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Abstract
Massive multi-user (MU) multiple-input multiple-output (MIMO) will be a core tech-
nology in future cellular communication systems. In massive MU-MIMO systems, the
number of antennas at the base station (BS) is scaled up by several orders of magnitude
compared to traditional multi-antenna systems with the goals of enabling large gains
in capacity and energy efficiency. However, scaling up the number of active antenna
elements at the BS will lead to significant increases in power consumption and system
costs unless power-efficient and low-cost hardware components are used. In this thesis,
we investigate the performance of massive MU-MIMO systems for the case when the BS
is equipped with low-resolution data converters.

First, we consider the massive MU-MIMO uplink for the case when the BS uses low-
resolution analog-to-digital converters (ADCs) to convert the received signal into the dig-
ital domain. Our focus is on the case where neither the transmitter nor the receiver have
any a priori channel state information (CSI), which implies that the channel realizations
have to be learned through pilot transmission followed by BS-side channel estimation,
based on coarsely quantized observations. We derive a low-complexity channel estimator
and present lower bounds and closed-form approximations for the information-theoretic
rates achievable with the proposed channel estimator together with conventional linear
detection algorithms.

Second, we consider the massive MU-MIMO downlink for the case when the BS uses
low-resolution digital-to-analog converters (DACs) to generate the transmit signal. We
derive lower bounds and closed-form approximations for the achievable rates with linear
precoding under the assumption that the BS has access to perfect CSI. We also propose
novel nonlinear precoding algorithms that are shown to significantly outperform linear
precoding for the extreme case of 1-bit DACs. Specifically, for the case of symbol-rate
1-bit DACs and frequency-flat channels, we develop a multitude of nonlinear precoders
that trade between performance and complexity. We then extend the most promising
nonlinear precoders to the case of oversampling 1-bit DACs and orthogonal frequency-
division multiplexing for operation over frequency-selective channels.

Third, we extend our analysis to take into account other hardware imperfections such
as nonlinear amplifiers and local oscillators with phase noise.

The results in this thesis suggest that the resolution of the ADCs and DACs in mas-
sive MU-MIMO systems can be reduced significantly compared to what is used in today’s
state-of-the-art communication systems, without significantly reducing the overall sys-
tem performance.

Keywords: Massive multi-user multiple-input multiple-output, analog-to-digital con-
verter, digital-to-analog converter, quantization, hardware impairments, beamforming,
channel estimation, linear combing, linear precoding, nonlinear precoding, convex opti-
mization, orthogonal frequency-division multiplexing.
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CHAPTER 1

Introduction

1.1 Background
Information and communication technologies have enabled a digital transformation of
society and industry, making it possible to share information and collaborate on a global
scale. Today, we are on the brink of living in a networked society, where everyone and
everything that can benefit from being connected will be connected.

Since the emergence of mobile communication in the early 1980s, a new generation of
cellular networks has appeared roughly every ten years, leading up to the first commercial
deployments of fifth generation (5G) cellular networks in the second quarter of 2019.
Fig. 1.1 shows the worldwide number of mobile subscriptions by technology according to
the Ericsson Mobility Report [1]. Today, the total number of mobile subscriptions exceeds
7.9 billion (which corresponds to 1.04 mobile subscriptions per capita) with Long-Term
Evolution (LTE), used in fourth generation (4G) cellular networks, being the dominant
radio-access technology. The radio-access technology embodying 5G is known as New
Radio (NR) and was standardized by the third generation partnership project (3GPP)
for nonstandalone and standalone operation in 2017 and 2018, respectively [2]. With
5G-compatible mobile devices becoming increasingly available, it is predicted that the
number of NR subscriptions will grow rapidly. In fact, the number of NR subscriptions
is foreseen to account for over 20% of all mobile subscriptions by the end of 2024 [1].
With a growing demand for high-speed, ultra-reliable, low-latency, and energy-efficient

wireless communications, combined with a crowded radio spectrum, the development of
5G cellular networks is combating a multifaceted challenge. Emerging 5G use cases
include autonomous vehicle control, intelligent transport systems, factory automation,
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Figure 1.1: Mobile subscriptions by radio access technology (excluding MTC connections and
FWA subscriptions) according to the Ericsson Mobility Report [1].

smart grids, high-definition video streaming, augmented and virtual reality, fixed wire-
less access (FWA) to households, and providing coverage to users in high-mobility sce-
narios [3, 4]. The use cases targeted by 5G are often categorized into three distinct
classes, namely, enhanced mobile broadband (EMBB), massive machine-type communi-
cation (MTC), and ultra-reliable low-latency communication (URLLC) [5, 6].

• EMBB is the natural evolution of the existing mobile broadband connectivity pro-
vided by today’s cellular networks [5]. The goal is to provide enhanced coverage
(e.g., to provide a reliable internet connection to spectators in a crowded stadium
and to passengers in a high-speed train) and to meet the extreme requirements on
data rate and traffic volume put on cellular networks by increased human-centric
communication. Demanding EMBB services include high-definition video stream-
ing, social networking, augmented and virtual reality, and online gaming [1].

• Massive MTC involves providing wide-area coverage to a large number (e.g., tens
of billions) of low-complexity machine-type devices (e.g., remote sensors, actua-
tors, and wearables), which are assumed to transmit sporadically short data pack-
ets [7, 8]. Key requirements include very low device cost and energy consumption,
scalability, and deep indoor penetration. Supporting high data rates is, typically,
of less importance.
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Figure 1.2: Monthly mobile data traffic according to the Ericsson Mobility Report [1].

• URLLC involves providing wireless connectivity to mission-critical applications
with stringent requirements on reliability and latency. Use cases that fall into this
category include real-time control of manufacturing processes in smart factories,
remote medical surgery, and traffic safety [8, 9].

Fig. 1.2 shows a forecast of worldwide monthly data traffic according to the Ericsson
Mobility Report [1]. Mobile data traffic is expected to increase by about 30% annually
to surpass 130 exabytes per month by 2024 (with 35% of this traffic being carried by 5G
networks). This immense growth in mobile data traffic is fueled on by the increase in the
number of mobile subscriptions (see Fig. 1.1) and by a significant increase in the average
data traffic per subscription (for example, the average mobile data traffic per smartphone
in 2017 was 2.3 gigabytes per month, compared to 1.6 gigabytes per month in 2016) [10]
In order to meet these ever-increasing traffic demands, technologies used in the LTE
system embodying 4G must be complemented with a set of new, and possibly disruptive,
technologies [11–13]. In particular, to support demanding EMBB services, 5G cellular
networks must utilize advanced multi-antenna technologies and support communication
over the wide bandwidths available in the millimeter-wave part of the radio spectrum.

The spectrum in the ultra high frequency (UHF) band, ranging from 300MHz to 3GHz,
used in today’s cellular communication systems is becoming increasingly crowded. This
has motivated an exploration of the vast amount of underutilized spectrum in the super
high frequency (SHF) and extremely high frequency (EHF) bands with frequencies in
the millimeter-wave range from 3GHz to 300GHz [14]. In fact, the first release of NR
already supports operation in both unlicensed and licensed frequency bands from below
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Figure 1.3: Data rates supported in wired and wireless communication standards for consumer
electronics [18, Fig, 2.3]. Wireless standards that utilize MIMO technology are
written in bold letters.

1GHz up to 52.6GHz [6]. Challenges with millimeter-wave cellular communication in-
clude propagation issues such as high penetration loss, low diffraction around obstacles,
atmospheric absorption, and foliage attenuation [15,16]. Furthermore, there is an abun-
dance of hardware-related challenges involved with increasing the carrier frequency [17].
Multiple-input multiple-output (MIMO) technology (i.e., using multiple antenna ele-

ments at both the transmitter and the receiver) is used in both LTE [19,20] and NR [2,5]
to improve system performance. MIMO is also a key technology component in modern
Wi-Fi standards [21, 22]. Fig. 1.3 shows data rates supported by common wired and
wireless communication standards for consumer electronics, as reported in [18, Fig. 2.3].
We note that, in agreement with Edholm’s law [23], data rates supported by wireless
communication standards are rapidly approaching data rates supported by wired com-
munication standards—MIMO technology has played an integral role in narrowing the
gap. Advantages with MIMO technology include robustness towards fading (spatial diver-
sity), directional transmission and reception using beamforming, and improved spectral
efficiency by carrying multiple data streams in the same time-frequency resource (spatial
multiplexing). Beamforming involves coherently processing the signal at the different an-
tenna elements at the base station (BS) in such a way that the radiated or received energy
is focused in a specific direction. Spatial multiplexing can be used for both single-user
(SU) and multi-user (MU) communication. In SU-MIMO, the multiple data streams
are transmitted to (or received from) a single multi-antenna user equipment (UE). In
MU-MIMO, a plurality of single-antenna or multi-antenna UEs are served in the same
time-frequency resource.
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Equipping the BS with a large number (e.g., in the order of hundreds or even thou-
sands) of active antenna elements compared to the number of UEs—a system architecture
solution often referred to as massive MU-MIMO—is a potentially disruptive MU-MIMO
technology foreseen to be a key technology component in 5G cellular networks. Massive
MU-MIMO promises significant gains in, e.g., spectral efficiency and energy efficiency
compared to traditional small-scale SU-MIMO and MU-MIMO systems [24–29]. Further-
more, the large beamforming gain achievable with a massive number of antenna elements
will be crucial to counteract the high propagation loss in millimeter-wave systems [30].

Scaling up the number of active antenna elements at the BS will, however, lead to sig-
nificant increases in radio frequency (RF) circuitry power consumption and system costs
unless power-efficient and low-cost hardware components are used [26]. Such low-cost
hardware components will, however, reduce the signal quality due to hardware imper-
fections. There are several hardware imperfections in practical radio transceivers; for
example, phase noise in local oscillators (LOs), nonlinearities in power amplifiers (PAs)
and low-noise amplifier (LNAs), in-phase/quadrature imbalance in mixers, and quantiza-
tion noise in data converters. Fortunately, massive MU-MIMO has been shown to exhibit
some resilience towards the use of low-precision hardware (see, e.g., [31–36]). Neverthe-
less, practical deployment of massive MU-MIMO will require novel design approaches
that jointly reduce system costs and circuit power consumption, without severely de-
grading the spectral efficiency and reliability.

1.2 Scope of the Thesis
The specific focus of this thesis is on the impact of using low-resolution data converters
in massive MU-MIMO systems. We shall restrict our analysis to the case of homodyne
transceivers in which down-conversion of RF signals to baseband and up-conversion of
baseband signals to RF is performed in the analog domain using an LO and a mixer [37,
Chapter 10]. More specifically, we assume that in the massive MU-MIMO uplink (multi-
ple UEs transmit to the BS), a pair of low-resolution analog-to-digital converters (ADCs)
is used per antenna at the BS to convert the in-phase and quadrature components of
the received analog baseband signal into digital domain. Conversely, in the massive MU-
MIMO downlink (BS transmits to multiple UEs), a pair of low-resolution digital-to-analog
converters (DACs) is used per antenna at the BS to convert the in-phase and quadrature
components of the digital transmit baseband signal into analog domain. High-speed and
high-resolution data converters are power-hungry devices [38–40]. Hence, architectures
involving low-resolution data converters are attractive for massive MU-MIMO systems,
where the total number of data converters at the BS could be in the order of hundreds
or even thousands. The question at the core of this thesis is whether the aforementioned
massive MU-MIMO gains, which were theoretically derived under the assumption of ideal
hardware, survive in the presence of significant impairments due to low-resolution data
converter solutions.
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An alternative to reducing the resolution of the data converters per RF chain in massive
MU-MIMO is to instead reduce the number of RF chains and divide the required beam-
forming between the analog and digital domain [40–42]. In such hybrid-beamforming
architectures, a large set of analog phase shifters are connected to a significantly smaller
set of data converters [43]. The use of low-resolution data converters combined with hy-
brid beamforming is considered in [44–46]. Throughout this thesis, we shall exclusively
focus on digital-beamforming architectures in which each antenna element is connected
to a pair of ADCs and a pair of DACs.
The specific objectives of this thesis can be summarized as follows.

I To characterize the uplink throughput achievable in a massive MU-MIMO system
for scenarios in which the BS employs low-resolution ADCs.

II To design low-complexity channel estimation and data detection algorithms that,
together with modern coding techniques, are able to approach the uplink through-
put unveiled in Objective I.

III To characterize the downlink throughput achievable in a massive MU-MIMO sys-
tem for scenarios in which the BS employs low-resolution DACs.

IV To develop low-complexity precoding algorithms that, together with modern coding
techniques, are able to approach the downlink throughput unveiled in Objective III.

1.3 Organization of the Thesis
This thesis is formatted as a collection of papers and divided into two parts. Part I
serves as an introduction to Part II consisting of the included papers. The remainder
of Part I of the thesis is organized as follows. A brief introduction to the massive MU-
MIMO uplink and downlink is provided in Chapter 2. In Chapter 3, the basic building
blocks of an ADC and a DAC are introduced, and the operation of a quantizer is ex-
plained in detail. Bussgang’s theorem, which is a useful tool for analyzing the impact
of nonlinearities in massive MU-MIMO systems, is introduced in Chapter 4. Chapter 5
introduces the massive MU-MIMO uplink and downlink for the case when low-resolution
data converters are used at the BS. Finally, the contributions of the included papers are
summarized in Chapter 6.

1.4 Notation
This section describes the notation used in Part I of this thesis. Lowercase and uppercase
boldface letters designate column vectors and matrices, respectively. The identity matrix
of size M ×M is denoted by IM and the M ×N all-zeros matrix is denoted by 0M×N .
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1.4 Notation

For a matrix A, its complex conjugate, transpose, and Hermitian transpose is denoted
A∗, AT , and AH , respectively. The trace and the main diagonal of A are denoted
by tr(A) and diag(A), respectively. The M ×M matrix diag(a) is diagonal with the
elements of the M -dimensional vector a along its main diagonal. The determinant of
A is denoted by det(A). We use A � 0M×M to indicate that the M ×M matrix A
is positive semidefinite. The floor function brc produces the largest integer less than
or equal to r ∈ R. We use sgn( · ) to denote the signum function, which is applied
element-wise to vectors and defined as sgn(r) = 1 if r ≥ 0 and sgn(r) = −1 if r < 0.
We further use 1A(a) to denote the indicator function, which is defined as 1A(a) = 1
for a ∈ A and 1A(a) = 0 for a /∈ A. The real and the imaginary parts of a complex
vector a are denoted by <{a} and ={a}, respectively. The `2-norm of a vector a is
denoted by ‖a‖2. The real-valued zero-mean Gaussian distribution with covariance R ∈
RM×M is denoted by N (0M×1,R). The complex-valued circularly symmetric Gaussian
distribution with covariance C ∈ CM×M is denoted by CN (0M×1,C). The uniform
distribution on the interval (a, b) is denoted by U(a, b). The probability density function
(PDF) of a continuous random variable x is written as fx, the joint PDF of two continuous
random variables x and y is written as fx,y, and the conditional PDF of y given x

is written as fy|x. For two continuous random variables x and y with corresponding
PDFs fx and fy, the Kullback-Leibler divergence between fx and fy is D(fx‖fy) =∫∞
−∞ fx(ω) log2(fx(ω)/fy(ω)) dω. The mutual information between two random variables
x and y is I(x; y) = D(fx,y‖fxfy). The binary entropy function isH(ε) = −ε log2(ε)−(1−
ε) log2(1− ε). The cumulative distribution function of the standard normal distribution
is Φ(x) = 1√

2π

∫ x
−∞ exp

(
−u2/2

)
du. Finally, we use Ex[ · ] to denote expectation with

respect to the random variable x.

9





CHAPTER 2

Fundamentals of Massive MU-MIMO

In this chapter, we introduce the basics of massive MU-MIMO uplink and downlink
communications. A single-cell massive MU-MIMO system, as illustrated in Fig. 2.1, is
considered. The system consists of a BS with B antennas that simultaneously serves U ≤
B single-antenna UEs in the same time-frequency resource using spatial multiplexing.
Throughout this chapter, we shall assume, for simplicity, that the system operates over a
frequency-flat channel and that all hardware components, including the ADCs and DACs,
are ideal. The wireless channel connecting the UEs to the BS is modeled as memoryless
block-fading channel, i.e., a channel that remains constant during a coherence interval
of T = tcohfcoh consecutive symbol transmissions (channel uses), before changing into
a new independent realization. Here, tcoh is the coherence time (measured in seconds)
and fcoh is the coherence bandwidth (measured in Hertz). The average number of bits
conveyed during a channel use is denoted by R and is called the rate (measured in bits
per channel use or, equivalently, in bits per second per Hertz). A rate R is said to be
achievable if there exist a sequence of codes operating at rate R for which the average
error probability tends to zero as the length of the codewords tends to infinity. The
channel capacity is defined as the supremum of all achievable rates [47, Chapter 3].

The rest of this chapter is organized as follows. In Sec. 2.1, we introduce the time-
division duplexing (TDD) scheme used to separate uplink and downlink transmissions.
In Sec. 2.2, we introduce the massive MU-MIMO uplink system model and provide the
sum rate achievable with linear combing, Gaussian signaling, and perfect BS-side channel
state information (CSI). In Sec. 2.3, we introduce the massive MU-MIMO downlink sys-
tem model and provide the sum rate achievable with linear precoding, Gaussian signaling,
and perfect BS-side CSI. Finally, we discuss channel estimation in Sec. 2.4.
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Figure 2.1: A single-cell multiuser MIMO system where U single-antenna UEs are served by a
B-antenna BS in the same time-frequency resource through spatial multuplexing.

2.1 Time-Division Duplexing
Throughout the thesis, it is assumed that the system operates in TDD mode, which
implies that uplink and downlink transmissions take place in the same frequency spectrum
but in different time slots. The TDD frame structure is illustrated in Fig. 2.2. We use
T ul and T dl (for which it holds that T ul + T dl = T ) to denote the number of symbols
transmitted during the uplink and downlink phase, respectively. In every coherence
interval, the UEs transmit T ul

p ≥ U pilot symbols (which are known to the BS) and T ul
d

data symbols during the uplink phase (where T ul
p + T ul

d = T ul). The pilot symbols allow
the BS to acquire CSI, which, in turn, is used for detecting the data symbols. The CSI is
also used for precoding the T dl data symbols transmitted from the BS to the UEs during
the downlink phase.

2.2 Uplink Transmission
The discrete-time complex baseband signal received over the B BS antennas during the
uplink phase of an arbitrary coherence interval can be written as

yul[n] = H sul[n] + wul[n] (2.1)

12
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Uplink pilot

transmission

Uplink data

transmission

Downlink data

transmission

Coherence interval, T

T ul
p T ul

d T dl

Figure 2.2: TDD frame structure. The UEs transmit pilots and data symbols in the uplink.
The BS transmits data symbols in the downlink.

for n = 0, 1, . . . , T ul − 1. Here, the vector sul[n] =
[
sul

1 [n], sul
2 [n], . . . , sul

U [n]
]T ∈ CU ,

which have independent and identically distributed entries, contains the symbols trans-
mitted from all UEs. The transmitted symbols satisfies the average power constraint
E
[
|sul
u [n]|2

]
= P ul for u = 1, 2, . . . , U , where P ul is the UE transmit power. The vec-

tor wul[n] ∼ CN
(
0B×1, N

ul
0 IB

)
is the BS-side additive white Gaussian noise (AWGN),

where Nul
0 is the one-sided power spectral density (PSD) of the AWGN. Furthermore,

H ∈ CB×U is the channel matrix. In what follows, we model the entries of H as inde-
pendent and CN (0, 1)-distributed (Rayleigh fading).

In this section, we shall assume that the BS has noncausal access to perfect CSI, i.e.,
the BS knows perfectly the realizations of the channel matrix H. This assumption is
reasonable only for very long coherence intervals, for which the pilot overhead can be ne-
glected. For shorter coherence intervals, more pilot symbols will have to be transmitted to
keep up-to-date with the time-varying channel. In this case, the rate loss associated with
the transmission of pilots can not be neglected and perfect CSI can not be guaranteed.

With perfect CSI at the BS, the ergodic sum-rate capacity of the channel input-output
model (2.1) is [48, Chapter 10]

Cul = EH

[
log2

(
det
(

IB + SNRul HHH
))]

(2.2)

where SNRul = P ul/Nul
0 is the uplink signal-to-noise ratio (SNR).

The sum-rate capacity in (2.2) can be achieved by performing minimum mean-square
error (MMSE) together with successive interference cancellation (SIC) at the BS. Unfor-
tunately, the computational complexity associated with implementing MMSE-SIC is pro-
hibitively high, especially for massive MU-MIMO systems that simultaneously serve sev-
eral UEs using a large number of BS antennas. Linear combining algorithms—although
inferior to nonlinear processing algorithms such as MMSE-SIC—are less computationally
demanding and, as will be shown next, yield near-optimal performance when the number
of BS antennas exceed by far the number of UEs. With linear combining at the BS, an
estimate zul[n] =

[
zul

1 [n], zul
2 [n], . . . , zul

U [n]
]T ∈ CU of the transmitted symbols sul[n] is

13



Chapter 2 Fundamentals of Massive MU-MIMO

obtained as follows:

zul[n] = Ayul[n]. (2.3)

Here, A ∈ CU×B is the combing matrix. It follows from (2.1) and (2.3) that

zul
u [n] = aTuhusul

u [n] +
∑
v 6=u

aTuhvsul
v [n] + aTuwul[n] (2.4)

for u = 1, 2, . . . , U . Here, hu ∈ CB is the uth column of H and au ∈ CB is the uth
column of AT . The first term on the right-hand side (RHS) of (2.4) corresponds to the
desired signal; the second term captures the MU interference; the third term corresponds
to the AWGN.

It can be shown (see, e.g., [49, Eq. (12)]) that the sum rate achievable with Gaussian
signaling and linear combing is

Rul =
U∑
u=1

EH

[
log2

(
1 + SINRul

u

)]
(2.5)

where

SINRul
u =

SNRul∣∣aTuhu
∣∣2

SNRul∑
v 6=u|aTuhv|2 + ‖au‖22

(2.6)

is the uplink signal-to-interference-and-noise ratio (SINR) for the uth UE.
Three conventional linear combining schemes are maximal-ratio combing (MRC), zero-

forcing (ZF) combing, and linear minimum mean-square error (LMMSE) combing [49].
The combing matrices associated with these schemes are

A =


HH , for MRC(
HHH

)−1 HH , for ZF(
HHH + 1

SNRul IU
)−1 HH , for LMMSE.

(2.7)

In Fig. 2.3, the sum rate achievable with Gaussian signaling and linear combing (2.5) is
shown as a function of the number of BS antennas B for the case U = 10 UEs and
SNRul = 0 dB. For reference, the rate achievable with MMSE-SIC (2.2) is also shown.
Note that the rate achievable with ZF and LMMSE approaches the rate achievable with
MMSE-SIC as the number of antennas grow large. This demonstrates that linear combing
achieves near-optimal performance in the massive MU-MIMO uplink.
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Figure 2.3: Uplink throughput for the case SNRul = 0 dB and U = 10UEs. As the number of
BS antennas grow large, linear detection offers near-optimal performance.

2.3 Downlink Transmission

The discrete-time complex baseband signal received at the U UEs antennas during the
downlink phase of an arbitrary coherence interval can be written as

ydl[n] = HTxdl[n] + wdl[n] (2.8)

for n = 0, 1, . . . , T dl − 1. Here, ydl[n] =
[
ydl

1 [n], ydl
2 [n], . . . , ydl

U [n]
]T ∈ CU is the received

signal at the U UEs and wdl[n] ∼ CN (0U×1, N
dl
0 IU ) is the AWGN at the UEs, where

Ndl
0 is the one-sided PSD of the AWGN. The transmitted signal over the B BS antennas,

xdl[n] ∈ CB , must satisfy the average power constraint

EH
[
‖xdl[n]‖22

]
≤ P dl. (2.9)

The capacity of the multiuser downlink channel has been characterized in [50–53].
When perfect CSI is available at the BS, dirty-paper coding (DPC) [54] is known to
achieve the sum-rate capacity of the channel (2.8). The ergodic sum-rate capacity of the
channel input-output model (2.8) is [55, Eq. (5)]

Cdl = EH

[
sup

diag(t)�0U×U , ‖t‖2
2≤1

log2

(
det
(

IB + SNRdl H diag(t)HH
))]

(2.10)

where SNRdl = P dl/Ndl
0 is the downlink SNR.

Practical implementations of DPC (see, e.g., [56–58]) are, however, computationally
demanding, with a complexity that scales unfavorably with the number of BS antennas.
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Chapter 2 Fundamentals of Massive MU-MIMO

Linear precoding on the other hand, is an attractive low-complexity approach to massive
MU-MIMO precoding, which offers competitive performance to DPC for large antenna
arrays [25]. With linear precoding, the transmitted signal can be written as

xdl[n] = αPsdl[n] (2.11)

where P ∈ CB×U is the precoding matrix and sdl[n] =
[
sdl

1 [n], sdl
2 [n], . . . , sdl

U [n]
]T ∈ CU ,

where sdl
u [n] is the symbol intended for the uth UE. These symbols are mutually orthog-

onal and adhere to the average power constraint E
[
|su[n]|2

]
= P dl for u = 1, 2, . . . , U .

Furthermore, α ∈ R is chosen to satisfy the power constraint (2.9), i.e.,

α = EH
[
tr
(
PPH

)]−1/2
. (2.12)

It follows from (2.8) and (2.11) that

ydl
u [n] = αhTupusdl

u [n] +
∑
v 6=u

αhTupvsdl
v [n] + wdl

u [n] (2.13)

for u = 1, 2, . . . , U . Here, pu ∈ CB corresponds to the uth column of the precoding
matrix P. The first term on the RHS of (2.13) corresponds to the desired signal; the
second term captures the MU interference; the third term corresponds to the AWGN. It
can be shown (see, e.g., [59, Eq. (12)]) that the ergodic sum-rate achievable with Gaussian
signaling and linear precoding is

Rdl = EH

[
U∑
u=1

log2

(
1 + SINRdl

u

)]
(2.14)

where

SINRdl
u =

SNRdl∣∣hTupu
∣∣2

SNRdl∑
v 6=u|hTupv|2 + 1/α2

(2.15)

is the downlink SINR for the uth UE. Here, we have assumed that the effective channel
gain αhTupu ∈ C in (2.13) is known to the uth UE.
Three conventional linear precoders are maximal-ratio transmission (MRT), ZF pre-

coding, and LMMSE precoding. The precoding matrices associated with these linear
precoders are

P =


H∗, for MRT
H∗
(
HTH∗

)−1
, for ZF

H∗
(
HTH∗ + U

SNRdl IU
)−1

, for LMMSE.
(2.16)

In Fig. 2.4, the sum-rate achievable with linear precoding (2.14) is shown as a function
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Figure 2.4: Downlink throughput for the case SNRdl = 0 dB and U = 10UEs. As the number
of BS antennas grow large, linear precoding offers near-optimal performance.

of the number of BS antennas B for the case U = 10 and SNRdl = 0 dB. For reference,
the rate achievable with DPC (2.10) is also shown (for the case of equal power allocation
to the UEs). As the number of BS antennas grow large, the rate achievable with ZF and
LMMSE precoding approaches the rate achievable with DPC, which demonstrates that
linear precoding is near-optimal for large antenna arrays.

2.4 Channel Estimation

The uplink and downlink rates reported in (2.2), (2.5), (2.10), and (2.14) are valid for
the case of perfect CSI at the BS. In practice, however, the channel realizations are not
known a priori to the BS. Therefore, T ul

p ≥ U symbol transmissions are reserved for the
transmission of pilot symbols, which are used at the BS to perform channel estimation.
Let S =

[
sul[0], sul[1], . . . , sul[T ul

p − 1]
]
∈ CU×T

ul
p denote the pilot symbols transmitted

from the U UEs during the uplink training phase. The pilot sequences used by the
different UEs are typically assumed to be mutually orthogonal, such that

SSH = T ul
p P

ulIU×U . (2.17)

With this assumption, the LMMSE estimate of H is given by (see, e.g., [28, Sec. 3.1])

Hest = 1
T ul

p P
ul +Nul

0
YSH (2.18)
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Chapter 2 Fundamentals of Massive MU-MIMO

where Y = HS + W and W =
[
wul[0],wul[1], . . . ,wul[T ul

p − 1]
]
∈ CB×T

ul
p . It follows

that the channel matrix H can be decomposed as (see, e.g., [60, Chapter 12])

H = Hest + E (2.19)

where the channel estimation error E ∈ CB×U , which has independent and identically dis-
tributed CN (0, Nul

0 /(T ul
p P

ul +Nul
0 )) elements, is uncorrelated with the channel estimate

Hest. Note that channel estimation is performed separately at each antenna element.
Hence, the quality of the channel estimate improves with the number of pilot symbols
and with the SNR, but not with the number of antenna elements.
The channel estimate Hest is used instead of H to compute the linear combining

matrix in (2.7) and the linear precoding matrix in (2.16), which will, inevitably, reduce
the achievable rate since the channel estimates are not perfect. Furthermore, the pilot
overhead will incur additional rate loss. Uplink and downlink rates achievable with
imperfect CSI and linear processing have been reported in, e.g., [49, 59].
The results in this chapter are valid for massive MU-MIMO systems that are equipped

with ideal hardware components. In practice, however, massive MU-MIMO systems will
have to make use of nonideal hardware components, which will reduce the signal quality
due to hardware impairments. For the remainder of the thesis, it will be assumed that
the BS is equipped with low-resolution ADCs and DACs.
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CHAPTER 3

Data Converters

Digital signal processing (DSP) is an integral part of all modern cellular systems. In
the massive MU-MIMO uplink, in order to process data digitally, the analog signal re-
ceived at each BS antenna is converted into the digital domain—a process that involves
discretization in both time and amplitude. The device that performs these operations is
called an ADC. Conversely, in the massive MU-MIMO downlink, the digital representa-
tion of the transmit signal at each BS antenna is converted into an analog waveform by
a DAC before being transmitted over the wireless channel.

3.1 Quantization

The process of converting a continuous-amplitude signal into a discrete-amplitude signal
is known as quantization. We define a Q-bit quantizer by a set of 2Q quantization labels
L = {`0, `1, . . . , `2Q−1} and a set of 2Q+ 1 quantization thresholds T = {τ0, τ1, . . . , τ2Q},
where −∞ = τ0 < τ1 < · · · < τ2Q =∞. Let y ∈ R denote the input to the quantizer and
let r ∈ L denote the corresponding output. The output of the quantizer is

r = QR(y) (3.1)

where

QR(y) =
2Q−1∑
q=0

`q1[τq,τq+1)(y) (3.2)
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Figure 3.1: Input-output relation for (a) a 1-bit quantizer, (b) a 3-bit uniform quantizer, and
(c) a 3-bit nonuniform quantizer.

denotes the real-valued quantization function, which is applied element-wise to vectors.
The quantizer is said to be symmetric and uniform if the quantization labels are

`q = ∆
(
q − 2Q−1 + 1/2

)
for q = 0, 1, . . . , 2Q − 1 and if the quantization thresholds are

τq = ∆
(
q − 2Q−1) for q = 1, 2, . . . , 2Q − 1. Here, ∆ is the step size of the uniform

quantizer. If these conditions are not fulfilled, the quantizer is said to be nonuniform.
For uniform quantizers, the quantization function in (3.2) simplifies to

QR(y) =


∆
2
(
1− 2Q

)
, if y < −γ

∆
⌊
y
∆ + 1

2
⌋
, if 2Q is odd and |y| < γ

∆
⌊
y
∆
⌋

+ ∆
2 , if 2Q is even and |y| < γ

∆
2
(
2Q − 1

)
, if y > γ.

(3.3)

Here, γ = ∆2Q−1 is the clipping level of the uniform quantizer. If the number of quan-
tization labels is odd, the uniform quantizer has a label at zero and is called a midtread
quantizer. If the number of quantization levels is even, the uniform quantizer has a
threshold at zero and is called a midrise quantizer. For the extreme case of 1-bit quan-
tization, the quantization function in (3.3) reduces to

QR(y) = ∆
2 sgn(y). (3.4)

Fig. 3.1 shows the input-output relation for a 1-bit quantizer (Fig. 3.1a), a 3-bit uniform
quantizer (Fig. 3.1b), and a 3-bit nonuniform quantizer (Fig. 3.1c).
The process of mapping a continuous-amplitude signal into a finite set of quantization

labels will inevitably introduce a quantization error

e = r − y. (3.5)
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3.1 Quantization

Table 3.1: MSE-optimal step size for a N (0, 1)-distributed input.

Number of bits, Q 1 2 3 4 5 6
Step size, ∆ 1.596 0.9957 0.5860 0.3352 0.1880 0.1040

1 2 3 4 5 6
−40
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Figure 3.2: MSE after uniform and nonuniform quantization of a N (0, 1)-distributed input.

The step size ∆ impacts the amount of error caused by a uniform quantizer. If ∆ is too
small, then there will be significant overload distortion (i.e., the error |e| > ∆/2 caused
by inputs for which it holds that |y| > γ). On the other hand, if ∆ is too large, then
there will be excessive granular distortion (i.e., the error |e| ≤ ∆/2 caused by inputs for
which it holds that |y| ≤ γ). The mean square error (MSE) between the quantizer input
and output is defined as MSE = Ey

[
(r − y)2]. The MSE-optimal choice of step size

depends on the PDF of the input to the quantizer [61]. In this work, we shall commonly
consider quantization of Gaussian signals. For Gaussian-distributed inputs, the step size
that minimizes the MSE is, in general, not available in closed form but can easily be
found using numerical methods (see, e.g., [62,63]). Table 3.1 lists the MSE-optimal step
size for y ∼ N (0, 1) and for Q ∈ {1, 2, . . . , 6}.

At this point, it is important to note that uniform quantizers are, in general, subopti-
mal. To demonstrate this, we show in Fig. 3.2 the MSE after uniform and nonuniform
quantization of a N (0, 1)-distributed input. For the case of uniform quantization, the
step size is set according to Table 3.1. For the case of nonuniform quantization, the MSE-
optimal set of quantization labels L and quantization thresholds T are obtained using
the Lloyd-Max algorithm [63, 64]. It becomes clear that the performance gap between
uniform quantization and nonuniform quantization grows larger as the number of bits
increase. However, for low-resolution (e.g., 1–3 bits) quantizers, nonuniform quantization
offers only marginal improvements compared to uniform quantization.
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(b) 2-bit uniform quantizer.
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(c) 3-bit uniform quantizer.

Figure 3.3: PDF of the quantization error for a N (0, 1)-distributed input. Approximating the
quantization error as a uniformly distributed random variable becomes increasingly
accurate as the number of bits grow large but is not an accurate approximation
for low-resolution uniform quantizers.

A commonly adopted model for the error caused by a uniform quantizer is to approx-
imate it as a noise term that is uncorrelated with the input and uniformly distributed in
the interval [−∆/2,∆/2], such that the PDF of e is (see, e.g., [65, Chapter 1.3], [66–69],
and [70, Chapter 4.8])

fe(e) ≈
{

1
∆ , −

∆
2 < e < ∆

2

0, otherwise.
(3.6)

This approximation is sometimes called the pseudo-quantization noise (PQN) model [71].
Let σ2

y = Ey
[
y2] and σ2

e = Ee
[
e2] denote the variance of the input and the quantiza-

tion error, respectively. Note that MSE = σ2
e for zero-mean inputs. Furthermore, let

ρye = Ey[ye] /(σyσe) denote the correlation between the input and the quantization error.
According to the PQN model, it holds that σ2

e ≈ 1
∆
∫∆/2
−∆/2 e

2de = ∆2/12 and ρye ≈ 0.
Next, we shall discuss the validity of the PQN model for the case of uniform quantization
of Gaussian signals.
In Fig. 3.3, we compare the PDF of the quantization error e with the approxima-

tion (3.6) for y ∼ N (0, 1) and for MSE-optimal uniform quantizers with Q ∈ {1, 2, 3}
bits. We observe that the PQN model becomes increasingly accurate as the number
of bits grow large. However, for low-resolution quantizers, there is a large discrepancy
between the PDF according to the PQN model and the true PDF. In particular, we note
that the quantization error is not contained within the interval [−∆/2,∆/2] for Gaussian
signals. Indeed, for finite-resolution quantizers, there will always be overload distortion
for input signals that have infinite support.
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Figure 3.4: Variance of the quantization error and correlation between the input and the quan-
tization error for a uniform quantizers and a N (0, 1)-distributed input. The PQN
model becomes increasingly accurate as the number of bits grow large but is not
an accurate approximation for low-resolution uniform quantizers.

In Fig. 3.4, we show the variance σ2
e and the correlation ρye as a function the step

size ∆ for y ∼ N (0, 1) and for uniform quantizers with Q ∈ {1, 2, 3} bits. Also shown
are the approximations σ2

e ≈ ∆2/12 and ρye ≈ 0 according to the PQN model We
start by noting from Fig. 3.4a that, for 1-bit quantization, the PQN model significantly
underestimates the variance of the quantization error. We further note from Fig. 3.4b
that quantization error is, in general, correlated with the input signal. In particular, if
the step size is set to minimize the MSE, there is a nonzero correlation between the input
and the quantization error.

We conclude from Fig. 3.3 and Fig. 3.4 that the widely-adopted PQN model is not
a suitable approximation for the quantization error caused by low-resolution (e.g., 1–3
bits) quantizers fed by Gaussian-distributed signals.

So far, we have only considered quantization of real-valued signals. For complex-valued
signals y ∈ C, it is commonly assumed that the real and imaginary components of the
input are quantized independently. In this case, the quantized signal can be written as

r = QC(y) (3.7)

where

QC(y) = QR(<{y}) + jQR(={y}) (3.8)

denotes the complex-valued quantization function.
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Figure 3.5: Block diagram of the basic functions of an ADC [65, Fig. 1.1a].

3.2 Analog-to-Digital Converters

A block diagram of the basic functions of an ADC is shown in Fig. 3.5. The process of
converting a continuous-time signal into a discrete-time signal is known as sampling.
Let fsamp denote the sampling rate of the ADC, which is measured in samples per
second (SPS). To ensure that the input to the sampling circuit adheres (at least ap-
proximately) to the sampling theorem, the analog input signal is passed through an
anti-aliasing filter (a low-pass filter) prior to the sampling circuit. Throughout this the-
sis, we shall assume that the anti-aliasing filter is an ideal low-pass filter with a cut-off
frequency fcut that equals half the the sampling rate, i.e., fcut = fsamp/2 such that any
out-of-band (OOB) interference present in the analog input does not enter into the sam-
pling circuit. We shall also assume that the sampling circuit is ideal (i.e., that there is
no sampling-time jitter).
The discrete-time, continuous-amplitude output of the sampling circuit is fed to Q-bit

quantizer, where Q is the resolution of the ADC (i.e., the number of ADC bits). While
the sampling operation incurs no loss of information for band-limited signals. we recall
from Sec. 3.1 that the nonlinear mapping of a continuous-amplitude signal into a finite
set of possible labels introduces an error between the input and output of the quantizer,
which can be made smaller by increasing the resolution of the ADC.
In an ideal ADC, the quantizer is the only source of distortion. Real-world ADCs,

however, introduce additional noise and distortion caused by, for example, sampling-time
jitter, integral nonlinearity, differential nonlinearity, and thermal noise [72, Chapter 6].
The effective number of bits (ENOB), which is defined as [65, Eq. (2.6)]

ENOB = SNDR [dB]− 1.76
6.02 (3.9)

is a widely used performance measure for real-world ADCs. Here, SNDR is the signal-to-
noise-and-distortion ratio (SNDR), which is defined as the root-mean-square of the input
to the ADC divided by the power of the noise and distortion terms that are present in
the output of the ADC. Some comments on (3.9) are in order. For the case when an ideal
Q-bit uniform quantizer is fed by a full-scale sinusoidal input γ sin(2πft + φ), where γ
is the clipping level of the quantizer, by using the PQN approximation (3.6), the SNDR

24



3.2 Analog-to-Digital Converters

can be approximated as follows:

SNDR [dB] ≈ 10 log10

(
12γ2f

∆2

∫ 1/f

0
sin2(2πft+ φ)dt

)
(3.10)

= 10 log10

(
6γ2

∆2

)
(3.11)

≈ 6.02Q+ 1.76. (3.12)

Here, in the last step, we used that γ = ∆2Q−1. By inserting (3.12) into (3.9), we get
that ENOB ≈ Q. Hence, in an ideal ADC, the ENOB is approximately equal to the
number of bits. For real-world ADCs that introduce additional noise and distortion, the
ENOB is typically a few bits (e.g., 1–3 bits) below the specified resolution (see, e.g., [73,
Fig. 4]). According to (3.9), increasing the resolution of an ADC by one bit improves
the SNDR by approximately 6 dB (a similar conclusion can be drawn from Fig. 3.2).
Unfortunately, as we shall see next, increasing the resolution of an ADC also increases
its power consumption.

A commonly used figure of merit (FOM) that relates the resolution and sampling rate
of an ADC to the power consumption is the so-called Walden’s FOM [73], which is based
on empirical observations and is defined as follows [74, Eq. (1)]:

FOMW = Pdiss

2ENOBfsnyq
. (3.13)

Here, Pdiss is the power dissipation of the ADC and fsnyq = fsamp/OSR is the Nyquist
sample rate, where OSR is the oversampling ratio (OSR). Walden’s FOM suggests that
the power consumption scales linearly with the conversion rate. Furthermore, it suggests
that increasing the resolution by one extra bit doubles the power consumption.
Another commonly used FOM is the so-called Schreier’s FOM [75, Chapter 9], which

is defined as follows [76, Eq. (13)]:

FOMS [dB] = SNDR [dB] + 10 log10

(
fsnyq

2Pdiss

)
(3.14)

≈ 6.02ENOB + 1.76 + 10 log10

(
fsnyq

2Pdiss

)
. (3.15)

Similarly to Walden’s FOM, Schreier’s FOM suggests that the power consumption scales
linearly with the conversion rate. However, differently from Walden’s FOM, it suggests
that increasing the resolution by extra one bit quadruples the power consumption.
In Fig. 3.6, we use the data collected in [77] to plot Walden’s FOM (Fig. 3.6a) and

Schreier’s FOM (Fig. 3.6b), as a function of the Nyquist sampling rate, for real-world
ADC designs presented at the International Solid-State Circuit Conference (ISSCC) and
at the very-large-scale integration (VLSI) circuit symposium from 1997 to 2019. Fur-
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Figure 3.6: Walden’s FOM and Schreier’s FOM as a function of the Nyquist data rate for ADC
designs presented at ISSCC and at the VLSI circuit symposium [74]. The envelope
lines are constructed from the 5–10 best designs as described in [74].
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Figure 3.7: Energy (Pdiss/fsnyq) versus ENOB for ADC designs presented at ISSCC and at
the VLSI circuit symposium [74]
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Figure 3.8: Block diagram of the basic functions of a DAC [65, Fig. 1.1b].

thermore, in Fig. 3.7, we plot the ratio Pdiss/fsnyq as the function of the ENOB. For
reference, we also show the ratio Pdiss/fsnyq obtained from (3.13) by inserting FOMW =
10−15 J/conversion step and from (3.15) by inserting FOMS = 185 dB. We observe from
Fig. 3.7 that Schreier’s FOM, which predicts that Pdiss ∝ 4ENOB, is a suitable metric for
high-resolution ADCs (e.g., for ENOB > 11 bits) whereas Walden’s FOM, which predicts
that Pdiss ∝ 2ENOB, is more suitable for low-to-moderate-resolution ADCs. In short, we
conclude from Fig. 3.6 and Fig. 3.7 that the power consumption of an ADC increases
exponentially with the the (effective) number of bits.
We further note from Fig. 3.6 that the power consumption increases super-linearly

with the Nyquist sampling rate for high-speed ADCs (e.g., for fsnyq > 100MHz). This
suggests that using low-resolution ADCs becomes a necessity for enabling efficient high-
speed communication over the large bandwidths available in the millimeter-wave part of
the radio spectrum.

In traditional MIMO systems, each RF port is connected to a pair of high-resolution
and, hence, power-hungry ADCs. For example, a commercial 500MSPS 16-bit ADC with
11.2 ENOB from Texas Instruments consumes 915mW [78]. Using such high-resolution
ADCs in a massive MU-MIMO system, where the number of antennas (and, hence,
the number of ADCs) are in the order of hundreds, would lead to excessively high power
consumption. Therefore, the resolution per BS-side ADC must be kept low in the massive
MU-MIMO uplink to maintain a reasonable power budget.

3.3 Digital-to-Analog Converters
A block diagram of the basic functions of a DAC is shown in Fig. 3.8. According to
this model, a DAC consists of a transcoder followed by a reconstruction stage. The
transcoder produces an analog sequence whose amplitude is the analog representation
of a digital code. The number of discrete amplitude levels in the transcoder output is
determined by the resolution of the DAC (i.e., the number of DAC bits). In this thesis,
it is assumed that the DSP unit uses floating-point arithmetic with infinite word length.
The transcoder in a Q-bit DAC, which supports only 2Q voltage levels, can therefore be
modeled as a Q-bit quantizer.

The reconstruction stage transforms the transcoder output into an analog waveform.
Typically, this block consists of a sample-and-hold circuit followed by a low-pass filter.
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Note that the sample-and-hold circuit and the transcoder are often implemented in the
same circuit [65, Chapter 1.7]. A common sample-and-hold circuit is a zero-order hold
(ZOH) filter, which holds the amplitude of the each sample for a prescribed time duration.
Unfortunately, a ZOH filter has a frequency response with infinite support, which causes
unwanted OOB emissions. To reduce these OOB emissions, a low-pass filter is installed
after the sample-and-hold circuit. In this thesis, we will assume that the reconstruction
stage is an ideal low-pass filter with cut-off frequency fcut = fsamp/2.
DACs typically consume less power than ADCs [35]. For reference, a commercial

500MSPS 14-bit DAC from Texas Instruments consume 375mW [79]. However, signifi-
cantly more energy-efficient designs have been reported in the academic literature (see,
e.g., [80–82]). Nevertheless, as is the case with ADCs, using DACs with unnecessarily
high resolution will result in excessive power consumption, which motivates the use of
low-resolution DACs in the massive MU-MIMO downlink.
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CHAPTER 4

Taming Nonlinearities using Bussgang’s Theorem

Nonlinearities are ubiquitous in virtually all real-world information-processing systems.
For example, analog RF signals in wireless communication systems are typically passed
through amplifiers, mixers, and finite-resolution data converters. All of these devices
are nonlinear and will, to some extent, distort the signals of interest. However, an
exact performance analysis of nonlinear systems and recovering signals from nonlinear
measurements are generally difficult tasks. Therefore, despite their prevalence in real-
world systems, the impact of nonlinearities is routinely ignored or approximated using
simplified models whose accuracy is questionable. For example, we saw in Sec. 3.1 that
the widely-used PQN model does not provide a sufficiently accurate approximation for
the error introduced by low-resolution quantization of Gaussian signals. In this chapter,
we shall “tame” nonlinearities using Bussgang’s theorem [83] and derive lower bound on
the rate achievable in communication systems subject to nonlinear distortion.

4.1 Linearization using LMMSE Estimation
Consider a zero-mean random vector y ∈ CM being passed through some scalar-valued
nonlinear function f( · ) : C→ C, which is applied element-wise to the vector, to produce
the following output:

r = f(y). (4.1)

The LMMSE estimate of the nonlinearly-distorted signal r ∈ CM in (4.1) given the
input y can be written as Gesty, where Gest ∈ CM×M is the solution to the following
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optimization problem:

Gest = argmin
G̃∈CM×M

Ey

[
‖r− G̃y‖22

]
. (4.2)

In words, solving the above optimization problem yields the matrix Gest that minimizes
the MSE between the linear estimator and the nonlinearly distorted output. The MSE-
optimal matrix Gest is found by setting the gradient of (4.2) to zero, which yields

Gest = CryC−1
y (4.3)

where Cry = E
[
ryH

]
∈ CM×M is the cross-covariance of r and y, and Cy = E

[
yyH

]
∈

CM×M is the covariance y. It follows from (4.3) that the nonlinearly distorted signal r
in (4.1) can be written as

r = Gesty + e (4.4)

where the distortion term e ∈ CM is uncorrelated with the input y. Indeed,

E
[
eyH

]
= E

[(
r−Gesty

)
yH
]

= Cry −GestCy = Cry −CryC−1
y Cy = 0M×M . (4.5)

Note that (4.4) provides a linear relationship between the input and output of the non-
linear device. However, deriving an expression for the matrix Gest in (4.3) involves
computing the inverse of the M ×M covariance matrix Cy, which is tedious for large M
and requires Cy to be invertible. Furthermore, the cross-covariance matrix Cry is not
always available in closed form. Next, we shall consider a special case of (4.4) for which
computing Gest can be significantly simplified.

4.2 Linearization using Bussgang’s Theorem

Bussgang wrote in 1952 that [83]: “For two Gaussian signals, the cross-correlation func-
tion taken after one of them has undergone nonlinear amplitude distortion is identical,
except for a factor of proportionality, to the cross-correlation function taken before the
distortion.” Concretely, according to Bussgang’s theorem, for a pair of zero-mean jointly
complex Gaussian random variables ym ∼ CN (0, σ2

ym) and yn ∼ CN (0, σ2
yn), and for

rm = f(ym), it holds that [83–85]

Erm,yn [rmy∗n] = gm Eym,yn [ymy∗n] (4.6)

where
gm = 1

σ2
ym

Eym [f(ym)y∗m] . (4.7)
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For a zero-mean complex Gaussian random vector y = [y1, y2, . . . , yM ] ∼ CN (0M×1,Cy)
and for r = f(y), it follows from (4.6) that

Cry = GCy (4.8)

where

G = diag
(
[g1, g2, . . . , gM ]T

)
(4.9)

is a diagonal M ×M matrix whose mth diagonal entry is computed as in (4.7).
Bussgang’s theorem can be used to decompose the output of a nonlinear device as a

linear function of the input y and a distortion d ∈ CM that is uncorrelated (but not
independent) with the input in the following manner [86]:

r = Gy + d. (4.10)

Indeed,

E
[
dyH

]
= E

[
(r−Gy) yH

]
= Cry −GCy = 0M×M (4.11)

where the last equality holds because Cry = GCy.
Note that (4.10), similarly to the LMMSE decomposition in (4.4), provides a linear

relationship between the input and output of a nonlinear device. It turns out that the
diagonal Bussgang gain matrix G in (4.9) can be computed in closed form for a broad
range of nonlinearities, which often simplifies performance analyses. Bussgang’s theorem
has therefore found widespread use as a tool for evaluating the impact on performance
of nonlinear distortion in wireless communication systems (see, e.g., [87–91]) and in
the development of distortion-aware signal-processing algorithms (see, e.g., [92–94]). It
has also found application in several other areas including probit regression [95], phase
retrieval [96], and satellite positioning [97].

4.3 A Lower Bound on Channel Capacity
The linear decomposition in (4.10) makes it possible to derive a lower bound on the
channel capacity in communication systems that suffer from nonlinear distortion. In this
section, the details of said derivation is provided for a single-input single-output channel
subject to nonlinear distortion in the form of coarse output quantization. Specifically, in
this section, we shall consider the following channel:

r = QC(y) = QC(x+ w). (4.12)

Here, x ∈ C is the channel input and w ∼ CN (0, N0) is the AWGN. Furthermore,
QC( · ) : C→ L×L is the complex-valued quantization function defined in (3.8), where
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L is the set of quantization labels For a fixed quantizer, the capacity of the channel (4.12)
is [98, Eq. (4)]

C = sup
fx

I(x; r) (4.13)

where the supremum is over all probability distributions fx for which the average power
constraint Ex

[
|x|2
]
< Px is satisfied. The channel capacity in (4.13) is, in general, not

available in closed form due to the nonlinearity in the quantizer. In what follows, we
shall utilize Bussgang’s theorem to derive a lower bound on the rate achievable with
Gaussian signaling. To this end, by assuming that x ∼ CN (0, Px), we decompose the
quantized channel input-output model in (4.12) using Bussgang’s theorem as follows:

r = gx+ gw + d. (4.14)

Here, the distortion term d, unlike the quantization error in (3.5), is uncorrelated with y
(and also with x and w) and

g = 1
Px +N0

E[QC(y)y∗] . (4.15)

Closed-form expressions for the gain in (4.15) are provided in [99, Eq. (29)] and [100,
Eq. (11)] for the case of uniform and nonuniform quantization, respectively. From the
linearized channel input-output model (4.14), it becomes straightforward to separate
the desired and undesired signal components. The first term on the RHS of (4.14)
corresponds to the desired signal; the second term correspond to the AWGN; the third
term correspond to the distortion caused by the finite-resolution quantizer. The effective
SNDR at the receiver can, hence, be expressed as follows:

SNDR = g2Px
g2N0 + Pd

. (4.16)

Here, Pd = Ed
[
|d|2
]
. Since y and d are uncorrelated, it follows from (4.14) that

Pd = Pr − g2Px − g2N0. (4.17)

where Pr = Er
[
|r|2
]
. It is worth emphasizing at this point that the effective noise gw+d in

the linearized channel input-output model (4.14) is, in general, non-Gaussian distributed
due to the nonlinearity in the quantizer, which complicates an exact evaluation of the
achievable rate. A common approach is to make use of the so-called “auxiliary-channel
lower bound” (see, e.g., [101, Sec. VI]) to derive a lower bound on the achievable rate.
Specifically, consider the the auxiliary channel

r̃ = gx+ w̃ (4.18)
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where w̃ ∼ CN (0, g2N0 + Pd) is the auxiliary noise, which has the same variance as the
effective noise gw+d but is Gaussian distributed. A lower bound on the channel capacity
C in (4.13) is obtained through the following steps:

C ≥ I(x; r) (4.19)

= Ex,r
[
log2

(
fx,r(x, r)
fx(x)fr(r)

)]
(4.20)

= Ex,r
[
log2

(
fx,r̃(x, r)
fx(x)fr̃(r)

)]
+ Ex,r

[
log2

(
fx,r(x, r)

fx|r̃(x|r)fr(r)

)]
(4.21)

= Ex,r
[
log2

(
fx,r̃(x, r)
fx(x)fr̃(r)

)]
+D(fx,r||fx|r̃fr) (4.22)

≥ R. (4.23)

Here, in the last step, we have defined R = Ex,r[log2(fx,r̃(x, r)/(fx(x)fr̃(r)))]. The
inequality (4.19) holds as we have restricted the input to follow a Gaussian distribution.
The inequality (4.23) holds due to the nonnegativity of Kullback-Leibler divergence [102,
Thm. 8.6.3]. This inequality holds with equality if and only if r̃ = r (i.e., if and only if
w̃ = gw + d). For the auxiliary channel (4.18), it holds that

fr̃|x(r|x) = 1
π(g2N0 + Pd)

exp
(
− |r − gx|

2

g2N0 + Pd

)
(4.24)

and

fr̃(r) = 1
πPr

exp
(
−|r|

2

Pr

)
. (4.25)

Hence, the rate R in (4.23) can be expanded as follows:

R = Ex,r
[
log2

(
fx,r̃(x, r)
fx(x)fr̃(r)

)]
(4.26)

= Ex,r
[
log2

(
fr̃|x(r|x)
fr̃(r)

)]
(4.27)

= Ex,r

[
log2

(
Pr

g2N0 + Pd
exp
(
|r|2

Pr
− |r − gx|

2

g2N0 + Pd

))]
(4.28)

= log2

(
Pr

g2N0 + Pd

)
+ 1
Pr

Ex,r
[
|r|2
]
− 1
g2N0 + Pd

Ew,d
[
|gw + d|2

]
(4.29)

= log2(1 + SNDR) . (4.30)

Here, in the last step, we used that Pr = g2Px + g2N0 + Pd (see (4.17)).
The rate in (4.30) provides a lower bound in closed form on the capacity of the
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nonlinearly-distorted channel (4.12). It can be shown that this lower bound corresponds
to the rate achieved by a Gaussian codebook and mismatched scaled nearest-neighbor
decoding at the receiver [88,103].
Next, we evaluate the lower bound (4.30) for the case of 1-bit quantization. For
L = {−1/

√
2, 1/

√
2} (or, equivalently, for ∆ =

√
2 and Q = 1), the complex-valued

quantization function in (3.8) simplifies to

QC(y) =
√

1
2

(
sgn(<{y}) + j sgn(={y})

)
. (4.31)

Note that, with these choices, it holds that r ∈
√

1/2 {1 + j,−1 + j,−1 − j, 1 − j} and
that Pr = 1. By inserting (4.31) into (4.15), we get that

g =

√
2

π(Px +N0) . (4.32)

Furthermore, by inserting (4.32) into (4.33), we find that the effective SNDR after 1-bit
quantization is

SNDR = (2/π)Px
N0 + (1− 2/π)Px

= (2/π) SNR
1 + (1− 2/π) SNR (4.33)

where SNR = Px/N0. Hence,

R = log2

(
1 + (2/π) SNR

1 + (1− 2/π) SNR

)
. (4.34)

For the case of 1-bit quantization, it is well-known that the channel capacity in (4.13)
is achieved by quadrature phase-shift keying (QPSK) signaling and is given by (see,
e.g., [104, Thm. 2])

C = 2
(

1−H
(

Φ
(√

SNR
)))

. (4.35)

In the low-SNR regime, the channel capacity (4.35) converges to a factor 2/π of the
AWGN channel capacity log2(1 + SNR) [105, Eq. (3.4.20)] (see also [98, Sec. II]), which
corresponds to a 10 log10(2/π) ≈ 2 dB power loss due to 1-bit quantization. This holds
true also for the lower bound in (4.34). Indeed, limSNR→0R/ log2(1 + SNR) = 2/π. In
the high-SNR regime, on the other hand, the lower bound (4.34) converges to a factor
limSNR→∞ = R/C = log2(π/(π − 2))/2 ≈ 0.73 of the channel capacity (4.35).
Fig. 4.1 shows the achievable rate (4.34) and the channel capacity (4.35) as a function

of the SNR. For reference, the AWGN channel capacity log2(1 + SNR) is also shown. As
expected, we note that the lower bound is tight in the low-SNR regime but that there is
a significant gap in the high-SNR regime.
For the case of multi-bit quantization (i.e., forQ > 1), the channel capacity (4.13) is not
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Figure 4.1: Comparison of channel capacity (4.35) and the rate achievable with Gaussian in-
puts (4.34) for the case of 1-bit quantization.

available in closed form. In this case, (4.30) provides a useful lower bound on the capacity
of the quantized channel (4.12). For example, for the case of uniform quantization, the
gain in (4.15) is given by [99, Eq. (29)]

g = ∆√
π(Px +N0)

2Q−1∑
q=1

exp
(
−

∆2(q − 2Q−1)2
Px +N0

)
. (4.36)

Furthermore, it can be shown that

Pd = ∆2

2
(
2Q − 1

)2 − g2(Px +N0)

−4∆2
2Q−1∑
q=1

(
q − 2Q−1)Φ

(√
2∆
(
q − 2Q−1)

√
Px +N0

)
. (4.37)

Hence, by inserting (4.36), (4.37), and (4.16) into (4.30) we obtain a closed-form lower
bound on the channel capacity in (4.13). Fig. 4.2 depicts this lower bound for uniform
quantization with Q ∈ {1, 2, . . . , 6} bits. Here, the step size ∆ is set to minimize the
MSE of the quantization error in (3.5) for each value of SNR. We note that Q = 6 bits is
sufficient for closing the gap to the AWGN channel capacity (which serves as an upper
bound on the channel capacity (4.13) and, hence, on the rate (4.30)) for SNR < 20 dB.
To summarize, in this chapter, Bussgang’s theorem has been utilized to write the

output of a nonlinear device, which is fed by Gaussian inputs, as a linear function of the
input and an uncorrelated distortion term. This representation is convenient as it allows
us to develop lower bounds on the achievable rate in systems that suffer from nonlinear
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Figure 4.2: Lower bound on the rate achievable with Gaussian inputs (4.34) for MSE-optimal
uniform quantization with Q ∈ {1, 2, . . . , 6} bits. As the number of bits increases,
the rate (4.34) approaches the AWGN channel capacity.

distortion. Furthermore, such lower bounds provide an accurate approximation for the
rate achievable with orthogonal frequency-division multiplexing (OFDM) modulation,
used frequently in real-world systems (e.g., in LTE and NR [5,19]), for which the transmit
waveform can be accurately approximated as a Gaussian random process.
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CHAPTER 5

Massive MU-MIMO with Low-Resolution Data Converters

This chapter introduces the massive MU-MIMO system model for that case when the
BS is equipped with low-resolution data converters. Specifically, Sec. 5.1 provides an
introduction to the massive MU-MIMO uplink with low-resolution ADCs at the BS.
An introduction to the massive MU-MIMO downlink with low-resolution DACs at the
BS is provided in Sec. 5.2.

Recall from Chapter 3 that the power consumption of a data converter is reduced by
lowering its resolution. There may also be some secondary power-saving effects as the
use of low-resolution data converters could simplify the analog front end. For example, in
a 1-bit-ADC architecture, there may be no need for any automatic gain control circuitry,
which is typically required for adjusting the amplitude of the received signal to the
dynamic range (i.e., to the clipping level) of the ADC. Furthermore, using low-resolution
DACs to generate the transmit waveform in the massive MU-MIMO downlink reduces
the per-antenna peak-to-average power ratio (PAPR) [106], which, in turn, allows for
power-efficient PA designs [107].

Another motivation for reducing the resolution of the data converters is to limit the
excessively large amount of data that must be transferred over the interface connecting
the DSP unit to the data converters [108,109]. This becomes critical for systems operating
over large bandwidths in the millimeter-wave part of the wireless spectrum [17], and
for distributed architectures (e.g., cell-free massive MU-MIMO systems [110] and cloud
radio access networks [111,112]) where the data converters may be placed at a significant
distance from the DSP unit. Consider, for example, using a pair of 500MSPS 16-bit
ADCs (e.g., the ADC from Texas Instruments in [78]) at each antenna element in a BS
that is equipped with 64 active antenna elements. For such a system, the combined
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amount of data produced by the ADCs is more than 1Tbit/s, which exceeds by far the
rates supported by modern high-speed interconnects such as JESD204B [113] and the
(evolved) common public radio interface (CPRI) [114]. By lowering the resolution of the
data converters, one can, to some extent, mitigate this data rate bottleneck.

5.1 Massive MU-MIMO with Low-Resolution ADCs

We consider a single-cell massive MU-MIMO uplink system where U single-antenna UEs
transmit simultaneously to a B-antenna BS. In what follows, we shall assume that all
BS-side hardware components (e.g., LNAs, LOs, and mixers) except for the ADCs are
ideal. We further assume perfect timing and frequency synchronization between the BS
and the UEs. Indeed, it has been shown in, e.g., [115–119] that accurate timing and
frequency synchronization can be achieved even under coarse quantization. Finally, for
simplicity, we shall assume that the system operates over a frequency-flat channel. With
these assumptions and for the ADC model introduced in Sec. 3.2, the signal received at
the BS during the uplink phase can be written as follows:

rul[n] = QC
(
yul[n]

)
= QC

(
Hsul[n] + wul[n]

)
. (5.1)

Here, QC( · ) : C→ L×L is the complex-valued quantization function defined in (3.8),
where L is the set of quantization labels. Furthermore, as in Sec. 2.2, sul[n] ∈ CU are
the transmitted symbols from the U UEs, for which it holds that E

[
sul[n](sul[n])H

]
≤

P ulIU . Finally, wul[n] ∼ CN (0B×1, N
ul
0 IB) is the BS-side AWGN and H ∈ CB×U is the

channel matrix.
There have been a significant amount of works that consider the use of low-resolution

ADCs in the massive MU-MIMO uplink (see, e.g., [120–135]). Broadly speaking, these
works can be divided into two groups. The first group of works investigate the impact
of low-resolution quantization on the performance of conventional linear receiver pro-
cessing algorithms, which have low computational complexity and are known to yield
near-optimal performance as the number of antennas grow large. The second group of
works considers more sophisticated nonlinear receiver algorithms that explicitly take into
account the impact of the coarse quantization to improve some performance metric at
the cost of increased computational complexity.
In this thesis, we shall restrict our analysis to the case of linear receiver processing at

the BS. In this scenario, Bussgang’s theorem can be utilized for providing lower bounds
on the rate achievable with Gaussian signaling. The remainder of this section outlines
how the analysis in Chapter 4 can be extended to the low-resolution-quantized massive
MU-MIMO uplink. To this end, by assuming perfect CSI at the BS and by proceeding
as in Sec. 4.2, we decompose the quantized channel input-output model (5.1) for the case
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of Gaussian inputs as

rul[n] = Gyul[n] + dul[n] = GHsul[n] + Gwul[n] + dul[n] (5.2)

where the distortion term dul[n] ∈ CB is uncorrelated with the transmitted symbols.
Furthermore, G can be written as [100, Eq. (9)]

G = diag
(
Cyul

)−1/2
2Q−1∑
q=0

`q√
π

×
(

exp
(
−τ2

q diag
(
Cyul

)−1
)
− exp

(
−τ2

q+1 diag
(
Cyul

)−1
))

(5.3)

where Cyul = E
[
yul[n](yul[n])H

]
= P ulHHH + Nul

0 IB ∈ CB×B is the covariance of
yul[n]. Furthermore, as in Sec. 3.1, `q is the qth element of the set of quantization
labels L and τq is the qth element of the set of quantization thresholds T . For the case
of uniform quantization, i.e., for `q = ∆

(
q − 2Q−1 + 1/2

)
for q = 0, 1, . . . , 2Q − 1 and

τq = ∆
(
q − 2Q−1) for q = 1, 2, . . . , 2Q − 1, (5.3) simplifies to [99, Eq. (14)]

G = ∆√
π

diag
(
Cyul

)−1/2
2Q−1∑
q=1

exp
(
−∆2(q − 2Q−1)2 diag

(
Cyul

)−1
)
. (5.4)

For the case of 1-bit quantization, (5.4) further simplifies to

G = ∆√
π

diag
(
Cyul

)−1/2
. (5.5)

Note that (5.5) can be retrieved also from (5.3) as ∆ = `1 − `0 and T = {−∞, 0,∞} for
the case Q = 1.

With linear combining and low-resolution ADCs at the BS, an estimate of the symbol
transmitted from the uth UE is given by

zul
u [n] = aTu rul[n] = aTuGhusul

u [n] +
∑
v 6=u

aTuGhvsul
v [n] + aTuGwul[n] + aTudul[n] (5.6)

for u = 1, 2, . . . , U , Here, au ∈ CB is the uth column of the the combining matrix
in (2.7). Note that (5.6) provides a linear relationship between the transmitted and
received symbols. Hence, by proceeding analogously to Sec. 4.3, the sum rate achievable
with Gaussian inputs can be lower bounded by

Rul = EH

[
U∑
u=1

log2

(
1 + SINDRul

u

)]
(5.7)
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where

SINDRul
u =

P ul
∣∣aTuGhu

∣∣2
P ul∑

v 6=u|aTuGhv|2 +Nul
0 ‖auG‖22 + aTuCdulau

(5.8)

is the uplink signal-to-interference-noise-and-distortion ratio (SINDR) for the uth UE.
Here, Cdul = E

[
dul[n](dul[n])H

]
∈ CB×B is the covariance of dul[n]. For the case of

1-bit quantization, the covariance matrix Cdul , which is required to evaluate (5.8), can
be computed in closed form using Van Vleck’s arcsine law [136]. For the multi-bit case,
the covariance matrix Cdul is not available in closed form and, hence, has to be evaluated
numerically [137] or by using approximate models (see, e.g., [109,138]).

5.2 Massive MU-MIMO with Low-Resolution DACs
We now turn our attention to the downlink scenario in which the B-antenna BS serves
simultaneously the U single-antenna UEs. We again assume that all BS-side hardware
components (e.g., PAs, LOs, and mixers) excepts for the DACs are ideal, that the system
operates over a frequency-flat channel, and that it is perfectly synchronized. With these
assumptions and for the DAC model introduced in Sec. 3.3, the signal received at the U
UEs during the downlink phase can be written as follows:

ydl[n] = HTxdl[n] + wdl[n]. (5.9)

Here, as in Sec. 2.3, wdl[n] ∼ CN (0U×1, N
dl
0 IU ) is the UE-side AWGN and xdl[n] is

the B-dimensional transmit signal for which it holds that EH
[
‖xdl[n]‖22

]
≤ P dl. Due to

the finite-resolution DACs, we additionally require that the transmitted vector satisfies
xdl[n] ∈ XB , where X = L × L is the set complex-valued DAC outputs supported at
each antenna element.
In this thesis, we shall consider linear and nonlinear precoding schemes for the low-

resolution-quantized massive MU-MIMO downlink. Linear precoding has been consid-
ered in, e.g., [93, 99, 109, 139, 140] and is known to yield good performance for large
antenna arrays even in the presence of coarse quantization. With linear precoding, the
transmitted vector in (5.9) can be written as follows:

xdl[n] = QC(αPsdl[n]). (5.10)

Here, P ∈ CB×U is the precoding matrix in (2.16) and sdl[n] ∈ CU are symbols intended
for the U UEs, for which it holds that E

[
sdl[n](sdl[n])H

]
≤ P dlIU . By assuming that

these symbols are drawn from a Gaussian distribution, (5.10) can be decomposed using
Bussgang’s theorem. Hence, by inserting the linear decomposition of (5.10) into (5.9),
lower bounds on the sum rate achievable with Gaussian inputs can be found by following
the procedure in Sec. 4.3.
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More sophisticated nonlinear precoding schemes are known to outperform linear pre-
coders at the cost of an increased computational complexity (see, e.g., [99,141–151]). The
nonlinear precoders considered in this thesis seek optimal and suboptimal solutions to the
MSE-optimal quantized precoding problem put forward in [99], which can be formulated
as follows:

minimize
xdl[n]∈XB , β∈R

‖sdl[n]− βHTxdl[n]‖22 + β2UNdl
0

subject to ‖xdl[n]‖22 ≤ P ul and β > 0.
(5.11)

For 1-bit DACs, for which it holds that X =
√
P ul/2 {1 + j,−1 + j,−1 − j, 1 − j}

and ‖xdl[n]‖22 = P ul, this problem is solved exactly in [152] for small-to-moderate sized
MU-MIMO systems via branch and bound. Unfortunately, the optimization problem
(5.11) is, in general, NP-hard due to the nonconvex constraint xdl[n] ∈ XB , which
implies that exact solutions are not attainable for massive MU-MIMO systems. In this
thesis, by relaxing the finite-alphabet constraint to a convex set, we shall develop efficient
suboptimal precoders (with near-optimal performance) that find approximate solutions
to the MSE-optimal quantized precoding problem (5.11) in polynomial time.
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CHAPTER 6

Contributions

This chapter summarizes the contributions of the included papers.

6.1 Paper A
In Paper A, we consider a narrowband massive MU-MIMO uplink system, which op-
erates over a frequency-flat Rayleigh block-fading channel, for the case when the BS is
equipped with low-resolution Nyquist-rate ADCs. Our focus is on the case where neither
the transmitter nor the receiver have any a priori CSI, which implies that the fading
realizations have to be learned at the BS through channel estimation based on coarsely
quantized observations of received training symbols.

Using Bussgang’s theorem, we propose a linear channel estimator that takes the distor-
tion caused by the finite-resolution ADCs into account, derive the Bussgang gain matrix
in (5.3) for multi-bit nonuniform quantizers, and derive closed-form approximations for
the rate achievable with Gaussian signaling and conventional linear combining schemes
(e.g., MRC and ZF). These closed-form approximations, which are derived under the as-
sumption that the distortion caused by the low-resolution ADCs is spatially white, turn
out to be accurate in the low-SNR regime and to overestimate the achievable rate in the
high-SNR regime.

We further present an easy-to-evaluate approximation for the rate achievable with
finite-cardinality inputs. By comparing this approximation with a numerically com-
puted lower bound on the achievable rate, we confirm its accuracy for a large range of
SNR values.
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We show that high-order constellations can be supported and that high sum-rate
throughputs can be achieved with low-complexity signal processing schemes (e.g., lin-
ear channel estimation and linear combining) in the massive MU-MIMO uplink for the
case when low-resolution (e.g., 1-bit) ADCs are used at the BS. For the system config-
urations considered in Paper A, it is shown that 3–4 ADC bits are sufficient to close
the gap to the infinite-resolution (no quantization) performance. This holds also for the
case when the UEs are received at vastly different power levels due to, e.g., imperfect
power control.

6.2 Paper B
In Paper B, we propose linear and nonlinear precoding algorithms for the narrowband
MU-MIMO downlink for the case in which BS is equipped with low-resolution Nyquist-
rate DACs and have perfect CSI.
Using Bussgang’s theorem, we derive lower bounds and closed-form approximations

for the rate achievable with low-resolution DACs and conventional linear precoders (e.g.,
MRT and ZF) over a Rayleigh-fading channel. We also derive closed-form approxima-
tions for the bit error rate (BER) achievable with QPSK signaling and linear precoding.
Furthermore, we provide the Bussgang gain matrix in (5.4) for multi-bit uniform quan-
tizers. Our results suggest that high information rates and low BERs are achievable
despite the adverse impact of the finite-resolution DACs. In particular, we demonstrate
that, with linear precoding at the BS, 3–4 DAC bits are sufficient to close the gap to the
infinite-resolution performance for the considered system configurations.
For the 1-bit-DAC case, linear precoding is, however, far from optimal. We develop sev-

eral nonlinear precoding algorithms by formulating the MSE-optimal quantized precoding
problem in (5.11) and by relaxing it to a convex problem that can be solved in a com-
putationally efficient manner. Specifically, we find three distinct approximate solutions
to (5.11) using squared infinity-norm Douglas-Rachford splitting (SQUID), semi-definite
relaxation, and sphere decoding. Through numerical simulations, we demonstrate the
superiority of the proposed nonlinear precoders over conventional linear precoders for the
narrowband massive MU-MIMO downlink.

6.3 Paper C
In Paper C, we solve the MSE-optimal quantized precoding problem in (5.11) exactly via
branch and bound for small-to-moderate sized MU-MIMO systems equipped with 1-bit
DACs. Specifically, we reformulate the original NP-hard problem as a tree-search problem
and use a number of techniques that improve the pruning efficiency without sacrificing
optimality. The proposed MSE-optimal precoding algorithm is shown to outperform
the nonlinear precoders proposed in Paper B for small-to-moderate sized MU-MIMO
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6.4 Paper D

systems but at a significantly higher complexity, which prevents its use for massive MU-
MIMO systems.

6.4 Paper D
In Paper D, we consider the downlink of a wideband massive MU-MIMO system with
linear precoding and oversampling low-resolution DACs at the BS. We focus on the
practically relevant scenario in which OFDM is used to communicate over frequency-
selective channels. Specifically, we extend the analysis in Paper B to provide a lower
bound on the information-theoretic sum rate achievable in the quantized massive MU-
MIMO-OFDM downlink, which can be evaluated exactly for the case of 1-bit DACs.

For the case of multi-bit DACs, we develop an approximate, yet accurate, model for
the distortion caused by the DACs. The proposed approximation, which is valid for
uniform quantization, takes into account the inherent spatial and temporal correlation
in the DAC distortion and can be used to evaluate the aforementioned sum-rate lower
bound. We also derive a simpler approximation for the DAC distortion, which treats this
distortion as white (i.e., uncorrelated in both the spatial and the temporal domains).
We show that such a crude model is accurate for medium-to-high resolution DACs and
when the OSR is not too high, but is not sufficient to accurately describe the distortion
caused by low-resolution (e.g., 1 bit) DACs. Hence, our results highlight the importance
of taking into account the spatial and temporal correlation in the distortion caused by
low-resolution DACs.

6.5 Paper E
In Paper E, by leveraging the results in Paper D, we analyze OOB emissions caused
by oversampling low-resolution DACs in the massive MU-MIMO-OFM downlink. In
this work, we consider a more realistic DAC model for which the reconstruction stage
in Fig. 3.8 is not an ideal low-pass filter. Specifically, we consider a reconstruction stage
that cascades a ZOH filter followed by a Butterworth low-pass filter.

We show that the transmit-power reduction enabled by the antenna array at the BS
yields also a significant reduction of OOB emissions. However, due to the inherent
spatial correlation in the distortion caused by low-resolution DACs, OOB emissions are
beamformed, to some extent, in the direction of the desired in-band signal. This implies
that OOB emissions can be significant in certain spatial directions even for very large
antenna arrays. Finally, we show that there is a trade-off between SINDR, adjacent
channel leakage ratio (ACLR), and PAPR. Indeed, improving the ACLR by using sharper
analog filters to attenuate the severe OOB emissions caused by the low-resolution DACs
results in a reduced SINDR and an increased PAPR. Our results show that by carefully
tuning the parameters of the analog filters, one can achieve a significant reduction in
OOB emissions with only a moderate degradation in BER performance.
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6.6 Paper F
In Paper F, we consider nonlinear precoding for the massive MU-MIMO-OFDM downlink
for the case of oversampling 1-bit DACs and frequency-selective channels. Specifically,
we extend the SQUID algorithm put forward in Paper B to the case of OFDM signaling.
We demonstrate through numerical simulations that the proposed SQUID-OFDM pre-
coding algorithm outperforms conventional linear precoders in terms of BER. Finally, we
investigate the computational complexity of SQUID-OFDM precoding and show that it
scales linearly with the number of BS-side antenna elements.

6.7 Paper G
In Paper G, we study the impact on performance of hardware impairments in the
frequency-selective massive MU-MIMO-OFDM uplink. Starting from behavioral models
of nonideal hardware components, we leverage Bussgang’s theorem to develop an accu-
rate composite model for the distortion caused by nonlinear LNAs, LOs with phase noise,
and oversampling finite-resolution ADCs. The proposed aggregate hardware-impairment
model, which captures the inherent spatial and temporal correlation of the induced signal
distortion, depends only on the second-order statistics of the received signal and on the
parameters of the behavioral hardware models.
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