10 research outputs found

    Nonlinear Precoding for Phase-Quantized Constant-Envelope Massive MU-MIMO-OFDM

    Get PDF
    We propose a nonlinear phase-quantized constant-envelope precoding algorithm for the massive multi-user (MU) multiple-input multiple-output (MIMO) downlink. Specifically, we adapt the squared-infinity norm Douglas-Rachford splitting (SQUID) precoder to systems that use oversampling digital-to-analog converters (DACs) at the base station (BS) and orthogonal frequency-division multiplexing (OFDM) to communicate over frequency-selective channels. We demonstrate that the proposed SQUID-OFDM precoder is able to generate transmit signals that are constrained to constant envelope, which enables the use of power-efficient analog radio-frequency circuitry at the BS. By quantizing the phase of the resulting constant-envelope signal, we obtain a finite-cardinality transmit signal that can be synthesized by low-resolution (e.g., 1-bit) DACs. We use error-rate simulations to demonstrate the superiority of SQUID-OFDM over linear-quantized precoders for massive MU-MIMO-OFDM systems

    MSE-optimal 1-bit Precoding for Multiuser MIMO via Branch and Bound

    Get PDF
    In this paper, we solve the sum mean-squared error (MSE)-optimal 1-bit quantized precoding problem exactly for small-to-moderate sized multiuser multiple-input multiple-output (MU-MIMO) systems via branch and bound. To this end, we reformulate the original NP-hard precoding problem as a tree search and deploy a number of strategies that improve the pruning efficiency without sacrificing optimality. We evaluate the error-rate performance and the complexity of the resulting 1-bit branch-and-bound (BB-1) precoder, and compare its efficacy to that of existing, suboptimal algorithms for 1-bit precoding in MU-MIMO systems

    CL-SA-OFDM: Cross-layer and smart antenna based OFDM system performance enhancement

    Get PDF
    The growing usage of wireless services is lacking in providing high-speed data communication in recent times. Hence, many of the modulation techniques are evolved to attain these communication needs. The recent researches have widely considered OFDM technology as the prominent modulation mechanism to fulfill the futuristic needs of wireless communication. The OFDM can bring effective usage of resources, bandwidth, and system performance enhancement in collaboration with the smart antenna and resource allocation mechanism (adaptive). However, the usage of adaptive beamforming with the OFDM leads to complication in the design of medium access layer and which causes a problem in adaptive resource allocation mechanism (ARAM). Hence, the proposed manuscript intends to design an OFDM system by considering different switched beam smart antenna (SBSA) along with the cross-layer adaptive resource allocation (CLARA) and hybrid adaptive array (HAA). In this, various smart antenna mechanism are considered to analyze the quality of service (QoS) and complexity reduction in the OFDM system. In this paper, various SA schemes are used as per the quality of service (QoS) requirement of the different users. The performance analysis is conducted by considering data traffic reduction, bit-rate reduction, and average delay

    All-digital massive MIMO with a fronthaul constraint

    Get PDF

    Linear Precoding with Low-Resolution DACs for Massive MU-MIMO-OFDM Downlink

    Full text link
    We consider the downlink of a massive multiuser (MU) multiple-input multiple-output (MIMO) system in which the base station (BS) is equipped with low-resolution digital-to-analog converters (DACs). In contrast to most existing results, we assume that the system operates over a frequency-selective wideband channel and uses orthogonal frequency division multiplexing (OFDM) to simplify equalization at the user equipments (UEs). Furthermore, we consider the practically relevant case of oversampling DACs. We theoretically analyze the uncoded bit error rate (BER) performance with linear precoders (e.g., zero forcing) and quadrature phase-shift keying using Bussgang's theorem. We also develop a lower bound on the information-theoretic sum-rate throughput achievable with Gaussian inputs, which can be evaluated in closed form for the case of 1-bit DACs. For the case of multi-bit DACs, we derive approximate, yet accurate, expressions for the distortion caused by low-precision DACs, which can be used to establish lower bounds on the corresponding sum-rate throughput. Our results demonstrate that, for a massive MU-MIMO-OFDM system with a 128-antenna BS serving 16 UEs, only 3--4 DAC bits are required to achieve an uncoded BER of 10^-4 with a negligible performance loss compared to the infinite-resolution case at the cost of additional out-of-band emissions. Furthermore, our results highlight the importance of taking into account the inherent spatial and temporal correlations caused by low-precision DACs

    A Spatial Sigma-Delta Approach to Mitigation of Power Amplifier Distortions in Massive MIMO Downlink

    Full text link
    In massive multiple-input multiple-output (MIMO) downlink systems, the physical implementation of the base stations (BSs) requires the use of cheap and power-efficient power amplifiers (PAs) to avoid high hardware cost and high power consumption. However, such PAs usually have limited linear amplification ranges. Nonlinear distortions arising from operation beyond the linear amplification ranges can significantly degrade system performance. Existing approaches to handle the nonlinear distortions, such as digital predistortion (DPD), typically require accurate knowledge, or acquisition, of the PA transfer function. In this paper, we present a new concept for mitigation of the PA distortions. Assuming a uniform linear array (ULA) at the BS, the idea is to apply a Sigma-Delta (ΣΔ\Sigma \Delta) modulator to spatially shape the PA distortions to the high-angle region. By having the system operating in the low-angle region, the received signals are less affected by the PA distortions. To demonstrate the potential of this spatial ΣΔ\Sigma \Delta approach, we study the application of our approach to the multi-user MIMO-orthogonal frequency division modulation (OFDM) downlink scenario. A symbol-level precoding (SLP) scheme and a zero-forcing (ZF) precoding scheme, with the new design requirement by the spatial ΣΔ\Sigma \Delta approach being taken into account, are developed. Numerical simulations are performed to show the effectiveness of the developed ΣΔ\Sigma \Delta precoding schemes

    Massive MIMO 1-Bit DAC Transmission: A Low-Complexity Symbol Scaling Approach

    Get PDF
    CCBY We study multi-user massive multiple-input singleoutput (MISO) systems and focus on downlink transmission for PSK modulation, where the base station (BS) employs a large antenna array with low-cost 1-bit digital-to-analog converters (DACs). The direct combination of existing beamforming schemes with 1-bit DACs is shown to lead to an error floor at mediumto- high SNR regime, due to the coarse quantization of the DACs with limited precision. In this paper, based on the constructive interference we consider both a quantized linear beamforming scheme where we analytically obtain the optimal beamforming matrix, and a non-linear mapping scheme where we directly design the transmit signal vector. Due to the 1-bit quantization, the formulated optimization for the non-linear mapping scheme is shown to be non-convex. The non-convex constraints of the 1-bit DACs are firstly relaxed into convex, followed by an element-wise normalization to satisfy the 1-bit DAC transmission. We further propose a low-complexity symbol scaling scheme that consists of three stages, in which the quantized transmit signal on each antenna element is selected sequentially. Numerical results show that the proposed symbol scaling scheme achieves a comparable performance to the optimization-based non-linear mapping approach, while the corresponding performance-complexity tradeoff is more favorable for the proposed symbol scaling method

    Nonlinear Precoding for Phase-Quantized Constant-Envelope Massive MU-MIMO-OFDM

    No full text
    We propose a nonlinear phase-quantized constant-envelope precoding algorithm for the massive multi-user (MU) multiple-input multiple-output (MIMO) downlink. Specifically, we adapt the squared-infinity norm Douglas-Rachford splitting (SQUID) precoder to systems that use oversampling digital-to-analog converters (DACs) at the base station (BS) and orthogonal frequency-division multiplexing (OFDM) to communicate over frequency-selective channels. We demonstrate that the proposed SQUID-OFDM precoder is able to generate transmit signals that are constrained to constant envelope, which enables the use of power-efficient analog radio-frequency circuitry at the BS. By quantizing the phase of the resulting constant-envelope signal, we obtain a finite-cardinality transmit signal that can be synthesized by low-resolution (e.g., 1-bit) DACs. We use error-rate simulations to demonstrate the superiority of SQUID-OFDM over linear-quantized precoders for massive MU-MIMO-OFDM systems

    Massive Multi-Antenna Communications with Low-Resolution Data Converters

    Get PDF
    Massive multi-user (MU) multiple-input multiple-output (MIMO) will be a core technology in future cellular communication systems. In massive MU-MIMO systems, the number of antennas at the base station (BS) is scaled up by several orders of magnitude compared to traditional multi-antenna systems with the goals of enabling large gains in capacity and energy efficiency. However, scaling up the number of active antenna elements at the BS will lead to significant increases in power consumption and system costs unless power-efficient and low-cost hardware components are used. In this thesis, we investigate the performance of massive MU-MIMO systems for the case when the BS is equipped with low-resolution data converters.First, we consider the massive MU-MIMO uplink for the case when the BS uses low-resolution analog-to-digital converters (ADCs) to convert the received signal into the digital domain. Our focus is on the case where neither the transmitter nor the receiver have any a priori channel state information (CSI), which implies that the channel realizations have to be learned through pilot transmission followed by BS-side channel estimation, based on coarsely quantized observations. We derive a low-complexity channel estimator and present lower bounds and closed-form approximations for the information-theoretic rates achievable with the proposed channel estimator together with conventional linear detection algorithms. Second, we consider the massive MU-MIMO downlink for the case when the BS uses low-resolution digital-to-analog converters (DACs) to generate the transmit signal. We derive lower bounds and closed-form approximations for the achievable rates with linear precoding under the assumption that the BS has access to perfect CSI. We also propose novel nonlinear precoding algorithms that are shown to significantly outperform linear precoding for the extreme case of 1-bit DACs. Specifically, for the case of symbol-rate 1-bit DACs and frequency-flat channels, we develop a multitude of nonlinear precoders that trade between performance and complexity. We then extend the most promising nonlinear precoders to the case of oversampling 1-bit DACs and orthogonal frequency-division multiplexing for operation over frequency-selective channels.Third, we extend our analysis to take into account other hardware imperfections such as nonlinear amplifiers and local oscillators with phase noise.The results in this thesis suggest that the resolution of the ADCs and DACs in massive MU-MIMO systems can be reduced significantly compared to what is used in today\u27s state-of-the-art communication systems, without significantly reducing the overall system performance
    corecore