1,kα + α3+2x1,kx2,k+

+x2
2,k +x1,kx2

2,k +x1,kα2 +2x1,kα +4αx2,k +3α2+ αx2
2 +2x2,kα2 +3α

)2

Note that

det
(∂ψ

∂x

)
=

−T3µ3

a
6= 0, ∀xk ∈ X, uk ∈ U,
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with X and U as defined in (4.46). This implies that the system (4.45), (5.72) is
strongly locally observable. In this case even global observability is obtained, which
means that the system (4.45), (5.72) can be transformed globally into a system rep-
resentation in ENOCF. Hence, Theorem 5.1.3 implies that an observer in ENOCF as
given in (5.3) or (5.20) withΞ as in (5.15) exists and is globally well defined. That is,
the mapΞ in (5.15) acts for fixed control and output sequences as a globally well de-
fined invertible map relating statexk satisfying (5.1) and a statezk satisfying a system
representation in ENOCF in particular a system of the from asin (5.2). The following
functions fz andhz, i.e.

hz(zn,k,u
[1−n,0]
k ) = zn,k,

fz(y
[1−n,0]
k ,u[1−n,0]

k ,u[1,n]
k ) =

[
0 0 fz,n−1(y

[1−n,0]
k ,u[1−n,0]

k ,uk+1)
]⊤

,

where

fz,n−1(y
[1−n,0]
k ,u[1−n,0]

k ,uk+1) =

yk−1−4+c6+

33(yk−2−yk−1)
yk−1−yk−2−1 +33c5+6

3−c4
−3(yk−1−yk−2 +2)+3

3c5+3/2uk−2+12−3 3c5+6
3−c4

5−c4+1/2uk−2−
3c5+6
3−c4

−3c6 +6

3− 3(yk−1−yk−2)
yk−1−yk−2−1 + 3c5+6

3−c4
+yk−2−yk−1−2

3c5+3/2uk−2+12−33c5+6
3−c4

5−c4+1/2uk−2−
3c5+6
3−c4

−c6

,

with

c2 = (yk−yk−1−1)y2
k−2 +(1+2yk −2ykyk−1 +2y2

k−1)yk−2 +4yk −5yk−1+

+y2
k−1−1−y3

k−1−2ykyk−1 +yky2
k−1,

c3 = 3(yk−yk−1−1)y2
k−2,

c4 =
((6yk−1+6+3yk−6ykyk−1+3yk−1)yk−2−15yk−1+9yk−3y3

k−1+c3−3ykyk−1+3yky2
k−1)

c2
,

c5 =
((−6y2

k−1−6−3yk+6ykyk−1−3yk−1)yk−2+15yk−1−9yk+3y3
k−1−c3+3ykyk−1−3yky2

k−1)
c2

,

c6 =
3

3(yk−2−yk−1)

yk−1−yk−2−1 3
3c5+6
3−c4

−3(yk−1−yk−2+2)+6

3−
3(yk−1−yk−2)

yk−1−yk−2−1 +
3c5+6
3−c4

−yk−2+yk−1+2
,

satisfy (5.9) and therefore define (globally) an observer ofthe form as in (5.20) with
Ξ in (5.22a) defined as in (5.15). Note that in case of this example the resulting ob-
server and the mappingΞ is not a function of the future control variable (u[1,n]

k ) of

the system. Hence,e[1,n]
u,k = 0 for all k ∈ Z+ or γeu

eq
= γeu

ex
= 0. This implies that, for

any model predictive controller satisfying Assumption 5.3.1, Theorem 5.5.2 applies
for any gainsyex

x ,θ1,θ2 ∈ R>0. Hence, the regularity property of the model predictive
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controller defined in Definition 3.1.1 is not required in thiscase. A controller that
satisfies Assumption 5.3.1 can be designed employing the design technique explained
in Chapter 3 and employing the result obtained in Chapter 4, i.e. Corollary 4.1.4, as
is also worked out in Section 4.3 for the considered manufacturing system. Employ-
ing this controller and injecting this controller with ˆxk (i.e. ẑk translated to ˆx via Ξ),
generated based on the designed observer in this section, instead ofxk will result in an
asymptotically stable closed-loop system.

Note that in general, and in particular when the dimension ofthe considered sys-
tem is relatively large, future control variables will appear in the observer defined by
(5.20) andΞ. In this case a small gain condition like the one given in Theorem 5.5.2
has to be satisfied to guarantee asymptotic stability of the equilibrium point[xeq q̂eq]

⊤

of closed-loop system (5.24).

5.7 Summary

In this chapter an observer-based (output feedback) nonlinear predictive control ap-
proach for the class of strongly observable nonlinear discrete-time systems is pro-
posed. It is proven that a separately designed controller and observer in closed-loop
with the to-be-controlled system results in an asymptotically stable closed-loop sys-
tem. Input-to-state stability notions for differential inclusions are employed to prove
the results. Constructive procedures for both, the design of an input-to-state stable
state feedback model predictive controller and a nonlinearobserver, are indicated. All
the results are valid despite the possibility of discontinuous and non-unique model pre-
dictive control laws. The effectiveness of the developed output based nonlinear model
predictive control scheme is demonstrated via an illustrative manufacturing example.

132



You see things; and you say,
”Why?” But I dream things that
never were; and I say, ”Why not?”

George Bernhard Shaw

6
Event driven manufacturing systems as

time domain control systems

As explained in Chapter 1, manufacturing systems are often characterized as discrete
event systems (DES). Their dynamical behaviors are driven only by occurrences of
different type of events. See [26] for an overview of discrete event systems. One of
the major difficulties of analyzing discrete event systems,from a control theory point
of view, is the fact that generally speaking, those systems are hard to describe with
the available time domain modeling frameworks present in the control systems litera-
ture. As explained in Chapter 1 and illustrated in Section 4.3, one of the approaches
to overcome this problem is to synthesize controllers for DES manufacturing systems
based on afluid modelof a manufacturing system, rather than the detailed descrip-
tion of a discrete event model. Based on this approach one can, for example, employ
the controller design approach explained in the previous chapters. One of the con-
sequences that this approach induces is that, for the controller synthesis, one has to
design for robustness with respect to (fictive) disturbances even though no explicit
disturbance signals are present in the original control problem formulation. This issue
has been elaborated on in Section 4.3. An approach to avoid this problem is to base
the controller synthesis directly on a discrete event modelof the manufacturing sys-
tem. However, as already has been pointed out, in the controlsystems literature there
are no modeling frameworks available to which time domain control system theoretic
notions, required for controller synthesis, can be employed to.

For some subclass of discrete event systems an algebra that allows, to some ex-
tend, for analytical study and a system theoretical-like controller design for discrete
event (manufacturing) systems has been developed, see [29]for a survey. Based
on this algebra some controller synthesis techniques have appeared, see for exam-
ple [103, 104, 105]. However, in these papers modeling and controller synthesis is
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performed in the so calledevent domain. In event domainbased modeling the evo-
lution of time labelsassociated to certaineventsis considered along a discreteevent
axis. Since all system theoretic notions and control objectivesare time domain related,
a compatibility and/or causality problem emerges.

In this chapter it is spelled out how a class of event driven manufacturing sys-
tems, modeled in an event domain setting, can be considered in the time domain con-
text. The motivation of this issue is to apply conventional time domain control system
theory notions as stability, robustness, controllability, observability and time domain
based formulations of control objectives to event driven manufacturing systems mod-
eled in an event domain setting. This result makes it possible to utilize event domain
related mathematical tools to solve time domain related control problems.

6.1 Manufacturing systems in time domain

Mathematical models of (manufacturing) systems as we encounter them in practice
may be expressed by ordinary or partial differential equations, and in the context of
manufacturing systems they may involve formal (programming) languages, etc. It
may seem hard to find a common denominator in all this. A perceptive observation,
one which can be attributed to control theory, is to look at (manufacturing) systems,
and subsystems, asblack boxes. Thus, instead of trying to understand, in the tradition
of physics, how a device or manufacturing system is “put together” and the detail
of how all its components and subsystems work, we are told to concentrate on how it
behaves, on the way in which it interacts with its environment. It is this black box point
of view which will be formalized in its ultimate generality and is in control systems
theory literature known as the so calledbehavioralapproach to systems control theory,
see [106] for a survey. In this approach one will back off fromthe usual input/output
setting in which systems are seen as being influenced by inputs, acting as causes,
and producing outputs through these inputs, the internal initial conditions, and the
system dynamics. All variables will be considered a priori on an equal footing and the
input/output as a special case which in many situations can actually be deduced from
the original model.

The definition of a time domain dynamical system in the behavioral context is
done at the set theoretic level. The strength of the behavioral approach comes from
this formal setting and it helps in confronting a wider classof systems and coordinate
free (model structure independent) definitions of control system theoretic notions. A
discrete event manufacturing system in thetime domainbehavioral context can for
example be defined as follows.

Definition 6.1.1 A discrete event manufacturing system in thetime domainis defined
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by the triple
ΣT = (T,WT ,BT), (6.1)

with T = R the time axis,WT = Zn the signal space, andBT ⊆ WT
T

, i.e.

BT ,

{
wT : R → Zn

∣∣∣ σ τ wT ≤ wT ,∀τ ∈ T>0

“Physical laws of the manufacturing system are satisfied”

}
,

thebehavior. Hereσ is a time shift operator, i.e.σ τwT , wT (t − τ).

Definition 6.1.1 in words: Manufacturing system (6.1) is defined byT representing
time instances of interest,WT representing the space in whichevent counterstake on
their values andBT as subset ofWT

T
to which all allowable time trajectories of the

system belong to. In the context of manufacturing systems the behaviorsBT that are
considered are behaviors that at least guarantee that all signalswT satisfyingBT have
the propertywT (t − τ) ≤ wT (t), ∀τ ∈ T>0 or σ τwT ≤ wT ,∀τ ∈ T>0, i.e. signals
wT (t) arenon-decreasing. Further restrictions onBT formalize the laws of a specific
manufacturing system. Allowing onlynon-decreasingsignals inBT is explained
by the fact thatwT (t) represent counter functions which count how many times a
particular event has taken place through time and cannot count backwards through
time, i.e. once an event occurred for thek-th time at timet = t∗ ∈ T the event cannot
occur for thek−1-st time at timet ∈ T≥t∗ . Furthermore, throughout this chapter it is
assumed that the considered manufacturing systems do not possessZenoexecutions.

Definition 6.1.2 Zenoexecutions are trajectories which are characterized by an infi-
nite number of events counted in a finite amount of elapsed time. Lettk be the time
instance at whichw

Ti
(t−k ) < w

Ti
(t+k ) then a Zeno trajectoryw

Ti
satisfies the following

property
∞

∑
k=0

tk+1− tk < ∞.

Example 6.1.3Consider a manufacturing system, which consists of two processing
units M1 andM2 with fixed processing timesd1 ∈ R>0 andd2 ∈ R>d1 respectively.
Raw products are coming from two sources, knowing product streamA andB. In
Figure 6.1 an iconic model of a simple manufacturing system is given. In whicheA,
eB, eM1 andeM2 are events defined as:

• eA ,A raw product from product streamA arrives.

• eB ,A raw product of product streamB arrives.

• eM1 ,MachineM1 starts processing.
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M
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eM1

eM2
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Figure 6.1: Considered manufacturing system (d1 < d2).

• eM2 ,MachineM2 starts processing.

It is given, that once a raw product arriving for thek-th time through one of the product
streams it is followed by a raw product arriving for thek-th time through the other
product stream. SinceM2 processes slower thanM1, the following policy is applied:
The first raw product arriving for thek-th time, either fromA or B is processed on
M2 and the second raw product arriving for thek-th time, fromA if B was first or
from B if A was first, is processed onM1. Furthermore, the machines start processing
as soon as a raw product is available for the machines and the previous processes
on the machines have been finished. The considered manufacturing system can be
modeled in the framework defined in Definition 6.1.1. Define functionsw

TA
: R → Z,

w
TB

: R → Z, w
TM1

: R → Z andw
TM2

: R → Z. The functions arecounterfunctions
that count how many times the eventseA, eB, eM1 and eM2 have occurred in time,
respectively. The behaviorBT that defines the considered manufacturing system can
then be defined as

BT =

{
wT =

[
w

TA
w

TB
w

TM1
w

TM2

]⊤
: R → Z4

∣∣∣ σ τwT ≤ wT , ∀τ ∈ T>0,

w
TA

+1≥ w
TB

, w
TM1

= min(σd1w
TM1

+1,min(w
TB

,w
TA

))

w
TB

+1≥ w
TA

, w
TM2

= min(σd2w
TM2

+1,max(w
TB

,w
TA

))

}
.

(6.2)

Remark 6.1.4 In (6.2) the “physical laws” are described relating the defined signals
in wT via min and max relations and time shift operationsσ however the “physical
laws” defining the behaviorBT of the manufacturing system could also have been
specified by a (computer) language, e.g.χ [27, 28].

A basic question that one could ask oneself, concerning for example the manufacturing
system considered in Example 6.1.3, is whether the manufacturing systemΣT is a
dynamicor a static system. In the next definition it will be made precise when a
system is a static or dynamical system.
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Definition 6.1.5 [106] Let ΣT = (T,WT ,BT) be a time invariant system. System
ΣT is said to be∆-complete(∆ ∈ T>0) if

{
wT ∈ BT

}
⇔
{
(σ−twT )

∣∣
T[−∆,0]

∈ BT

∣∣
T[−∆,0]

, ∀t ∈ T

}
;

if this holds for all∆ ∈ T>0, systemΣT is called adynamicalsystem; if it holds for
∆ = 0, systemΣT is calledstatic.

∆-completeness is a system property which says that if a time domain trajectorywT

over an intervalT[t−∆,t] of the time axis belongs to the set of all allowable trajectories
all defined only over an interval ofT[t−∆,t], i.e.BT |T[−∆,0]

⊆ BT for all time instances
t ∈ T, then the same trajectorywT defined over the total (complete) domain of the
time axis also belongs to the set of all allowable trajectories defined over the total
domainT, i.e. BT .

Clearly the manufacturing system considered in Example 6.1.3 is a dynamical
system with∆ ≥ d2 ∈ R>d1. An important dynamical system related property, which
will be used later in this chapter, is the so-calledmemory spanof a dynamical system.

Definition 6.1.6 [106] Let ΣT = (T,WT ,BT) be a dynamical system, thenΣT is
said to havememory span∆ (∆∈T>0) if w1

T
, w2

T
∈BT , w1

T
= w2

T
for t ∈T[t1−∆,t1) ⇒

w1
T
∧w2

T
∈ BT . Where∧ denotes concatenation (at timet1), defined as

(w1
T ∧w2

T )(t) =

{
w1

T
(t) for t ∈ T<t1,

w2
T

(t) for t ∈ T≥t1.
(6.3)

For a systems with memory span∆ one can decide to call signals on the domain
t ∈ T<t1−∆, thepastand the signals on the domaint ∈ T≥t1 the future. Note that then
given the system’s trajectory fort ∈ T[t1−∆,t1), with ∆ the memory span of the system,
the past and future areindependentof each other. Hence, any allowable past can be
concatenated with any allowable future.

6.2 Manufacturing systems in event domain

In the previous section discrete event manufacturing systems are considered from a
time domain perspective. However, due to thediscretenature of manufacturing sys-
tems, i.e. the system isevent driven, one can complementary to the time domain
perspective, e.g. Definition 6.1.1, define a manufacturing system in the event domain,
i.e.

Definition 6.2.1 A manufacturing system in theevent domainis defined by the triple

ΣK = (K,WK ,BK) (6.4)
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with K = Z theevent axis, WK = Rn the signal space, andBK ⊆ WK
K

, i.e.

BK ,

{
wK : Z → Rn

∣∣∣∣
γw

K
≤ w

K
,

“Physical laws of the manufacturing system are satisfied”

}
,

thebehavior. Here,γ is an event shift operator, i.e.γw
K

(k) , w
K

(k−1).

Definition 6.2.1 in words: Manufacturing system (6.4) is defined byK representing
an event counter axis,WT representing the space in which event driven signals, con-
taining time instances, take on their values andBK as subset ofWK to which all
allowable event trajectories of the system belong to. In thecontext of manufacturing
systems the behaviorsBK that are considered are behaviors that at least guarantee
that all signalsw

K
(·) satisfyingBK have the propertyw

K
(k−1) ≤ w

K
(k), ∀k∈ K

or γw
K

≤ w
K

, i.e. signalsw
K

(k) arenon-decreasing. Further restrictions onBK

formalize the laws of a specific manufacturing system. Allowing onlynon-decreasing
signals inBK is explained by the fact that the time instance an event occurred for
thek-th time cannot be earlier than the time instance the same event occurred for the
k−1-st time.

Example 6.2.2 Consider again the manufacturing system in Example 6.1.3. The sys-
tem can be modeled in the framework of (6.4). Definew

KA
: Z → R, w

KB
: Z → R,

w
KM1

: Z → R andw
KM2

: Z → R. w
KA

(k), w
KB

(k), w
KM1

(k) andw
KM2

(k) represent
time instances at which the eventseA, eB, eM1 andeM2 occurred for thek-th time, re-
spectively. The behaviorBK that defines the considered manufacturing system can
be defined as

BK =

{
wK =

[
w

KA
w

KB
w

KM1
w

KM2

]⊤
: Z → R4

∣∣∣ γwK ≤ wK ,

γw
KA

≤ w
KB

, w
KM1

= max(γw
KM1

+d1,max(w
KB

,w
KA

))

γw
KB

≤ w
KA

, w
KM2

= max(γw
KM2

+d2,min(w
KB

,w
KA

))

}
.

(6.5)

2

A manufacturing system in (6.4) can have certain properties. A nice property (6.4)
can have is for exampleevent shift invariance.

Definition 6.2.3 A systemΣK = (K,WK ,BK) is said to beevent shift invariantif

wK ∈ BK ⇒ γcwK ∈ BK , ∀c∈ Z. (6.6)

Note thatγcw
K

(k) is a shorthand notation forw
K

(k−c).
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Definition 6.2.4 A systemΣK = (K,WK ,BK) is said to beL-completeif for some
L ∈ Z+

{
wK ∈ BK

}
⇔

{
(γ−kwK )

∣∣
K[−L,0]

∈ BK

∣∣
K[−L,0]

, ∀k∈ K

}
. (6.7)

One callsΣK static ifL = 0, see Definition 6.1.5

L-completeness is a system property which says that if an event domain trajectory
w

K
over an intervalK[k−L,k] of the event axis belongs to the set of all allowable

trajectories defined only over an interval ofK[k−L,k], i.e. BK |K[−L,0]
⊆ BK , then the

same trajectoryw
K

defined over the total (complete) domain of the event axis also
belongs to the set of all allowable trajectories defined overthe total domain, i.e.BK .

An interesting and very natural question is, whether, when one can describe a man-
ufacturing system in (6.4) as a behavioral difference equation. That is, what properties
of ΣK allow the manufacturing system to be described by a behaviordefined as

BK =

{
wK : Z → Rn

∣∣∣ γwK ≤ wK ,

f1(wK ,γwK , ...,γL−1wK ,γLwK ) = f2(wK ,γwK , ...,γL−1wK ,γLwK )

}
,

(6.8)
whereL is called theevent lagof the system. In [106] a proposition is given that an-
swers the question for discrete time dynamical systems. Since in the world of discrete
time dynamical systems the time axis is of a discrete nature and in (6.4) the event axis
K is of a discrete nature, the proposition in [106] can trivially be employed in the case
of manufacturing systems defined in Definition 6.2.1.

Proposition 6.2.5 ConsiderΣK = (K,WK ,BK) in (6.4). The following conditions
are equivalent

i) ΣK is event shift invariant and L-complete;

ii) ΣK can be described by a behavioral difference equation with event lag L.

6.3 Interconnecting event and time domain

In this section the coupling between the modeling frameworks considered in Sec-
tions 6.1 and 6.2 is discussed. Assume one has a manufacturing system of which
a description can be obtained in the form defined in Definition6.1.1 and in Defini-
tion 6.2.1. A natural question that arises is whether or not the signals obeying the laws
of (6.1) can somehow be related to the signals obeying (6.4) and vice versa. If there
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exists a relation that links the signals of both domains in a unique manner, then we
call the manufacturing system considered in either (6.1) or(6.4)similar, i.e.

Definition 6.3.1 Let ΣK = (K,WK ,BK) andΣT = (T,WT ,BT) be a description
for a timed manufacturing system, thenΣK andΣT aresimilar if there exists a bijec-
tion π : WT → WK such thatwT ∈ BT ⇔ π(wT ) ∈ BK .

Forπ to be a bijection the following properties must hold, i.e.π must be

1. injective(one-to-one), that is, for everyw1
T

, w2
T

∈ BT , π(w1
T

(t)) = π(w2
T

(t))
⇒ w1

T
(t) = w2

T
(t);

2. surjective(onto), that is, for everyw
K

(k) ∈BK , there existswT (t)∈BT such
thatπ(wT (t)) = w

K
(k).

A necessary condition for a mapπ to be injective, is that the system in time domain
shouldat leastbe observed for a time span∆. The time span∆ is a measure for the
memory spanof the system as defined in Definition 6.1.6. A system with memory
span∆ must in general be observed for a time span∆ to be able to conclude whether
or not two signalsw1

T
∈ BT , w2

T
∈ BT are equivalent, i.e.w1

T
= w2

T
. Therefore,

it is necessary to observe a signal at least for a time span∆ to obtain the injectivity
property for a mapπ .

In the following result, a mapπ is proposed which maps a broad class oftime
domaindescriptions for manufacturing systems, i.e. descriptions according to Defi-
nition 6.1.1, toevent domaindescriptions of manufacturing systems, i.e. descriptions
according to Definition 6.2.1.

Theorem 6.3.2Let ΣK = (K,WK ,BK) andΣT = (T,WT ,BT) be a description
of a timed manufacturing system according to Definitions 6.1.1, and 6.2.1. Further-
more, let the signals w

K
and wT correspond to the same physical events in the timed

manufacturing system. SupposeΣK = (K,WK ,BK) is an even shift invariant de-
scription (Definition 6.2.3) which is L-complete (Definition 6.2.4). Then, if the timed
manufacturing system is observed over a time span∆ in time and the function wT (t)
is right continuous1, the mapπ : WT → WK defined as,

wKi
(k) = πi(wTi

(t)) = inf
w

Ti
(t)≥k, t∈R

t, i = {1, ...,n} , k∈ Z, (6.9)

is a bijection such that wT ∈ BT ⇔ π(wT ) ∈ BK , i.e. ΣK andΣT are similar.

1wT (a+) = wT (a), ∀a∈ T.
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Proof: First the ”specific physics of a manufacturing system” for both event and
time domain, see Definition 6.2.1 and Definition 6.1.1, respectively, is ignored. The
following behaviors then follow

B
∗
K =

{
wK : Z → Rn

∣∣∣ γwK ≤ wK

}
(6.10)

and
B

∗
T =

{
wT : R → Zn

∣∣∣ σ τwT ≤ wT , ∀τ ∈ T>0

}
. (6.11)

Substituting (6.9) in the property, i.e.γw
K

≤ w
K

, defined in the behavior given in
(6.10) leads to the following inequality

(
inf

w
Ti

(t)≥(k−1), t∈R
t

)
≤

(
inf

w
Ti

(t)≥k, t∈R
t

)
, ∀k∈ Z. (6.12)

Note that the inequality in (6.12) can only be satisfied for all k∈Z if the non-decreasing
property, i.e.σ τwT ≤ wT ∀τ ∈ T>0, in (6.11) is satisfied as well.

Let one now take the ”specific physics of a manufacturing system”, that has been
ignored, into account. The systems behaviorBK under consideration is event shift
invariant andL-complete. According to Proposition 6.2.5 this means that the systems
behavior can be formulated as a difference equation with lagL in the domain defined
in Definition 6.2.1. The behavioral difference equation in its general form is given in
(6.8). Note that (6.9) implies

wK = π(wT ), γwK = π(wT +1), . . . ,

γL−1wK = π(wT +(L−1)1), γLwK = π(wT +L1),
(6.13)

where1 , [1, . . . ,1]⊤ ∈ Rn. Using (6.8), the relations given in (6.13) and employing
σ τ wT ≤ wT ∀τ ∈T>0 the time domain behavior must consequentially be of the form

BT =

{
wT : R → Zn

∣∣∣ σ τwT ≤ wT , ∀τ ∈ T>0,

fT 1(wT ,wT +1, . . . ,wT +(L−1)1,wT +L1) =

fT 2(wT ,wT +1, . . . ,wT +(L−1)1,wT +L1)

}
.

(6.14)

The question however, is whether or not the arguments offT 1 and fT 2 as they appear
in (6.14) actually belong toBT . The answer is affirmative, because according to the
hypothesis in Theorem 6.3.2 the signalsw

K
andwT correspond to the same physical

events in the system, i.e.

γcwK ∈ BK ⇔ wT +c1∈ BT , ∀c∈ Z. (6.15)

This means that the arguments offT 1 and fT 2 as they appear in (6.14) belong toBT .
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Example 6.3.3 Consider again the manufacturing system from Example 6.1.3pre-
sented in Figure 6.1. Assume that the processing times are not constant this time.
The processing timesd1 andd2 vary within intervalsd1 ∈ R[5,9] andd2 ∈ R[4,5] every
time machinesM1 andM2 process a product, respectively. The timed manufacturing
system can be described in theevent domain, i.e. Definition 6.2.1, with the behavior
defined as

BK =

{
wK =

[
w

KA
w

KB
w

KM1
w

KM2

]⊤
: Z → R4

∣∣∣ γwK ≤ wK ,

γw
KA

≤ w
KB

, d1 ∈ R[5,9], w
KM1

= max(γw
KM1

+d1,max(w
KB

,w
KA

))

γw
KB

≤ w
KA

, d2 ∈ R[4,5], w
KM2

= max(γw
KM2

+d2,min(w
KB

,w
KA

))

}
.

(6.16)
The system is event shift invariant, because for any signalw

K
(·) ∈BK that is shifted

some arbitrary event stepsγcw
K

∀c∈ Z, the following holds

{
γcwK : Z → R4

∣∣∣ γ(c+1)wK ≤ γcwK , γ(c+1)wKA
≤ γcwKB

, γ(c+1)wKB
≤ γcwKA

d1 ∈ R[5,9], γcw
KM1

= max(γ(c+1)w
KM1

+ γcd1,max(γcw
KB

,γcw
KA

))

d2 ∈ R[4,5], γcw
KM2

= max(γ(c+1)w
KM2

+ γcd2,min(γcw
KB

,γcw
KA

))

}
= BK ,

(6.17)
i.e. Definition 6.2.3 holds for the considered manufacturing system. Note that the lag
L of the manufacturing system is equal to one. All signals belonging toBK , which are
arbitrarily event shifted (γcw

K
∀c∈ Z) and observed over an intervalK|[k,k+1] of the

event axisK, also belong to the behaviorBK specified only on an intervalK|[k,k+1]

of the event axis. The system is thusL-complete, i.e. Definition 6.2.4 holds. The
manufacturing system is event shift invariant andL-complete, and hence the proposed
bijection π proposed in Theorem 6.3.2 can be applied to (6.16). This results in a
behavior of the type considered in Definition 6.1.1, which for this example reads as

BT =

{
wT =

[
w

TA
w

TB
w

TM1
w

TM2

]⊤
: R → Z4

∣∣∣ σ τ wT ≤ wT ,∀τ ∈ T>0,

w
TA

+1≥ w
TB

, d1 ∈ R[5,9], w
TM1

= fT 21(wTM1
+1,w

TB
,w

TA
,d1)

w
TB

+1≥ w
TA

, d2 ∈ R[4,5], w
TM2

= fT 22(wTM2
+1,w

TB
,w

TA
,d2)

}
.

(6.18)
An analytical expression forfT 21 and fT 22 cannot trivially be derived. However, if
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one assumesd1 andd2 are fixed constant processing times (6.18) can be written as

BT =

{
wT =

[
w

TA
w

TB
w

TM1
w

TM2

]⊤
: R → Z4

∣∣∣ σ τwT ≤ wT ,∀τ ∈ T>0,

w
TA

+1≥ w
TB

, w
TM1

= min(σd1(w
TM1

+1),min(w
TB

,w
TA

))

w
TB

+1≥ w
TA

, w
TM2

= min(σd2(w
TM2

+1),max(w
TB

,w
TA

))

}
.

(6.19)
And hence, this boils down to the derived time domain behavior in Example 6.1.3.

Control is about manipulating the behavior of the to-be-controlled system in such a
way that it will behave through time as specified by time domain related design spec-
ifications. Therefore for successfully employing model based time domaincontrol
synthesis, knowledge of the explicit structure of a time domain model is usually re-
quired. However, one can conclude from Example 6.3.3 that although the analytical
structure of a timed manufacturing system can be derived straightforwardly in the
event domain, i.e. Definition 6.2.1, the analytical structure of the samemanufacturing
system in thetime domainappears to be very hard or impossible to obtain, i.e. the
explicit structure offT 21 and fT 22 in (6.18) is hard or impossible to obtain.

If Theorem 6.3.2 applies and thus a bijective relation between the event domain
and time domain is known, i.e.π in (6.9), it is not necessary to know the mathematical
structure of a model of the manufacturing system in time domain explicitly to conclude
about the behavior of the manufacturing system in the time domain. That is, the
explicit knowledge of the (mathematical) structure of a model in the event domain is,
under Theorem 6.3.2, sufficient to conclude about the time domain behavior of the
considered manufacturing system.

6.4 Input/state models

In this section input/state models for time domain event driven manufacturing systems
are introduced which one will employ in the next section in a model predictive control
strategy to perform predictions of the future behavior of the system. In section 3.1
input/state models for a class of discrete-time nonlinear systems are also employed in
the model predictive control strategy to make a prediction of the future behavior of the
system. Input/state models have a few nice properties, thatis

• The memory of a system is displayed through latent or auxiliary variables called
state variables;

• Thecause/effectstructure is made explicit by a suitable partition ofwT .
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The above properties are convenient to predict the future behavior, i.e. theeffect, of
the system at the current time based on information from the past and the given future
cause. Before the class of input/state models will be formally defined a few notions are
introduced. First the notion ofinput will be introduced into the modeling framework
presented in Section 6.1 in Definition 6.1.1.

Definition 6.4.1 [106] Consider the time domain dynamical system from Defini-
tion 6.1.1, i.e. ΣT = (T,WT ,BT), with WT , WT 1 ×WT 2. SupposeΣT is
complete (Definition 6.1.5). Then, signalw

T 1 is said to befree if it is trim (i.e.
∀w

T 1 ∈ WT 1, ∃w
T 1 ∈ BT such thatw

T 1(t1) = w
T 1) and memoryless.

Hence,free implies no local constraints (trim), no memory (memoryless) and no con-
straints at timet = ±∞ (complete).

Definition 6.4.2 [106] Consider the time domain dynamical system from Defini-
tion 6.1.1, i.e.ΣT = (T,WT ,BT), with WT , WT 1 ×WT 2. It is said thatw

T 2

processes w
T 1 if

{[
w

⊤

T 1 w1⊤
T 2

]⊤
,
[
w

⊤

T 1 w2⊤
T 2

]⊤
∈ BT , w1

T 2(t) = w2
T 2(t) for t ∈ T<t1

}
⇒

{
w1

T 2 = w2
T 2

}
.

Processingmeans thatw
T 2 can be deduced fromw

T 1, the dynamical systems laws
(BT), and the initial conditions (the past ofw

T 2). The notion ofinput can now be
defined.

Definition 6.4.3 Consider the time domain dynamical system from Definition 6.1.1,
i.e. ΣT = (T,WT ,BT), with WT , WT 1×WT 2. If

1. w
T 1 is free(Definition 6.4.1);

2. w
T 2 processes w

T 1 (Definition 6.4.2),

then the signalw
T 1 is called aninput of systemΣT .

The next notion that will be introduced isnonanticipation.

Definition 6.4.4 [106] Consider the time domain dynamical system from Defini-
tion 6.1.1, i.e.ΣT = (T,WT ,BT), with WT , WT 1 ×WT 2. It will be said that
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w
T 2 does not anticipate w

T 1 if
{[

w1⊤
T 1 w1⊤

T 2

]⊤
,
[
w2⊤

T 1 w2⊤
T 2

]⊤
∈ BT , and w1

T 1(t) = w2
T 1(t) for t ∈ T≤t1

}
⇒

{
∃wT 2 such that

[
w2⊤

T 1 w
⊤

T 2

]⊤
∈ BT and wT 2 = w1

T 2 for t ∈ T≤t1

}
.

The definition ofnonanticipationtells that the past ofw
T 2 does not contain infor-

mation about the future ofw
T 1 other than the information already contained in the

dynamical laws (BT). Let ΣT = (T,WT ,BT), with WT , WT 1×WT 2 andw
T 1

the input for ΣT . Then, if systemΣT is nonanticipating, i.e. w
T 2 does not anticipate

w
T 1, then it is possible to think of the input as the “cause” andw

T 2 as the “effect”2.
Next the notion ofstate variables, or the state for brevity, is introduced. Once the

stateof the system at the current time is known, the future behavior (together with
a possible presence of an input or other external signals) isfixed and no additional
information relevant for the future will be acquired by giving further details about
past trajectories. A way of thinking about the state intuitively is thatthe state should
contain sufficient information about the past so as to determine (together with an input
or external signal) the future behavior of the system. In fact the state variables, specify
the internal memory of a dynamical system.

Definition 6.4.5 [106] A time domainstate-space dynamical systemΣTS is a quadru-
ple

ΣTS(T,WT ,XT ,BT s) (6.20)

whereXT is the state-space andBT s is called thefull behaviorof the system which
satisfiesthe axiom of state. This axiom requires that
{[

w1⊤
T x1⊤

T

]⊤
,
[
w2⊤

T x2⊤
T

]⊤
∈ BT s, t ∈ T, andx1

T (t) =x2
T (t)

}
⇒

{[
w⊤

T x⊤T
]⊤

∈ BT s

}
,

with [w⊤
T

,x⊤
T

]⊤ defined as

[
wT (t ′)⊤ xT (t ′)⊤

]⊤
=





[
w1⊤

T
(t ′) x1⊤

T
(t ′)
]⊤

for t ′ ∈ T≤t
[
w2⊤

T
(t ′) x2⊤

T
(t ′)
]⊤

for t ′ ∈ T>t ,

andxT (t) represents thestateof the system.

2Note that the system defined in Chapter 5 in (5.2) is an exampleof a system description which isnot
nonanticipating.
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The axiom of state, as given in Definition 6.4.5, requires that any trajectory from
BT s arriving in a particular state can beconcatenatedwith any trajectory fromBT s

emanating from that same state.
The input/state model, which has the two properties stated in the beginning of

this section and will be employed in the next section in a model predictive control
formulation, can now be defined.

Definition 6.4.6 An input/state dynamical system is defined as a quadruple

ΣTI/S
(T,UT ,WT ,XT ,BT s), (6.21)

whereBT s ⊆ (UT ×WT ,XT )T is the full behavior andUT is the input space such
that uT is free in (T,WT ×XT ,BT s) and [w⊤

T
,x⊤

T
]⊤ processes uT in (T,WT ×

XT ,BT s). Furthermore, it is required that

1.
[
w⊤

T
x⊤
T

]⊤
does not anticipate uT in (T,UT ×WT ×XT ,BT s);

2. (T,UT ×WT ,XT ,BT s) is astate-space dynamical system.

An example of an input/state model (representation) is given in the sequel.

Theorem 6.4.7Let ∆ be the memory span of the following system

ΣT (T,UT ×WT ,BT), (6.22)

with uT the input and wT does not anticipate uT . Furthermore, let

XT , (T[−∆,0) → WT ).

Then, system representation(6.21)in Definition 6.4.6 withBT s defined as

BT s =

{[
u⊤

T
w⊤

T

]⊤
: T → UT ×WT , xT : T → XT

∣∣∣
[
u⊤

T
w⊤

T

]⊤
∈ BT ,

xT = (σ−twT )
∣∣
T[−∆,0)

∈ BT

∣∣
T[−∆,0)

, ∀t ∈ T

}
,

(6.23)
is an input/state representation for system(6.22).

Proof: It is trivial to show that ifwT does not anticipate uT in (T,UT ×

WT ,BT), that then also holds that[w⊤
T

,x⊤
T

]⊤ does not anticipate uT in (T,UT ×

WT ,BT s) for BT s as given in (6.23) (i.e. item 1 in Definition 6.4.6 is thus satisfied).
It remains then to be shown that(T,UT ×WT ,XT ,BT s) is astate-space dynamical
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system. That is, it has to be proven thatBT s given in (6.23) satisfies theaxiom of
stategiven in Definition 6.4.5. Indeed, given a trajectory

[[
u1⊤

T w1⊤
T

]⊤
x1⊤
T

]⊤
∈ BT s

and another trajectory [[
u2⊤

T w2⊤
T

]⊤
x2⊤
T

]⊤
∈ BT s

and the constraint
{

x1
T (t) = x2

T (t)
}
⇔
{

w1⊤
T (t + τ) = w2⊤

T (t + τ), τ ∈ T[−∆,0)

}
∈ BT

then, it follows that
[
u1⊤

T (t ′) w1⊤
T (t ′)

]⊤
=
[
u1⊤

T (t ′)
{

w1⊤
T (t + τ), τ ∈ T[−∆,0)

}

︸ ︷︷ ︸
x1⊤
T

(t)

]⊤
, for t ′ ∈ T[t−∆,t).

(6.24)
Without loss of generality one can say thatu1⊤

T
(t ′) = u2⊤

T
(t ′) for t ′ ∈ T[t−∆,t) (due to

property of input) and therefore
[
u1⊤

T (t ′) w1⊤
T (t ′)

]⊤
=

=
[
u2⊤

T (t ′) w2⊤
T (t ′)

]⊤
=
[
u2⊤

T (t ′)
{

w2⊤
T (t + τ), τ ∈ [−∆,0)

}

︸ ︷︷ ︸
x2⊤
T

(t)

]⊤
, for t ′ ∈ T[t−∆,t).

(6.25)
From expressions (6.24), (6.25) and Definition 6.1.6 it thenfollows that

[
u1⊤

T w1⊤
T

]⊤
∧
[
u2⊤

T w2⊤
T

]⊤
=
[
u
⊤

T w
⊤

T

]⊤
∈ BT , (6.26)

with
[
u
⊤

T (t ′) w
⊤

T (t ′)
]⊤

=





[
u1⊤

T
(t ′) w1⊤

T
(t ′)
]⊤

for t ′ ∈ T<t
[
u2⊤

T
(t ′) w2⊤

T
(t ′)
]⊤

for t ′ ∈ T≥t ,
(6.27)

which in turn implies that
[[

u⊤T w⊤
T

]⊤
x⊤T
]⊤

∈ BT s,

with

[[
u⊤T (t ′) w⊤

T (t ′)
]⊤

x⊤T (t ′)
]⊤

=





[[
u1⊤

T
(t ′) w1⊤

T
(t ′)
]⊤

x1⊤
T

(t ′)
]⊤

for t ′ ∈ T<t
[[

u2⊤
T

(t ′) w2⊤
T

(t ′)
]⊤

x2⊤
T

(t ′)
]⊤

for t ′ ∈ T≥t .

(6.28)
Hence,BT s satisfies the axiom of state.
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Example 6.4.8 Consider a simple example of a timed manufacturing system asde-
picted in Figure 6.2. The system consist of a processing unitand a buffer denoted by
Mi andBi , respectively. On the processing unitMi products are processed with a fixed
processing timedi ∈ R>0. Raw products enter the system through the buffer system
Bi , which has a total capacity ofNi ∈ Z≥1 products. Incoming products wait in the
buffer until machineMi is finished processing, a possibly present, preceding product
being possessed on machineMi . The buffer system is working according to a FIFO3

policy, that is, the first product which enters the buffer will also be the first one to leave
the buffer system. Furthermore, machineMi will start processing a product if, a pos-
sibly present, preceding product is finished and there is at least one product present
in buffer Bi . The above description of the manufacturing system is formalized into

di
Bi

Mi
wi

T1
(t)

wi
T2

(t)

wi
T3

(t)

Figure 6.2: An example of a manufacturing system.

a model description in the time domain, i.e. Definition 6.1.1. Definewi
T1

: R → Z,
wi

T2
: R → Z andwi

T3
: R → Z. Herewi

T1
(t), wi

T2
(t) andwi

T3
(t) represent the number

of times, a product is released from some external source, a product has entered buffer
Bi , a product has left the manufacturing line at timet ∈ R, respectively. The dynamics
in time domain perspective can now be described as: The number of products that
have entered the buffer at timet equals the minimum of the number of available prod-
uctswi

T1
and the number of products that have left the systemwi

T3
added with the total

capacity of the system, i.e.Ni +1. Furthermore, the number of products that have left
the systemwi

T3
equals the minimum of products that has entered the bufferwi

T1
and

of the number of products that had leftdi time units ago. In terms of the behaviorBT

in Definition 6.1.1 this yields for some fixedNi ∈ Z≥1 anddi ∈ R>0

B
i
T =





wi
T ,




wi
T1

wi
T2

wi
T3


 : R → Z3

∣∣∣∣∣∣∣

wi
T2

= min(wi
T1

,wi
T3

+Ni +1)

wi
T3

= min(σdi wi
T2

,σdi wi
T3

+1)

σ τwi
T

≥ wi
T

, τ ∈ T>0





. (6.29)

One can now easily obtain the description according to Definition 6.1.1 of a manufac-
turing system consisting of a series connection ofp∈ Z≥1 manufacturing systems as

3FIFO is an abbreviation for First In First Out.
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presented in Fig. 6.2 forming a manufacturing line. The behavior defining a manufac-
turing line of a series connection ofp manufacturing systems as presented in Fig. 6.2
is then defined for some fixedNi ∈ Z≥1 anddi ∈ R>0, i = {1,2, ..., p} as

B
p
T

,








w1
T

...
wp

T


 : T → Z3p

∣∣∣∣∣

p⋃

i=1

B
i
T , wi

T3
= wi+1

T1
= wi+1

T2
, i ∈ Z[1,p−1]





. (6.30)

Note that (6.30) reveals thatw1
T1

is an input of the manufacturing system and
[w1

T2
. . . wp

T3
]⊤ does not anticipate w1

T1
. Furthermore, thememory spanof the man-

ufacturing system is given by some∆ ∈ R>0 for which holds

∆ > max
i∈Z[1,p]

di, (6.31)

this follows from the structure ofBp
T

. Hence, (6.21) in Definition 6.4.6 with theBT s

as defined in (6.23) is a state-space description for the considered manufacturing line.

6.5 A time domain MPC setup

In this section a model predictive control (MPC) setup is formulated for the class
of input/state systems defined in Section 6.4 in Definition 6.4.6. In contrast to the
discrete-time MPC setup in Chapter 3 in this section a continuous-time MPC formu-
lation is given.

Consider system (6.21). For a fixedTp ∈ R>0, let

xTp

T
(t,xT (t),uTp

T
(t)) , xT (τ), τ ∈ T[t,t+Tp]

and
wTp

T
(t,xT (t),uTp

T
(t)) , wT (τ), τ ∈ T[t,t+Tp]

denote the state and signal trajectory, respectively, generated by system (6.21) from
initial statexT (t) at timet ∈ T and by applying the input trajectory

uTp

T
(t) , uT (τ), τ ∈ T[t,t+Tp].

The set ofadmissible input functionsdefined with respect to the statexT (t) is then
defined as

U
Tp

T
(xT (t)) ,





uTp

T
: [0,Tp] → UT

∣∣∣∣∣∣∣




uTp

T

wTp

T
(·,xT (t),uTp

T
)

xTp

T
(·,xT (t),uTp

T
)


 ∈ BT s

∣∣
[0,Tp]





. (6.32)
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LetLT : UT ×WT →R. At time t ∈T, letxT (t) be given. The basic continuous-time
MPC scenario consists in minimizing (via optimization) at each “sampling” instance
t a finite horizon cost function of the from

JT (xT (t),uTp

T
(t)) ,

∫ t+Tp

t
LT (uT (τ),wT (τ))dτ (6.33)

with predictionmodel (6.21), over alluTp

T
(t) ∈ U

Tp

T
(xT (t)). An optimal, or from a

practical point of view more likely a suboptimal, solution resulting from the optimiza-
tion problem at timet is then denoted byuTp

T
(t). In the model predictive control prin-

ciple only the first part over a time duration between two sampling instances, denoted
by δ , of the (sub)optimal inputuTp

T
(t) is injected to the system (6.21), i.e.

uT (τ) = uδ
T (t) , uT (τ), τ ∈ T[t,t+δ ). (6.34)

At the next sampling instance the optimization procedure isrepeated based on the
currently available knowledge of the statexT (t). Due to this repetition procedure,
which is the main feature from which MPC distinguishes itself from optimal control,
one can think of the MPC controller as a feedback law of the form

Σ
MPC

T (T,Uδ
T ,XT ,B

MPC

T ), (6.35)

whereUδ
T

, (T[0,δ ) → UT ) and

B
MPC

T ,

{
uδ

T : T → Uδ
T , xT : T → XT

∣∣∣ uTp

T
(t) satisfiesU

Tp
T

(xT (t)) in (6.32)

and possibly also minimizes (6.33)
}
.

(6.36)
The system (6.21) in closed-loop with the MPC controller (6.35), i.e. the closed-loop
system, is then given by

Σ
CL

T (T,Uδ
T ×UT ×XT ×WT ,B

CL

T ), (6.37)

where

B
CL

T ,

{[
uδ⊤

T u⊤T x⊤T w⊤
T

]⊤
: T → Uδ

T ×UT ×XT ×WT

∣∣∣
[
uδ⊤

T x⊤T
]⊤

∈ B
MPC

T

(σ−tuT )
∣∣
T[0,δ )

= uδ
T , ∀t ∈ T,

[
u⊤T x⊤T w⊤

T

]⊤
∈ BT s

}
.

(6.38)
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A tractable solution of the MPC setup for event driven manufacturing
systems

As explained previously, the optimization problem involved in the MPC setup for-
mulated in Section 6.5 is, in general, not solvable in a tractable manner. Recall that
in case of discrete event manufacturing systems, as defined in Section 6.1 in Defini-
tion 6.1.1, the involved optimization problem results in anun-tractableinteger valued
infinite dimensionaloptimization problem.

In this section the un-tractable MPC problem formulated in Section 6.5 will be
reformulated. That is, a slightly different state-space representation of the system, i.e.
(6.22), will be employed. It will be shown that utilizing theresult of Theorem 6.3.2
and employing the alternative state-space representationof the system, allows to solve
the obtained MPC problem in a tractable way .

First the alternative state-space representation of system (6.22) will be introduced.

Corollary 6.5.1 Let ∆ be the memory span of the following system

ΣT (T,UT ×WT ,BT), (6.39)

with uT the input and wT does not anticipate uT . Furthermore, let

XT , (T[−∆,0) → UT ×WT ). (6.40)

Then, system representation(6.21)in Definition 6.4.6 withBT s defined as

BT s =

{[
u⊤

T
w⊤

T

]⊤
: T → UT ×WT , x̃T : T → XT

∣∣∣
[
u⊤

T
w⊤

T

]⊤
∈ BT ,

x̃T =
(

σ−t
[
u⊤

T
w⊤

T

]⊤)∣∣∣
T[−∆,0)

∈ BT

∣∣∣
T[−∆,0)

, ∀t ∈ T

}
,

(6.41)
is an input/state representation for system(6.22).

Proof: The proof can be straightforwardly obtained following the procedure as
employed in the proof of Theorem 6.4.7.

From now on the set ofadmissible input functionsand the MPC costs are defined with
respect to the augmented statex̃T (t), i.e. xT (t) in (6.32) and (6.33) is replaced by
x̃T (t). The MPC problem, as explained previously, can then be reformulated based
on the augmented state model resulting in the following MPC algorithm.

Algorithm 6.5.2
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Step 1)
Given the statẽxT (t) at timet ∈ T, find (via optimization) a control over a time
horizonT[t,t+Tp], i.e. uTp

T
(t), which satisfies

uTp

T
(t) ∈ U

Tp

T
(x̃T (t)) (6.42)

and optionally also minimize the MPC costJT (x̃T (t),uTp

T
(t)).

Step 2)
Let uTp

T
(t) be a feasible control over a time horizonT[t,t+Tp] calculated att ∈ T

in Step 1. Over a time span ofT[t,t+δ ) feed to system (6.21), withBT s defined
as in (6.23), the first piece ofuTp

T
(t), i.e.

uT (τ) = uδ
T (t) , uT (τ), τ ∈ T[t,t+δ ) (6.43)

and go to step 1 ifδ time has elapsed.

Algorithm 6.5.2 in closed-loop with the system is then represented by (6.38), in which
xT (t) in (6.38) is replaced bỹxT (t) andXT , BT s defined as in Corollary 6.5.1 by
(6.40) and (6.41), respectively.

In the sequel it will be shown that if the result in Theorem 6.3.2 applies, then the
optimization problem that has to be solved at step 1 of Algorithm 6.5.2 can be solved
by areal valued finite dimensional optimization problem. Before this issue is treated,
first some preliminary results will have to be introduced.

Corollary 6.5.3 Consider a discrete event manufacturing system represented accord-
ing to Definition 6.1.1, i.e.

ΣT (T,UT ×WT ,BT), (6.44)

whereT = R the time axis,UT = Znu the input space,WT = Znw the signal space
andBT ⊆ (UT ×WT )T the behavior. Suppose uT (t) ∈ UT is the input and wT
does not anticipate uT . Furthermore, let

ΣK (K,UK ×WK ,BK), (6.45)

with K = Z, UK = Rnu, WK = Rnw andBK having a special structure, i.e.

BK ,

{[
u⊤K w⊤

K

]⊤
: Z → Rnu ×Rnw

∣∣∣∣∣ γ
[
u⊤K w⊤

K

]⊤
≤
[
u⊤K w⊤

K

]⊤
,

f1(uK ,wK ,γwK , ...,γL−1wK ,γLwK ) =

f2(uK ,wK ,γwK , ...,γL−1wK ,γLwK )

}
,

(6.46)
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be an event domain representation, i.e. according to Definition 6.2.1, of the considered
manufacturing systems. Then, under the hypothesis in Theorem 6.3.2 we have that
(6.44)and(6.45)are similar.

Proof: Taking into account Definition 6.4.4 in relation to (6.44), the statement
in Corollary 6.5.3 is a direct consequence of the result in Theorem 6.3.2.

Lemma 6.5.4 Consider a discrete event manufacturing system represented by(6.44)
and suppose the hypothesis in Corollary 6.5.3 holds. Let∆ be the memory span of
(6.44)and take system representation(6.21), with BT s defined as in Corollary 6.5.1,
i.e. (6.23), as a state-space description of system(6.44). Then, the following holds

{[
u⊤

T
x̃⊤
T

w⊤
T

]⊤
∈ BT s,

[
(π(uT ))⊤ w⊤

K

]⊤
∈ BK and

w
K

(k)
∣∣
K[

min
j

(xT j (t)(0
−))− (L−1), min

j
(xT j (t)(0

−))
] = πx(xT (t)) for some t∈ T

}
⇒

{
πi(wTi

(t ′)) = w
Ki

(k), t ′ ∈ T>t

}
,

(6.47)
where

πx
i (xTi (t)) , inf

{
τ ∈ T[−∆,0)

∣∣∣ xTi (t)(τ) ≤ k,

k∈ K[
min

j
(xT j (t)(0

−))− (L−1), min
j

(xT j (t)(0
−))
]
}

+ t,

(6.48)
with i = {1,2, ...,nw}.

Proof: The statement in Lemma 6.5.4 follows from the results in Theorems 6.3.2,
6.4.7 and Corollary 6.5.3.

The implication in (6.47) in words: If the input trajectoryuT is known and at some
time instancet ∈ T part of the statẽxT (t) of the manufacturing, i.e.xT (t), is given,
then the future signalwT (t) t ∈ T>0 can be obtained taking a signal realization from
theevent domain model, i.e. [(π(uT ))⊤ w⊤

K
]⊤ ∈ BK initialized according to

wK (k)
∣∣
K[

min
j

(xT j (t)(0
−))− (L−1), min

j
(xT j (t)(0

−))
] = πx(xT (t)), (6.49)

and subsequential employing the bijective mapπ defined in Theorem 6.9 to retrieve
the future time domain signalwT (t) t ∈ T>0.
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Remark 6.5.5 The termK[
min

j
(xT j (t)(0

−))− (L−1), min
j

(xT j (t)(0
−))
] in (6.49) guarantees that

the event domain model is initialized with the latestL event lagsat all timest ∈ T, so
that at all timest ∈ T the prediction of the systems future behavior is based on the
most recent available knowledge present in the state of the system.

Lemma 6.5.6 Consider a discrete event manufacturing system represented by(6.44)
and suppose the hypothesis in Corollary 6.5.3 holds. Let∆ be the memory span of
(6.44)and take system representation(6.21), with BT s defined as in Corollary 6.5.1,
i.e. (6.23), as a state-space description of system(6.44). Furthermore, let

U
Tp

K
(x̃T (t), t),

{
uKi (k)

∣∣
K[uTi

(t−)+1,k⋆]
∈BK , i = {1,2, ...,nu}, for some k⋆ ∈ K

∣∣∣

w
K

(k)
∣∣
K[

min
j

(xT j (t)(0
−))− (L−1), min

j
(xT j (t)(0

−))
]= πx(xT (t)),

uKi (k)
∣∣
K[

min
j

(xT j (t)(0
−))+1, uTi (t

−)
] = πi(uTi (τ)), τ ∈ [t −∆,t),

uKi (uTi (t
−)+1)≥ t, min

j
(uK j (k

⋆)) > t +Tp,
[
u⊤K w⊤

K

]⊤
∈ BK

}
.

(6.50)
Then, the following holds

uTp

T
(t) ∈ U

Tp

T
(x̃T (t)) ⇔ πu(uTp

T
(t)) , uTp

K
(t) ∈ U

Tp

K
(x̃T (t),t), (6.51)

where

πu
i (uTp

Ti
(t)), inf

{
τ ∈T[0,Tp]

∣∣∣ uTp

Ti
(t)(τ)≤ k, k∈K[

u
Tp
Ti

(t)(0), k⋆
]

}
+t, i = {1,2, ...,nu}.

(6.52)

Proof: Follows from Lemma 6.5.4.

The setU Tp

K
(x̃T (t), t) in (6.50) denotes the class ofadmissible input sequencesin

event domain defined with respect to the augmented statex̃T (t) and timet. The main
result of the section can now be formulated.

Theorem 6.5.7Consider a discrete event manufacturing system represented by(6.44)
and suppose the hypothesis in Corollary 6.5.3 holds. Let∆ be the memory span of
(6.44)and take system representation(6.21), with BT s defined as in Corollary 6.5.1,
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i.e. (6.23), as a state-space description of system(6.44). Furthermore, let
JK (x̃T (t),uTp

K
(t)) be event domain costs such that

JK (x̃T (t),uTp

K
(t)) = JT (x̃T (t),uTp

T
(t)), ∀uTp

K
(t) = πu(uTp

T
(t)) ∈ U

Tp

K
(x̃T (t),t).

(6.53)
Then, the following statements hold.

i) Step 1 in Algorithm 6.5.2 is solved by replacing Step 1 in Algorithm 6.5.2 by the
following Steps.

Step 1a)
Given the statẽxT (t) at time t∈ T, find via optimization an event domain
control, i.e.uTp

K
, which satisfies

uTp

K
(t) ∈ U

Tp

K
(x̃T (t),t) (6.54)

and optionally also minimizes the event domain costs JK (x̃T (t),uTp

K
(t)).

Step 1b)
LetuTp

K
(t) be a feasible event domain control, then a feasible control over

a time horizonT[t,t+Tp], i.e. uTp

T
(t), is given by

uTp

T
(t) , πu−1

(uTp

K
(t)), (6.55)

whereπu−1
represents the dual relation of(6.52)defined as

πu−1

i (uTp

Ki
(t)) , sup

{
k∈ K

∣∣∣ uTp

Ki
(t)(k) ≤ τ, τ ∈ [t,t +Tp]

}
, (6.56)

with i = {1,2, ...,nu}.

ii) The optimization problem involved in Step 1a is a real valuedfinite dimensional
optimization problem.

Proof:

i) Follows from implications in (6.51) of Lemma 6.5.6.

ii) Real valued-ness follows due to the fact that the admissibleinputs in the event
domain are maps fromK = Z to T = R. Finite dimensional, i.e. finite amount of
design variables inuTp

K
(t), follows due to the fact that the class of manufacturing

systems considered do not possessZenoexecutions, see Definition 6.1.2. So that
k⋆ in (6.50) is finite.
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Example 6.5.8 Consider a manufacturing line defined in Example 6.4.8 forp= 2, i.e.
two manufacturing systems depicted in Figure 6.2 in series.Each bufferB1 andB2

has a finite capacity of two products, i.e.N1 = N2 = 2. Furthermore, each processing
unit (or machine)M1 andM2 has a fixed processing time ofd1 = 3 andd2 = 4 time
units, respectively. The manufacturing system in the time domain is defined in Defini-

PSfrag

d1 = 3
B1

M1

d2 = 4
B2

M2
w1

T1
(t) = uT (t)

w1
T2

(t) w1
T3

(t) = w2
T1

(t) = w2
T2

(t)

w2
T3

(t) = yT

Figure 6.3: Manufacturing line.

tion 6.1.1 with the behavior of the manufacturing system following from the behavior
of a manufacturing line given, in its general form, in Example 6.4.8 in (6.30). For
the considered manufacturing line in this example, the behavior in (6.30) (withp = 2)
reads

B
2
T =





wT ,




uT

w1
T2

w1
T3

w2
T1

w2
T2

yT , w2
T3




: R → Z6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

w1
T2

= min(uT ,w1
T3

+N1 +1)

w2
T2

= min(σd1w1
T2

,σd1w2
T2

+1,

w2
T3

+N2 +1)

w2
T3

= min(σd2w2
T2

,σd2w2
T3

+1)

w1
T3

= w2
T1

= w2
T2

, σ τ wT ≥ wT , τ ∈ T>0





.

(6.57)

Problem 6.5.9 Given is a certain predetermined customer demandrT (t) over a cer-
tain time horizont ∈ T[t,t+Tp]. Furthermore, based on the customer demand a product
release scheduleur

T
(t) over a time horizont ∈ T[t,t+Tp] is determined by the manufac-

turer in negotiation with its suppliers. It is assumed that both rT (t) andur
T

(t) belong
to the system’s behavior defined in (6.57). The goal is to bring the manufacturing
system from any initial configuration, hidden iñxT (t), to the predetermined reference
trajectories, i.e.

yT (t) → rT (t) and uT (t) → ur
T (t). (6.58)

The MPC setup, i.e. Algorithm 6.5.2, is employed to solve problem 6.5.9. The aim
is to minimize the following MPC costs in order to enforce property (6.58) for the
closed-loop system, i.e. (6.38), in whichxT (t) in (6.38) is replaced bỹxT (t) and
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XT , BT s defined as in Corollary 6.5.1 by (6.40) and (6.41), respectively.

JT (x̃T (t),uTp

T
(t)) =

∫ t+Tp

t

{
|yT (τ)− rT (τ)|∞ + λ |uT (τ)−ur

T (τ)|∞

}
dτ. (6.59)

Note that thememory spanof the system is given by some∆ ∈ R>0 such that (6.31)
holds, i.e.

∆ > d2 = 4.

A description of the manufacturing system according to Definition 6.2.1, i.e. a manu-
facturing system inevent domain, is defined by the following behavior

BK ,





wK ,




uK

w1
K2

w1
K3

w2
K1

w2
K2

yK , w2
K3




: Z → R6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

w1
K2

= max(uK ,γN1+1w1
K3

)

w2
K2

= max(w1
K2

+d1,γw2
K2

+d1,

γN2+1w2
K3

)

w2
K3

= max(w2
K2

+d2,γw2
K3

+d2)

w1
K3

= w2
K1

= w2
K2

, γw
K

≤ w
K





,

(6.60)
with event lag L= N2 +1 = N1 +1 = 3.

Suppose the hypothesis in Corollary 6.5.3 holds, then theevent domain costsatis-
fying relation (6.53) forJT defined in (6.59) is given by

JK (x̃T (t),uTp

K
(t))=





C1 + λC3 if min
j

(xT j (t)(0
−)) < rT (t) & uT (t−) < ur

T (t),

C1 + λC4 if min
j

(xT j (t)(0
−)) < rT (t) & uT (t−) ≥ ur

T (t),

C2 + λC3 if min
j

(xT j (t)(0
−)) ≥ rT (t) & uT (t−) < ur

T (t),

C2 + λC4 if min
j

(xT j (t)(0
−)) ≥ rT (t) & uT (t−) ≥ ur

T (t),

(6.61)
where

C1 =
kcr

∑
k=kcy+1

max(yK (k)− t,0)+

kpr

∑
k=kcr +1

max
((

yK (k)− rK (k)−max(yK (k)− (t +Tp),0)
)
, rK (k)−yK (k)

)
+

k⋆

∑
k=kpr +1

max(t +Tp−yK (k),0),

C2 =
kpr

∑
k=kcy+1

max
(
yK (k)− rK (k), rK (k)−yK (k)

)
+

k⋆

∑
k=kpr +1

max(t +Tp−yK (k),0),
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C3 =

kcur

∑
k=kcu+1

max(uK (k)− t,0)+

kpur

∑
k=kcur +1

max
((

uK (k)−ur
K (k)−max(uK (k)− (t +Tp),0)

)
,ur

K (k)−uK (k)
)
+

k⋆

∑
k=kpur +1

max(t +Tp−uK (k),0),

C4 =

kpur

∑
k=kcu+1

max
(
uK (k)−ur

K (k),ur
K (k)−uK (k)

)
+

k⋆

∑
k=kpur +1

max(t +Tp−uK (k),0),

with kcy , min
j

(xT j (t)(0
−)), kcu , uT (t−), kcur , ur

T
(t), kcr , rT (t) andk⋆ > kpur . In

Figure 6.4 a qualitative graphical illustration of the MPC costs, i.e.JT , JK , is given.
One can now apply Theorem 6.5.7 to solve Step 1 of Algorithm 6.5.2 in a tractable

way. A response of the manufacturing system in closed-loop with Algorithm 6.5.2 for
δ = 1, Tp = 50 time units andλ = 1 is shown in Figure 6.5. After a disturbance, e.g.

t t +Tp

Tp

time domain

ev
en

td
o

m
ai

n

cost

yT (t)

ur
T

(t)
uT (t)
rT (t)

kcy

kcr

kcur

kpr

kpur

kpy

kpu

kcu

Figure 6.4: Qualitative representation of the costs in (6.59).

a machine failure or breakdown the manufacturing line runs behind schedule, i.e. the
predetermined customer demandrT (t) and product release scheduleur

T
(t) is not met.

At time t = 57, for some initial configuration of the manufacturing system (i.e. the
configuration of the manufacturing system just after the machine breakdown which is
“hidden” in x̃T (t) and is used for feedback to Algorithm 6.5.2), a recovery to the pre-
determined customer demandrT (t) and product release scheduleur

T
(t) is obtained

in an optimal sense due to the feedback mechanism of the applied MPC setup.
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u T
y T

B
M

1
(t

)
B

M
2
(t

)

time [units]

OutputyT (t)
ReferencerT (t)
Input uT (t)
Referenceur

T
(t)

Figure 6.5: Above: The response of the signalsyT (t) anduT (t) compared torT (t) andur
T

(t)
respectively. Below: Amount of products present inB1, M1, i.e. BM1(t) , (w1

T2
(t)−w2

T2
(t))

andB2, M2 i.e. BM2(t) , (w2
T2

(t)−w2
T3

(t)) as function of timet, respectively.

The example as just illustrated shows how the model predictive control principle can
be employed to control a class of discrete event manufacturing systems in a tractable
way. For a subclass of the considered manufacturing systemsand a class of cost
functions, one can even reduce the computational complexity by employ the results
and techniques pointed out in [107]. In contrast to the fluid model approach, followed
in Chapters 3 and 4, the controller synthesis can be directlybased on the discrete event
model of the manufacturing system. This has a view advantages, i.e.

• One does not have to obtain afluid modelof the discrete event manufacturing
system. This is beneficial, since in general it is hard to obtain a fluid model of
a manufacturing system that exhibits all characteristics of the behavior of the
manufacturing system over a broad operating range.

• In the controller synthesis one does not have to take into account fictive external
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disturbances which are induced by the fact that the discreteevent behavior of
the manufacturing system is approximated by a fluid model approach, i.e. see
Chapter 4.

• The delay in the system, which is a consequence of processingtimes of the
processing units present in the manufacturing system, i.e.M1 andM2 in case of
Example 6.5.8, is hard to take into account if the controllerdesign is based on
a fluid modelof the manufacturing system4. However, in case of the approach
followed in this chapter the delay can be easily dealt with.

A major open issue is how to formally define stability and subsequential to proof and
derive conditions for stability of the discrete event manufacturing system in closed-
loop with the model predictive control setup as sketched in this chapter.

6.6 Summary

In this chapter a time domain modeling framework for discrete-event manufacturing
systems is given. It has been shown that the discrete-event property of manufacturing
systems opens the opportunity to model manufacturing systems from another domain,
namely, theevent domain. It is shown that in contrast to relatively complex time
domain models, that are obtained when modeling manufacturing systems, event do-
main modeling facilitates obtaining relatively simple (analytical) difference equations
as descriptions of discrete-event manufacturing systems.The relation between event
domain modeling of a class of event driven manufacturing systems and the time do-
main has been obtained. This opens possibilities to employ the relatively simple event
domain models to do controller computations for manufacturing systems controlled
in time domain. This has been illustrated on a typical continuous time manufacturing
model predictive control problem. In manufacturing systemcontrol typically time do-
main performance requirements have to be met. This leads to time domain model pre-
dictive control objectives and therefore to a continuous time model predictive control
formulation. Solving a continuous time model predictive control formulation leads
to an untractable infinite dimensional optimization problem in general (see e.g. Sec-
tion 1.3). In case of a class of discrete-event manufacturing systems it has been shown,
by utilizing the relation between event- and time domain, that the continuous time
model predictive control problem can be solved (without approximations) by a finite
dimensional optimization problem.

4Note that in case of the fluid model employed in Chapter 4 the processing delay is not well taken into
account, i.e. for an initially empty manufacturing system products instantaneously exit the manufacturing
system if there is a non-zero arrival rate of products at the beginning of the manufacturing line.
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The picture so far is pretty
bleak. A starting academic sci-
entist earns less than an airplane
mechanic, has less job security
than a drummer in a boy band,
and works longer hours than a Bo-
livian silver miner.

Philip Greenspun 7
An event domain controller design

approach for manufacturing systems

The final example in the previous chapter is concluded with the remark that a major
open issue is how to formally define stability in the time domain modeling framework
as introduced in Section 6.1 and subsequential how to prove and derive conditions for
stability of the discrete-event manufacturing system in closed-loop with the time do-
main model predictive control setup as pointed out in Section 6.5. In this chapter it is
explained how the stability issue can be treated for a particular class of manufacturing
systems. The stability definition and analysis is performedfrom the event domain (see
Section 6.2) perspective. The approach leads to event domain controllers that are sta-
bilizing in the event domain. A disadvantage however is thatthe obtained controllers
cannot straightforwardly be employed in the time domain dueto a causality problem
that emerges if the controllers are implemented in the time domain. It is pointed out
how this causality problem can be taken care of by using an observer.

The chapter is organized as follows. In Section 7.1 an event domain stability defi-
nition is given. Furthermore, it is pointed out how to designan event domain controller
which renders the event domain closed-loop system stable according to the given defi-
nition, irrespective of the possible presence of measurement errors present in the event
times that are employed for feedback to the event domain controller. In Section 7.2 it
is pointed out that a stabilizing event domain controller cannot be straightforwardly be
employed in the time domain due to a causality problem. In Section 7.3 an observer
design technique is proposed which can be employed to solve the causality problem
as is encountered in Section 7.2.
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7.1 Design of robustly stabilizing event domain controller

Consider a discrete event system described in the event domain as follows.

ΣK (K,UK ×WK ,BK), (7.1)

with K = Z+, UK = Rnu, WK = Rnw andBK defined as

BK ,

{[
u⊤K w⊤

K

]⊤
: Z+ → UK ×WK

∣∣∣∣∣ γ
[
u⊤K w⊤

K

]⊤
≤
[
u⊤K w⊤

K

]⊤
,

wK = Aγ ⊗wK ⊕Bγ ⊗uK

}
,

(7.2)
where matricesA ∈ R

nw×nw
ε andB ∈ R

nw×nu
ε . Note that all the trajectoryw

K
, that

satisfyBK defined in (7.2), admit the following difference equation

wK (k+1) = A⊗wK (k)⊕B⊗uK (k), wK (0) = wK0
, k∈ Z+, (7.3)

for some initial conditionw
K0

∈ WK with constraintuK (k−1)≤ uK (k). Let λ ⋆ be
the largestmax-plus eigenvalueof A in (7.2), see Definition 2.1.3. In classical linear
system theory, the asymptotic or limit behavior of the solution of an autonomous lin-
ear system, i.e.q(k+ 1) = Aqq(k), is characterized by the eigenvalues of the matrix
Aq, see [108] for more details on this issue. A similar interpretation can be given to
the largest max-plus eigenvalue ofA in (7.3) for the case that (7.3) is autonomous.
Assume that the matrixA is row finite and has the largest eigenvalueλ ⋆ > ε and the
corresponding max-plus eigenvectorη ∈ R

nw (i.e. η is finite). Note that for thespe-
cific initial conditionw

K0
= η , one obtains the following solution to the autonomous

version of difference equation (7.3)

wK (k) = λ ⋆⊗k
⊗η = kλ ⋆ +wK0

, ∀k∈ Z+.

Hence,

lim
k→∞

w
Ki

(k)

k
= λ ⋆ ∀i ∈ Z[1,nw], k∈ Z>0. (7.4)

Employing Lemma 2.1.4, one can prove (see [31] for a worked-out proof) that foreach
initial conditionw

K0
(7.4) holds. Since in the non-autonomous system as described by

(7.3) event occurrences in the system can only bedelayed, due to the termB⊗uK (k),
one can conclude that the maximum mean event occurrence rate, which in a discrete
event manufacturing system context corresponds to the maximum mean throughput
[products/time unit] in the system, is characterized by thereciprocal of the maximum
max-plus eigenvalueλ ⋆ of the matrixA in (7.2). When the eigenvector ofA, i.e.
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η , is not finite, it can be shown that onlysomecomponents of the vectorw
K

(k)/k,
corresponding to the solution of the autonomous version of (7.3), converge towards
λ ⋆. This is stated in Theorem 3.17 in [31]. Practically this indicates that if no control
is applied to system (7.3) (i.e. no event times inw

K
(k) are delayed via the termB⊗

uK (k)), it might happen that the difference between different event times might grow
unbounded. In a manufacturing context this could mean that for example the number
of products in a buffers grows unbounded. This is a typical example of undesirable
(unstable) system behavior which one wants to avoid by appropriate controller design.

Example 7.1.1Consider a simple example of a timed manufacturing system asde-
picted in Figure 7.1. The system consists of processing units M1, M2 andM3 and
FIFO buffersB1, B2, B3 andB4, respectively. All the buffers have a capacity to store
an infinite amount of products. The processing units or machinesM1 andM2, with
processing timesd1 [time units] andd2 [time units], respectively, will start processing
a product if, a possibly present, preceding product on the machines is finished and
there is at least one product present in the buffers in front of the machines. Products
that are finished being processed on machineM1 andM2 will be transported, with
a transportation delay ofD1 andD2 [time units], to bufferB3 andB4, respectively.
MachineM3 is an assembling machine on which products from bufferB3 andB4 are
assembled into one product. The machineM3, with assembling timed3 [time units],
will start assembling two products if, a possibly present, preceding to-be-assembled
product on machineM3 is finished and if there is at least one product present in both
buffersB3 and B4, respectively. The manufacturing system as depicted in Figure 7.1
can be described by an event domain description as in (7.1). Hence, the matrices
A∈ R3×3

ε andB∈ R3×2
ε defining (7.1) then read

A,




d1 ε ε
ε d2 ε

D1⊗d1⊗d1 D2⊗d2⊗d2 d3


 , B,




D1⊕d1 ε
ε D2⊕d2

ε ε


 , wK ,




w
K1

w
K2

w
K3


 ,

(7.5)
uK (k), [uK1(k) uK2(k)]

⊤ with w
K1

(k), w
K2

(k) andw
K3

(k) representing event times
of the events “a products enters machine”M1, M2 andM3 for the k−1-th time, re-
spectively. Furthermore,uK1(k) anduK2(k) represent the event times of the events “a
product is released” into bufferB1 andB2 for thek-th time, respectively. For parame-
tersd1 = d2 = 2, D1 = D2 = 0 andd3 = 1, one can find thatλ ⋆ = 2 andη = [3 3 5]⊤

is the maximum max-plus algebraic eigenvalue and a finite eigenvector of matrixA
in (7.2), respectively1. Hence, if no control is applied to the manufacturing system,
(7.4) holds for all initial conditionsw

K0
∈ R3. That is, no products will accumulate in

buffersB3 andB4 (for any inputuK ).
1See, for example [31], for an overview of algorithms on how tocomputeλ ⋆ andη of matrix A.
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d1

d2

d3D1

D2

uK1

uK2

w
K1

w
K2

w
K3

M1

M2

M3

B1

B2

B3

B4

Figure 7.1: Example of an assembly manufacturing line.

Consider now the system parametersd1 = 2, d2 = 4, D1 = 0, D2 = 2, andd3 = 3.
By employing Theorem 3.17 in [31], one can conclude that

lim
k→∞

w
K1

(k)

k
= 2, lim

k→∞

w
K2

(k)

k
= 4, and lim

k→∞

w
K3

(k)

k
= 3. (7.6)

Hence, products will accumulate in bufferB3, since

lim
k→∞

w
K1

(k)

k
≤ lim

k→∞

w
K3

(k)

k
.

In the sequel it will be explained how to design an event domain controller such that
the system (7.1) in closed-loop with an event domain controller will be stable, i.e.

Definition 7.1.2 The recursion in (7.3), in closed-loop with an event domain con-
troller with the property

uK (k−1)≤ uK (k), ∀k∈ Z+, (7.7)

is calledstable if for all w
K0

∈ Rnw there exists a constantρ ∈ R>λ ∗ such that

lim
k→∞

w
Ki

(k)

k
= ρ , ∀i ∈ Z[1,nw], k∈ Z>0. (7.8)

Remark 7.1.3 Due to the fact that the manufacturing system in (7.2) has a capacity
constraint characterized by the maximum eigenvalueλ ⋆ of A, it does, from a practical
point of view, not make sense to design a controller that assigns for aρ ∈ R≤λ ⋆ .
Therefore, onlyρ ∈ R>λ ⋆ is considered in (7.8).

To guarantee that the to-be-designed event domain controller has the property as indi-
cated in (7.7), the controller design will be based on the following recursion

w̃K (k+1) = Ã⊗ w̃K (k)⊕ B̃⊗ ũK (k), (7.9)
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where

Ã ,

[
A B
ε E

]
, B̃ ,

[
B
E

]
, w̃K (k) ,

[
w

K
(k)

zK (k)

]
, zK (k) ∈ Rnu

A justification for this design approach follows due to the following result

Lemma 7.1.4 Let initial conditions w
K

(0) and uK (−1) for the recursion(7.3)and
an initial conditionw̃K (0) , [w

K
(0)⊤ uK (−1)⊤]⊤ for the recursion(7.9)be given.

Apply the input sequencẽuK and the corresponding input sequence

uK (k) , uK (k−1)⊕ ũK (k), (7.10)

to recursion(7.9) and (7.3), respectively. Then, the first nw components of the se-
quencew̃K resulting from recursion(7.9) coincide with the sequence w

K
result-

ing from recursion(7.3). Furthermore the last nu components of̃wK coincide with
uK (k− 1) for all k ∈ Z+ which implies that constrained(7.7) is satisfied for all
k∈ Z+.

Proof: The statement can be proven by induction. Fork = 0 the statement is
obvious. Suppose that the statement is true for somek∈ Z+, i.e.

zK (k) = uK (k−1), (7.11a)

w̃Ki
(k) = wKi

(k), i = 1, . . . ,nw. (7.11b)

In the sequel it will be proven that similar equalities, as presented above, also hold for
k+ 1. Note that by definitionzK (k+ 1) , zK (k)⊕ ũK (k), follows from recursion
(7.9). Then by (7.11a) and (7.10), it follows that

zK (k+1) = uK (k).

Defineq(k) ∈ Rnw for somek ∈ Z+ and letqi(k) = w̃
Ki

(k) for i = 1. . .nw. Then, by
applying recursion (7.9), relation (7.11a) and (7.11b) oneobtains that

A⊗q(k)⊕B⊗ (uK (k−1)⊕ ũK (k)︸ ︷︷ ︸
uK (k)

) , q(k+1).

In the sequel it is explained how the stability notions in Chapter 2 can be utilized to
design a controller of the form

ũK (k) = κ̃(w̃K (k)+ ẽK (k)), k∈ Z+, (7.12)
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which will guarantee that (7.3) ((7.2)) in closed-loop withthe event domain con-
troller defined by (7.10) and (7.12) is stable in the sense of Definition 7.1.2. Note
that ẽK (k) ∈ Ẽ ⊆ Rnw+nu represents event domain measurement noise, i.e. the event
times in w̃K (k) are assumed not to be known accurately. There is a certain error
ẽK (k) present in the measurements employed for feedback, this error is assumed to
takes values in some known setẼ with 0∈ Ẽ.

Assume the maximum max-plus eigenvalue ofÃ satisfiesλ ⋆ ∈ R>ε . Then, from
Lemma 6.3.8 in [30] it follows that there exists a max-plus invertible matrixP ∈

R
nw×nw
ε such that

(
P⊗−1

⊗ Ã⊗P
)

i j
≤ λ ⋆, ∀i, j ∈ Z[1,nw]. (7.13)

Define variableswK (k) anduK as

wK (k) , P⊗−1
⊗ w̃K (k)−ρk, (7.14a)

uK (k) , ũK (k)−ρk. (7.14b)

Note that the functionfp(·) , P⊗ (·) is homogeneous. Then, due to the homogeneity
of fp(·) it follows, by employing (7.14a), that

w̃K (k) = P⊗wK (k)+ ρk, (7.15a)

ũK (k) = uK (k)+ ρk. (7.15b)

Performing the coordinate change as defined in (7.14) on the event-domain recursion
in (7.3) and employing the relations in (7.15) yields the following recursion

wK (k+1) = A⊗wK (k)⊕B⊗uK (k), (7.16)

where
A , P⊗−1

⊗ Ã⊗P−ρ and B , P⊗−1
⊗ B̃−ρ . (7.17)

Since,ρ > λ ⋆ and (7.13) hold, it follows that the matrixA satisfies

Ai j < 0, ∀i, j ∈ Z[1,nw]. (7.18)

Due to the fact that (7.18) holds, it follows from Lemma 2.1.2that A
∗

exists and is
given by

A
∗
= E⊕A⊕ . . .⊕A

⊗nw−1

.

Note that an equilibrium point, i.e.w
Keq

, of system (7.16) can be computed by solving

wKeq
= A⊗wKeq

⊕B⊗uKeq, (7.19)
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whereuKeq is an input associated to an equilibriumw
Keq

. According to Lemma 2.1.6
the unique solution to (7.19) is given by

wKeq
= A

∗
⊗B⊗uKeq, (7.20)

with w
Keq

being finite under the assumption that the matrix

[
B A⊕B . . . A

⊗nw−1

⊗B
]

(7.21)

is row-finite. The following result can now be formulated.

Theorem 7.1.5 Let
uK (k) = κ(wK (k)) (7.22)

be a control law which is Lipschitz continuous. Suppose thatthe control law in(7.22)
renders equilibrium pointw

Keq
of system(7.16) in closed-loop with(7.22)(at least)

exponentially stable in the sense of Definition 2.2.1 with respect to initial conditions
w

K0
in Rnw+nu. Then, the following statements hold true

i) The equilibriumw
Keq

of the following closed-loop recursion

wK (k+1) = A⊗wK (k)⊕B⊗κ(wK (k)+eK (k)), k∈ Z+, (7.23)

is input-to-state stable with respect to perturbationseK : Z+ → E ⊆ Rnw+nu and
initial conditionsw

K0
in Rnw+nu.

ii) The recursion(7.9) in closed-loop with the control law in(7.12)with

κ̃(w̃K (k)+ ẽK (k)) , κ(P⊗−1
⊗ (w̃K (k)+ ẽK (k))−ρk)+ ρk, (7.24)

is stable in the sense that for all̃eK : Z+ → Ẽ and initial conditionsw̃
K0

∈ Rnw+nu.

lim
k→∞

w̃
K j

(k)

k
= ρ , ∀ j ∈ Z[1,nw], k∈ Z>0. (7.25)

Proof:

i) Due to the hypothesis in Theorem 7.1.5, the equilibrium point w
Keq

of the following
closed-loop system

wK (k+1) = Γ(wK (k)) , f (wK (k),κ(wK (k))), k∈ Z+, (7.26)

with f (wK (k),uK (k)) , A⊗wK (k)⊕B⊗ uK (k), is exponentially stable with re-
spect tow

K0
∈ Rnw+nu. Note thatΓ : Rnw+nu → Rnw+nu is Lipschitz continuous due
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to the fact that the functionsκ : Rnw → Rnu and f : Rnw+nu ×Rnu → Rnw+nu are Lip-
schitz continuous with respect to their arguments on the domainsRnu andRnw ×Rnu

with Lipschitz constantsLκ andL f xu, respectively. Hence, the converse Lyapunov
statement in Theorem 2.2.5 holds. That is, there exists a Lyapunov functionV(·) and
constantsa,b,c∈ R>0 such that for allξ ∈ Rnw+nu

a|ξ −wKeq
| ≤V(ξ ) ≤ b|ξ −wKeq

|, (7.27a)

V( f (ξ ,κ(ξ ))) = V(Γ(ξ )) ≤V(ξ )−c|ξ −wKeq
|. (7.27b)

Furthermore,V(·) is Lipschitz continuous inRnw+nu with Lipschitz constantLV . Hence,
for all ξ ,ε ∈ Rnw+nu

V( f (ξ ,κ(ξ + ε)))−V( f (ξ ,κ(ξ ))) ≤ LV | f (ξ ,κ(ξ + ε))− f (ξ ,κ(ξ ))| ≤

≤ LVL f u|κ(ξ + ε)−κ(ξ )|

≤ LVL f uLκ |ε|.

(7.28)

Combining inequality (7.27b) and the last inequality in (7.28) yields

V( f (ξ ,κ(ξ + ε))) ≤V(ξ )−c|ξ −wKeq
|+LVL f uLκ |ε|, (7.29)

for all ξ ,ε ∈ Rnw+nu. Inequalities (7.27a) and (7.29) then prove that first statement
in Theorem 7.1.5, i.e. for alleK : Z+ → E andw

K0
∈ Rnw+nu the solution of (7.23)

satisfies
|wK (k)| ≤ βwK

(|wK0
|,k)+ γeK

wK
(‖eK ‖), ∀k∈ Z+, (7.30)

where theβwK
andγeK

wK
is aK L -functionandK -function, respectively that can be

obtained as indicated in (2.35) of Theorem 2.3.4.

ii) In the sequel it will be shown that by employing the coordinate change in (7.14)
and (7.15), the feedback law in (7.12), with̃κ defined in (7.24), can be transformed
into the form as in (7.23).

Substitute (7.12), with̃κ defined in (7.24), into (7.14b) and subsequently substituting
(7.15a) into the obtained expression yields

uK (k) = κ(P⊗−1
⊗ (P⊗wK (k)+ ρk+ ẽK (k))−ρk) (7.31)

or similarly (due to homogeneity)

uK (k) = κ(P⊗−1
⊗ (P⊗wK (k)+ ẽK (k))). (7.32)

Note thatP⊗−1
⊗ (P⊗wK (k)+ ẽK (k)) = wK in casẽeK (k) = 0. This fact implies,

without loss of generality, that one can state that for allẽK (k),wK (k) ∈ Rnw+nu there
existseK (k) ∈ Rnw+nu such that

P⊗−1
⊗ (P⊗wK (k)+ ẽK (k)) = wK (k)+eK (k). (7.33)
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Hence, (7.32) then becomes

uK (k) = κ(wK (k)+eK (k)). (7.34)

According to the hypothesis in Theorem 7.1.5, control law (7.34) renders equilib-
rium pointw

Keq
of closed-loop system (7.23) input-to-state stable, i.e. property (7.30)

holds. This implies, by employing (7.15a), that the following holds for allw̃
K0

∈

Rnw+nu andeK : Z+ → E

lim
k→∞

w̃
K j

(k)

k
= ρ , ∀ j ∈ Z[1,nw+nu], k∈ Z>0, (7.35)

and due to (7.32), (7.33) also for allẽK : Z+ → Ẽ.

The question of how to obtain a control law as given in (7.22) with the properties as
given in the hypothesis of Theorem 7.1.5 is discused in the next section.

An event domain MPC setup

In this section it will be pointed out how to obtain a control law as given in (7.22)
with the properties as given in the hypothesis of Theorem 7.1.5. In fact this sec-
tion contains, for completeness purposes, a brief summary of an event domain based
model predictive control strategy proposed in [109]. This model predictive control
strategy results in a control law as given in (7.22). For the model predictive control
setup an exponential stability result in the sense of Definition 2.2.1 in the event do-
main is obtained in [109]. Furthermore, it is proven in [109]that the resulting event
domain model predictive control law of the form as in (7.22) belongs to the class of
max-min-plus-scaling functions. Since max-min-plus-scaling functions are Lipschitz
continuous, one can employ the result in Theorem 7.1.5 to conclude that the manufac-
turing system (7.1), i.e. recursion (7.3), in closed-loop with the event domain based
controller, defined by (7.10), (7.12) and (7.24), also exhibits robustness, i.e. stability
in the sense of Definition 7.1.2 irrespective of the possiblepresence of measurement
errorsẽK .

For fixedN ∈ Z≥1, let

wK (wK (k),uK (k)) ,

[
w⊤

K
(k+1|k), . . . ,w⊤

K
(k+N|k)

]⊤
(7.36)

denote the sequence generated by the recursion (7.16) from initial conditionwK (k|k),

wK (k) at event counterk∈ Z+ and by applying the control sequence

uK (k) ,

[
u⊤

K
(k|k), . . . ,u⊤

K
(k+N−1|k)

]⊤
. (7.37)
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The class of admissible control sequences defined with respect to wK (k) is

U
N

K (wK (k)) ,

{
uK (k)

∣∣ wK (wK (k),uK (k)) satisfies recursion (7.14)
}
. (7.38)

Let N ∈ Z≥1 andw
Keq

(see (7.19)) be given. Furthermore, at event counterk ∈ Z+,
let wK (k) be given. Then the basic considered event domain model predictive control
scenario consists in minimizing, at each event counterk ∈ Z+ a finite event domain
horizon cost function of the form

JK (wK (k),uK (k)) ,
N−1

∑
i=0

( nw

∑
j=1

max
{

wK j
(k+ i)−wKeq

,0
}
− µ

nu

∑
j=1

uK (k+ i|k)
)
+

nw

∑
j=1

max
{

wK j
(k+N)−wKeq

,0
}
,

(7.39)
whereµ ∈R>0, with event domain prediction model (7.16), over all sequencesuK (k)
in U N

K
(wK (k)). That is, for a givenwK (k) ∈ Rnw, solve

inf
uK (k)∈U N

K
(wK (k))

JK (wK (k),uK (k)). (7.40)

An optimal sequence of controls, if it exists, that minimized (7.40) is denoted by

u⋆
K (k) ,

[
u⋆⊤

K
(k|k), . . . ,u⋆⊤

K
(k+N−1|k)

]⊤
. (7.41)

In [109] the following result is proven.

Theorem 7.1.6Suppose that for the tuning parameterµ , in the cost(7.39), there
holds

µ ∈ R(0, 1
nuN ). (7.42)

Then, the optimal sequence of controls that minimizes(7.40)is given by

u⋆
K (k) = (−H⊤)⊗

′
(Φ⊗wK (k)⊕wKeq

) = −(H⊤⊗ (−(Φ⊗wKeq
⊕wKeq

))),

(7.43)
where

wKeq
,




w
Keq
...

w
Keq


 , Φ ,




E
A
...
...

A
⊗N




, H ,




ε . . . . . . ε
B

...
...

...
. . .

. . .
...

...
. . . ε

A
⊗N−1

⊗B A
⊗N−2

⊗B . . . B




. (7.44)
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The optimal event domain model predictive control law is then denoted by a map
κMPC⋆ : Rnw → Rnu, i.e.

uK (k) , u⋆⊤
K (k|k) = κMPC⋆(wK (k)), k∈ Z+. (7.45)

As a direct consequence of Theorem (7.1.6) one can conclude that the model predictive
control law in (7.45), resulting from the just described event domain model predictive
control strategy, belongs, under the hypothesis of Theorem(7.1.6), to a the class of
max-min-plus-scaling functions. That is, the event domainmodel predictive control
law κMPC⋆(·) is a continuous piecewise affine function of its argument.

Yet another result that is proven in [109] is the following.

Theorem 7.1.7 Let ρ ∈ R>λ ⋆ , whereλ ⋆ ∈ R>ε represents the maximum max-plus
algebraic eigenvalue of̃A in recursion(7.9). Suppose that for the tuning parameterµ ,
in the cost(7.39), there holds

µ ∈ R(0, 1
nuN ). (7.46)

Then, the model predictive control law(7.45)renders the equilibrium pointw
Keq

of
system(7.16) in closed-loop with(7.45)exponentially stable in the sense of Defini-
tion 2.2.1 with respect to initial conditionsw

K0
in Rnw+nu.

Note that under the results in Theorems 7.1.6 and 7.1.7, the hypothesis in Theo-
rem 7.1.5 holds for the model predictive control law in (7.45), which is a result of
the model predictive control strategy presented in this section.

Next, the results that are presented in this chapter up till now, are demonstrated via
an illustrative example.

Example 7.1.8 In this example the manufacturing system as considered in Chapter 6
in Example 6.5.8 is taken. However, the bufferB1 in Example 6.5.8 with a capacity
for a finite number of products, i.e. two products (N1 = 2), see Figure 6.3, is in this
example replaced by a buffer with a capacity for an infinite number of products. The
resulting manufacturing system can then be described by thesystem description of
the form as defined in (7.1) withBK in (7.2) defined by the following matrices and
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signals

A ,




ε ε ε ε ε
ε d1 = 3 ε ε 0
ε d1 +d2 = 7 d2 = 4 ε ε
ε ε 0 ε ε
ε ε ε 0 ε




, B ,




0
d1 = 3

d1 +d2 = 7
ε
ε




,

w
K

(k) ,

[
w1

K2
(k−1) w2

K2
(k−1) w2

K3
(k−1) w2

K3
(k−2) w2

K3
(k−3)

]⊤
.

(7.47)
The control goal is to stabilize the considered manufacturing system in the sense of
Definition 7.1.2 in the presence of measurement noiseẽK . Furthermore, it is required
that the signalqK , w2

K3
, Cw

K
, with

Cq ,

[
ε ε 0 ε ε

]
, (7.48)

“tracks” the following event domain signal

qr
K (k) , cq + ρk, k∈ Z+ (7.49)

with ρ ∈ R(0,λ ⋆) andcq ∈ R. Note that the maximum max-plus algebraic eigenvalue
of A is λ ⋆ = 4, which corresponds to a maximum mean throughput of the system of
1/4 [products/time unit]. The signalqr

K
(k) can be seen as reference due dates, i.e.

desired time instances at which thekth product should exist the manufacturing line.
The particular values forcq andρ in this example arecq = 3 andρ = 5.

To establish the afore mentioned control goal the controller defined by (7.10),
(7.12) and (7.24) is employed. The design ofκ(·) in (7.24) is established by employ-
ing the model predictive control setup as described previously, i.e.κ(·) = κMPC⋆(·).

To guarantee that the event domain controluK satisfies the property as indicated
by (7.7), the controller synthesis is based on the system recursion given by (7.9), see
Lemma 7.1.4 for a justification of this approach. From the matricesA, B andC defined
in (7.47) and (7.48), one can obtain matricesÃ, B̃ andC̃. Where the matrices̃A andB̃
define recursion (7.9) and the matrix

C̃ ,

[
C ε

]
(7.50)

relates the to-be-tracked signalqK (k) to the signal̃wK (k) satisfying recursion (7.9).
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A valid choice for matrixP, i.e. one that satisfies (7.13), is given by

P ,




0 ε ε ε ε ε
ε 27 ε ε ε ε
ε ε 39 ε ε ε
ε ε ε 35 ε ε
ε ε ε ε 31 ε
ε ε ε ε ε 0




⇔ P⊗−1
,




0 ε ε ε ε ε
ε −27 ε ε ε ε
ε ε −39 ε ε ε
ε ε ε −35 ε ε
ε ε ε ε −31 ε
ε ε ε ε ε 0




.

(7.51)
Hence the coordinate change in (7.14) is now defined and therefore the recursion in
(7.16), with its matricesA andB given in (7.17), is defined. Note that if one defines

qK (k) , qK (k)−ρk, k∈ Z+

and hence
qK (k) = CwK (k), k∈ Z+ (7.52)

whereC , C̃⊗P, the afore mentioned “tracking” problem in the original coordinates,
i.e. (uK (k),w

K
(k),qK (k)), becomes a point stabilization problem in the new coor-

dinated, i.e.(uK (k),wK (k),qK (k)). This can be easily seen by defining

qr
K (k) , qr

K (k)+ ρk, k∈ Z+, (7.53)

and subsequential substitution of (7.49) in (7.53), which yields

qr
K (k) = cq, ∀k∈ Z+. (7.54)

Hence
qK (k) → cq ⇒ qK (k) → qr

K (k), k∈ Z+. (7.55)

In order to establish the goal in (7.55) the event domain model predictive control strat-
egy explained in this section will be employed. Since one hasthat (7.13) is satisfied
and the matrix defined in (7.21) is row finite, for the particular matricesA andB in
this example, the equilibrium pointw

Keq
of the recursion (7.16) is, for givenuKeq ∈R,

well defined by (7.20). In order to guarantee that the norm of the steady state error
with respect to the pointcq, i.e. |qK (k)− cq|, will be as small as possible, one as-
sociates tocq the largest2 value foruKeq and corresponding equilibrium pointw

Keq

satisfyingC⊗w
Keq

≤ cq. Hence, by employing Lemma 2.1.5 and relation (7.20) one
obtains

uKeq = −((C⊗A
∗
⊗B)⊤⊗ (−cq). (7.56)

2By the largest it is meant that any other feasible valueuf
Keq

and corresponding equilibriumwf
Keq

satis-

fieswf
Keq

≤ w
Keq

anduf
Keq

≤ uKeq.
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Under the additional assumption that the matrix
[
C
⊤

(C⊗A)⊤ . . . (C⊗A
⊗nw−1

)⊤
]⊤

(7.57)

is column-finite,uKeq is finite for givencq ∈ R. For this example one can ver-
ify that the matrix in (7.57) is column-finite. Now one can obtain uKeq = 1 and
w

Keq
= [−4 −28 −36 −37 −38 −4]⊤ by employing (7.56) and (7.20), respectively.

ChooseN and µ in the model predictive control cost given in (7.39) asN = 2 and
µ = 0.4 to obtain adequate response to disturbances. Note thatµ = 0.4∈ R(0,1/(N=2))

andρ = 5 ∈ R>λ ⋆=4. Hence Theorems 7.1.6 and 7.1.7 hold, i.e. the event domain
model predictive control lawκMPC⋆(·) is known explicitly and is Lipschitz continuous.
Furthermore, the model predictive control lawκMPC⋆(·) renders the equilibrium point
w

Keq
of system (7.16) in closed-loop withκMPC⋆(·) exponentially stable in the sense

of Definition 2.2.1 with respect to initial conditionsw
K0

in R6. Hence Theorem 7.1.5
applies, i.e. the manufacturing system (7.1), i.e. recursion (7.3), in closed-loop with
the event domain based controller defined by (7.10), (7.12) and (7.24) is stable in the
sense of Definition 7.1.2 irrespective of the possible presence of event times measure-
ment errors̃eK (k) ∈ R6.

To give an illustration of the obtained event domain controller, an event domain
simulation of the obtained event domain closed-loop recursion is performed. In Fig-
ure 6.3 and Figure 6.3 the result of the event domain closed-loop system response
resulting from the simulation for initial conditionw

K0
= [0 3 14 10 6]⊤ is given. For

the ease of interpretation of the result, the event domain signals, i.e.uK , qK = w2
K3

andqr
K

are presented in the time domain in Figure 6.3. In Figure 6.3 one can observe
that over the time intervalt = 0 to approximatelyt = 70 the trajectoryqK = w2

K3

(qT ) converges to the to-be-tracked desired trajectoryqr
K

(qr
T

). From approximately
t = 70 and above the event domain measurement noiseẽK (k) is non-zero, i.e. for
k ∈ Z>14 the components of̃eK (k) consist of values chosen from a normal distri-
bution with zero mean and variance six. In Figure 6.3 the quantities

w
Ki
k , i ∈ Z[1,5]

are presented to illustrate stability in the sense of Definition 7.1.2 irrespective of the
presence of non-zero event domain measurement noiseẽK (k), i.e. the quantities

w
Ki
k ,

i ∈ Z[1,5] all converge towards the assignedρ , which corresponds to the closed-loop
system’s throughput of 1/5 [products/time unit]. Although the manufacturing sys-
tem, on which the presented theory is illustrated, is a relatively simple manufacturing
line consisting of just two machinesM1 andM2 with a buffer with infinite and finite
capacity in front of the machines, respectively, one can handle manufacturing systems
with much higher complexity. That is, all manufacturing systems that can be modeled
within the event domain modeling framework as defined in (7.1), and satisfy the made
mild assumptions in this chapter, can be handled. Since, theevent domain model pre-
dictive control law is known explicitly, see Theorem 7.1.6,no on-line optimization is
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Figure 7.2: In the figure the time domain signals of the corresponding event domain signals,
i.e. release times of raw products into the manufacturing line uK (dashed), the actual event
times of products leaving the manufacturing lineqK = w2

K3
(thick grey) and the desired event

times at which products should leave the manufacturing lineqr
K

(solid) are plotted along the
time axis.

required. This makes the controller design approach also appealing for large scale (but
deterministic) manufacturing system applications. Note that the signal space, i.e. the
dimension of the modeled manufacturing system scales linearly with the amount of
workstations present in a manufacturing line. This is yet another appealing argument
which makes the approach suitable to be employed to large scale manufacturing sys-
tems. A major technical problem however is a causality problem. In the next section
this causality problem will be explained in more detail.

7.2 Causality problem

The major problem of the event domain controller design approach, as explained in
the previous sections of this chapter, is that if the obtained controller is employed in
the time domain, one will encounter a causality problem. In the sequel it is made
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event axisk →

w
Ki
k

Figure 7.3: The quantities
w

K1
k (*),

w
K2
k (+),

w
K3
k (o),

w
K4
k (△) and

w
K5
k (�) presented along

the event counter axisk∈ Z>0.

precise what is meant by the causality problem. Recall that the controller structure
that is obtained following the event domain controller synthesis method explained in
the previous sections of this chapter is of the following form

uK (k+1) , κK ([wK (k) uK (k)]⊤), k∈ Z+. (7.58)

Recall that in the event domain the signals needed for feedback and the controls, i.e.
w

K
(k) anduK , respectively, represent time instances of certain events. In Figure 7.4

an illustration is given of the causality problem that one encounters if a controller of
the structure as in (7.58) is employed in the time domain. In Figure 7.4 an example of
signal realizations, i.e.w1

K2
, w2

K2
andw2

K3
of the manufacturing system as considered

in Example 7.1.8 of Section 7.1 is shown. Assume the hypothesis in Theorem 6.3.2
of Chapter 6 is satisfied, then one can consider the signals intime domain as is also
illustrated in Figure 7.4. Lettc ∈ R+ be the time instance a next event time, of for
example a product release time, i.e.uK (k+ 1), has to be computed based on the
event domain control law depicted in (7.58). In the time domain the left side oftc,
i.e. t ≤ tc, represents the past realization of the trajectory depicted in Figure 7.4,
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while the right side oftc, i.e. t > tc, represents the future realization of the trajectory
depicted in the Figure 7.4. Note that from Figure 7.4 it becomes clear that at the
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Figure 7.4: Graphical illustration of the causality problem.

time instance a next product release time, i.e.uK (k+ 1), has to be computed based
on [w

K
(k) uK (k)]⊤, see (7.58), components ofw

K
(k), e.g.w2

K2
(k) andw2

K3
(k), are

not necessarily known, i.e. the event times inw2
K2

(k) andw2
K3

(k), respectively, are not
yet known at time instancetc. Hence, although an event domain stabilizing controller,
i.e. (7.58) can be obtained, one cannot straightforwardly employ the controller in the
time domain.

Note that in case of manufacturing lines, like for example the one considered in
Example 7.1.8, it is known from a physical point of view that the event times at which
a product enters the system for thekth time, i.e. w1

K2
(k), will always occur before

the other events in the system occurring for thekth time. It is this intrinsic physical
property of manufacturing lines that leads to the obvious proposal toreconstructthe
other variables based on information ofw1

K2
(k) that is available at the time instance

the controller computation has to be performed. An algorithm which can based on
w1

K2
(k) obtain anestimateof the other variables inw

K
(k) is therefore required. A

proposal on how to design such an algorithm, following an event domain observer
design approach, is pointed out in the next section.
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7.3 An event domain observer design approach

Consider the following event domain description of a manufacturing system

ΣK = (K,W1K ×W2K ,BK) (7.59)

with K = Z, W1K = Rn1 andW2K = Rn2 the signal space, andBK ⊆W1K ×W2K

defined as

BK ,

{[
w1K

w2K

]
: Z → W1K ×W2K

∣∣∣∣∣ γ

[
w1K

w2K

]
≤

[
w1K

w2K

]
,

w1K =

[
uK

yK

]
,

w2K = A(γ)⊗w2K ⊕B(γ)⊗uK

yK = C(γ)⊗w2K

}
,

(7.60)
with A(γ) ∈ R

n2×n2
ε [γ], B ∈ R

n2×•
ε [γ] andC ∈ R

•×n2
ε [γ]. The notation• should be

read as “appropriate dimension”. In the sequel the operation ⊗ will be omitted for
notational simplicity purposes. Each element ofBK consists of a pair of trajectories
[w1K

w2K
]⊤, where

• w1K
represents theobservedtrajectory,

• w2K
represents theto-be-deducedtrajectory.

The observer design problem in this section then deals with the question how to deter-
mine theto-be-deducedtrajectory based on knowledge of theobservedtrajectory.

Consider the following event domain description

Σ̂K = (K,W1K ×W2K ,B̂K), (7.61)

with each element of̂BK consisting of a pair of trajectories[w1K
ŵ2K

]⊤, where

• w1K
represents theobservedtrajectory from system (7.59),

• ŵ2K
represents anestimateof theto-be-deducedtrajectoryw2K

.

Definition 7.3.1 Let [w1K
w2K

]⊤ ∈ Bsub
K

⊆ BK with Bsub
K

6= /0, then system̂ΣK ,
i.e. (7.61), is a dead-beat observer for systemΣK , i.e. (7.59), if there exists an event
counterk⋆ ∈ Z and a trajectory set̂Bsub

K
⊆ B̂K with B̂sub

K
6= /0 such that

{[
w1K

ŵ2K

]⊤
∈ B̂

sub
K ⊆ B̂K

}
⇒

{
ŵ2K = ŵ2K ∧w2K

}
, (7.62)
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whereŵ2K
∧w2K

denotes the concatenation atk⋆, i.e.

(ŵ2K ∧w2K)(k) ,

{
ŵ2K

for k < k⋆

w2K
for k≥ k⋆,

for all system trajectory[w1K
w2K

]⊤ ∈ B
sub
K

.

In observer design is about finding a description forB̂K such that system (7.61) will
admit the property as described in Definition 7.3.1. In the sequel a structure or de-
scription forB̂K will be proposed that will make that system (7.61) is a dead-beat
observer for (7.60) in the sense of Definition 7.3.1.

The following notion will be employed in the dead-beat observer design, i.e.

Definition 7.3.2 Let Bsub
K

⊆ BK with Bsub
K

6= /0. Then, system (7.59) is calledob-
servablein Bsub

K
if the following implication holds

{[
w1K

w1
2K

]
,

[
w1K

w2
2K

]
∈ B

sub
K

}
⇒

{
w1

2K = w2
2K

}
. (7.63)

The following result can now be formulated:

Theorem 7.3.3 Let

B
sub
K ,

{[
w1K

w2K

]
: Z → W1K ×W2K

∣∣∣∣∣ γ

[
w1K

w2K

]
≤

[
w1K

w2K

]
,

w1K =

[
uK

yK

]
,

w2K = A(γ)∗B(γ)uK

yK = C(γ)w2K

}
,

(7.64)
and

B̂
sub
K ,

{[
w1K

ŵ2K

]
∈ B̂K

∣∣∣∣∣ ŵ2K ≤ w2K ,

[
w1K

w2K

]
∈ B

sub
K

}
.

Suppose system(7.59)is observable inBsub
K

. Then, system(7.61), with B̂K defined as

B̂K ,

{[
w1K

ŵ2K

]
: Z → W1K ×W2K

∣∣∣∣∣ w1K =

[
uK

yK

]
,

ŵ2K = A(γ)ŵ2K ⊕B(γ)uK ⊕L(γ)(C(γ)ŵ2K ⊕yK ) with w1K ∈ BK

}
,

(7.65)
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is a dead-beat observer for system(7.59)in the sense of Definition 7.3.1 if

(A(γ)⊕L(γ)C(γ))∗B = A(γ)∗B(γ) (7.66)

is satisfied for a matrix L(γ)∈R
n2×•
ε [γ] for which holds Li j (γ) 6= ε for all i ∈Z[1,n2], j ∈

Z[1,•].

Proof: From the structures of̂BK and BK , defined in (7.65) and (7.60),
respectively, it follows that for arbitraryL(γ), for which holdsLi j (γ) 6= ε for all
i ∈ Z[1,n2], j ∈ Z[1,•], the following property holds: If for somek∈ Z

ŵ2K(k) ≤ w2K(k), for k≤ k,

then there exists an event counterk⋆ ∈ Z>k such that

ŵ2K(k) ≥ w2K(k), for k≥ k⋆. (7.67)

Next, it will be proven that ifL(γ) is chosen such that it satisfies relation (7.66), then
the inequality in (7.67) will hold with equality. Let ˆw2K

≤ w2K
, i.e.

ŵ2K ≤ w2K ⇔ w2K = ŵ2K ⊕w2K , (7.68)

which yields

eŵw
K , ŵ2K ⊕w2K =

= A(γ)ŵ2K ⊕B(γ)uK ⊕L(γ)C(γ)(ŵ2K ⊕w2K)⊕A(γ)w2K ⊕B(γ)uK

= (A(γ)⊕L(γ)C(γ))eŵw
K ⊕B(γ)uK .

(7.69)

A solution to (7.69) is

eŵw
K = (A(γ)⊕L(γ)C(γ))∗B(γ)uK . (7.70)

Since one has thatw2K
= eŵw

K
and that for givenw1K

, w2K
the signaleŵw

K
is unique

(due to the fact that system (7.59) is observable inB
sub
K

), solution (7.70) is the only so-
lution for the last expression in (7.69). According to the hypothesis in Theorem 7.3.3,
the trajectoryw2K

from the set of trajectory of interesties, i.e.Bsub
K

, is given by
w2K

= A(γ)∗B(γ)uK . Employing relation (7.70) then yields

(A(γ)⊕L(γ)C(γ))∗B(γ)uK = A(γ)∗B(γ)uK , ∀uK , (7.71)

or

(A(γ)⊕L(γ)C(γ))∗B(γ) = A(γ)∗B(γ). (7.72)
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Hence, choosingL(γ) such as described in Theorem 7.3.3 then yields that (7.67) is
satisfied with equality, i.e. for somek⋆ ∈ Z>k there holds

ŵ2K(k) = w2K(k), for k≥ k⋆. (7.73)

This implies that system (7.61), witĥBK defined as in (7.65), is an observer for (7.59)
in the sense of Definition 7.3.1 forBsub

K
andB̂sub

K
as indicated in Theorem 7.3.3.

Under the hypothesis in Theorem 7.3.3 system (7.61), withB̂K defined as in (7.65),
is a dead-beat observer for system (7.59) if all allowable system trajectories of system
(7.59), i.e.BK defined in 7.60, are restricted to the trajectory setBsub

K
as defined in

(7.64). The physical meaning of this, is that the manufacturing system has once started
as an empty system. That is, there has been a time instance that the manufacturing
system did not contain any products, i.e. no events have occurred yet. Note that this is
a mild assumption in the sense that it is obvious that once themanufacturing system
must have started up without any semi-finished or stored products already present in
the system.

The issue that is treated next is about how to compute a matrixL(γ) ∈ R
n2×•
ε [γ]

such that the conditions onL(γ) given in Theorem 7.3.3 are satisfied.

Theorem 7.3.4 A specific L(γ) ∈ R
n2×•
ε [γ] satisfying(7.66)is given by

L(γ) = (A(γ)∗\(A(γ)∗B(γ))/B(γ))/(C(γ)A(γ)∗). (7.74)

Proof: Note that from the algebraic structure of expression (7.66)one has that
for arbitraryL(γ) ∈ R

n2×•
ε [γ] there holds

(A(γ)⊕L(γ)C(γ))∗B(γ) ≥ A(γ)∗B(γ), ∀L(γ) ∈ R
n2×•
ε [γ].

This implies that searching for the (component wise) largest matrix L(γ), for which
holds

(A(γ)⊕L(γ)C(γ))∗B(γ) ≤ A(γ)∗B(γ), (7.75)

will lead to a matrixL(γ) for with condition (7.66) in Theorem 7.3.3 is satisfied.

(A(γ)⊕L(γ)C(γ))∗B(γ) ≤ A(γ)∗B(γ)

⇔ (A(γ)∗L(γ)C(γ))∗A(γ)∗B(γ) ≤ A(γ)∗B(γ) (employing (2.3c))
⇔ A(γ)∗(L(γ)C(γ)A(γ)∗)∗B(γ) ≤ A(γ)∗B(γ) (employing (2.3b))
⇔ (L(γ)C(γ)A(γ)∗)∗ ≤ A(γ)∗\(A(γ)∗B(γ))/B(γ) (employing (2.12c))
⇔ L(γ)C(γ)A(γ)∗ ≤ A(γ)∗\(A(γ)∗B(γ))/B(γ) (employing (2.3a))
⇔ L(γ) ≤ (A(γ)∗\(A(γ)∗B(γ))/B(γ))/(C(γ)A(γ)∗) (employing (2.12b))

(7.76)
The largestL(γ) satisfying (7.75) then follows from the last inequality in (7.76) and is
given in (7.74) of Theorem 7.3.4.
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To successfully design an observer as the one proposed in Theorem 7.3.3, observabil-
ity of system (7.59) inBsub

K
is required. In the sequel an observability test is given

from which one can conclude that system (7.59) is observablein the sense of Defini-
tion 7.3.2.

Theorem 7.3.5System(7.59) is observable inBsub
K

in the sense of Definition 7.3.2,
with Bsub

K
defined as in(7.64), if and only if the following equality holds true

A(γ)∗B(γ) = A(γ)∗B(γ)((C(γ)A(γ)∗B(γ))\(C(γ)A(γ)∗B(γ))). (7.77)

Proof: Can be proven based on the results obtained in [110].

Example 7.3.6 Consider the manufacturing system as considered in Example7.1.8.
The system can be described according to the event domain system description as
defined in (7.59) withBK in (7.60) defined by the following matrices and signals

A(γ) ,




ε ε ε ε ε
ε d1γ ε ε γ
ε d1d2γ d2γ ε ε
ε ε γ ε ε
ε ε ε γ ε




, B(γ) ,




0
d1

d1d2

ε
ε




, C(γ) ,

[
0 ε ε ε ε

]
,

w1K(k) ,

[
uK (k) w1

K2
(k) = yK (k)

]⊤
,

w2K(k) ,

[
w1

K2
(k) w2

K2
(k) w2

K3
(k) w2

K3
(k−1) w2

K3
(k−2)

]⊤
.

(7.78)
Note that for notational shortness the operations⊗ in the matricesA(γ) and B(γ)

are omitted, e.g.d1d2γ in matrix A(γ) should be read asd1 ⊗ d2 ⊗ γ. The goal is
to obtain an observer for the manufacturing system of the structure as proposed in
Theorem 7.3.3. One can verify, by for example employing theminmaxgdtoolbox3

for Scilab 4.0, that condition (7.77) in Theorem 7.3.5 is satisfied. With theminmaxgd
toolbox one can perform analytical computations like star (Kleene star∗) operations,
left and right (pseudo)-inverse (Residuation\,/) operations, etc. on the matrices of
the form as given in this section. Since the condition in (7.77) is satisfied, one can
conclude from Theorem 7.3.3 that system (7.61), withB̂K defined as in (7.65) and
L(γ) ∈ R5

ε [γ] as in (7.74) of Theorem 7.3.4, is an observer for system (7.59) in the
sense of Definition 7.3.1. With theminmaxgdtoolbox of Scilab 4.0 one can compute

3The minmaxgd toolbox for Scilab 4.0 is downloadable from http://www.istia.univ-
angers.fr/ hardouin/outils.html.
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L(γ) ∈ R5
ε [γ] as defined in (7.74), i.e.

L(γ) =




0
3⊕6γ ⊕9γ2⊕12γ3⊕15γ4⊕18γ5⊕21γ6⊕24γ7(4γ)∗

7(4γ)∗

7γ(4γ)∗

7γ2(4γ)∗




. (7.79)

The example is continued by trying to put the obtained observer in a recursive form.
Note thatL(γ) in (7.79) contains operations working on the signal max(ŵ1

K2
,yK ).

Consider for example the first component inL(γ), and taking into account the observer
structure inB̂K , one can obtain that

ŵ1
K2

(k) = max(uK (k),yK (k),ŵ1
K2

(k)) (7.80)

Hence, due to the algebraic loop in above expression it is impossible to put the ob-
tained observer into a recursive form. Therefore the structure of L(γ) in (7.79) is
slightly altered into the following form

L(γ) =




γ
3⊕6γ ⊕9γ2⊕12γ3⊕15γ4⊕18γ5⊕21γ6⊕24γ7(4γ)∗

7(4γ)∗

7γ(4γ)∗

7γ2(4γ)∗




. (7.81)

One can verify that theL(γ) in (7.81), as the one in (7.79), also satisfies (7.66) in The-
orem 7.3.3. Hence, the result in Theorem 7.3.3 still appliesfor the observer defined
with theL(γ) in (7.81). Note that (7.80) now becomes

ŵ1
K2

(k) = max(uK (k),yK (k−1),ŵ1
K2

(k−1)). (7.82)

Hence, a recursive equation without algebraic loop is obtained. Note that the terms
(4γ)∗ in (7.81) can be interpreted as a recursive equation of the form

x(k) = max(x(k−1)+4, . . .), (7.83)

where the term that will appear on the dots depends on the terms appearing in front
of (4γ)∗ in (7.81). For more details on this issue the reader is referred to [29]. Define
now x1(k), x2(k), x3(k) andx4(k) to obtain recursive relations, like the one in (7.83),
corresponding to the terms(4γ)∗ in the second up to the last component ofL(γ) in
(7.81), respectively. By taking into account the way theγ operator is defined, one can
now obtain the following recursive relation correspondingto the obtained observer in
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this example, i.e.

χ(k) = Aob⊗ χ(k−1)⊕Bu
ob⊗uK (k)⊕By

ob⊗yK (k),

ŵ2K(k) = Cob⊗ χ(k),
(7.84)

where

Aob ,




0 ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε
6 3 ε ε 0 ε ε ε ε ε ε 4 7 9 12 15 18 21 24 27
7 7 4 ε ε 11 ε ε ε ε ε ε ε ε ε ε ε ε ε ε
7 ε 0 ε ε ε ε 11 ε ε ε ε ε ε ε ε ε ε ε ε
ε ε ε 0 ε ε ε ε ε ε 11 ε ε 7 ε ε ε ε ε ε
0 ε ε ε ε 4 ε ε ε ε ε ε ε ε ε ε ε ε ε ε
0 ε ε ε ε ε 4 ε ε ε ε ε ε ε ε ε ε ε ε ε
ε ε ε ε ε ε 0 ε ε ε ε ε ε ε ε ε ε ε ε ε
0 ε ε ε ε ε ε ε 4 ε ε ε ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε 0 ε ε ε ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε ε 0 ε ε ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε ε ε ε 4 ε ε ε ε ε ε 24 ε
ε ε ε ε ε ε ε ε ε ε ε 0 ε ε ε ε ε ε ε ε
0 ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε ε ε ε ε ε 0 ε ε ε ε ε ε
ε ε ε ε ε ε ε ε ε ε ε ε ε ε 0 ε ε ε ε ε
ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε 0 ε ε ε ε
ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε 0 ε ε ε
ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε 0 ε ε
ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε 0 ε




Bu
ob ,




0
3
7
ε
ε
0
0
ε
0
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε




, By
ob ,




ε ε ε ε ε ε ε 0 ε
27 24 21 18 15 12 9 6 3
ε ε ε ε ε ε ε 7 7
ε ε ε ε ε ε ε 7 ε
ε ε ε ε ε ε 7 ε ε
ε ε ε ε ε ε ε 0 0
ε ε ε ε ε ε ε 0 0
ε ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε 0 0
ε ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε ε
ε 24 ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε ε




, yK (k) ,




yK (k−8)

yK (k−7)

yK (k−6)

yK (k−5)

yK (k−4)

yK (k−3)

yK (k−2)

yK (k−1)

yK (k)




,

Cob ,




0 ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε
ε 0 ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε
ε ε 0 ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε
ε ε ε 0 ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε
ε ε ε ε 0 ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε




,

χ(k) ,
[

ŵ2K
(k) x2(k) x3(k) x3(k−1) x4(k) x4(k−1) x4(k−2) x1(k) x1(k−1)

ŵ1
K2

(k) ŵ1
K2

(k−1) ŵ1
K2

(k−2) ŵ1
K2

(k−3) ŵ1
K2

(k−4) ŵ1
K2

(k−5) ŵ1
K2

(k−7)
]
.
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In the next section the recursion in (7.84) will be employed in combination with the
event domain stabilizing controller obtained in Section 7.1 in order to solve the causal-
ity problem from which the event domain controller in Section 7.1 suffers if it is im-
plemented in time domain.

7.4 Observer-based output feedback control for manufac-
turing lines

As explained in Section 7.2, the event domain controller design approach followed in
Section 7.1 results in a causality problem when the controller is implement in time
domain. Therefore, an observer-based algorithm is proposed which can solve the
causality issue encountered when controlling manufacturing lines based on the event
domain controller synthesis explained in Section 7.1. Hence, a guaranteed stabilizing
and causal controller in time domain is obtained.

Assume Theorem 6.3.2 holds for the considered manufacturing lines. Hence, a
time domain representation of the form defined in Definition 6.1.1 can be obtained.
DefineyT : T→YT , Z as the time domain signal corresponding to the event domain
signalyK (k), which in case of manufacturing lines corresponds to the event times a
product enters the manufacturing line for thekth time at the front of the line, i.e.
yK (k) , w1

K2
(k) in case of the manufacturing line considered in the Example 7.1.8

and assumed to be defined as the first component of the signalwT for manufacturing
lines of a more general form, i.e. see Definition 6.1.1. Furthermore, it is assumed that
the buffer in front of the first machine in the manufacturing line is a buffer which has
a capacity for an infinite number of products. Note that this implies that

uK (k) = yK (k), ∀k∈ Z+, (7.85)

i.e. thekth time a product is released coincides with thekth time a product enters the
manufacturing line. This property is required to guaranteethat the time instance of
the next product release, i.e.uK (k+ 1) computed by the event domain controller of
Section 7.1, will not be before the time instance the previous productyK (k) entered
the manufacturing line, for this is physically not possible.

Define the signalyp
T

(t) as

yp
T

(t) , yT (τ), τ ∈ T[t−δ ,t], (7.86)

for a sufficiently largeδ ∈ R>0. Note that the signalyp
T

(t) contains, at all timest ∈ T,
past information ofyT over a horizon ofδ into the past and is assumed to contain,
at least,nl ∈ Z>0 event lags. Recall that the event lags contained in a time domain
counter function corresponds to the amount of times the corresponding counter func-
tion counted a particular event that has occurred.
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Let knowledge ofyp
T

(t) be available (for feedback) at all timest ∈T. Furthermore,
suppose that a controller, obtained based on the controllersynthesis in Section (7.1),
i.e.

uK (k+1) , κK ([w2K(k) uK (k)]⊤) , uK (k)⊕ κ̃([w2K(k) uK (k)]⊤), (7.87)

and the observer, i.e. recursion (7.84), designed for a manufacturing line, e.g. the
manufacturing line in Example 7.3.6, respectively, are given. Then, the following
algorithm can be formulated

Algorithm 7.4.1 Let χ0 = 0 and supposeyp
T

(t) contains at least the number of event
lags (nl ) that are contained inyK (k) defined in recursion (7.84), i.e.nl = 9 in case of
the system considered in Example 7.3.6.

Step 1)
Given the signalyp

T
(t) at timet ∈ T, wait until yp

T
(t)(0)− yp

T
(t)(0−) ≥ 1. If

yp
T

(t)(0)−yp
T

(t)(0−) ≥ 1, k = yp
T

(t)(0) and

yK (k) = πy(yp
T

(t)),

uK (k) = yK (k),

with

πy(yp
T

(t)) , inf
{

τ ∈ T[−δ ,0]

∣∣∣ yp
T

(t)(τ) ≤ k, k∈ K[yp
T

(t)(0)−(nl−1),yp
T

(t)(0)]

}
+ t.

(7.88)
Furthermore, compute

χ(k) = Aob⊗ χ(k−1)⊕Bu
ob⊗uK (k)⊕By

ob⊗yK (k), with χ(k−1) = χ0

ŵ2K(k) = Cob⊗ χ(k)
(7.89)

and compute the next event time of a product release, i.e.uK (k+1), with event
domain control law

uK (k+1) , κK ([ŵ2K(k) uK (k)]⊤), (7.90)

whereκK (·) is defined as in (7.87) withw2K
(k) in (7.87) is substituted by

ŵ2K
(k).

Step 2)
Feed

uT (t) =

{
k if t ∈ T[uK (k),uK (k+1)),

k+1 if t = uK (k+1),
(7.91)

as control variable to the manufacturing system and go to Step 1.
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Let
Y

p
T

, (T[−δ ,0] → YT ), (7.92)

then Algorithm (7.4.1) can be seen as a control law of the form

Σ
MPC

T = (T,UT ,Yp
T

,B
MPC

T ), (7.93)

with

B
MPC

T ,

{
uT : T → UT , yp

T
: T → Y

p
T

∣∣ uT satisfies Algorithm 7.4.1
}
. (7.94)

The manufacturing line of the form defined in Definition 6.1.1in closed-loop with
Algorithm 7.4.1, i.e. the closed-loop system in time domain, is then given by

Σ
CL

T = (T,UT ,WT ,Yp
T

,B
CL

T ), (7.95)

where

B
CL

T ,

{[
u⊤

T
w⊤

T
yp
T

]⊤
: T → UT ×WT ×Y

p
T

∣∣∣
[
u⊤

T
yp
T

]⊤
∈ B

MPC

T ,

(σ−twT1
)|T[−δ ,0]

= yp
T

, ∀t ∈ T,
[
u⊤

T
w⊤

T

]⊤
∈ BT

}
.

(7.96)
The following result can now be obtained for the manufacturing lines of the type
considered in this section in closed-loop with Algorithm 7.4.1 forming closed-loop
system (7.95)

Theorem 7.4.2 Suppose that for the considered manufacturing line there exist an
event domain observer of the form as given in(7.89). Furthermore, let the hypoth-
esis in Theorem 7.1.7 be satisfied. Then, the event domain closed-loop system corre-
sponding to the time domain closed-loop system(7.95)is stable in the sense of Defi-
nition 7.1.2.

Proof: Define the event domain observer error as

eK (k) , w2K(k)− ŵ2K(k). (7.97)

Substitution of (7.97) in the control law (7.87), that is employed in Algorithm 7.4.1,
yields

uK (k+1) , κK ([w2K(k)+eK (k) uK (k)]⊤). (7.98)

Then due to the result in Theorem 7.1.5 the statement in Theorem 7.4.2 follows.
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Example 7.4.3 Algorithm 7.4.1 is employed to the manufacturing line considered in
Example 7.1.8 to achieve the control goal as formulated in Example 7.1.8. In Exam-
ple 7.1.8 it is shown how an event domain controller, i.e. (7.87) is designed such that
the result in Theorem 7.1.7 applies. In Example 7.3.6 an observer for the manufac-
turing line from Example 7.1.8, resulting in recursion (7.84), is designed. A simu-
lation result of the manufacturing line in closed-loop withAlgorithm 7.4.1 resulting
in closed-loop system (7.95) is given in Figure 7.5 the response of the closed-loop
system trajectoryqT = w2

T3
anduK are presented and compared to the to the desired

reference trajectoryqr
T

. At t = 52 [units] Algorithm 7.4.1 is switched on. Hence, the
trajectoryqT converges to the desired trajectoryqr

T
. Furthermore, in Figure 7.6 one

can see that the event domain observer error defined as in (7.97) goes to zero.
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Figure 7.5: In the figure the trajectoryqT (t) = w2
T3

(t) (solid thick grey) and the controluT (t)
(dashed black) of the closed-loop system (7.96) are presented and compared to the desired
reference trajectoryqr

T
(t) (solid black).

The example as just illustrated shows how event domain modelpredictive controller
synthesis resulting in an event domain controller structure, that cannot be implemented
in time domain due to a causality problem, can be employed in time domain by using
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Figure 7.6: Event domain observer error plotted along the event axisw2K
(k)− ŵ2K

(k). The
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an observer based approach. This resulted in Algorithm 7.4.1. At the time instance a
controller computation has to be made the observerestimates, based on the currently
available information, the required (future) informationthat is required in the event
domain control law (7.87). Note that as is the case of “conventional controllers” Al-
gorithm 7.4.1 does not perform computation at fixed equidistant time instances. For
Algorithm 7.4.1 it is only required to perform computationsif “something happens” in
the system. That is, every time a new product is entering the manufacturing line, which
is the case ifyp

T
(t)(0)−yp

T
(t)(0−) ≥ 1, a new controller computation is performed.

7.5 Summary

To facilitate stability analysis, in this chapter a model predictive control setup for
discrete-event manufacturing systems is formulated in event domain. Since in the
event domain the description of the manufacturing system dynamics can be described
as difference equations (as is shown in Chapter 6) this approach allows one to employ
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”conventional” discrete-time stability analysis of the resulting event domain closed-
loop system. It is shown that the approach leads to a constructive approach to design
event domain controllers that are robustly stabilizing in the event domain. However, a
disadvantage of this approach is that the obtained controllers cannot straightforwardly
be employed in the time domain due to a causality problem thatemerges. It is pointed
out how in case of manufacturing lines this causality problem can be taken care of by
using an observer. For this purpose a dead-beat observer design methodology, for the
class of manufacturing systems that can be described in the event domain by max plus
linear relations, is developed.
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All truth are easy to understand
once they are discovered; the
point is to discover them.

Galileo Galilei 8
Conclusions and future research

In this chapter a summary of the contributions of the thesis is presented. Also some
open problems and possible future directions that are related to the research presented
in this thesis are given.

8.1 Conclusions

Recall from the introductory chapter of this thesis that themain focus of the disserta-
tion is

1. The development of computationally friendly robust model predictive control
techniques for a class of nonlinear hybrid systems suitablefor manufacturing
system control;

2. The development of observer-based output feedback modelpredictive control
techniques for nonlinear systems;

3. The development of model predictive control techniques for discrete-event man-
ufacturing systems.

The main contributions of this thesis can are summarized below.

Robust nonlinear (hybrid) model predictive control

• An approach to design a sub-optimal nonlinear (hybrid) model predictive con-
trol algorithm with an a priori input-to-state stability guarantee, with respect to
additive disturbances, of the closed-loop system is presented. For the nonlin-
ear model predictive controller, the input-to-state stabilization constraints can
be written as a finite number oflinear inequalities. This fact facilitates, under
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some additional assumptions on the model predictive control costs, the pos-
sibility to obtain a computationally cheap nonlinear (hybrid) model predictive
control algorithm.

• Robust performance of the closed-loop system, perturbed byadditive distur-
bances, can be obtained by modifying the afore mentioned control scheme.
This can be achieved by allowing for on-line optimization ofthe ISS-gain of
the closed-loop system. A small ISS-gain of the closed-loopsystem, perturbed
by additive disturbances, yields additive disturbancerejectionwhich results in
improved performance.

• Proposals to reduce conservativeness of the proposed modelpredictive control
algorithm are given.

General robustness results for discrete-time nonlinear constrained systems

• It has been shown that state feedback laws that can render a closed-loop sys-
tem input-to-state stable with respect toadditive disturbancescan also render
the same closed-loop system input-to-state stable with respect tostate measure-
ment errorsandadditive disturbances. For the obtained result continuity of the
system dynamics with respect to thestateof the system is required, however,
continuity with respect to the system‘s control variable isnot required. Under
the additional assumption of continuity of the system dynamics with respect to
the control variable, also robustness with respect to actuator noise can be estab-
lished. Hence, it has been shown that under mild conditions state feedback laws
that can render a closed-loop system input-to-state stablewith respect toad-
ditive disturbancescan also render the same closed-loop system input-to-state
stable with respect tostate measurement errors, additive disturbancesandac-
tuator noise. The results allow for possible discontinuity and set-valuedness of
the state feedback laws. Furthermore, the result holds in the possible presence
of control and state constrains. The value of the obtained robustness result will
become clear from the next item.

• It has been shown how the robustness result can be employed toutilize nonlin-
ear model predictive controller design techniques that canrender a closed-loop
system input-to-state stable with respect to additive disturbances, in a scenario
where a closed-loop system has to be rendered input-to-state stable with respect
to state measurement errors (and actuator noise). In literature many results are
available that render model predictive controlled closed-loop systems input-to-
state stable with respect to additive disturbances. However, only few results are
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known to render the model predictive controlled closed-loop systems input-to-
state stable with respect to measurement errors (and actuator noise). This fact
indicates the value of the robustness result mentioned in the previous item.

Output feedback nonlinear model predictive control

• An observer-based output feedback nonlinear predictive control approach for
the class of strongly observable nonlinear discrete-time systems is proposed.
It is proven that aseparatelydesigned controller and observer in closed-loop
with the to-be-controlled system result in an asymptotically stable closed-loop
system. Input to-state stability notions for differentialinclusions are employed
to prove the results.

• Constructive procedures for both the design of an input-to-state stable state
feedback model predictive controller and a nonlinear observer, are indicated.

• All the results are valid despite the possibility of discontinuous and non-unique
model predictive control laws.

The main contributions of this thesis with respect to model predictive controller design
for manufacturing systems can be divided into two parts. That is:

1. Fluid model based model predictive control design for manufacturing systems;
The discrete-event nature of the manufacturing system is approximated by (piece-
wise) continuous dynamical models. Hence the product streams through the
manufacturing systems are considered as fluid streams resulting in dynamical
fluid models for manufacturing systems. The model predictive control design is
based on these fluid models of the discrete-event manufacturing system.

2. Discrete-event based model predictive control design for manufacturing sys-
tems;
The model predictive control design is directly based on a discrete-event model
of the discrete-event manufacturing system.

Fluid model based model predictive control design for manufacturing systems

• It is illustrated how input-to-state stabilizing model predictive control with ro-
bust performance can be employed to solve a large scale manufacturing control
problem, that possibly exhibits discontinuous hybrid behaviors, in an efficient
decentralizedmanner.
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• Due to the fact that the fluid models for controller synthesisare (piecewise)
continuous and the actual to-be-controlled manufacturingsystem has a discrete-
event nature a quantization (or compatibility) problem is introduced. It is indi-
cated how robustness results can be employed to synthesize model predictive
controllers based on fluid models of manufacturing systems to cope with the
compatibility issues between fluid models of manufacturingsystems and the
actual discrete-event nature of the real life manufacturing systems.

• For a class of nonlinear manufacturing systems a model predictive control ap-
proach that establishes tracking behavior of the closed-loop system for a class
of reference trajectory, which can typically correspond tocustomer demands
over time, is developed.

Discrete-event based model predictive control design for manufacturing systems

• It has been shown that complementary to time domain modelingof manufac-
turing systems the discrete-event nature of manufacturingsystems enables to
model manufacturing systems from the so calledevent domainperspective. It
is shown that in contrast to relatively complex time domain models, that are
obtained when modeling manufacturing systems, event domain modeling facili-
tates obtaining relatively simple (analytical) difference equations as descriptions
of discrete-event manufacturing systems.

• A relation between event domain modeling and the time domainmodeling of
a class of event driven manufacturing systems has been obtained. This result
opens possibilities to employ the relatively simple event domain models to do
controller synthesis and perform computations for manufacturing systems con-
trolled in the time domain.

• For a class of discrete-event manufacturing systems it has been shown, by uti-
lizing the relation between event- and time domain, that thecontinuous time
model predictive control problem can be solved (without approximations) by a
finite dimensional optimization problem.

• For discrete-event systems that can be described in the event domain as max-
plus linear systems a (dead-beat) observer design methodology is proposed.

• An output feedback stabilizing (MPC) tracking controller for a class of discrete-
event manufacturing systems is proposed.
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8.2 Directions for future research

Some possible suggestions for future research in relation to the topics listed in the
previous section are given in this section.

Robust nonlinear (hybrid) model predictive control

• For a given additive disturbance set, find ways to estimate a priori the region of
attraction, i.e. a robust positive invariant set of the to-be-controlled system in
closed-loop with the proposed input-to-state stabilizingmodel predictive con-
trol algorithm.

General robustness results for discrete-time nonlinear constrained systems

• It has been shown how state feedback laws that can render a closed-loop system
input-to-state stable with respect toadditive disturbancescan be transformed
into state feedbacks that can render the same closed-loop system input-to-state
stable with respect to statemeasurement errorsandadditive disturbances(and
actuator noise). Generalization of the robustness result for more generalclasses
of (discontinuous with respect to the state) nonlinear discrete-time systems is
recommended for future research.

Output feedback nonlinear model predictive control

• Search for less conservative small gain conditions which can, possibly, always
be satisfied irrespective of an a priori given input-to-stable state feedback non-
linear model predictive controller.

• Explore the possibilities to drop theregularity assumption on the controller.
Since, a tight regularity constraint might impose restrictions on the (constrained)
stabilizability of the to-be-controlled system, no regularity requirement on the
controller will lead to improved feasibility of the model predictive control prob-
lem.

• Extend the obtained asymptotic stability result of the closed-loop system to a
stronger input-to-state stability result. That is, establish input-to-state stability
of the closed-loop system perturbed byoutput measurement errorsas distur-
bance input. This will be useful to conclude about robustness to outputmea-
surement noise which is always present in a practical situation.

• More research on the development of observer theories that can handle ahybrid
model structure needs to be performed, while in particularly in the context of
manufacturing systems hybrid model structures are encountered.
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Fluid model based model predictive control design for manufacturing systems

• More research ondecentralizedmodel predictive controller design has to be
performed such that controller design becomes simpler and controller compu-
tations become tractable for large scale manufacturing systems.

• Investigate ways to quantify the quantization errors induced by the fact that
discrete-event manufacturing systems are controlled by controllers which are
synthesized based on dynamical fluid models of those manufacturing systems.

Discrete-event based model predictive control design for manufacturing systems

• Extend the local convergence result for the proposed (dead-beat) discrete-event
observer to a global result.

• Extend the proposed output feedback stabilizing (MPC) tracking controller for
discrete-event manufacturing lines to the multiple input/output case.

Some more suggestions for future research, that are not directly related to one of the
afore mentioned topics, are listed in the sequel.

• It has been shown how state feedback laws that can render the closed-loop
system input-to-state stable with respect toadditivedisturbances can be trans-
formed into state feedbacks that can render the closed-loopsystem input-to-state
stable with respect to statemeasurement errors(andactuator noise). The result
applies to a class of input and state constrained nonlinear discrete-time systems.
To explore the possibility to obtain a similar robustness result for continuous-
time nonlinear systems is an interesting subject for futureresearch.

• Investigation on implementation aspects of the developed control strategies in
industrial environments needs to be performed more thoroughly.

• Perform research in which the existing heuristic methods for the control of man-
ufacturing systems, such as material requirements planning (MRP) and just-in-
time production (JIT), are compared to the manufacturing control strategies that
are proposed in this thesis.

• Perform research on how (hybrid) control theory can contribute in solving man-
ufacturingschedulingproblems.
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Summary

This thesis considers manufacturing systems and model-based controller design, as
well as their combinations. The objective of a manufacturing system is to create prod-
ucts from a selected group of raw materials and semifinished goods. In the field of
manufacturing systems control is an important issue appearing at various operation
levels. At the level of fabrication, for example, control isnecessary in order to assure
properly working production processes such that products are being fabricated in the
desired way. At a higher level in the hierarchy of manufacturing system control, the
productstreamsthrough the system are controlled in order to satisfy, for example,
customer demands in an optimal way. Here, the definition of optimal can be inter-
preted in various ways, such as “with the least possible costs in terms of money” or
“in the shortest possible time”. In this research, the attention is focussed on this higher
hierarchy level of manufacturing system control.

In the literature, many heuristic methods have been developed for the control of a
manufacturing system. Nowadays, some heuristic methods are still being used in com-
bination with operator experience for management of resources and planning of pro-
duction. However, as the complexity of the manufacturing systems increases rapidly,
the (simple) heuristic methods and operator experience will at some point become
incapable of finding an optimal control strategy.

In this dissertation the potential of considering manufacturing system control from
a control systems point of view is investigated. The ultimate goal of the research is
to eventually obtain a more constructive way to address controller design for manu-
facturing systems. One control strategy from control systems theory, on which is in
particularly focused in this research, is a model-based receding horizon control strat-
egy, known in literature as Model Predictive Control (MPC).Since in manufacturing
systems a lot of physical systemconstraintsare involved, like for examplefinite ma-
chine process capacities,finite product storage capacities,finite product arrival rates,
etc., the capability for a manufacturing control strategy to handle those constraints is
a necessity. One of the key features of model predictive control is the capability of
handling constraints in the controller design. This is one of the major motivations to
investigate the model predictive control principle as a control strategy for manufac-
turing systems. Other issues that are important and that themodel predictive control
design methodology can handle is to enforce optimality, to introduce feedback, and
the capability of allowing for mixed continuous and discrete model structures. The
later are typically encountered when models of manufacturing systems are derived.

The main results that are obtained in this dissertation and that are relevant in the
context of manufacturing systems control, but are certainly also relevant beyond this
field are:
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• One has developed an robust computationally friendly nonlinear model predic-
tive control algorithm that can handle model structures with mixed continuous
and discrete dynamics. The algorithm can be designed for additive disturbance
rejection purposes;

• Robustness (with respect to measurement noise) results that are in particulary
of interest in the field of nonlinear model predictive control are obtained;

• An asymptotically stabilizing output based nonlinear model predictive control
scheme for a class of nonlinear discrete-time systems is developed.

Results that are relevant in the context of manufacturing systems control are:

• It is illustrated how the afore mentioned developed robust computationally friendly
nonlinear model predictive control algorithm can be employed to solve a large
scale manufacturing control problem in an efficientdecentralizedmanner;

• The relation between the so-called event domain modeling approaches for a
class of discrete-event manufacturing systems to time domain models is derived.
This results enables one to solve seemingly untractable time domain formulated
optimal control problems for a class of manufacturing systems in a tractable
manner;

• An observer theory for a class of discrete-event manufacturing systems is de-
veloped.
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Samenvatting

In dit proefschrift worden fabricagesystemen en model-gebaseerd regelaar ontwerp en
hun combinatie beschouwd. Het doel van een fabricage systeem is het creëren van pro-
ducten uit een geselecteerde groep van ruwe matrialen en half fabrikaten. In de wereld
van de fabricagesystemen speelt regelen op allerlei verschillende niveaus van oper-
atie een belangrijke rol. Op het niveau van product fabricage is regelen bijvoorbeeld
noodzakelijk om te kunnen garanderen dat de productie processen de te produceren
producten volgens de gewenste specificaties produceren. Opeen hoger niveau in de hi-
eragie van het regelen van fabricagesystemen worden de productstromendoor het sys-
teem geregeld om bijvoorbeeld op een optimale manier aan hetproduct vraag patroon
van de klanten te kunnen voldoen. De definitie van optimaal kan hier op verschillende
manieren geı̈nterpeteerd worden, zoals “met zo laag mogelijke kosten in termen van
geld” of “in een zo kort mogelijk tijd bestek”. In dit onderzoek, ligt de nadruk op
het regelen van fabricagesystemen op het zo net genoemde hierargisch hoger liggende
niveau.

In de literatuur zijn veel ontwikkelde heuristieken en ad hoc methoden ontwikkeld
voor het regelen van fabricagesystemen. Vandaag de dag worden sommige van deze
heuristieken nog steeds gebruikt voor het management and plannen van product stromen
door een fabriek. Maar omdat de complexiteit van fabricagesystemen snel toeneemt,
zijn de (eenvoudige) heuristieken niet meer toereikend om optimaliteit de kunnen
garanderen.

In deze dissertatie wordt de potentie om voor het regelen vanfabricagesystemen
een systeem regeltechnische aanpak te kiezen onderzocht. Het doel van dit onderzoek
is om uiteindelijk een meer structurele en theoretisch onderbouwde aanpak voor het
regelaar ontwerp met betrekking tot fabricagesystemen te ontwikkelen. Een van de
regelstrategiën bekend vanuit de systeem theory, waarop is gefocuseerd in het onder-
zoek, is een modelgebaseerde regel strategie ook wel bekendin de literatuur als Model
Predictive Control (MPC). Omdat men in het geval van fabricagesystemen veelal met
fysische systeembeperkingen(constraints) temaken heeft, zoals bijvoorbeeldeindige
machine of process capaciteiten,eindigeproduct opslag mogelijkheden,eindigeprod-
uct aankomst snelheden, enzovoort, moet een goede regelaarvoor het regelen van
fabricagesystemen ook met deze systeem beperkingen kunnenomgaan. Een van de
eigenschappen van de MPC regelstrategie is dat systeem beperkingen, zoals net ge-
noemd, op een elegante manier kunnen worden verdisconteerdin het regelaar ontwerp.
Dit is een van de voornaamste redenen om de MPC regelstrategie met betrekking tot
fabricagesystemen te onderzoeken. Andere belangrijke punten die de MPC regel-
strategie biedt zijn, het afdwingen van optimaliteit, het induceren van een terugkoppel
mechanisme en de mogelijkheid om met een combinatie van zowel continue als dis-
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crete (hybride) model structuren te kunnen omgaan. De als laatst genoemde model
structuur komt men typisch tegen als men mathematische modellen afleidt voor fab-
ricagesystemen.

De belangrijkste resultaten die uit het onderzoek naar voren zijn gekomen en die
relevant zijn met betrekking tot het regelen van fabricagesystemen, maar die zeker ook
relevant zijn voor het regeltechnische vakgebied in een watmeer algemene zin zijn:

• Er is een robuust en niet reken intensief niet-lineair MPC algoritme, dat kan
omgaan met model structuren die een combinatie zijn van zowel continue als
discrete (hybride) dynamica, ontwikkeld. Het algoritme kan ontworpen worden
om verstorings onderdrukking te garanderen;

• Robuustheids resultaten met betrekking tot meetruis zijn verkregen. Deze robu-
ustheids resultaten zijn met name interessant met betrekking tot het niet-lineaire
MPC vakgebied;

• Er is een asymptotisch stabiliseerbare uitgang gebaseerdeniet-lineair MPC al-
goritme ontwikkeld voor een klasse van niet-lineaire discrete-tijd systemen.

Resultaten die relevant zijn in de context van het regelen van fabricagesystemen zijn:

• Er is geı̈lustreert hoe de zo net genoemde ontwikkelde robust en niet reken in-
tensief niet-lineair MPC algoritme kan worden toegepast omeen regel probleem
voor een grootschalig fabricagesysteem op een efficiënte gedecentralizeerde
manier op te lossen;

• Er is een relatie gevonden tussen het zo genoemde event domein modelleren van
een klasse van discrete-event fabricagesystemen en tijddomein modellen. Dit
resultaat maakt het mogelijk om een tijdsdomein formulering van een optimaal
regel probleem voor een klasse van faricagesystemen, dat niet te traceren lijkt in
het tijdsdomain, op te lossen op een efficiente en traceerbare manier met behulp
van het event domein;

• Een waarnemer theory voor een klasse van discrete-event fabricagesystemen is
ontwikkeld.

210



Acknowledgements

At the end of this thesis I thank the people who have contributed in one way or the
other to the work presented in this thesis. The people that I want to thank in particu-
larly are given in the sequel.

First of all, I like to thank my first and second promotor Prof.Henk Nijmeijer
and Prof. Koos Rooda, who created the possibility for me to perform four year re-
search, which resulted in this Ph.D. thesis. My gratitude goes to Henk Nijmeijer for
his courses, and patience while coaching me. Furthermore, Iwould like to thank my
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Propositions

1. Sub-optimal nonlinear model predictive controllers with good disturbance re-
jection properties can be employed to solve a large scale manufacturing control
problem in an efficient decentralized manner.[This thesis, Chapter 3]

2. It is well known that for linear systems under linear statefeedback the following
statement holds: Input-to-state stability with respect toadditive disturbances
implies input-to-state stability with respect to state measurement noise. This
statement also holds for discrete-time nonlinear systems that are continuous
with respect to the state and that are controlled by a set-valued nonlinear state
feedback law that is allowed to be discontinuous.
[This thesis, Chapter 4]

3. A non-causal structure of state observers does not have tobe a major obstruction
in certainty equivalence output feedback model predictivecontrol.
[This thesis, Chapter 5]

4. Although discrete-event manufacturing systems possessdiscontinuous behavior
in the time domain, a class of them can be described by continuous system
equations in the event domain.[This thesis, Chapter 6 and 7]

5. Although the optimization problem that results from a continuous-time formu-
lated model predictive control problem with finite prediction horizon is an infi-
nite dimensional problem in general, it can be converted to afinite dimensional
optimization problem for a class of discrete-event systems.
[This thesis, Chapter 6]

6. A non-causal feedback control law which is robust to measurement errors can be
employed in combination with an anticipating observer resulting in successful
certainty equivalence output feedback control.[This thesis, Chapter 7]

7. A lot of judgement/review systems are not aware that: “Noteverything that can
be counted counts, and not everything that counts can be counted.”

8. A picture says more than thousand words but a formula says more than a picture.

9. From the proof of a statement one learns more than the statement itself.

10. Understanding what is not possible is as important as understanding what is
possible.

11. To some extent we are all slaves of society.
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12. Talent is like a marksman who hits a target that others cannot reach; genius is
like the marksman who hits a target others cannot even see. This explains why
it is likely that the by society rejected homeless man sleeping under that bridge
is actually a genius.

Bas Roset
Eindhoven, July 2007
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