877 research outputs found

    A selected survey of umbral calculus

    Get PDF
    We survey the mathematical literature on umbral calculus (otherwise known as the calculus of finite differences) from its roots in the 19th century (and earlier) as a set of "magic rules" for lowering and raising indices, through its rebirth in the 1970’s as Rota’s school set it on a firm logical foundation using operator methods, to the current state of the art with numerous generalizations and applications. The survey itself is complemented by a fairly complete bibliography (over 500 references) which we expect to update regularly

    Five interpretations of Faà di Bruno's formula

    Get PDF
    International audienceIn these lectures we present five interpretations of the Fa' di Bruno formula which computes the n-th derivative of the composition of two functions of one variable: in terms of groups, Lie algebras and Hopf algebras, in combinatorics and within operads

    Nonlinear Structural Analysis

    Get PDF
    Nonlinear structural analysis techniques for engine structures and components are addressed. The finite element method and boundary element method are discussed in terms of stress and structural analyses of shells, plates, and laminates

    Analytical properties of the Lambert W function

    Get PDF
    This research studies analytical properties of one of the special functions, the Lambert W function. W function was re-discovered and included into the library of the computer-algebra system Maple in 1980’s. Interest to the function nowadays is due to the fact that it has many applications in a wide variety of fields of science and engineering. The project can be broken into four parts. In the first part we scrutinize a convergence of some previously known asymptotic series for the Lambert W function using an experimental approach followed by analytic investigation. Particularly, we have established the domain of convergence in real and complex cases, given a comparative analysis of the series properties and found asymptotic estimates for the expansion coefficients. The main analytical tools used herein are Implicit Function Theorem, Lagrange Inversion Theorem and Darboux’s Theorem. In the second part we consider an opportunity to improve convergence prop­ erties of the series under study in terms of the domain of,convergence and rate of convergence. For this purpose we have studied a new invariant transformation defined by parameter p, which retains the basic series structure. An effect of parameter p on a size of the domain of convergence and rate of convergence of the series has been studied theoretically and numerically using M a p l e . We have found that an increase in parameter p results in an extension of the domain of convergence while the rate of convergence can be either raised or lowered. We also considered an expansion of W(x) in powers of Inx. For this series we found three new forms for a representation of the expansion coefficients in terms of different special numbers and accordingly have obtained different ways ito\u27compute the expansion coefficients. As an extra consequence we have obtained some combinatorial relations including the Carlitz-Riordan identities. In the third part we study the properties of the polynomials appearing in the expressions for the higher derivatives of the Lambert W function. It is shown that the polynomial coefficients form a positive sequence that is log-concave and unimodal, which implies that the positive real branch of the Lambert W function is Bernstein and its derivative is a Stieltjes function. In the fourth part we show that many functions containing Ware Stieltjes functions. In terms of the result obtained in the third part, we, in fact, obtain one more way to establish that the derivative of W function is a Stieltjes function. We have extended the properties of the set of Stieltjes functions and also proved a generalization of a conjecture of Jackson, Procacci &; Sokal. In addition, we have considered a relation of W to the class of completely monotonic functions and shown that W is a complete Bernstein function. . We give explicit Stieltjes representations of functions of W, We also present integral representations of W which are associated with the properties of its being a Bernstein and Pick function. Representations based on Poisson and Burniston- Siewert integrals are given as well. The results are obtained relying on the fact that the all of the above mentioned classes are characterized by their own integral forms and using Cauchy Integral Formula, Stieltjes-Perron Inversion Formula and properties of W itself
    • …
    corecore