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Abstract

Thls research studles analyt1cal propertles of one of the spec1a1 functlons ’
the Lambert W function. W functlon was re-dlscovered and 1ncluded into the
library of the covmpyuter-},algebra system MAPLE in 1980’s. Interest to the function
nOwadays is. due to:the fact that it has many applications in a dW_id.é variety on
fields of science and. englneerrng S |

The pro;ect can be broken into four parts. In the ﬁrst part we scrutlnlze a con-

vergence of some prevlously known asymptotrc series for the Larrilzert W function
usingran experimental approach followed by analytic investigation. Particularlv,
we have estabhshed the domam of convergence 1n real and complex cases, glven
a comparatlve analys1s of the series properties and found asymptotlc estrmates
for the expansion coefficients. The main analytical toole used herein are Implicit
Function Theorem, Lagrange Inversion Theorem and Darboux’s Theorem.
. In the ,second part we consider an opportunity to improve convergence prop-
erties of the serres under study in terms of the domam of. .convergence and rate
of convergence, For thls purpose we have studied a new 1nvar1ant transformation
deﬁned by parameter D, Wthh retains the basw serles structure An effect of
parameter p on a size of the domaln of convergence and rate, of convergence of
the series has been studied theoretically and numerically using MAPLE. _We have
found that an increase in parameter p results in an extension of the domain of
convergence while the rate of convergence can be either raised or _Iovvéred.

We also considered an expansion of W(z) in powers of lnx. For this series
we found three new forms for a representation of the expansion coefficients in

terms of different special numbers and accordingly have obtained different ways
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to'compute the expansion coefficients. As an extra consequence we have obtained
some combinatorial relations including the Carlitz-Riordan identities.

In the third part we study the properties of the polynomials appearing in the
expressions for the higher derivatives of the Lambert W function. It is shown
that the polynomial coefficients form a positive sequence that is log-concave and
unimodal, Which implies that the positive real branch of the Lambeft W function
is Bérnéte'i?nmand;it»s derivative is a Stieltjes funetion.

" In the fourth paft‘Weswa that many functions cohtainihg‘ W are Stieltjes
functlons In terms of the result obtained in the third part we “in fact, obtain one‘
more way to' estabhsh that the derlvatlve of W functlon is a Stleltjes function.
We have extended the propertles of the set of St1eltJes functions and’also proved
;géhéralizatic")n of & conjecture of Jackson, Procacci & Sokal. In addition, we
have considered a relatlon of W to the class of completely monot}omc funct1ons
and shown that W is a complete Bernstein functlon ' - R
 We give exphclt StleltJes representatlons of funcmons of W. We also present
1ntegra1 representatlons of W Wthh are associated w1th the propertles of its being
a Bernstein and Pick functlon Representatlons based on P01sson and Burniston-
Siewert 1ntegrals are given as well. The results are obtained relylng on the fact
that the all of the above mentioned classes are characterized by their own integral
forms and usmg Cauchy Integral Formula, Stlelt_] es—Perron Inversmn Formula and
propert1es of W itself: o S

" Keywords: Lambert W fuﬁétz’oh; asymptotic series; domain of :c‘onzi)érgé'ﬁcé,'
épécidl numbefs; unimodal sequences; log-concave sequences; integral representa-

tions; Stieltjes functions; completely monotonic functions; Bernstein functions
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CHAPTER 1

_Int‘rc!)yd‘uctic‘)_;rfl_ | o

“All truths are easy to understand once they are discovered; the point |
is to discover them” - Galileo Galiles

1.1 Hlstorlcalremarks e

The Lambert function W (z) is defined as the root of the transcendental equation
W(z)exp(W(2) = 2 . (1)
According to (Corless, Gonnet, Hare, Jeffrey, & Knuth, 1996), (The poster ‘The
Lambert W Function’) the mathematical history of W function goes back to the
18th century and is associated with the names of such two great mathematicians
as Johann Lambert (1728-1777) and Leonhard Euler:(1707-1783). In 1758 Lam-
bert »publishedia series solution of the trinomial equation £ =g + z™ (Lérﬁbert,’
1:758)-. In 1779, 'stimulat’ed‘by Lambert’s work, Eulér transformed the %rinorhial
equation into symmetric form - B | R

% — P

a—p

‘=’Ufl’,'a+ﬂ REIE U SR TR P (12)



In a special case 8 — «, the left hand side tends to £®Inz and equation (1.2)
becomes (Euler, 1779) .
[ lnz=wvz* 0 0 (L3)

or o | o
=, 1)
where y = Inz. Euler noticed that it would be enough to solve the equation (1.3)

(or (1.4)) for o =1 because then it can be solved for any o #.0. Euler found a

solution of (1.4) for o = 1 as a series

" _ (1.5)

~with the convergence radius of 1/e.

. Both Lambert and Euler left the found solutlon unnamed In the modern
termmology, the series (1 5) deﬁnes the (C’ayley) tree functeon T(v) (FlaJolet &
Sedgew1ck 2009 p 127—128) that thus satlsﬁes the functmnal equatlon

T()exp(~T(2)) = 2.

This discloses a relation between the tree functiofl'and the Lambert W function

(ELL)) T
o W@=tea. 09

The Lambert W function was christened two hundred years later after Lambert’s
and Euler’s works appeared. Specifically, in 1980’s the function was included into
the library of the computer algebra system MAPLE and ‘as of MAPLE: V RE-
LEASE 4 it is named as LambertW. The letter W to designate the fuhction'Wéé
chosen more or less'a.ccidéﬁtall'y’(Corless, Jeffrey, & Knuth, 1997) but it certainly

has some significance because of a s:ig'nif‘icant’ contribution to the study of the



properties of W by E.M. Wright (Wright, 1949, 1955, 1959). It is worth noting
| that MAPLE provides evaluation of W with an arbitrary precision, which is im-
plemented on basis of the asymptotic expansions studied by de Bruijn (1961) and |
Comtet (1970). The MAPLE implementation of W together with the publication
of the fundameﬁt'ai paper (Cdrless et al., 1996) ’Oln“the; I;érribeft w 'fii_nction’ by
R.M;‘Cofiess, G.H. Gennef DEG Hare, D.J. Jefffey and D-.E.:‘KnUtii’opened
doors for a wide use of the function i in absolutely different areas. Interest to the
W function is due to the fact that it has rich beautiful and useful propertles
hes man‘yymterestlnlg appl;catler;s and plays a _mgmﬁeant 'roleyln. varlgou,s; research

fields, see Section 14 |

1.2 Definition and properties of W

The Lambert W function is the multiv‘alued‘inver/se of the mapping W — WeW:
The branches, denoted by Wk (k € Z) are defined through the equatlons (Corless
et al 1996) o ’ '

vz € C, | Wk(z) exp(Wi(z)) = =2, (1’.7)
| | Wi(z) ~ lngz as s Rz = 00 . (18)

where Ingz = ln;z‘+’ 2mik, and Inz is the principal branch of natural loga-
rithm (Jeffrey, Hare, & C‘orless 1996) We will often consxder the principal branch

k = 0, therefore we shall usually abbrewate Wy as W herein.

For convenience, we recall from (Cbrleés et &.,’1996) some properties of the
principal branch that are used below. The function is continuous from ,above on
its branch cut B C R, defined to be the interval B = (—o0,—1/e]. On the cut
plane C\B, the function is holomorphic. Its real values obej/ —1 < W(z) <0 for
z € [-1/e,0), W(0) = 0 and W(z) > 0 for z > 0. The imaginary part of W (t)



has the following range of values for real ¢
SW(t) € (0,7) for t € (—oo0,—1/e) and SW (t) = 0 otherwise. (1.9)

SW(t) = 7 ast — —oo. Also, W (¢) is continuously differentiable for ¢ # —~1/e.

SW(z) and Sz have the same sign in the cut plane C\R, or equivalently

SW()Sz>0. B (1.10)

W has near conjugate symmetry, meaning W (z) = W(z), except on the branch

cut B. We also note

W(z) =lnz—InW(z) (1.11)
in the cut plane C\(—00,0). The Taylor series near z = 0 is

—

W(z)= 3 (-n)""

n=1

(1:12)

zn

n!

with the radius of éonVérgence 1/e (see Appendi;ﬁ A1), While the asy'mi)tbtic

i

behaviour of W (z) near its branch point is given by

W)~ VEETD 2o ~1fe. o am

It follows from (1.12) and (1.8) that

W(z)/z—) 1 as z2—0. (1.14)
W(z)/z 40 as z-—300. (1.15)
a
If 2 = ¢ + s and W(z) = u +%v, then .

e“(ucosv — vsin v)=t, e*(u sinv + v cos v)=3s. (1.16)



For the case of real 2, i.e. s =0, the functions u = u(t) and v = v(t) are defined

by

U= —veots, i

v:t"= t(v) = —y csé(v)é“”cf’t” L ‘ o : (118)
For the case of pure imaginary z, i.e. t =0, the functions u=u(s) and v = vy('s)

'bbéy L

w=wtenv, 0 (L19)
s=s(v)'="vsec(v)é”‘t«an”;;. SRS 0 (1.20)

The derivative of W(z) is given by

W(z)

Wi - s T (1.21)

For further we also need the derivative of function v(t); defined in (1.18); it can
be conveniently found by taking the imaginary part of (1.21) and using (1.17)-
oY) o2+ (1+w)?  t?+ (1= vcotw)?] -2

With (1.14) and (1.15), it follows from (1.21)

W1 w im0, )

W) =0 as s, (24

Near conjugate sy’mmeﬁtry_implli_es

 wee-mwEE o



5

~ For the case of real 2, i.e. s =0, the functions u = u(¢) and v = v(t) are defined

Cu=-veotv, (117)
"t'= t(v)=;vcsc(v)e’.‘f°"5t”. - (118)

For the case of pure 1mag1nary z,1le t=0, the functions u = u(s) and ¥ = v(s)

obey
Dty g
Cos= s(v) =7vsec(v)e“"?a“”‘}. B - (1.20)

‘The derivative of W(z) is given by

W(2) = —te . 1.21
For further we also need the derivative of function v(t); defined in (1.18); it can
be conveniently found by taking the imaginary part of (1.21) and using (1.17)
. R

t[vz +@+u? o+ (1'—vcotv)2] T (122)

| '(i)

Wltﬁ (1. 145 va.nd (1. 15) it follows from (1.21)
WEorw a0, am
"W@qo%;g@j*t °*“@m

Near éoﬁjﬁgéte symnrllejcrslft impiies, N R .

Wiz =TEDE o (125)



| for z ¢ (—00,0].

In addition, we prove the following lemma.

Lemma 1.2.1. Fuhction QSW (—t) is nonnegative and bounded on the real line and
contmuously dzﬁerentzable fort # 1/e. Specifically, it is zero for t-€ (~oo,1/€]
and increases from 0 to w while t changes from 1 /e .to co. Correspondingly, the
derz’vative dSW (=t)/dt is zero for t < 1/e and positive for t > 1/e. In addition,
dSW (—t)/dt = o(l/t) ast — 00,

Proof. Due to the above:properties of function YW (t). (see (1.9)), the function
SW.(~t) is. nonnegative and bounded for real ¢ and SW(~t) — 7 as t. — o0.
The function is.also continuously differentiable everyWhere'except t=1 / e. We
set-v(t) = SW(t), then by (1.22)

EECO) A +(1 - ;cm)z -

Hence, the deriva.tui“v}e dSW(—t)/dt = A(v ( —t)) /t which 1mphes that it is zero
for t < 1/e and pos1t1ve for t > 1/e as v(t) = 0 for t > —1/e and v( ) > 0 for
t < —1/e. It remains to assertain the estimation of the derivative dSW(—t)/dt
at large ¢ but it immediately follows from two facts that v(~t) — ast — oo

and that A(v) > 0asv — 7. SR 0O

Finally we briefly give the propertles of the Lambert W function in the com-
plex plane; a detailed discussion can be found in (Corless et al 1996). As men-
tioned previously, the pr1nc1pa1 branch WO( ) has a branch point at z = ~1/e. |

’At this point the branéﬂéé Wo(z) W_1(2) and Wl( 2) ha\;e the common value
—1 and therefore all of them have the above mentloned branch cut B. In addi-
tion, W_l(z) and W1(z) have one more branch cut along the negative real axis
S = {z: —00 < 2z £ 0} because of the extra branch point at z = 0. The branch

cut S, as B, is closed on the top for the'counter-clockwise continuity (Corless et



7

al.; 1996; Jeffrey et al., 1996). All other branches of W(z) have only the branch
cut S. |

Figure 1.1 shows the complex ranges of the branches of W (Corless et al.,
1996). The principal branch W, is separated from the branches W1 and W_,
by the curve {~ncotn+ni:—m <n <7} where n = SW (cf (1.17)). The
boundary between Wi and W_; is just (—oo, —1]. ‘The curves separating the rest
of the branches are the inverse images of the negative real axis under the map
w — we* and describea by {—ncotn+in:2kr < :i:n < (2k + 1)7r} for natural
k. In acéordance with thé 'counter—clockWise continuous convention the points
forming a boundary between two branches belong to the branch below them
(Jeffr.ey et al., 1996). A similar partition of the complex plane by the branches
of the tree function T'(z) ='—W(~2) (cf. (1.6)) was considered in (Lauwerier,

1963). The Riemann surface of W is given in Figure 1.2.

_—
\4‘/1[_ - . 3 )
= ©. . :Bramchk=2. =
3 |
B R T
R & = —
T Pl
P ‘ 3
5 Branchk=~1
-J_’»'::;A;' NBEIS
: ‘Branchk=-2 - -
47 -
=Sm= 3

F_igure 1.1: Ranges of the branches of W. :
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'Figure 1.2: The Riemann surface of W (z).:
1.3 Real branches of W

The only branches that take on real values are Wo(z) and W_y(z); they are
defined for —1/e < z < oo and —1/e < m < 0 respectively and plotted in Figure
1.3. Wy(z) maps the positive real axis onto itself with being bounded at the
origin, particulariy, Wo(0) = 0. It is a monotone increasing function with the
range in [—1,00) whereas W_i(z) is a }Izl.l‘c’)notone decreasing function and takes

on values in (—o0, —1].

Lauwerier (1963) found an interesting parametric representation of the branches
of the tree function To(z) = ~Wo(—z) and T_i(z) = —W_i(~2) (cf. (1.6)). We

present a similar result.for the real branches of W.
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Figure 1.3: Real branches of the W function.

Theorem 1.3.1. The branches Wo(z) and W_1(z) admit the following parametric
representation for —1/e < z < 0 (Corless et al., 1997) "

o=-—t fhbé—peothp‘, S (20)
Wo = fsixﬁlpefp‘,‘r | S (1.27)

wh§r§ p >0.
Proof. By definition (1.7)

e W es@) W )
and at the same time

= W_1(z) exp(W_y(z)) = W_ieW-1 . : o (1.30)
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| We introduce a non—neggtive parameter

= (Wo "W—l)/2 | (131)

Then .sgbsfitﬁtir;g: W_1= Wo - 2p ihtq (130) .\is_}e obtaln | | -

sehemenr. s

Comparison between (1.32) and (1. 29) results in the equatlon (Wo 2p) P = Wo

Wlth a ‘soblu_tlon

e eP

WO = —2p1 — e"2p :—2pep — e—p

o am

which is equivalent to'(1.27).

Similarly, substituting Wo = 2p + W_y into (1.29) we obtain’ = -
T = (2p + W_y)e?PtW-1 (1.34)

Comparison between (1.34) and t1.30) results in (2p+W;1)e21’ = W_;; this gives

ewr i eP

Wor= —2p32p —1 Fer—er ; (1'3_5)
which is equlvalent to (1.28).
Finally, formula (1.26) can be obtained by substltutlng (1. 33) into (1.29) or (1.35)

into ( 1. 30) : . _ ' O

Remark 1.3. 2 The main result of Theorem 1.3.1 is that the real branches of W can
be parameterized through parameter (1.31). This result, in fact, was discovered
in (Barton, David, & Merrington, 1960, 1963) ‘where studied are solutions of
equation o :

e +ka=1 (k>0), . - . (136)

where k is ’kn,own (Casés. k < 1and k > 1 were considered separately in the
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former and the latter paper respectively). In particular, in (Barton et ah, 1960)
the authors noted that if, in our notations, Wo andW~i are two roots of equation
weu = X then Wo —W-\ = a, where a satisfies e~a—afW-\ = 1. It is easy to see
that the last two relations are the same as (1.31) and (1.28) respectively in terms
of a = 2p. The authors used this fact and the results of computations obtained
for Kk < 1in (Barton et al., 1960) to find a numerical solution for kK > 1in (Barton

et al., 1963).

The equation (1.36) appeared in (David & Johnson, 1952), where the authors
studied the truncated Poisson distribution, and described the maximum likeli-
hood A= ain terms of the truncated sample mean x = 1JK. The authors rightly
noted that ‘...it does not seem possible to obtain an explicit expression for A'. To-

day, fifty nine years later, due to the Lambert W function a solution of equation

(1.36) can be written in an explicit form ' \
WO 1A 'if O<k< 1
a=
1 ( 1 \
-+BTi — I’ if k>1
or

(1.37)
a=1k+wA Jr 1/k]"

where m ~ f(sgn(l —Kk) —1)/2],

Also, an equation similar to (1.36) appears in (Valluri, Gil, Jeffrey, & Basu,
2009) where there are considered some applications of W function to quantum
statistics. The equation defines the extrema in energy of the distributionXunction
for a system comprised by a large number of non-interacting equivalent particles

(cf. (valluri et al., 2009, Eqg. (18))) and has a solution of the form similar to
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(2.37) (cf. (Valluri et al., 2009, Eqg. (19))). In addition, it is shown in (Valluri et

al, 2009) that the critical point of the integrand in the Lambert transform

exi _ idt

is also defined by an equation similar to (1.36); a solution of this equation for
/(r) = 1(r and x = 1 is exactly the right-hand side of (1.37) (cf. (Valluri et al.,

2009, Eq. (42))).

It is also interesting that the results of Theorem 1.3.1 can be expanded in

series containing Bernoulli numbers Bn (see Appendix B) (Corless et al., 1997).

Theorem 1.3.3. The following expansions hold (Lauwerier, 1963)

' ' (L38)
_OOI R
Wo— I+P -Et" p)2' (1-39)
AV | , = - 71=1 V ' FE [ ]
©o p
W-1=-1-p - £ 72S!(2p)2 . (1.40)
71=1 -
_OOl R
"o (Ui)
M R
m (-,y -rE sp»)" (L42>
71=1 . -
J P -
-ln(~,)=-1-2 g ™ (2 P) -" (1.43)
j ‘ oo I>
-ln(-~i)y=1-21:~(2P)-1 (1-44)

Note. Lauwerier (1963) gave only two expansions that are similar to formulas
(1.38) and (1.44); at that the factor 2 in front of the sum sign in the formula

similar to (1.44) is missed in the text of his paper. ]
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Proof. Substituting expansion (B. 14)

2P
B .. . (1.45)
W -1 =1_P + S ;<anr|82p|2n
into equation (1.33)
_ P 2P
WQ_ -Zpep_ e~p ep - 17
we obtain (1.39) and then (1.40) using connection W-\ = Wo —2p.
Since In(—Wo) = Inp —p —In(sinhp) by (1.27), we have ,
h I ep+eP 1 ep+ 1
4-In(-W ,,) = I—l- C(_)S P - 1— D P
dp p sinhp p ep- ep p edp~ 1
_1 1 ep- n+2 1 )
ez2p _ [ -
P 1 ..;)P e2p--1
1
-1 - 2- B2n {Zv 2~
p A h " 2+r|]5:l-(2n)\P

where in the last line we substituted expansion (1.45) divided by 2p. After elim-

inating brackets and rearrangements we obtain (1.43).

Further, it follows from (1.29) and (1.30) that —W-\ew~l = —Woew", therefore

In(—W-i)+W~i = In(—Wqg+W g, which means In(—W_i) = In(—Wq+W W -i,
ie.

In(-W_!" = In(-Wo) + 2p . (1.46)
Thus

TPA-W -D)=2+TH -w 0,

which together with (1.43) gives (1.44).
Now we integrate (1.43) in p to find
wod ‘o
H-w0=a-P-2 zZ2 ~ ~ P
n=l "
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Since Wo = —1 for p = 0 and so the constant ¢ = 0, we obtain (1.41). Substituting
(1.41) into (1.46) gives (1.42)‘; To derive formula (1.38) we note that — In{—ez) =
~1-In(-z) = ~1 - (In(-Wp) + Wo) and‘substit;ute (1.41) and (1.39) here. O

Remark 1. 3.4. The series (1 39) and (1.40) represent expansmns of the real branches
near the branch point x —'—l/e (where Wy = W_, = —1 i.e. p=20) and to-
gether with (1.38) (or (1.26)) can be used instead of the expansions in terms of

V2(1 + ez) (Corless et al., 1996).

Remark 1.3.5. By definition (1.31) the double parameter p shows the difference
between values of the real branches and therefore has an obvious geometric in-
terﬁretation as a distance between two points on the graph in Figure 1.3 taken
at the same T € [él/e,‘ 0). Interestingly, by (1.46) this distance would be the
same in the graph for ﬁhe logarithm of the absolu};e values of these }_)_{"Enches. The

graphs depicted in figures 1.4 and 1.5 demonstrate the same distances between

points at x = —0.15. |

- 3 ;6.;. , % e
- L X . : EE
L
«,‘\N;\ L o 2
C T L
.-\-.\
\\
P \ IR
BN
\\
— Oy
-——ﬂ"l B
|}
_8%
10
12 1

Figure 1.4: Distance between the real branches of W:
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v In(- ”0)
| )

. .Figulre‘ 1.5: Distance between the logarithms of mbdulus of the real bra’Lkn_cLhebs.‘
1.4 Applications -

" The Lambert W function has many applications in many areas of science such
as combinatorics, applied ‘ma'thematics, statistical hlechariics; biology and others;
it also gives useful analytical tools in solving engineering problems. Some of the
applications can be found in (Corless‘et al., 1996). Examples of application of
W to solving eQuations, theory‘of probébﬂity and quantum statistics have been
already mentioned in Remark 1.3.2. One important example relates to the study

of delay—dlﬁ'erentlal equations. The s1mp1est delay equatlon, usmg the notation

y = & for the derlvatlve with respect to time; is
§() = ay(t— 1),

subjeét to the condition on —1 < ¢ < 0 that y(t) = f(¢) , a2 known function., A
general solution is expressed in terms of branches W} (Héffernaﬁn‘ & Corless, 2006)

4

y(t) = Z ¢ exp (Wi(a)t) ,

k=—00
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where the ¢, can be determined from the initial conditions. One sees immediately
that the solution will grow exponentially if any of the Wy(a) has a positive real

part, which leads to important stability theorems in the theory of delay equations.

Another interesting example deals with a’partial differential equation. Let us

consider the inviscid Burgers’ equation

with the special initial condition u(x,0) = €*® (Weideman, 2003). A solution of
(1.47) in the implicit form is given by u = f(z — ut), where f is an arbitrary
differentiable function. : Plugging in the initial condition we find u = gilz—ut),

Using the Lambert W function we are able to write the solution in an explicit

form Ean
u = ePe”M = yeit = e = jtue™ = jte™
ie. iut =W (ite?’”) and finally (Weideman, 2003).
)
- a
A shock forms at a singular point when ite’® = —e71, i.e z = m/2 +i(1 + Int):

Taking real z, we find the coordinates of the.critical: point in the (z,t)-plane

(Weideman, 2003) - . o
w1
(x*at ) (2 6)

One of the classmal examples of apphcatlon of Wi is connected w1th the prob—

lem of 1terated exponentlatlon (Corless et al. 1996) where a functlon R
h(z) = 2

is to be evaluated. Since h(z) satisfies equation h(z) = zM2) it can be found
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in closed form. Indeed, the last equation is equivalent to h(z) = exp(h(z) Inz)
or (—k(z)Inz)exp(—h(z)Inz) = —Inz, hence (Corless et al., 1996), (The poster
‘The Lambert W Function’)

W (—Inz) i i
Inz *

Many combinatorial applications of W are due to a simple connection (1.6)
with the tree function. Specifically, W has applications in the enumeration of
trees (Janson, Knuth, Luczak, & Pittel, 1993) and in graph theory (Flajolet,
Salvy, & Schaeffer, 2004). W also participates in asymptotic estimations of Bell
numbers wn (Appendix B), for example, according to (Lovasz, 1993, Ex.9(b),

P 1?) \71+1/2
An A 71

~nVr>
where An = n/W(n).
It is also worthwhile noting that a generating function for the second-order Eule-

rian numbers is expressed in terms of the Lambert W function (cf. (B.Il), (B.12)).

The engineering applications of W can be encountered in such problems
as modeling of non-Gaussian noises in signal processing (Chapeau-Blondeau &
Monir, 2002), combustion modeling (O’'Malley, Jr., 1991; Corless et ah, 1996), jet
fuel problem (Anderson, 1989). We give some details for the last one following

(Corless et al., 1996).

Let wO and WA be the initial and final weights of a jet airplane respectively, CI
and Cp the lift and drug coefficients, S the area of the horizontal projegtion of
the plane’s wings, p the“ambient air density. We wish to find the thrust specific
fuel consumption ct and W\ (to compute the weight of the fuel wO—Wi) from

the equations for the endurance Et and range R which are (Anderson, 1989,



18

p.312-323)
E - Ci an_\b , (1.48)
Et <kCD W
(2C I\ Y2f 12 I/2\ (1.49)
r=cico(ps ) K ") =
For convenience, we introduce a negative parameter
y/2Et ( w0 \ 12
R \pSCL)
and change variables
wi CD
y=\—_ and c=— ctEt
wO CL
Then equations (1.48) and (1.49) are equivalent to ¢c =—21Iny and
Iy _ A (1.50)
1-V

Clearly, it remains to solve equation (1.50). Since its left-hand side is a monotone
increasing function of y with range in (—00,0) and its the right-hand side is a
negative constant, the equation has the unique solution. We can rewrite (1.50)

as (Ay)eAy = AeAto get finally

if A<-

W-1(AeA/A, if —1<
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CHAPTER 2

Convergence of asyrnptotlc series for the

Lambert W functlon

“No matter how correct a mathematzcal theorem may appear-to be,
one ought never to be satisfied that there was not something imperfect
about it until it also gives the impression of being beautiful.” — George
Boole :

2.1 ' Introduction

In ‘thi's{ chapter we Study'soine previously knoWn series for the Lambert. W func-
tion to specify old results, to establish the domain of convergence in real and
complex cases, to give a comparative analysis of ‘their properties and to find
asymptotic expressions for the expansion coefficients. We also obtain different
forms of representatlon of the expansion coefficients and present some combina-

torlal consequences 1nclud1ng the Carhtz—Rlordan 1dent1t1es resultmg from that

The equation y®e¥ = z was solved by Comtet (1970), following de Bruijn
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(1961), as
V= ~a(™) = Ing —alninrc + au = ag-l—'n—-l:+u\,) (2.1
where
a Inl
— ,r=a nna (2.2
Ing InXx

and function u obeys the fundamental relation (Corless, Jeffrey, & Knuth, 1997)
1—e~u+au—r = 0. (2.3)

Comtet (1970) further showed that u has the series development

00 N n g-n-mj-m

U
=E E (~ 1 —_—m +
M= 11 ) n m 1 m\

(2.4)
where [n_" +1] denotes Stirling cycle numbers, also called the unsigned Stirling
numbers of the first kind (Graham, Knuth, & Patashnik, 1989; Corless et al.,
1997). This series was further developed and rearranged in (Jeffrey, Corless,
Hare, & Knuth, 1995) in terms of the 2-associated Stirling numbers of the second

kind (Graham et al, 1989; Corless et al, 1997)

fp+m-11 (-1)p*™-1

In a particular case a = 1 the function defined by (2.1) is the Lambert W
function (Corless, Gonnet, Hare, Jeffrey, & Knuth, 1996), i.e. $1(2) = W(X).
In the chapter, the series (2.4) and (2.5) are considered for a > 0 in a real case
and for a = 1 in a complex case. Specifically, in the former a > 0, i.e. in the

expressions (2.2) X € (l,00), and in the latter real X is changed to complex z.

The Lambert W function is multivalued, its branches W& are defined by (1.7).
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With this definition, the first terms of the asymptotic series for Wy, are = :

Wile) = Ing 2 — In(lng ) + 2022 o ((Innez) Y’ (2.6)

’ —k k 1nk: z . \\ Ing 2 ‘ ' !
We shall mostly be ’cOncemed" with the principal branch k = 0, which is the only
branch that is finite at the origin and takes on real values on the positive real

hne ‘We shall abbrev1ate Wo to W for the rest of the chapter. -

- The fundamental relation (2.3) possesses a remarkable property: it can itself
be solved in terms of the Lambert W function (Corless et al., 1997) |
1-7

Cwmwe-ET. e

C T —

where - ;
1—-17

: "'S-.-_—AS(O',T)= fh'lO'«.‘ G .‘7 (2‘8)

(4
Thls glves a useful representatlon of the Lambert W functlon (Corless et al
1997) s Lo : : . ALy } bR ;

W(z) = W(e°) (2.9)

and allows to get properties of u from those of W (z) and vice versa. For example,

it follows from (2.7) that in the real case
—r<Qu<m (2.10)
because the same is true for W (cf Figure 1.1).

The asymptotic series (2.4) and (2.5) were studied in the real case in ‘_(Jeffrey'
et al., 1995). In this chapter We-spec/ify and establish the domain of eonvergence
of the serles in both real and complex case, analyse a dlfference in thelr propertles

and ﬁnd asymptotlc expressmns for the expansion coefﬁments in (2 5)
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For o = 1, along with the expansions (2.4) ‘and (2.5) we study a series in

terms of the second-order Eulerian numbers (Corless et al., 1997)

<$>_-“°+tham<1+wo = Z({ v, e

where 0 ='1/Inz and wy denotes the Omega constant W (1) = 0.56714329... . A

definition of the second-order Eulerian numbers is given in Appendix B.

~ The series (2.11) was obtained and studied in (Corless et al., 1997) and in
fact represents a series of the Wright w function (Corless & Jeffrey, 2002). We
give three new forms of representation of the expansion coefficients of this series

as well as their asymptotic estimates.

In the chapter, it is also shown that the series (2.5) can be represented in
terms of the second-order Eulerian numbers. Some combinatorial }:bnsequences
following from different forms for repreéentation of the expansion coefficients in

(2.5) and (2.11) are presented, including the Carlitz-Riordan identities.

2.2  Series (2.4)
2.2.1 Convergence in real case
It is shown in ‘(Jeffrey et al., 1995) that the series (2.4) is convergent for

| e, 0<a<l
T>Tq= ¥ (2.12)
PR (ce®)*, a>1 . '

Below we are going to confirm and specify this result. We first prove a statement

in terms of variable o and 7.
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Theorem 2.2.1. The domain of convergence of the series (2.4) in real case is

defined by inequality
Ino <1- ;:‘ RW, (—e5 ) (2;13)
Proof. We consider the series (24) ‘in the reel case and start with the fundameﬁtel
relation (2.3) to write.it(;;;in the form | |
\fifzhel;e ‘v:ve'introc‘llliiceci a ﬂrafieble A =;r/cr plej‘/‘ir;lg: aroleof perafneter andset :; : |
“"G,\‘(‘a,'ﬁ) —1—e + au.'-/-' oA - | '(2:14b) '

By Implicit Function Theorem (Markushevich, 1965) for fixed A € R equations

(2.14) determine a function:
=3 em(Wo™ S 2as)
- _

with initial condition u,\(O) = 0 in a domain where 9GA( A o,u) / u=e™+o # 0.

Since G (0,0)/0u = 1 # 0 the ment1oned 1n1t1a1 condition is Justlﬁed

To find the crltlcal pomts in the complex a-plane we ﬁrst solve the equatlon

e~ + o = 0; its roots are u = u(k) where '
' .ug@ =—Ino+ir(2k—1), ke€Z. 1 (216)
Substituting (2.16) into (2.14) we obtain the equation -

A—14lno—ir(2k—1)=1/0 (2.17)
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which, after exponentiating

1 -
- _el/f"._:_;eA 1‘,- -
g B

can be solved for ¢ in terms of the Lambert W function - ..
Om = 1/Wn(—e*1), (2.18)

where the m- th root is defined by the m—th branch of W _

Comparlson between equatlons (2 16) and (2 17) shows that at the crltlcal pomts
we have a relation A — 1 —u = 1 /o and hence §(1/0) = ¥(—u). Therefore, due
to (2.10) a root o, defined by equation (2.18) is a singular point for the principal
branch if its reciprocal has imaginary part in (—m, 7). On the other hand, in the
right-hand side of equation (2 18) only branches W, and W_; have the imaginary
part in this range (Corless et al., 1996) (and thereby can pr0v1de not only complex
but also real roots om unhke the other branches) Thus we conclude that there

are only two acceptable values for m, i.e. m= -1 O

" 'Due to identity Wm(‘—é'\"l)exp {(Wi(—e*1)} = —e* equatlon (2.18) can

be written as
=—exp{1—)\+W e 1)} (m=—1,0). (2.19)

The key point for further considerations is that the radius of convergence of the
p"ower series (2.15) is equal to the distance from the origin in the complex o-
plane to the closest singular point (Titchmarsh, 1939),(Antimirov, Kolyshkin, &
Vaillancourt, 1998, p.175, Theorem 4."3.2). In other words, due to (2.19) the

domain of convergence is defined by inequality : 3

lo| < ‘men{lilll,o} |—Aexp {1-X+ Wm(—e}‘”l)}l :
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or’

me{—l 0}

A ln [al < 1 - §R)\+ min  RW,, ( ) . | - (2.20)

Since §RW_1(x) < ERWO (x) for all z € R (Corless et al. 1996) after substituting
A = 7/0 the condition (2.13) follows. G e b e O

- To express the condition (2.13) of convergence of the series (2.4) in terms of
independent variable z in (2.2) and compare the result with (2.12) it is convenient

to prove the following lemma.

Lemma 2 2.2. Solutzon of mequalzty §RW 1(z )> a for z < 0, where a is con-

stant, is gwen by

$L‘<IE0= ' ',_.‘ SRR — AT ; (221)
—e%ngcescng, ' a > —1

where no € (0,7) is the root of equation nycotny = —a.

Proof. We set W_q () = € +1in for real negative z where £ < —1,7 = 0 for
~l/e<z<0andé>-1,-7< 77 <0fore < — 1/e (Corless et al., 1996). Then

separatmg the real and imaginary parts in the deﬁmng equation (1.7) we obtain
= ef(¢ cosn — nsin n), 0= ef(n cos +§s1n n) .
From these equations, one can find a dependence of £ on z explicitly for ~1/ e<

o e=waE) (22

and parametrically for z < —1/e
= ;77 csc(n)e Mot | (2.23)

‘.'§=—’ncobt'77,w; o (2.24)
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where —m <'n < 0.

Now we con31der 1nequa11ty 5 >a in two cases cemparmg a with value —1
When a < -—1 the mequahty f >a holds for all z < —1 / e because in this case
£ > -1 by (2.24). For —1/e < z < 0 we solve inequality W_ (x) >a due to
(2.22) with the result —l/e <z <ae®. Thus € > afor z <aed. '
When :a' >-1 the’mequahty § > a can have a solution only for z < —1/e
because & < —1 for the rest . _Accord‘ing' to (2.23) and (2.24) the solution is
given by £ < —mp csc(no) exp(—o cot 7o) where o € (=, ’0) satisfies the equation
o cotne = a due to Whlch the solution can also be written as £ < —e%ng csc o

and ng € (0, 7). Joining both cases, the lemma follows. O

Note that in the formula (2.21) when a > —1 but a # 0 we can also write

To = ae®/ cosng.

Theorem 2.2.3. The series (2.4) is convergent when
(e/a)?, 0< a<1l

T> Ty = (2.25)
gomesem g > 1

where 119 satisfies equation mocotny =1 —Ina (0 < m < ), and divergent when

T < Zgy.

Proof We consider the condition of convergence of the serles (2.4) established
by Theorem 2.2.1 in the real case, i.e. When a>0andz > L. Substu;utmg the

expressions (2. 2) in (2.13) we obtain
K. . B 1 ) T H hol K -¢ | }’ . | | [ B
RW_4 < I;x) SIna—1. o0 oo 0 e f(2:26)

Applying Lemma 2.2.2 to the inequality (226) we come to (2.25), where To > 1,

which justifies the assumption z > 1. Thus the theorem is completely proved. O
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“ Note. The statement of Theorem 2.2.3 was independently reported by A.J.E.M.

Janssen and J.S.H. van Leeuwaarden (November, 2007).
Remark 2.2.4. In the formula (2.25) when a > 1 but a ~ e we can also write
xa = (e/a)asccr>. ; )

Remark 2.2.5. Due to (2.26) the condition of convergence of the series (2.4) for
a = 1can be written as

~ > 1. (2.27)

Corollary 2.2.6. The series (2.4) for a = I, i.e. for W function, is convergent

for x > e and divergent for x < e.

Proof. Follows immediately from (2.25) for a = 1 O

Since the statement of Corollary 2.2.6 is very important, we give one more

proof of it following (Jeffrey et al., 1995). , ;

Theorem 2.2.7. The series (2.4) converges for all x > e.

Proof. We write the equation (2.3) in the form

g(u) +H{u]ldt) =0, (2.28)

where

gfu) = 1—e u and f{l\ar) =cm—r

We now consider the equation (2.28) with respect to u for fixed real o and r
specified below. For any analytic function F(C) with a single isolated zero at
C = U inside a contour C in the complex (-plane, we can use Cauchy’s integral

formula to write ,

u=— f I:(Q;(g\c. (2.29)
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Setting F(C) = g(C) + /(C; &T) we can write a solution of the equation (2.28) in

the form - - Lo 1 ) !
+ O

2m 390 + /(C*» 1) CdcC,

provided a proper contour C exists.

(2.30)

Let us fix an arbitrary X E (e, 00), then 0 < a < 1as a = 1/Inx. Taking an

arbitrary 5Q (0,1 —cr) we consider the following rectangular contour

S+ it , —2512< t < 2512,
t+ i2S12, -2 <t<5 ,
<= A (2.31)
—24it, -2512<t< 2512,
, —2<t<b5,

It is straightforward to show that on this contour |p] > |/]. Hence', by Rouche’s
theorem p and / + g have the same number of zeros within the contour. But
equation g{u) —O0 has the unique root u —0. Therefore, the function f + g has a

single isolated zero and the contour can be taken for the integration contour C.

In addition to satisfying the conditions of the integration, the contour allows
us to evaluate the integral by expanding the denominator of the integrand in

(2.30) as an absolutely and uniformly convergent power series in f/g.

D-U'dk - E(-DId-e-~-V ¢ -
9+f 9 1+ L ko k=0
g (2.32)
fm+ Kk q e-Cyk-m-1"kakTm '
-E E (-i)"° m
fcOm=0

Substituting this expansion into (2.30) and integrating term by term, we obtain u
as the sum of an absolutely convergent double power series in a and r, provided

X > e
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- The domain of convergence cannot be extended to T < e, because the series

for du/dz diverges at £ = e. This can be seen by noting that 7 =0at z=e. All

terms reduce to zero except m = 1 which gives the Asunil
1 @ i
=D (D,
k=0 ;
which is divergent. [J _ | O

Remark 2.2.8. The radius of convergence of the series (2.4) in terms of variable

o = 1/Inz equals unit.

- We now prove a statement, relating to divergence of the series (2.4), which was
found by us earlier than the conditions (2.25) but unlike Theorem 2.2.3 concerning
‘positive « it deals with any o # 0. In addition,’ the statement demonstrates an

interesting apphcatlon of the rat1o test to the senes (2 4)

Theorem 2.2.9. The serz'es (2.4) is divergent a_t least for
el < g < bl (2.33)

where __
W (1/|a]). when|af <1/e;

1 uhenjo|21/e.

Proof Changmg 1ndlces for summmg the expansmn (2 4) can be wrltten through

a double series (Jeffrey et al 1995)

3

=X e e

ime=l =0 -

where

(-1} [z + m} orm

s Cm,l = ;Cm,l(q, T) =-—ﬂ7- .



For the column-series J2mcmi the ratio test gives

T+m+1
. Cm+l I : l-f-1
lim rl lim
m=m Qqn| M-00 I+ m
(m+ 1)
I+ 1
as according to (Abramowitz & Stegan, 1970)
p+1
: 1+ 1 .
lim -+ for fixed |
p—00 \VJ
1+ 1
in our notations.
For the row-series we have
I+ m+ 1
+ 2
im O i im
z»00  Qml 1 z-roo I+ m
I+ 1
because by (Abramowitz & Stegan, 1970)
1+ m
I+ 1

& @+ hHam'2  2m-1(m - 1)

for fixed m.
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According to (Limaye & Zeltser, 2009, Theorem 2.7) the series (2.34) (and there-

fore (2.4)) is divergent when Ja] > 1 or Jr] > 1. Expressing these inequalities in

terms of X by (2.2) and uniting the obtained sets we obtain the stated interval

(2.33) where the series (2.4) is divergent.

By Theorem 2.2.9 for a = 1the series (2.4) is divergent at least for e-1 < X < e,

which is consistent with Corollary 2.2.6.

For comparison, the curves described by equations (2.25), (2.12) and (2.33)
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‘are depicted in Figure 2.1 by solid, dash and dashdot lines reSpeCtively. Thus the
solid line shows the exact (lower) boundary of domain of convergence of series

(2.4). | S | o

2090

15 Y

[ Comagence by eq.2.25)]
| — Convergence by eq.(2.12) |
—:—.Divergence by eq.(2.33)

T “10- :

s

Figure 2:1:' Boundary of domain of convergence of series (2.4)
2.2.2 Convergence in complex case

From now on we consider equations (2.1); (2.2) only for a = 1 (under the same
relation (2.3)) and in this subsection derive the convergence conditions for the
series (2.4) in the complex case using the results obtained in Section 2.2.1 in the

real case. To do that we set = *

o=1/lnz;r=Inlnz/lnz, oo é~(2.35)

R

where z = z + iy is a complex variable and In z denotes the principal branch of
the natural logarithm. Then the right-hand side of the series (2.4) represents a

function of the complex variable z and the following theorem holds. . ...
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Theorem 2.2.10. The domain of convergence of the series (2.4) in the complex
z-plane is defined by g S N SRR sl Bt
HRNIE %W,,;'(—'lrief) So=1p0 T e (2.36)
"whefe'the»bmnch Wm is chosen ‘a}:s follows
11, rm<argz<0
m= '
11 0<argz S{ﬂ-

P'roof Repeating the proof of Theorem 2. 2.1 under assumptlon XeCwe come to
an equatlon Whlch is different from (2.20) only by that m ez Then substltutmg
(2 35) in there we obtaln (cf (2.27)) T gL e
“min RW,, (——nf) >=10 e (2.37)
mEZ 6’ ( . o ‘
Now we cut the complex z-plane along the negative real axis and set argz €
(=m,7]. We consider inequality (2.37) in domain D =.{z € C| — 7 < arg 2, < 0}
and assume that there existsbsome value m = ¢ such that the domain of conver-

gence in D is defined by equation .
ww, ’(—bl‘nlz/e).1>‘;];.; s (238)
and its continuous boundary .2 is Vgive‘n by

The domam of convergence found in real case is deﬁned in a snmlar way Spemf—
1ca11y, in domain {z € RI z> 0} we have ¢ = —1 by (2.27) and the boundary
z ='e by Corollary 2.2.6. We require that i in the limiting case argz = 0— equa-
tion (2.38) become equation (2.27) and show that there is an unique value ¢ = —1

satisfying this requirement. (If there were several such values of ¢, it would mean
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that the boundary .%Zis composed: of several pieces of different: curves, and to
| identify them one should reduce domain D, i.e. consider its subdomains.) Sub:
stituting W, (-—ln'z/e)r = —1+4n in the defining equation (1.7) and separating
the'real and imaginary. parts we find Viieg T

sinny — ncosn = arg 2 (2.40a)

cosn + nsinn = In|z| (2.40b)

These equations describe a set of the boundary points which can be found in
the“folldr\ring way. Given a value for a‘rgz‘one can find n from (2.40a) which
being substituted in (2.40b) yields the corresponding value of In|z|. However,
for fixed ‘arg z € (=, 0] the equation (2.40a) has an infinite number of solutions.
'We select a solution to ‘provide a continuous transition to the real case when
argz — 0— and when the boundary of the domain of ccnyergence is defined
by RW_1(~Inz/e) = —1 (cf. (2.27)). An elementary analysis of the equation
(2 40a) shows that to meet these requirements one needs to choose a solution’ of
this equation from the interval n € (-, 0] and set q = —1in (2.39). Since by
(2. 40a) such solution exists if and only if z € D, the above assumptlon 1s approved

and the domain of convergence in D is descrlbed,by,(/2._38) with ¢ = -1, i.e.
RW_i1(—Inz/e) > —

Due to the near conjugate symmetry property of W function (Corless et al. 1996)
i.e. Wi(2) = W_g(z) when 2z is not on the branch cut, we obtain the convergence
condition RW;(—1nz/e) > —1 in the domain {z € C|0 < argz < 7}. Thus the

theorem is completely proved | o O

Remark 2.2. 11 The ’branch splitting’ in the proved formula (2.36) is due to the
branch ch01ces for the Lambert w functlon and 31m11ar to the effect that occurs

in the serles for W about the branch point (Corless et al., 1997 Sec 3)
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Remark 2.2.12. The inequality opposite to (2.36) defines the domain where the
 series (2.4) is divergent. This domain is finite (it encloses the origin z = 0)
and contains a subdomain defined by inequality |o| > 1. Therefore, unlike the
real case (see Corollary 2.2.6) in'the complex case.the condition lo| < 1 is only

necessary but not sufficient for convergence of the series (2.4).
2.3 Series (2.5)
231 Convergenoe 1n real case

We regard the expansmn (2 5) as a power serles around T = 0 where varlable o

: plays a role of a parameter J, —_—

Theorem 2.3.1. Fora > 0 and o > 0, the radius of convergence of the series
- (2.5) is ezactly o , N
7(0) =1+ 0 —olno +ina] (2.41)

which is Veq‘uyz’.avalyent to the condition of convergence of the series (2.5) as

lc(lna —1Ino)| < V(1 +0—0lno)?+ 7202 . ‘ (242)

Proof. We rewrite the fundamental relation (2.3). in the form of equation
CRrw=0, (24

where -~ --7 T i iiiha s Bl D 5 e
: F(T,u)—l “Upgu—T, v ‘(2.44)

and analyse thrs equatlon 31m11arly to. that in the proof of Theorem 2 2 1 By Im—
p11c1t Funct1on Theorem (Markushev1ch 1965) the equatlon (2. 43) determmes
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a function u,(7) = Y, cn(o)7™ with initial condition u,(0) = 0 in a .do-
' main where OF(T,u)/0u = e*“v—i—‘a # 0. The initial "conditi/on is justified by
0F,(0,0)/0u = 1+ o # 0. Since the critical points are defined by the same
equatlon as in Theorem 2 2. 1 they are glven by (2 16) and the correspondlng

values of T are

r® =1 4 oul =140 —olo+ino2k—1),k€Z  (245)

. The radius of convergence is equal to the distance from the origin in the
complex T-plane to the closest smgular point (Antimirov et al., 1998 Theorem
4.3.2). Among the cr1t1cal points (2.45) there are two the nearest to the origin

equidistant points which correspond to £ = 0 and k£ = 1:

70 =140 —0clno —ino, : (2.46a)
™=1+0-0cho+ire. (2.46b)

The corresponding values of u® are
i US«O) =—Inoc—idim, . - (2.47a)
‘uS}) =-Ino+im (2.47b)

. Slnce the expansion coefﬁments of the series (2. 5) are real, the closest singu-
, larltles can appear as a con]ugate palr only (Hunter & Guerrlerl 1980). Based
on the Weierstrass’s preparation theorem (Markushevmh 1965 Adachi, 2007) we
will show that the points (2. 46) are smgular each correspondmg to a square—root
branch point of function u = u,(7) in the complex 7-plane. We will also find a
behavior of function u = u4(7) near the points (2.46) used then for a study of an

asymptotic behaviour of the expansion coefficients of the series (2.5).
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Let us consider, for example, point r = r* . Expanding the left-hand side of

equation (2.43) into a Taylor series near the point S wi°” we obtain
whHht ™ (- « & . fgaH:

.2 W !, . « ,.A,, t £ eoeoe—
om0 RY Vi E & ) ¥ o,

where dots denote the skipped terms of the higher order. Since

h dF_ {S . d2Fa(S ~NE ,
a.(S) =0, Q{J ) = 0, gu£ )= -exp (-«(|O'r)], and—@r = -1
the last equation becomes
(u-uic<
- (€- ri0) - exp (-4 0) —— --——-—--+ eee= Q,

Thus, in accordance with the Weierstrass's preparation theorem (Markushevich,

1965, p.111), equation (2.43) is locally equivalent to the equation

(€Q- r) ~ exp (-uiQ)

It follows that at r = ri°® function u — uff(r) has a singularity corresponding to

a square-root branch point as near this point
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or substituting (2.47a)

U~ —In<s— (2.48)

It is not difficult to show that if we consider the values of the function (2.48)
in the interior of the circle of radius (2.41) remaining in the vicinity of r= ri°
then the function (2.48) taken with the plus sign only satisfies the condition
—mM < Qu < 0, which corresponds to = —M < 0 at point r = ri°*® itself
by (2.47a). Moreover, since in the mentioned vicinity — < Qr/cr < 0, we have
—fr < Q'ty < *by (2.7), which corresponds to the principal branch of W function
(Corless et al.,, 1996). Thus we come to conclusion that the function u —ua(r)

behaves near the singularity (2.46a) like e

20
U~ —Inao—nr+ i\ asT 71O = (2.49a)

)

One can show in a similar way that near the singularity (2.46b) the function

u = Wo-(r) behaves like

u~ —Ina+ zZrm—i Jj asr -*rfl}. (2.49b)
™ |/

Thus the points (2.46) are singular and we immediately obtain expression (2.41);
the inequality (2.42) follows from (2.41) asr = —<7(In<r- Ina) due to (2.2). The

theorem is completely proved. O

Corollary 2.3.2. For a = |,"the series (2.5) is convergent for 0 < a < ag and

divergent for a > ao where ao —224.790951... is the only root of the equation

|—crincrl = y/(l+ a—alna)2+ #2a2. (2.50)

Proof. Follows immediately from (2.42). L]



41

- “Thus, in terms of the variable z, the series (2.5) for the Lambert W’ function
(= 1) is convergent for z > mo. = el/90 = 1,004458..., which confirms and
specifies the result obtained in (Jeffrey et al.,‘ 1995). 1t is also worth to‘ emphasize
that the domain of convergence is described by x> o> 1 rather than z > 1

though zy is 5 very close to umt

Remark 2. 3 3. Substrtutmg values (2.46) and (2.47) 1nto (2 7) we find W(x)

for both k=0 and k=1 Although it is well—known that th1s value of the
Lambert W functlon corresponds to its branch pomt and asymptotlcs (2 49)
can be obtamed 1mmed1ately from the results in (Corless et al 1996, 1997),
we derlved these asymptotlc formulae to demonstrate a method based on the

Welerstrass s preparatmn theorem.

Remark 2.3.4. The results of Theorem 2. 3 1 correspond to the propert1es of the
Wr1ght w function (see subsection 2.4.2). In partlcular due to (238) for fixed
o > 0, the singular pomts of function u,(7) can be found through those of function
w(s), s« = —€+im (£ £ -1), by transformation w=1—clno— foqzzmr. Since
R7. has the minimum at £ = —1, the closest singular points are deﬁned by (2.46),
which corresponds to the results of the theorem.

' Remark 2.3.5. The solution o = o of the equation (2.50) is much more than unit
and can be found approximately with "a good precision. .Spe'ciﬁcally, taking square
of the both 31des of (2. 50) and leavmg the main terms we obtain o? — 202Ino +
wlo? — 20 Ino ~ 0. Searchmg for a solut1on of the approxrmate equation in the
form o = exp(1+7r )(1 + 6), where the exponential factor is an exact solution of

the approx1mate equation w1th neglected last term and a correction term § is to

1+7r) Lin?

be determmed we obtam an approximate value in deficit og ~ exp(=t 5

223 8126969... Takmg into consideration of the terms of higher powers in  in a
similar way, one can obtain a more accurate value. .. - o R

Remark 2.3.6. The convergence condition (2.42) has'a clear geometrical interpre-
tation in'(o, 7)- plane ‘For example, for o = 1, one can show’ that in accordance'

with the inequality (2.42), when o < oo the curve L described by 7 = —¢lno is
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~ located inside the region S bounded by curves 7 = #+/(1 + ¢ — olno)? + 7202,
which expresses the condition of convergence of the series (2.5). However, at
point ¢ = o the curve:L leaves the region S through the lower boundary curve

that can be described for large ¢ by the asymptotic expression

) |
""(0')‘—‘—\/(l-l-a—alna)?-f-yr,%,?'=;01n0+0_1+7" _I1‘7_+1+O(___):

It follows that afterwards the curve L remains below the lower boundary of §,

which corresponds to the d1vergence of the series (2.5) for o > 0.

3 Now we cons1der case o < 0 Wthh should be done carefully as by Impllc1t
Functmn Theorem 1t should be dF (0, O) [Ou # 0 due to the 1n1t1al condition
u,(O) =0 and therefore the value o=-1 should be. excluded It follows from
(2. 45) that When o < 0 and o 74 1 lLe. 0= |a| e”T and ]0[ #. 1 there is only one
the nearest to the orlgm smgulanty glven by (2 46b)

O =1t0-chlo| (2.5‘1)

that hes on the pos1t1ve real axis. Correspondmgly the radlus of convergence

1nstead of (2 41) is the modulus of the rlght hand 81de of (2 51).

.Finally, when o = 0 the series following from (2.3).

is convergent for |7| < 1.
s ;
Note. When o = ——1 (1) = 0 by (2 51), i.e. the series diverges everywhere.
We: also note that in all cases considered above. the condition of convergence
~of the series (2.5) is described in an unique manner, particularly, the radius of

convergence is given by (2.41).



2.3.2 Comparison with series (2.4)

Let us compare the domain of convergence for the:series (2.4) and (2.5). Both

can be represented in the form

u= "¢r c™@)Tm (2>53)

(see (2.34) for the series (2.4)). However, by Corollary 2.3.2 and Corollary 2.2.6
the series (2.5) has a much wider domain of convergence than the series (2.4)
(not only in the real case but also in the complex case, see Figure 2.2 below). To
undestand this phenomenon we note that the domains D4 and D5 of definition of
the function cm(cr) in the series (2.4) and (2.5) respectively are different. Specifi-
cally, the domain Z+4 contains point a = —1 where the conditions ofLthe Implicit
Function Theorem are violate, which results in restriction |c] < 1 that appears as
a necessary condition for convergence of the series (2.4). However, in the series
(2.5) cm(a) — cm(£(cr)) where £(cr) = 1/(1 + a), i.e. the domain D$ does not
contain point a ——1. Therefore the mentioned restriction does not appear and
the domain of convergence is extending.; This correpsonds to the fact that the
function £ = C(c) maps the interior of the unit circle joJ— 1 into an unbounded
domain which is the right half-plane > 1/2. Since the series (2.4) and (2.5)
have common values in the domain where they are both convergent, the series

(2.5) is the analytic continuation of the series (2.4).

In terms of variable £ the series (2.5) becomes (Jeffrey et al., 1995)
u= E f r Vv i r - r <(2.54)
771=1 p=0

and can be regarded as a result of applying the Euler’s transformation for im-

provement of convergence of series (Hardy, 1949). Indeed, the standard Euler’s
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transformation associated with changing variable to extend a domain of conver-
gence of the series (2.4) is p = o/(1 + o) (Morse & Feshbach, 1953). Since in

terms of a new varibale the fundamental relation (2.3) is written as

et +u+T—1""

it would be natural to introduce variable { =1—p=1/(1+ cr> rather than p.
The series (2.5),(2.54) were first found in (Jeffrey et al., 1995).

One can also show that a representation of the Lambert W function through
the function u,(0) = an"_ cm( Yo™, where T plays a role of parameter, can not
extend the domain of convergence - estabhshed for series (2 5) Indeed, in thls
case equation (2.43) changes to F, (o, u) = 0 where FT(O', u) is still defined by the |
right-hand side of (2.44) but with initial condition uT(O) = —In(T=17). By the
Implicit Function Theorem it should be 6F (O —In(1 — 7))/8u # 0, which gives
T #1,ie |7] < 1, and subst1tut1ng r'=_olhe yields 0 < 0 < 1/wo as a

necessary condition for convergence (cf. 0 < 0 < 0 in Corollary 2.3.2).

. Thus among the series with the considered structures the series (2.5) has as

wide as possible domain of convergence.

2.3.3 Asymptotics of expansion coeflicients:

Once the behavior of functlon U= u(,('r) near the nearest to the orrgm smgular—
1t1es has been estabhshed one can find an asymptotlc formula for the expans1on
coefﬁ(nents of the serles (2 5) usmg the Darbouxs theorem about expansmns
at algebralc s1ngu1ar1t1es (Comtet 1970 Bender, 1974) The 81m1lar approach
based on the We1erstrass s preparatlon theorem and the Darboux s theorem, was

apphed to asymptotlc enumeratlon of trees in (Sav1cky & Woods, 1998)
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'According to the Darboux’s theorem (see AppendixA.2) and found estimates

(2.49) for 0 > 0 the expansion coefficients in the series (2.53) have an asymptotic

formula for large m as

+ 0 m
)
or
/
cm(v ) (2.55)
V) yph7am2 m-J |
as T (—1) = —2y/ir. Setting rP = T¥ eld we find
2 sin(m —I
( ) (2.56)

an<) 7 as m-» 00
e e =dm

where r* = r*(cr) is defined by (2.41) and N\ = arg(l + a —criIncr + i-na).

Specifically, for a > 0

r
arctan if 0< I<
ml—Ina+ 1/0’ W (l/e)’
T+ arct m if (7>
arctan
1—In<r+ 1/cr W{l/e)'

It follows from (2.56) that for large m the expansion coefficients in the series
(2.5) disclose their oscillatory behavior due to sin function though the anj\plitude
decays as t*(a > 1 for any 0 > 0. Since the series (2.5) can be interpreted as a
result of applying the Euler’s transformation to the series (2.4) (see (2.54)), we

note that some cases of oscillatory coefficients resulting from the Euler’s trans-

formation are studied in (Hunter, 1987). ...



46

- In order to find an asymptotic formula in case when o < 0, suffice it to take

in (2.55) only the first term with (2.51)

: L
em(0) ~ — as m—oo . (257)

- \/2rloims (1= |o] + |o|In|o|)™"

Finally, for case g = 0, it follows from.(2.52) that for any me N

(2.58)

e (0) = %

2.3.4 Convergence in complex case

Théorem 2.3.1 is éx‘t’e:n’ded to :the cofnplek case.

Theorem 2.3.7. For complez o, the radius of convergence of the series (2.5) is
7(0) = |14+ 0 ~0olno —ino| when Soe <0, (2.50a)

1(o)=|1+0—0clno+iro| when So >0. (2.59b)

In the complex z-plane this is e(jdiavalénf to tht the series (2.5) is convét&;éﬁt
e}v’qryw‘here in the exterior Qf_.the boundary line defined by equation

o |\—>oln0| = |"1 +o—oclno ii#a[ L (2.60)

where ¢ = 1/Inz and sign minus or plus is taken respectively in the_uppcr ob'r'

lower half-plane. o

Sy

Proof. Repeating the proof of Theorem 2.3.1 unde'r.‘assumpti'on o € C we obtain
the same equations (2.16) and (2.45) for singular poinfcs,ugc) and ) respectively,

where:k € Z. However, many ofv,th‘e‘ singular points do not correspond to the
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principal branch of W function and relate to the other branches. 'We are going to
find acceptable values of &k for which singular points relate to thepr_i‘ncipal branch
of W. Formally these values of k are not obvious because the logarithms (and

their branches) in the-equations (2.6) and (2.16) are different,’ more precisely,

they are taken of different variables, z in the formerand o = 1/Inz in the latter.

To ﬁnd acceptable values of k we substltute into equation (2 7) a relatlon

r=—-clno followmg from (2.2) to obtain
u=W(E)—1/oc—Ilng, .~ = 1 (2.61)

where s = s(o, ) is defined by (2 8). Let us consider values of u in the e-vicinity

of the. pomt u : Comparmg between (2.61) and (2 16) gives

f —

| , z7r(2k‘ — 1) + 66’3" = W(es)— 1/0“.’ : i” ’

where —r < 1 < . Settmg z = ]z| (—37r <0< 7r)1n o = i/lnz and

separatmg the 1mag1nary part in the last equation we obtain
T2k —1)+esinp=9W~0. (262

Since for the principal branch —7 < SW < 7, we  find 1 /2 =€esin go/ (27r) < k<
3 /2 ~ €sin <p/ (27r) ie. acceptable values are k = O and k =1 o

_ Now we note that both points 7 7© and (1) are s1ngular, particularly, they
correspond to a square—root branch point of function u = ug(r): for the same
reaSon as in the real case (see proof of Theorem 2.3.1). Taking.into account this
result we consider equation-(2.62) for € = 0 in two cases k= 0 and k =1. When
k = 0, we have SW = 6 — 7. Since —7m < SW < 7, only positive 6 satisfy this

equatlon, ie. 0< 0 <. Slmllarly when k = 1 we have SW = 6 +'7 “which

holds for —7 < 6 < 0. Thus we conclude that the curve ]—aln ol = |7 0)' is



48

located in the upper z-half-plane and the curve |-olno| = e (0')] is located in
the lower z-half-plane, these curves being symmetric with respect to the real axis.
Hence, the equation (2.60) describes the boundary of domain of convergence of
the series (2.5) in the cornplex case. In addition, since 0 = (In|z| — i0)/ |In 2|,
‘¢ and Qo are of oppos1te signs and the equatlons (2. 59) follow The theorem is

completely proved 'f ' PR 0

Remark 2.3.8.%We note that the case |o] < 1 reveeis a connection between the
series (2.5) and (2.4). In particular, the case perrnits to expand 1/ (1+40)in
powers of o in the former that after some rearrangments can be reduced to the
latter (Jeffrey et al. 1995) In accordance with Theorem 2.2.10 the series (2.4) is
convergent in a subdomain V in the complex o-plane which is defined by (2.36)
»(Written in terms of o) and contained in the unit disc U = {a €Cllo| <1}
(cf. Remark 2.2.12); more premsely the boundarles of V.and U have one common
pomt q =1 (where both series are convergent) "The series (2. 5) is also convergent
inV bnt has a wider domain of convergence bemg convergent muUN H Where

the domain H bounded by (2 60)

" The curve defined by equation (2.60) in the complex 2-plane vis depicted in
Figure 2.2 by solid line 1n the upper half—plétne only (corresponding to the negative
51gn) as it is symmetrlc w1th respect to the real axis. The exterlor of this boundary
line can be regarded as the domain of analytlc contlnuatlon of the series (2.5) from
the part of the real axis z > o (see Corollary 2.3.2) to the complex z-plane. For
comparison; in the same figure it is shown (by dash line) the boundary line of the
dornain of convergence of the series (2.4) defined by equation (2.36). Since the:
domain of convergence of the series (2.5){ is located in the exterior of the'cnrve

depicted by solid line, it is wider than one for the series (24). 0

In the end of this subsection we give asymptotics for the expansion coefficients

of the series (2.5) as m — oo when o # 0. It follows from the proof of Theorem
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" ——Senes(Z 5) =
' i — Senes(?. 4} .

Figure 2.2: The domain of convergence of the series (2.5) in the c‘yogiplex z-plane.

9.3.7 that in this case there is only one singularity 7 = 79 when So < 0 and
7 =Y when So > 0. Therefore, one can use formula (2 55) keeping only one
corresponding term (unlike case of real o When there occur two singularities and
both terms constitute the asymptotic formula (2.56)). Thus, taking (2.46) we
find | N

S0 WRRY +i.
V2rom¥? (140 — olno + ino)™ ?

where sign ”+” (”—") is taken in case of positive (negative) So.

em(o) ~ as m — 00,

2.3.5 Representation in terms of Eulerian numbers
The expansion coefficients of the series (2.5) can be expressed in terms of the

second-order Eulerian numbers (see Appendlx B) To show that we combine

equations (2. 7) and (2 53), then the coeﬁiments cm(a) in the right-hand side of
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(2.53) are

W {es) (2,63)

T=0 s=—Incr+l/c

as ds/dr = —1/a by (2.8).

Because of (2.7) the formula (2.63) is valid for m > 2, for m = 1 we have

orcr) = ~ + -fw (&) (2.64)
7 ar r:o

Since(Corless et al., 1996, 1997)

de(es) Qm(W(es))

ds™ {1+ Wie*))2m- U

where the polynomials gn(r) can be expressed in terms of the second=order Eule-

rian numbers (Graham et al., 1989; Corless et al., 1997)
m—
f=0

and

=Wt-e*
we finally obtain

(-1)y -1 yvilim-\\ {-Dk
Ci(ff) = §=F5" "™@)  mig + 0)2m1 if Nk i M > 2 (2.69)

Substituting (2.65) into the right-hand side of (2.53) results in a desireable for-
mula #

®
-TTI m_k/\m_k_|
U 1fa= mii-faamt  AMg 20DV (2.66)
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By introducing the variable ¢ = 1/(1+ o) the series (2.66) can also be written as
oonm——l m'—l S : k
= U _qymtkpmAktlq _ym—k=2 :
u—_'rg-{-Zm! Z<< . >>( )mrkemyktl( _ymokm2 o (2.67)
Lom=2 k=0
We note that the expansion (2.67) does not contain terms of the second order
in (. o | :

. The series (2.5), (2 54) (2. 66) and (2.67) have the same properties 1nclud1ng
the domain of convergence and the asymtotic estlmates for the expansion coef-
ficients studied in Section 2.3.3. This fact leads to some combinatorial conse-

~ quences considered-in Section 2.5. -

2.4 Series (2.11) ’/ e
2.4.1 Different representations

The series development (2.11) was obtained in (Cbﬂess et al., 1997; Corless &

Jeffrey, 2002) and represents an expansion of W (z) in powers of 67! = Inz

, W(x) = wp + Z an( ln:c (2.68)
o _ ‘n=1 )
or SRS o ~ |
W(e)=wo+ > ant®, (2.69)
n=1 .

where ¢ = Inz and (Corless & Jeffrey; 2002)

| “n“‘11+w(‘,)2n_12<< >> 1)kw k+1.,{l. o (2.70.)
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The formula (2.70) expresses the expansion coefficients anin terms of the second-
order Eulerian numbers. We now show that these coefficients can also be repre-
sented through the unsigned associated Stirling numbers of the first kind d(m, K)

given by (Comtet, 1970)

~L T
[In(l + v) —v]lk= R\~ (H)mdHcd(m, K)™-r (2.71)
m:2k 7771.

and the 2-associated Stirling numbers of the second kind used in the series (2.5)

(see also Appendix B).

Both representations can be obtained on the basis of a relation (Jeffrey, Hare,
& Corless, 1996)
W{et) + \nW{et) = t: N (2.72)

and the Lagrange Inversion Theorem (Caratheodory, 1958). To apply this the-
orem it is convenient to introduce a function that is zero at t = 0. We consider
function e

' v=v() = WieNMuQ- 1 (2.73)

and write (2.72) as

t= ojagv+ In(l + V).

Then by the Lagrange Inversion Theorem we obtain

00 n

In(l + v)'

V'n-El AT h o+ v (2.74)

where the operator [up] represents the coefficient of vv in a series expansion in
v. Comparing (2.73),(2.69) and (2.74) leads to a formula for the coefficients an,

which after applying the binomial theorem becomes r *

= mn-11 Y "i-1YKER =1 I gl + V) —vIk

n n( +won u \ n—1 / vi{l+uQk
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or by (B.5) eI RESSA R
: n—~1
_wo s (=1)"*ld(n+ k- 1,k)
T N e (210
If instead of function (2.73) to take |
h=h(t) = W(e") — wp — t  (2.76)

and apply the Lagrange Inversion Theorem to invert a relation
t= wo(e"h_— 1)—h

coming from (2.72), then we find in a similar way -
n+k—1 (— i)k-l—l k i
- Wiy At — 2.77
”'kX—;{ , } (14 wo)™th ‘ (277)

Finally, one more representation for the coefficients a, can be found in the fol-

lowing way. Let us consider a fuhction
p=g)=WEH-t (W)

Wthh is a s1mp11ﬁed versmn of functlons (2. 73) and (2 76) now one does not
need to pr0v1de the zero functlon value at t = 0 and here z,/)( ) = wo. Then it
follows from (2 72) that |

t=e¥ — z,b (2.79)
r;‘I‘hi’s equation ceﬁ aisek bvej e'l-jteirired‘from the fundamental relation (2.3) by trans- -
formation =19 +Int, o= 1 /t,7 = Int/t which follow from (2.2).

R

" Differentiating (2.79) in ¢ and excluding the term e~¥ from the result again =
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using (2.79) result in an initial value problem for ordinary differential equation’:

e 1+t+¢

Searehing a solu_tigﬁ 1n the form of series
o0
WW=wtSar (@)

by substituting it into the differential equation and equating coefficients of the

same power in ¢ one-can finally find '

1 1 | ik
c = — , Cp=———= ((n ~Dep1 + chkcn_k> ,n=27234,..

14+ wo n(1 + wp) 2

| : ‘ (2.81a)
At length combining '(2.80),(2.78) and (2.69) gives Lo . gy
a = 1 -+ Cl, ap = cn for n 2 2. (281b)

In practlce computmg the expansmn coefﬁ(nents in (2 68) usmg recurrence (2.81a)
is faster and takes less dlglts to obtain a required level of accuracy than using
either of (2 70) (2 75) or (2.77) which, however belng different representamons of
the same expansmn coefﬁc1ents lead to some combinatorial relations cons1dered

in Section 2.5. ..

2.4.2 Convergence properties

The expansion i2.11) iin facf represents a sefies of the Wright w function (Corleéé
et al. 1997 Corless & Jeffrey, 2002) ( )= W;c(z)( e*), where K( z) = [ Sz — 7r)/ (27r)]
is the unwmdlng number of z. The Wright w functlon was 1ntroduced by Corless

and Jeffrey (Corless & Jeffrey, 2002) and studied in (erght 1959; Corless & Jef—
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frey, 2002). When z ™ £xin for £ < —1, U = ui(z) satisfies equation f{z,ui) = 0
where f(z,uj) = u+ Inw —2 (cf. (2.72)). Applying the same approach as in
Section 2.3.1 to this equation one can obtain the same results as in (Wright,
1959; Corless et ah, 1997; Corless & Jeffrey, 2002). Specifically, the nearest to

the origin singularities are (Corless et ah, 1997) . : , N ,

A= —1—in and 2 ——1+ in. (2.82)

Note that they are connected with the singularities (2.46) of function u = ua(r),

defined by (2.3) or (2.7), through function (2.8)

A = s(<r, tf1)) and 22 = s(o-,ri0)).

Thus the radius of convergence is \/I + n2 (Corless et ah, 1997) aneTthe domain
of convergence is given by

itV M>-==L-, m (2.83)

s/l + 772
The estimation of 4 in the vicinity of the singularities (2.82) is (Wright, 1959;

Corless & Jeffrey, 2002) ‘

w ~ _1 —sgn(9:2fc)\V22fc ™1 - as 2->zk, (k= 1,2)

As in Section 2.3.3, using the Darboux’s theorem one can find the asymptotic

expression for the expansion coefficients in (2.68)

! - eV2n —1
-(—l f(ﬁsm | — -— arctan7T
an~ \l - m ani —-easn oo * (2-84)

3/.—
n2(l + m2) 4

Thus, as in case of the series (2.5) for positive a (see (2.56)), the expansion
coefficients in the series (2.11) disclose decaying oscillations in their behavior for

large n.
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In real case inequality (2.83) read as exp(—y/1+ 72) < x < exp(\/l + 72).
Thus from the point of view of the domain of convergence the series (2.11) takes
an intermediate place between the expansion of W(x) at the origin (Corless et al.,
1996) W(x) = 1 (—n)~Ixn/n\, which is valid for —e-1 < X < e“1, and the
series-(2.5) which is valid for X > xg = 1.004458... (see Corollary 2.3.2); These

three expansions put together cover the entire region of definition of W(X).

2.5 Combinatorial consequences
In this section we collect some combinatorial consequences resulting from the
above obtained expressions for the expansion coefficients.

Equating the right-hand sides of (2.54) and (2.67) one can find

(I + A)n-fo Al (2.853)

where summation in the right-hand side starts with one as {"}>2 = 0 (Graham

et al., 1989). Settingn = A/(1 —A) in (2.85a) we also find , .
@ - (2.85b)

The identities (2.85) were obtained by L. M. Smiley (2000) in a different way,
where notation {{}} was used instead of {}>2, and referred to as the Carlitz-
Riordan identities (Smiley, 2001). Applying the binomial theorem to (2.85) leads
to a pair of identities expressing the 2-associated Stirling numbers of the;second

kind through the second-order Eulerian numbers and inversely (Smiley, .2000)
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Some estimates can also be obtained by comparing the found asymptotic formulas
(2.56) and (2.57) with the explicit expressions for the expansion coefficients in

(2.5). For example, taking estimate (2.57) and the expansion coefficients in (2.5)

at a = —2 we obtain
m-
"D+ m—1' m —1)!
P ( ) as m —=00 (2-86)
p=r | P J>2 2AJ/n2In2—I1)m 2

where the term with p = 0 is skipped (cf. (2.85a). This result is consistent with

the formula given in (Comtet, 1970, Ex.10(7), p.224).

Another consequence is obtained by taking the expansion coefficients in (2.5)

at a —O0 together with (2.58) e e

m—1 :
-L)P + m

Further, comparing (2.70), (2.75) and (2.77) between one another we come to the

following three identities

It
(i+W o‘)n—1§>3’> \ (-1)~ = E:o (~1)"+trf (f@f e~ 1" (2-88a)

'n+ fc-11 (~1)foue *
(I+7~o0)r . n [>2 Lio)ld

(2.88b)
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(-)n+tkd(n + k-1,k) (-1)fa

o (1 + wo)*

(2.88¢)
"°S ~ h

Finally, combining either of (2.70), (2.75) or (2.77) with (2.84) gives an asymp-

totic expression for the sum involved there.

Thus, in studying the expansion series for the Lambert W function, we, on
the way, derived the Carlitz-Riordan identities (2.85) as well as found a formula
for an alternating sum of 2-associated Stirling numbers of the second kind (2.87)
and confirmed the asymptotic formula (2.86) for summation of the same numbers
without the alternating factor. We also found formulas (2.88) where the Omega
constant Uqg plays a role of a magic number which connects sums involving the
second-order Eulerian numbers, the associated Stirling numbers of the first kind

and the 2-associated Stirling numbers of the second kind.

2.6 Concluding remarks

We ascertained the domain of convergence of the series (2.4) and (2.5) in real
and complex cases and found that the series (2.5) has a much wider domain of
convergence than that of the series (2.4) in both cases and provided an analysis
of this fact in real case. We found asymptotic expressions for the expansion
coefficients and obtained a representation of the series (2.5) in terms of the second-

order Eulerian numbers.

We also considered the well-known expansion of W (Xx) in powers of Inx and
gave an asymptotic estimate for the expansion coefficients. We found three more

forms for a representation of the expansion coefficients of the series in terms of
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the associated Stirling numbers of the first kind (2.75), the 2-associated Stirling
subset numbers(2.77) and iterative formulas (2.81). Finally we presented some
combinatorial consequences, including the Carlitz-Riordan identities, which result

from the found different forms of the expansion coefficients of the above series.
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Chapter 3

One-parameter asymptotic series of W

“It 1s the mark of an educated mind to rest satisfied with the degree
of precision which the nature of the subject admits and not to seek
exactness where only an approximation is possible.” - Aristotle,

3.1 Introduction

There are several series expansions for the principal branch Wo; one of them is a
Taylor series expansion around z = 0 and the others are asymptotic expansions for
large 2 although these expansions are also valid for non-principal branches around
z —0. One practical application of the series is to provide initial estimates for
the numerical evaluation of W; these estimates can then be refined using iterative
schemes. The series also have intrinsic interest. For example, the definition above
of the branches WK is based on partitioning the plane using the asymptotic series.
Another interest is the fact that the asymptotic series are also convergent, and

the nature of the convergence is one particular interest of this chapter.

The asymptotic series for W is defined by equation (2.1) taken with a = 1

W(z) = In2—In\nz + u, ; (3.1)
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where u has the series development in the form of either (2.4) -
=22 (=1 [n—m‘+'1]" ml
or (2.5)
L 00 -1
T k+m-—1 - '
=S TR o,
>2

in terms of Stirling cycle numbers and the 2-associated Stirling subset numbers
respectively. The used herein variables are o = 1/ Inz, 7 = In lnqz/_l_n_z and

(=1/(1+a). |

" Two further ekpérisibns) introduce the variables L, = In(l — 7) and n =
o/(1—1).

n—m+1|m!’ .
m=1

u=-LT+§(—n)"f:(—1)m[;ﬁ \]LT 6

¥

e E e R )
o "mzm' ; koo o (L mhim
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All of these expansions are limited in their domain of applicability by the fact
that o and 7 are each singular at z = 1, restricting their utility to z > 1. In
addition to the domain of validity of the variables, there is the question of the

domain of convergence of the series. For example, we show below that for z € R,

series (2.4) is convergent,only\ for z > e.

In the chapter we considerlj transformations of the above seriéé and cbncén—
trate on their properties for z € R. The transformations contain a parameter p
which can be varied, while retaining the basic series structure. Therefore we refer
to them as one-parameter fdmily of invariant transformatz’ons'.‘ The parameter
effects on the domain of convergen‘c’e of the series as well as their rate of conver-
gence that is the accuracy‘fé} a given number of terms. Our goal is to .improve

such convergence prbperties of the series by varying p. Using theoretical and
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experimental methods with the help of the computer-algebra system MAPLE we
will show that the parameter can be used to expand:the domain. of convergence

" of the series while the rate of convergence can increase or decrease with p.
3.2 Computer algebra tools

We shall be using a number of tools from MAPLE in the work below. The coef-
ficients vappe_aring‘ in the expansions (2.4) and (2.5) can be computed from their
generating functions as follows. Thé: 2-associated Stirling subset numbers are
defined by the generating fuﬁction . ‘ |
—1 =2\ =m! T
\(e 1 z) m! 253711{ } Lot
» ,_n>0
Given numerical values for n and m, we expand the left-hand side symbolically
up to the term of nth order and then extract the appropriate numerical coeffi-

cient.. The next lines show an implementation of this procedure with examples in

MAPLE.

> St1r11ngSubset2 -proc(n integer m"integer)

optlon remember, |
‘local f,z;

fi=series( (exp(z)-1-z)°m , z , n+1);
if n<2*m then

S
else
B coeff(f z n)*n'/m'
,end_if;

~end proc;
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> StirlingSubset2(6,3),StirlingSubset2(9,4),StirlingSubset2(12,5);

15, 1260, 190575

It can be noted that a similar method to this is used in the standard Maple
library for Stirling Cycle numbers, which are used in (2.4). In practice, it is more
efficient to store all of the coefficients from any series expansion, but this level of
detail is not shown here. Similar techniques can be used for the Eulerian numbers

used below in (2.70). ,

Another important tool from Maple for this paper is computation to arbi-
trary precision. It is a standard topic in numerical analysis that summing series
requires a close watch on the effects of working precision, otherwise one runs the
risk of generating ‘numerical monsters’ which are completely artificial effects of
the computation and do not reflect any actual mathematical properties (Essex,
Davison, & Schulzky, 2000). In all of the calculations below, the Maple envi-
ronment variable Digits was set and monitored to ensure that the results were

reliable. - ' '

3.3 An invariant transformation

We reconsider the derivation of (2.4), trying the ansatz

W =1In2—In(p+ Inz) +u . (3.4)

Substituting into the defining equation Wew = we obtain &
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Prom this, it is clear that if we define

p+In(p+ In2)
dr =

a_p+ \nz p+ Inz (3-3)

then we recover the equation (2.3) originally given by de Bruijn for u and leading
to the series (2.4). Thus the fundamental relation (2.3) is invariant with respect

to p, with only the definitions of a and r being changed.

; This remarkable property is due to the fact that the solution (2.1) of the
original transcendental equation yaey = X possesses a similarity property with
respect to parameter a > 0 in the following sense (Jeffrey, Corless, Hare, &

Knuth, 1995)

KA(x) = '(— 1= aW 3.6
() =as! (— 1=aw (36)
Indeed, it follows from (2.1) and (3.6) that
jir ( rl/a\ l-r
3.7

where a and r are defined by (2.2). The right-hand side of (3.7) does not include
a explicitly. On the other hand, a is included in the left-hand side through a com-
bination z = xlla/a. Therefore, the fundamental relation (2.3) will retain if we
change variable X = (az)a. Substituting this formula into (2.2) and introducing

parameter p = Ina we obtain exactly equations (3.5).

Thus introducing the invariant parameter p generates an infinite one-parameter
family of series formed by replacement of variables r and a in the original series
with expressions (3.5). Similar series for W are associated with the invariance

|

i
observed in (Jeffrey et al., 1995) and studied in (Corless, Jeffrey, & Knuth, 1997).

We now consider the properties of the transformations for ze R, We shall

start with p E M and later consider briefly one complex value of p. Both a and
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7 are singular at z; = e™P, with the special ease p = 0 recovering the previous

observations regarding the singularities at z = 1. We note that ¢ is monotonically

decreasing on z > és. For 7, we have 7(2p) = 0 at 2y = exp(2;—p), with 7 positive

for larger z and hegative for smaller. Also we note that 7 has a maximum ‘at

2z = explez, — p) In Figure 3.1-3.2, we plot o and 7, defined by (3.5), for
different values of p We see that for all 2 > z,, o decreases with i increasing p, but

7 increases. In view of the form of the double sums above it is not obv1ous whether

convergence is mcreased or decreased as a result of these opposed changes. This

is what we wish to 1nvest1gate here.

3.4 Domain of convergence =

We wish to in{restigfate'ﬁret”the domains of z € R for which the series (2.4) and
(2.5) converge, and how the domains vary with p. We begin with theoretical
results. For p = 0 the domains of convergence are known from theorems 2.2.3
and 2.3.1. Specifically, the series (2.4) converges for z > e and the series (2.5)
conVerges for z > 20 = 1.004458... (éee Corollary 5. 1) under otherw1se condltlons ‘
the series are divergent. For arbitrary real p the followmg statement can be

proved for the series (2.4).

Theorem 3.4.1. The domain of convergence of the tmnsformed series (2.4) is

deﬁned by equatzons
ER‘W_.IV(—eP'I(p +Inz))>p—1landz>e™?, (3.8)
which is equivalent to |

e1—2137 p < 0 (3 9)
e~P+no csc ")0 p > 0
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Figure 3.2: Dependence 7 on z for different values of parameter p., .
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where no € (0, ) is the root of equation mocotmy =1 - p.

Proof. The proof of the theorem is similar to that of Theorem 2.2.3 and based
on an application of Theorem 2.2.1 to the transformed series (2.4). In particular,
substituting the expressions (3.5) .in (2.13) we obtain in the real case, i.e. under
assumption p + Inz > 0, the inequality (3. 8). Applymg Lemma 2. 2 2 to the
latter we get (3.9), where z>e ~P, which justifies the above assumpt1on and the

theorem follows. ’ | |

Remark 7.1 In the formula(3.9) when p > 0 but p # 1 we can also write

5 = e-pH(i-p)secmn

Remark 7.2 The convergence condition (3.8) can be extended.to the case of
complex z similar to the. extensron of the cond1t10n (2 27) for the untransformed

series (2. 4) by Theorem 2 2.10.

- To find out the domain of convergence of the transformed series (2.5) we can
substitute (3.5) in (2.41) and solve the obtained equation for z'as a function
of p. Since this solution can not .be presented in an:explicit form, we found it
numerically. In addition, we found that this solution can be approximated wlth |
a very good precision by an expression which is the argument of W ‘function in
(3.7) taken at z, . .. Sl
5= ()" . (3.10)

Both results are depicted in Figure 3.3 (by solid line and circles) together with
curve (3.9) (dash hne)

| fé
It follows from Frgure 3. 3 as Well as from (3 9) and (3 10) that W1th ‘increase
of parameter p the domaln of convergence of the transformed series monotonely
extends To 1llustrate and qualltatwely verlfy this result we deS1gn an appropnate

numer1cal procedure The method is s1mply to compute the part1a1 sum of a series
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\\ ; 20-
ek
x 15::'
\\ z, i0s | - series (2.5)
E \ A : S —:'—-'sens(zs;).
-] o .eq. (3 10)

Figure 3.3: ‘Behavior of boundary of convergence domam as a functlon of P “for
series (2.4) (dash line).and (2.5) (solid line) in real case. | e

to a h1gh number of terms, us1ng extended ﬁoatmg—pomt premsmn as necessery,
and then to plot the ratlo of the partial sum to the exact value (the exact value
is obtamed usmg a built-i -in MAPLE functlon LambertW(k X) where a method
dlfferent from ser1es summatlon is used) The edge of the domain of convergence
is then s1gnaled by rapld osc1llat10ns and by marked deviations from the desired
ratio of 1. (To make a graph be readable we depict only the relevant part of each

curve.)

For the series (24) we have plotted in Figure 3.4 the partial sum to 40 terms
for different' values of p. For p = 0, we see a nice illustraticn"et (Theorer;ng’2.2.3,
with the partial sum bécoming unstable in the vicinity of z = e. For pcsitive D,
we see the domain of convergence increased and for negetive;‘ p it is deCr‘eas')ed,l in
accordance with Theorem 3.4.1. Similar effects can be seen for (2.5), we: plot in

Figure 3.5 the partial sums for 40 terms as p varies. The domain of convergence
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for each p is clearly seen, and confirms that the point of divergence moves to
larger z for decreasing p and to the left for increasing p. For p = 0 this point is

very close to 1, which sharp demonstrates the result in Theorem 2.3.1.

A similar investigatien of series (3.2) shows an interesting non-monotonic
change in the domain of convergence. In Figure 3.6 the partial sums are plotted

and the boundarv of the domain of convergence moves to the right for p # 0.

Thus series (2.5) has the widest domain of convergence and the best behaviour
with p, while the domains of convergence for series (2.4) and (3.2) become worse

in that order.

The fact that the domain of convergence of the transformed series is extending
‘while the parameter p is increasing can also be found in the complex case based
on'the;reeulte of theorems 2.3.7 and 3.4.1. To make certain of this“it is sufficient
for the series (2.5), to substitute expressions (3.5) (with z € C) into equation
(2.41) and for the series (2.4), to consult Remark 7.2. The results are presented
for p = —1,-1/2,0,1/2 and 1 in Figure 3.7 and Figure 3.8 for the series (2.4)
and (2.5) respectively where the curves for p = 0 are the same as in Figure 2.2
and the points of intersection of the curves with the positive real axis correspond

to the points on the curves depicted in Figure 3.3

3.5 Rate of convergence

By rate of convergence, we ere referring to the accuracy obtained by partial sums
of a series. Given two series, each summed to N terms, the series giifing on
average a closer approx1mat10n to the converged value is said to converge more |
qulckly The quahﬁcatlon on average is needed because it w1ll be seen 1n the

plots below that the error regarded as a function of z can show fine structure
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Figure 3.4: For series (2.4), the ratio W (40\z,p)/W(z) as functions of 2 for
-i/2,0, 1. . ;

Figure 3.5: For series (2.5), the ratio W”°\z,p)/W(z) as functions of 2 for
p= —1,0,1. Compared with Figure 3.4, this shows convergence down to smaller
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110,

090

Figure 3.6: For series (3.2), the ratio W9 (z, p)/W (z) against z. Compared with
figures 3.4 and 3.5, the changes in convergence are no longer monotonic in p.

which confuses the search for a general trend. Further, the comparison of rate
of convergence between different series can vary with z and p. For some ranges
of 2, one series will be‘best, while for other ranges of 2 a different series will be
best. Although (,)n'e‘ series may converge on a Wider domain than another, there
is no guarantee that the same series will converge “r'njore Quickly_on thé part of
the domain they have in common. The practical applieatioh of b_the‘se series is to
obtain rapid estimates lfo‘r W using a small number’; of terms, and for this the

quickest converge“nce 1s bést,‘ but this will be dependent on the domain of z.

The previous seetion showed that positive values of the parameter p extend
the domain of convergence of the series, but its effect on rate of convefgence is
dlfferent Figures 3.9, 3 10 and 3. 11 show the dependence on z of the accuracy
of computations of the series (2. 4) (2. 5) and (3.3) respectwely with N = 10 for

p=—1,—-1/2,0 and 1. One can see that the behaviour of the accuracy is non-
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R

1Y ? o

Figure 3.7: Domams of convergence of series (2 4) 1n complex z-plane for p=
—1 —1/2 0, 1/2 andl ’

4

F1gure 3.8: Domains of convergence of series (2. 5) in complex z-plane for p
~1/2,0,1/2 and 1. L R
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" monotone with respect to both z and p although some particular conclusions can
' be made. For example, one can observe that for the series (2.4) at least for z < 30
within the common domain_ef convergence the accuracy for p=—1/2,0and 1
is higher than for p = —1. The series (2.5) and (3.3) have the same domain of
convergence and a very similar behaviour of the accuracy. Specifically, for these
series an mcrease of pos1t1ve values of p reduces a rate of convergence w1th1n the
common domain of convergence i.e. for z > 1.5. However at the same time for
z > 11 computations with p = —1 are more accurate than those with positive p

‘and for 5 < z < 18 the highest accuracy occurs when p = -1 /2.

The next two Iﬁgures'3.‘12 and 3.13 display the dependence of convergence
properties of the series (2.4) and (2.5) respectively on parameter p for different
numbers of terms N‘ = 10,20 and 40. Agaln the curves in these ﬁgures confirm
that the accuracy strongly depends on parameter P and is non—monotone and show
that on the whole an increase of the number of terms improves the accuracy. It is
also interesting that there exists a value of p for which the accuracy‘at the given
point is maximum; this value depends very slightly on N and approximately is

p ~ —0.75 in Figure 3.12 and p ~ —0.5 in Figure 3.13.

The explained behaviour of the accuracy depending on parameter p shows
that introducing parameter p in the series can result in significant changes in
accuracy.f :The pointed out non-monotone effects of parameter p on a rate of

convergence can be due to the aforementioned non-monotone behaviour of 7.

3.6 Branch —1 and complex p

4

The above discussion has considered only real values for the parameter p. We
brleﬂy shlft our cons1derat10n to complex p and to branch 1. For z in the domain

—~1/e < z < 0, we have that W_1(2) takes real values in the range [ 1 —00).
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Figure 3.9: For series (2.4)
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Figure 3.10: For series (2.5) with- N = 10, changes in accuracy in z for p =

-1,-1/2,0 and 1.

-

¢ p=-l
— '.--'p=71 /2
e pm )

N——p=i

77

with N = 10, changes in accuracyin-z for p =
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'Figﬁ're:‘ 3.11: For series (3.3) with N = 10, changes in accuracy il z for p =

-1,-1/2,0 and 1.

logm!
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——-N=2IJ

N =40

-~

Figure 3.12: For series (2.4), the accuracy as a function of p at fixed point z = 18

for N = 10, 20 and 40.
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Figure 3.13: For series (2 5), the accuracy as a functlon of p at ﬁxed point z =9
forN—1020and4O Lo Gl T

The general asymptotic expansion (2.6) takes the form

W_1(2) = In(2) — 27 — In(In(2) — 273) +u . (3.11)
This will clearly be very inefficient for z € [—1/e;0) because each term in the
series will be complex, and yet the series must sum to a real number. If, however;

we utilize the parameter p, we can improve convergence enormously.

We again adopt the ansatz used above to write

p+ In(p + Iny 2)

3.12
p+lnkz T, ( )

Wil2) = [low 2+ 5] — [p +vin<p Flng2)] +

where v stands for the remamlng serles whlch WIH not be pursued here By settlng

p = im, we can rewrlte [ln-l 2 + 277] as ln(-z) A numerlcal comparlson of partlal
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sums can be used to show the improvement. We compare

lﬁ(ln(z) — 2mi)

wl =" In(z) — 2mi — In(In(2) - 2mi) + In(z) —2ri (3.13)
Woy = In(~2)—In(- in(—z)) + 22D (1)

'ln(fz)i

The results are shown in table 3.1. We note that the @fansforﬁled series is‘vexactly
correct at z = —1/e and asymptotically correct as z— 0, and therefore the error
is a maximum somewhere in the domain. In contrast the untransformed series

has an error that increases as z — —1/e.

z | Wa(2) | Wa(z) wi(z)
—0.01 | —6.4728 | —6.4640 | —6.3210 — 0.04815;
—0.1 | —3.5772 | —3.4988 | —3.4124 — 0.3223;
£0.2 | —2.5426 | —2.3810 | —2.5182 — 0.5153i
—0.3 | ~1.7813 | ~1.5438 | —2.0087 — 0.6621i
=lfe| =1 | =1 | ~17597=0.7450i .= .

Table 3.1: Numerical comparison of seriés ‘trans_férmation With p=1m.

 The accuracy is also shown graphically ih'ﬁgﬁre 3.14. Notice that although
the approXimatioﬁ W_1 given in (3.14) is exactly equal to W, at'z = —e~!, the
local behaviour is different. We know that W_, has a square-root singularity,

while W_; is regular there. This is why the maximum error occurs at z = —e 1.

3.7 Concluding remarks

We considered an in\}ariant transformation defined by the parameter p and applied
it to the series for the Lambert W function to obtain an infinite one—par;meter
family of series. We studied an effect of parameter p on convergence prl)perties
of the transformed series of this class. It is shown that an increase of p results

in an extension of the domain of convergence of the series and thus the series
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: ngure 3.14: ‘E'r;rors in appfokimations (3.13) and (3.14)“for We_i.

obtained under the transformation with positive values of p have a wider domain
of convergence than the original series does. However, at'the same time a rate of

convergence can be found to be reduced when the parameter p increases. There-

fore in such a case within the common domain of convergence of the series with

different positive values of p the series with the minimum value of p would be the

most effective.
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~ CHAPTER 4

o UnimddaI sequences ’shoxgv th‘a;t'Léi:mbéft{W is

Bernstein

“Wherever there is numb_er, there s beauty.-'"’. .—:Diadqchus Proelus

4.1 Introduction =

In thls chapter we study the propertles of the polynomlals (their coeffi01ents)
arlsmg in the expressmns for the hlgher denvatwes of the pr1nc1pa1 branch of the
Lambert W functlon We con81der such propertles as p051t1veness ummodahty '
and log-concawty The most 1mportant consequence comlng from the propertles
of the polynomlal coefficients is that the derivative dW (z)/dz is a completely
monotonic function (Sokal, 2008). By (Berg, 2008, Definition 5.1), an infinitely
differentiable function is called Bernstein function if its derivative is completely
monotonic. Thus W is a Bernstein function (see also Section5.5). Below we

_ f
consider three forms of the higher derivatives of W.
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4.2 . First form

The nth derivative of the principal branch W is given ’implicitly by

 d"W(z) _ exp(—nW(z))pn(W(z))
cdzr 0 (T4 W(x))!

forn>1, (4.1)
- where the p!ol.yrylo‘rh:ials pn(w) satisfy p;(w) =1, and the recurrence relation
 ppi(w) = —(nw + 3n — 1)p,(w) + (1 + w)p;, (w) forn>1. (4.2)

In (Corless Jeffrey, & Knuth 1997) the first five polynomials were printed ex-
phmtly T ' covefine s ,,

pi(w) =1, pa(w) = =2 —w, pa(w) = 9+ 8w +2w*
pa(w) = —64 — 79w — 36w? — 6w°
" ps(w) = 625 + 974w + 622w + 192w + 24w? .

The coefficients were also listed in (Sloane, 2008; A042977) These initial cases
suggest the conjecture that each polynomial ( 1)"‘1pn( ) has all positive co-
efﬁments, and if this 1s true then dW(z)/ dz is a completely monotonic func-
' tion (Sokal, 2008). We prove the conjecture and prove in addition that the coef-

ficients are unimodal and log-concave.

4.2.1 Formulae for the coefficients
In view of the conjecture, we write

pn(w)—( 1"‘126nkw"’. B 43)
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We now give several theorems regarding the coefficients. Doml—

Theorem 4.2.1. The coefficients {3k defined in (4.3) obey the recurrence rela-

tions
Ao=n"-1, Au = 3»" - (n+ 97 - n»-1,,
An-i = («-1)!1  Alin2=(2n-2)(n-;1)!,} : : (4.5)
A+l k 3 n-k-1 )0 N ket

Proof. By substituting (4.3) into (4.2) and equating coefficients. O

Theorem 4.2.2. An explicit expression for the coefficients # is

(4.7)
m=0 x g0 XM T

Proof. We rewrite (4.1) in the form

P, (w (x)) =@+ dxr

From the Taylor series of W(X) around x = 0, given in (Corless, Gonnet, Hare,

Jeffrey, kK Knuth, 1996), we obtain

dnW{x) _g—= (-m)™* mp
dxn TR (m-n)\

Substituting this into the expression of pn, using X = Wew and changing the

index of summation, we obtain the equation ;

Pn(w) = @+ U)2r+1; (-1) " 45 1~ + s)w+s-l!i5Le(ri+s)w. *  (4.8)
s=0

We expand the right side around w = 0 and equate coefficients of w. ]

nP Uk
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Remark 4.2.3. The polynomials p,(w) can be expressed in terms of the diagonal
.Poisson transform D, (f;; 2] defined in (Poblete, Viola, & Munro, 1997), namely,
| de)=(—D”40f+WFW'WDAUP+3W’%~w]5V”ﬂ*f(4%

Theorem 4 2 4. The coeﬁ‘iczents can equwalently be expressed ezther in terms of

shzfted r- Stzrlmg numbers of the second /cmd {"J”"} deﬁned in (Broder, 1.984)

m-+r

Bt = Té( (N e, (410)

or in terms of Bernoulli polynomzals of hzgher order B(z)( A) defined in (Norlu(z_d,
1924), | o o

e o (B (2 o — o

m-O-‘ k—m ,nf

or in terms of the forward difference operator A (Graham, Knuth, Fﬁ' Patashnik,

1989, p.-188), ..;;-- | AR EEEIRE NI B O P
2n — 1\ (-1)™ -1
e (1) P s

Z—:o k—m/) ml

Proof. We convert (4.7) using identities found inx(Broder, 1984) and (Lop»éz: &
Temme, 2010) respectively. .

and
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4.2.2 Expressions for the coefficients in terms of Stirling polynomials

We express the coefficients ﬂg,}c'in te‘rr'nsaof Stirli\‘n‘iéepolyno’mialsan (z) and gener-
alized Stirling‘polynomials d"‘(a:) introduced in (Graham et al., 1989, §6.2) and
(Schmidt, 2010, Sect. 5.2.1) respec’mvely For this purpose we apply by a straight-
forward Way ‘the deﬁmtlons of the mentloned polynomlals through the generating

functions which are

NEERRSY: 0 |
(ez—1) e =y (4.12)
Ve S mRb e e it
(ez—l) =Zxan(x)z , (4.13)

‘ n20
(‘sze ) gz Za T (a1
’(3__'—,.’:‘ om0 -

Spemﬁcally, to use polynomials On (m) we note that the left hand s1de of equa-

tion (4.12) is a product of the left-hand side of (4 13) and exponentlal funcmon

S () PR | (4.15)

= n!
Then, taking,the righ@:—hand sides of these equations we obtain
pREU IS SFRES iU ST
n>0 ' n>0 n>0 - : ‘ o
whigh gives relation

B(m) /——xn'Zan e —-————”_m) N (Y

“q=0
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With using this relation the formula (4.11) can be written in the form

k |
Z 7> (3 ) o) . @39

q' = k—m
To use polynomials oy (z) we note that by (4.12)

(eaz_1> —Z ,Sw) , ) ”‘,(47@

n>0

The left-hand sides of equations (4.14) and (4.19) are the same when a =1/ (z/ -
z + 1). Taking this « and equatmg the rlght-hand sides of these equatlons we

find relation

o ’Br(;m)(y) = ’I’L'(V — x4+ l)no-rlz/,,(u—?-l-l) (:U) . bl ~—~... | (4.20)

With using this relation the formula (4.11) can be written in the form-

‘ﬂn,k=T§(—1)’"(i"_"£)(m—+n’;———l)—(m+n+1)n L 1/("““"4“)( m) . (4.21)

4.2.3 Properties of the coefﬁcients

We now give theorems regarding the properties of the 3,,x. We recall the following
definitions (Stanley, 1989). A sequence cy,c; ... ¢, of real numbers is said to be
um'modal, if er some 0 < j < nwe haveeg <1 <...<¢ 2 Cjt1 = .o 2 Cny gnd
it is said Vto be logdrz'thmically cencave (or log—conea\}e for short) if e}c_lck+i <d
for all 1 < k < n~1. We prove that for each fixed n, the (B x are unimodal and |
log—concave with respect to k. Since a log—concave sequence of positive ferms is

unimodal (Wilf, 2005), it is convenient to start with the log-concavity property.

Theorem 4.2.5. For fized n > 3 the sequence {k!ﬂn,k}z;é is log-concave.
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Proof. Using (4.7) we can write

ce k
mm“4%_ngjca%%m,;

m=0
T = Z ( .)aj , ap=(=1i(n+)mmch, o (422)
and y,, = 1/(2n — 1 — m)! . Since the binomial convolution preserves the log-

concavity property (Walkup, 1976; Wang & Yeh, 2007); it is sufficient to show

that the sequences {z,;} and {ym} are log-concave.. We have

= (—1)2’, ((n +j>? - 1)"‘*"“ < (1P g = af.

N —

Thus the sequence {a;} is log-concave and so is {z,,} due to (4.22) and the
afore-mentioned property of the binomial convolutlon The sequence {ym} is
1og—concave because | | o |
o 1 1
Ym-1lm+1 = 2n—1-m+D!2n—1-m—1)!

_ 2n—1-m 1 <
T m—l-m+l@n-1l-m)(@n—-1-—m) Im"

Now we prove that the coefficients Bn.x are positive. The following two lemmas

are useful.

Lemma 4.2.6. If a positive sequence {k!ck}k>0 18 log-'concave, then @

(1) {(k+ )cks1/cx} is non-increasing;

(ii) {ck} is log-concave;
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(iti) the terms Ck satisfy . : i ;

oOktm (0 < m < k4 1) . (4.23)

Proof. The statements (i) and (ii) are obvious. To prove (iii) we apply a method

used in (Asai, Kubo, & Kuo, 2000). Specifically, by (i) we have for 0 < p < k

1~ k4p 41 Cepi-i
.o cp - ptl ck

Apply the last inequality for p = 0,1,2, ....m with m < k+ 1, and form the

products of all left-hand and right-hand sides. As a result, after the cancellation

we obtain : m'

Q™ KT 1kf2 Kk~+Tldc

cQ~ 1 2 mil &k ° "
which is equivalent to (4.23). O
Lemma 4.2.7. If the coefficients are positive, then for fixed n > 3 they
satisfy

(k + IffinMi <yl_ 1, (4.24)
Pnk

Proof. By Theorem 4.2.5 and under the assumption of lemma, for fixed n > 3
the sequence meet the conditions of Lemma 4.2.6. Applying the
inequality (4.23) with m = 1 to this sequence gives (k+ 1)/3nk+i/ffi,k < Pn,i/Pn,o-

Then the lemma follows as due to (4.4)

n—1

.. tn+ L
fini _ 3nn—(n+ I)n- ri - 3n 1< 30 —2n—1=n—1.

fin, 0 nn—

[

Theorem 4.2.8. The coefficients {34k are positive.
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Proof. We prove the statement by induction on n. It is true for n < 5 (see
81). Assume that for some ﬁxed n all the members of the sequence {Bs, k}Z"& are
pos1t1ve Since ﬂn+1 0= (n + 1)” > 0 and ﬂn+1 n = n’ >0 by (4 4) and (4.5), we

only need to consider k =1,2,. ,n -1

Substituting inequalities B k41 < (7= 1)Bus/(k+1) and Bp -y > kBnr/(n'=

1), which follow from (4.24), in the recurrence (4.6) immediately gives the result

,Bn+i,k > (3n—k—1)ﬁn,k+nn f 1,Bn,k (k+1) (271 -+ ) ﬁn;k > 0.

Thus the proof by induction is complete. (]

Corollary. 4.2.9. The sequence {,Bn,k};:;é is log-concave and unimodal forn > 3.

Proof: By Theorem 4.2.8 the sequence { ﬁn,k}Z;é is positive, therefore by Theorem

4.2.5 and Lemma 4.2.6(ii) it is log-concave and unimodal. = =+~~~ . O

4.2.4 Relatioh tvO’Caflitz’s Iiumbgrs .

There is a relation beﬁWéén the coefficients [3nk and numbers B(k, j, A) introduced
by Carlitz (1980). Comparing the formula (4.10) with (Carlitz; 1980, eq.(6.3))

and taking into account that he uses the notation R(n,m,r) = { :»1:}# we find

Bk =(-1*B(n—-1L,n—1-kn). . (4.25)
It follows that for n >3, the sequence {B(n — 1, k, n)}?Z4 is log-concave together
Wlth {,Bn k}k—O

. Using the property (Carlitz, 1980, eq.(2.7)) that Y 7, B(k, J, A) = (26 =1,
we can compute p,(w) at the singular point where W = =1 (cf. (4.1)). Thus,
substituting w = —1 in (4.3) gives py(~1) = (=1)""}(2n — 3)!. Thus w = —1is
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not a zero of p,(w).

We also note that the numbers B(/e, _7, ) are polynomlals of /\ and satlsfy a

three term recurrence (Carhtz 1980 eq. (2 4))

B(k,j,A) = (k+3 =N)B(k—Lj,AN)+(k—j+N)B(k—1,j-1,2) (426)
with B(k,0,)) = (1 - A)*, B(0,7, /\) = §;,. This gives one more way to com-
pute the coefficients B ks ep'eciﬁcally,' for ‘give'n; n and k we find a polynomial

B(n - 1‘, n—1-k, ) using (4.26) and then set A=n to use (4.25).

4.2.5 Consequences

It has been estabhshed that the coeﬂiments of the polynomlalsT—j " 1pn(w)
are p081t1ve, unimodal and log-concave. These propertles imply an 1mportant
property of W. In particular, it follows from formula (4.1) and Theorem 4.2.8
that (—1)"~1(dW/ daf)(n—l) > Olfo?r'n‘z 1. SincetW(x) is positive for all positive z
(Corless et al., 199’6)}, this means that the derivative W' is completely monotonic

and W itself is a Bernstein function (Berg, 2008).

Some additional identities oen be obtained from the results above. For exam;

ple, computing B, ,_1 by (4.10) and comparing with (4.5) gives

Sy (n et 1) {2"; . ;m} = (n=1)!.

m=0

A relatlon between {2"n _:;;m} and B( m)(n) can be obtamed from (4. 10) and
(4. 11) but thls isa spemal case of (Carhtz 1980, eq. (7 5)) Tt is also 1nterest1ng to
note that (4 10) and (4 11) can be mverted Indeed in these formulae for ﬁxed n,
the sequence (— 1) B is & convolutlon of two sequences therefore 1ts generatlng

functlon G(w) is a product of the generatmg functlons of these two sequences
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and we can write G(w) = (1 — w)?*"!F(w), where F(w) represents a generating

2n—1+m

function of the sequence {

(m+""1)B,(L__T)(n) in cas:.‘e:' of (4.11). Now, since F(w) = G(w)(1 — w)~®"1) =

n—1

CG(w) Yysp CorZtRwk, the inverse of, for example, (4.10) is

, in case of formula (4.10) or of the sequence
2n—2
2n—14m = k 2n“—-2+m—kz
With connection (4.25) this equation is a special case of (Carlitz, 1980, eq.(2.9)).
4.3 Second form

Compared to (4 1) there are two more forms torrepresent the derivatives of W.
One of them is hnked to the results obtalned in (Dumont & RamamOnjlsoa 1996)
they show that | '

d"W(z)  (-1)""!exp(—nW(x)) 1
- ey ()

where
n—1

= Z bn,kyk R v (4.29)

k=0

Coefficients by, ¢ satisfy‘the recurrence relation
bk = (= Dbporp+ (N4 k= Dbprps, bro=1. (430

They are related to the Ramanujan sequence (Berndt 1985) zpk(r s) and the
sequence Qn (), 1ntroduced by Shor (1995) bk = Yrpa(n = L,n) = an( )
These sequences arise in the study -of Cayley S formula of the number of trees,
their combinatorial interpretations are given in (Shor, 1995; Zeng, 1999; Chen &
Guo, 2001). The values for coeflicients by are listed m (Sloéane,\2‘008, A054589).
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"' Comparing the aforementioned representations for the higher derivatives gives

n—1 n-1
Y Bastt =Y bperk(TA W) (43D)
k=0 k=0

It follows that the relations between coefficients bnx and B are . -

m=k

T ."-n—li"\‘ . . _ .
m
| 5"vk,“2(k)bn,n-¥—m'.. R )
and

- k—Z(' 1)m~k( )ﬂnm._'_ (433)

m=k
4.3.1 .. Positiveness == =

In (Zeng, 1999) there is a combinatorial proof that Qn x(z) is a polynomial of

(:c +1) with non-negatlve integer coefficients. S0 bpn_1-m = Qn,n_l_m(O) > 0.

. Also, stitiyeness immediately follows from the recurrence (4.30) by induction

on n.

4.3.2 Log-concavity

Coefficients b, ) are log-concave because being defined by the recurrence (4.30)

they relate to 'triéngular arrays which are necessarily log-concave (Kurtz, 1972).

Note that coefﬁments ﬁn k have a property which is stronger than log-concavity.
The sequence {k‘ﬂn k} is also log—concave However the coefficients b,k do not
have this property. For example a difference kbz,k —(k+ l)bn,k_lbn,k_,.l computed
with values taken from table (Sloane, 2008, A054589) for n ‘=H6 and k = 1 is

—6240, i.e. negatlve, therefore sequence {k!b, } is not log-concave.
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4.3.3 Unimodality

Since a p051t1ve and log-concave sequence is unlmodal propertles 1 and 2 imply

unimodality of bn P

Remark 4.3.1. It follows from (4.32) that the sequence S, is positive because
so is the sequence b, . In addition, since the sequence b, is log-éoncave, so is
B i due to (4.31) and Brenti’s criterion (Brenti, 1994). This way to ascertain the
properties of the coefficients S, ; through the ones of the coeflicients b, x was ﬁrst
pointed out by Chapoton (2010) and was found independently by Pakes (2011).
The author became familiar with the form (4.28) from ‘(Chapoton, 2010).

Remark 4.3.2. Since the coefficients S, are related to numbers B(k, j,A) (cf.

(4.25)), the relation (4.33) will connect the bk k as well to the same numbers.

A —

4.4 Third form

One more form to represent the higher derivatives of W immediately follows from
that mentioned in (Knuth, 2005, Ex. 50, p. 84,"_136‘-‘137) in terms of the tree
function T'(z) = ~W(—x)

an(SC):,_ exp(—nW (z ) | (z) s
de (1+W( i Fa <1+W(x)) ) (4.34)

where pdlyﬁorﬁials o ‘ 1 o
CPa(@) = (1) S (= DFangat, 0 (435)

with the coefficients a, x satisfying the recurrences

Pass(s) = n(z — 2)Pa(e) + (3 - 12P4(x), Pi(a) =
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and

ano =n""1, a,_uz ’2n-—3!!,
n n,n—1 ( ) (436)
A1k =,2(TLA+ k)an,k + (n + k— l)an,k_1.+.(/€ -+ 1)an,k_’,_1‘ e L S

The numbers a,x and row sums
n—1

Sp =. On.k
k=0

are given in (Slqa}ne, 2008, A048160, A005264). The exponential generating func-

tion of the Mseque‘ncie Sn Satisﬁes |

| (+2)exp(A@) = 1+24() .

This equation can be solved in terms of W function as

RIS .

Ag)=—3 —W (— 121;;) .

Then, using(thjé well-known expansion of W near the origin (Corless et al.,"l.(‘)96)

and taking small = (more precisely, satisfying inequality |z + 1| < 2/4/€) one can

find eventually .. - ...

on

-1 . _ o0 mm_1 137
Zan,k'- Z (m_n)!2mem/2 ) ( . )
k=0 m=n

where the infinite sum on the right—hand side'is thus integef.' '

Comparing representations (4.1) and (4.34) gives the relation between coeffi-
cients B, and an,g | |
3

k o
S T IO, v n—1—m\ .. oot QY
eI )Ee e
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P,k .= mZ:o(,— )m( 1 k)a”’m . B (4.39)
It follows from (4.36) by induction on 7 that all an,}cxare poeitive. In addition,
based on the relation (4.38) one can show that for fixed n > 3 the sequence

{an}izy is log-concave. Indeed, the relation can be written in the form

k
Ank = E :xmyk—m )

‘m=0

where Zm = ( ) ,Bnm and Ym = (”;"") p=n—1-— k The former is log-concave

because S0 is [J’n m by Corollary 4 2.9 and the latter is log—concave because

m2+(p+1) yz 2 v
m2+(p+Lm+p ™™ T I

Thus, anx is convolution of two log-concave sequences and therefore it is so as

well.

At last, being positive and_ log-concave the sequence {an,k}z;é is unimodal.
4.5 Concluding remarks

In fact the above conmdered polynomxals (4. 3) (4 29) and (4 35) arise in formulae
for the followmg expressmn W1th 'che hlgher derlvatlves of W W( ) | |
n nW an

(1’+W‘) gy~ n“,

: *"'(4.40)

when we want to write it in terms of polynomials with respect to different combi-

‘nations of W, namely, W,1/(1+W) and W/(1+ W) respectively. The expression
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(4.40) can be written in different forms, particularly,

wow @W _ (W) W 1 AW

(1+W)re dzr . WnC dzm (WH"™ dgn-t 7

where W' = dW/dx.

It is worth noting that Knuth (2005) considers polynomials -
- Zan,km’: (441)

rather than (4 35) Note that the alternatmg factor (-_—.1)’c ‘doe_s‘ ho’p effect on

log-concawty

Fihally,l‘ it folldWs from the ébové consideration that the polynemials

Z B k3" Z by k" and Z p kT" (4.42)
k=0 " . S [N

have the same properties, in particular, all of them are positive, log-concave and
unimodal. Positiveness of the polynomial coefficients means that the derivative

W' is completely monotonic and W itself is a Bernstein function.

- In addition, Ii_lylkmyeri.ca}l experiments show that the polynomials share one more
comfnon property that is associated with their roots. Specifically, for n > 2 the
.even polynomials, which are of odd order, have one real root and (n — 2)/2 pairs
of complex conjugate roots while the odd polynomials, which are of even order,
‘have only comblex roots, (in the form of (n— 1)/2 complex conjugate pairs). The
roots of polynomials (4.41) and (4.35) differ in the sign of their real parts only,

therefore the latter have the same property of the roots. . ..~ .+ .
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CHAPTER 5

_Stielt J es, Pois_son' and 51m11ar r'epres,entatiio.hs

of functions of W |

“Integml tmnsforms are like opera glasses: The knowledge‘yeu gain
from them depends on whzch end you look through 7 — Micha Hofri

5.1 Introduction

In th1s chapter we show that many functions of W are members of a number
of function classes namely, the classes of Stieltjes functions, Pick functions and
Bernstem functlons mcludmg subclasses Thorm Bernstem functlons and com-
plete Bernstem funct1ons Thls is mamly due to the fact that W is a real sym—
metnc functlon, in the termmology of (Baker & Graves—Morrls 1981 p 160) (see
also (Tltchmarsll 1939, p 155)) with positive values on the pos1t1ve real line. A
descr1pt1on of the mentloned classes can be found in a review paper (Berg, 2008)

and a recently published book (Schilling, Song, & Vondragek, 2010). ..*

The above mentioned classes are of particular interest because they are char-
~ acterized by their own integral forms.’ As'a consequence, the W function is rich in

integral representations and we give explicit integral representations of functions
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of W. In the chapter we also extend the properties of the set of Stieltjes functions
in Sections 5.2 and 5.6. In addition, we give one more proof of the fact established
in the previous chapter that W function is Bernstein. Moreover, we show that

W is a complete Bernstein function.

, The classes of Stleltjes functions and Bernsteln functlons are 1nt1mately con-
nected with the class of completely monotonic functlons that have many appli-
ca’mons in different fields of science; the list of approprlate references is given in
(Alzer' & Berg, 2002). Therefore we shall also study the complete monotonicity

of some functions containing W.

The propertles and 1ntegral representations mentioned above have interesting
computatlonal 1mphcat10ns. For example, that W(z) /z is a Stieltjes function
‘means that the p'oles of successive Padé approximants interlace and all lie on
the negatlve real axis (Baker & Graves-Morris, 1981, p. 186) (here i in the interval
“oo < 2 < -—l/e) ‘In addition, some of the integral representations permit

spectrally convergent. quadratures for numerical evaluation.

5.2 Stieltjes functions

We now review the properties of Stieljes functions, again concentrating on results
that will be used in this paper. We must note at once that there exist several
dlfferent definitions of Stleltjes functlons in the h’cerature, and here we follow the

deﬁmtlon of Berg (Berg, 2008)

Deﬁmtlon 5.2.1. A functlon f (0, oc) — R is called a Stieltjes function if it

s

admlts a representatxon

~f(m)=a+’/()§da(t) (x>0), REEE o (5.1)
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where a is a non-negative constant and o is a positive measure on [0, c0) such

 that S+t do(t) < oo,

- A Stieltjes function is also called a Stieltjes transform (Berg & Forst, 1975,
p. 127). Except in Section 5.3.3 below, the term Stieltjes function will here always
refer to definition (5.1). . o ol -

Théorelﬁ‘5.2.2; The set S of all Stieltjes functions forms a convex cone (Berg
& Forst,_ 1975, p. 127) cmd possesses the following_ properties.
LREENCES PR

(i) feS\{0} = m) €S

.(iii) feS= A

Pram) ES (c>0)

(iv) f,g eS\‘{o}:‘gf'o% €S

) foes\(0)> L es

() fgeS= fogees (0<as<)
(vi) feS=>fres (0<as)
(vil) ’feS\{O}:* (J(—; 1)es
(5) £ €S\{0} lmenoy /(8 =20 f@)-cees
() feS= O -fumes 0<asy
(xi) féS\l{o}'=%i( 7§5)1)es

(xil) f € S, limy f(z) =c > 0 => (P f‘ﬁ) E.‘Sz,r (-1£6<0) .

In the above statements constants ¢ and f(0) = lim,_ o+ f(z) are assumed to be

finite.
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Proof. Properties (i)-(vii) are listed in (Berg, 2008); property (vi) is due to the
fact that the Stieltjes cone is logarithmically convex (Berg, 1979) and property
(vii) is its immediate consequence. Prdperty (viii) is taken from (Bender &

Orszag, 1999, p.406). Property (ix) follows from properties (ii) and (viii) in
the following way: f € S\ {0} = g(z) = 1/(zf(z)) € S'= (9(0)/g(z) = 1)/z =
(zf(z) Je=1)]zeS=f (a:)— ¢/z € S. The last three propertles(x)—(xu)

i

will

béproved in Section5.6. : S e T g

‘A Stiéltjes function f has a holomorphic extension to the cut plane C\(—oo, 0]
satisfying f(Z) = f(2) (see (Berg, 1979), (Alzer & Berg, 2006)‘»and‘(Schillin.g et
E\L_‘lv., 2010, p. 1‘1‘-12))“ '

= —_ . — 2
S@=ar [[FR (i< — 62

In addition, a Stieltjes function f(z) in the cut plane C\(—o0, 0] can be repre- .
sented in the integral form (Baker & Graves-Morris, 1981, p.158)

&= [ e (ee@l<m, 5:3)

where: ®(u) is a bounded and non-decreasing function with finite real-valued mo-
ments [;° t" d®(¢) (n =0,1,2,...). The integral (5.3) is used in (Baker & Graves-
Morris, 1981, Ch. 5‘) for a study of Padé approximants to the Stieltjes functions;
it is equivalent to the representation (5.2) by virtue of the following observation.
According to properties (i) and (ii)‘, if a function f € S then f(l/z)/z € S as

well and hence the latter admits representation (5.1)

1,(1\ _  do(t) o
EORE - T
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which after replacing z with 1/z gives

© ‘da(t)h

@)=t

where the first term can be included into the integral since a > 0 and 1/z is a
Stieltjes function (see e.g. (Berg, 2008)). Finally, one considers the holomorphic
extension of the last integral to the cut plane C\(—o0, 0] similar to obtaining
(5.2). Conversely, starting with formula (5.3) and'taking the same operatons in

reverse order we will come to (5.2).

~ There are various kinds of necessary and sufficient conditions implying that a
function f is a Stieltjes function. Some of them are based on the classical results
established by R. Nevanlinna, F. Riesz, and Hefglotz Here we duote’ two such

N —

theorems taken from (Akhlezer, 1965, p. 93) and (Berg, 2008 Theorem 3.2).

Theorem 5 2. 3 A functzon g( ) admits an mtegml representatzon zn_the upper

half-plane in the form

Uu—=z

)= [ R (g, o)ﬂ (54

wzth a non-decreasmg functzon Q)( ) of bounded 'uarzatwn on ]R (z e. fR dd(u
00 for smooth ®(u) ), zf and only if 9(2) is holomorphzc in the upper half- plane
and _
- 9¥9(2) 20 and  sup |yg(iy)| < oo . (5.5)
. 1<y<oo
Note that the function g(z) is in the class of Pick functions defined in'Sec-
tion 5.8. SN | . '

- To apply Theorem 5.2.3 to the iﬁtegr‘al‘ (5.3) one should set g(z) = —f(—1/2)/2
(cf. (Baker & Graves-Morris, 1981, (6.12) on p. 215)), then conditions (5.5) read
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as’

Sf(—1/2)/2 <0 and sup ]f(z/y)|<oo  (5.6)

Theorem 5, 2 4 A functzon f (0 oo) - R is a Stzeltjes functzon zf and only if
f( ) >0 for T >0 and there is a holomomhzc extenszon f(z ) z=1+ zy, to the
cut plane (C\(—oo O] satzsfymg

| Sf(z) <0 for.32.>' 0. | (57)

Remark 5. 2. 5 The 1nequa11t1es (5 7) bemg a part of a characterlzatlon of the
Stleltjes functlons express a necessary condition for f to be a Stleltjes functlon
In the termlnology of (Bender & Orszag, 1999 p. 358) a holomorphlc functlon

(z) is called a Herglotz function if f > 0 when & \S‘Z > 0 3 f= 0 when S‘z =0
"and %‘ f < 0 When E‘s‘z < 0. Thus, for f to be a Stlelt]es function it is necessary
that f be an anti-Herglotz function (cf. (Bender & Orszag, 1999, p. 406))

5.3 Stieltjes functions containing W (2) :

In this section we con51der a number of functlons contalmng W(z) and prove that

they are Stieltjes functions. We begin with the functlon W( )/ 2.

5.3.1 The function W(z)'/z

The fact that W(z)/z is a Stieltjes function could be established conveniently
by applying one of the criteria stated in Sect‘ioﬁS;Q._‘ However, we first present
a direct proof that is of greatv importance for farther investigaﬁions Moreover,
compared with using the cr1ter1a above the present way allows us to make useful
observations which are given in the remarks followmg the proof and used in further

evidence.
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Theorem 5.3.1. W(z)/z is a Stieltjes function.
Proof. From (1 14) the, functlon W(z)/zis single-valued and holomorphic in the

same domain as W(z) namely D={ze C | z gé B} and can be represented by

the Cauchy s 1ntegral formula

W(z) _ 1/ t( WO 4o (58)

z 27i t—2)

where C is the standard ‘keyhole‘ contour Which consists of a small circle around
the branch pomt 1 —,_—1 /e of radius, say r, and a large 01rcle around the orlgln
of radlus say R the circles being connected through the upper and lower edges
of the cut along the negatlve real axis. Then for sufﬁc1ently small r and large R

R N e—

the 1nter10r of the contour C encloses any pomt in D

* Let us consider the integral (5.8) in the limit in which = 0 and R — oco.
Using asymptotic estimations (1.13) and (1.8), it is easily seen that the contribu-
tions of each circle to the integral (5.8) go to zero. As a result, in accordance with

the assignment of values of W function on the branch cut, the integral becomes

We _ 1 [ W /"'°°' "
z o 2m o t(t—2) 211 J_1e Bt — 2)

which reducesto © -

—1/8 N w i : L o
AN / W(t) d, (5.9)
2 TJeo tt—2)
where |arg(z)| < m. Changing ¢ to —~¢ transforms the integral (5.9) to the form
(5:2) | |
_VK(_Z_) = / L&t)dt Co e (5.10)
V4 1_/6 Z+t t :
where | D o . o |
o ‘p(t)=%ew(_-t).' S a1

According to Lemma 1.2.1, u(t) € (0,1) for t € (1/e, 00), therefore ff; p(t)dt/[t(1+
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t)] < oo and the-conditions in Definition 5.2.1 are satisfied. Thus the integral
(5.10) is a Stieltjes function. O

Re‘m'ark 5.3.2. The function W (z)/z is a real'symrneﬁri'o‘fnnetion as is any Stieltjes
function (this immediatelir follows from Definition 521), which :just'corre"spond's
to the near conjugate symmetry property.

Remark 5.3.3. The representation of W(z)/z in the form (5.3) equivalent to (5.10)

W) e do(t)
2 “,/0 1+tz’ (5:12)

is

where d®(t) = p(1/t)dt. Since p(1/t) € (0,1) for t € (0,e) by Lemma 1.2.1,
@’ (t) 2 0 and thus (¢ ) 1s a bounded and non-decreasing function. In addition,
all the moment 1ntegrals Jo t7d®(t) (n=0,1,2,...) exist. This remark is useful
for justifying the use of Padé approximants for the evaluation of W) based on
the theory in (Baker & Graves-Morris, 1981, Ch. 5) (see AppendixC).

Remark 5.3.4. An existence of representation (5.12) also follows from Theorem
5.2.3. Indeed, for function f (2) = W(2)/z conditions (5.6) read as
SW(-1/2) >0 and sup |[yW(i /y)l <oo.
IR TR R o Iy<ee
The first condition is satisfied by (1.10) because S(—1/2) and 3z are of the same

sign. To verify the second condltlon we set W(i/y) = u+iv and put s =1/yin
(1.19) and (1.20). As a result since 0 < v < 7r/2 for y > 0, we obtain

lyW /)| = v (u? + 0?) = y?? (1 + tan® v) = y?v?/ cos v = e7P Y < 1.

To extend the result to the lower half-plane Sz < 0-it. is enough to take the
complex conjugate of both sides of the representation (6.3) and use the near
conJugate symmetry of W. Thus Theorem 5.2.3 glves us one more way to prove

that W(z) / zis a Stleltjes function.
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5.3.2  Other functions: . .»

By Theorem 5.3.1 W(x) / z €S Using this result an_d the p.ropertieé of the set
S listed in Section 5.2 we now give some classes of functions that are members of

. S.

Theorem 5.3.5. The following functions belong to the set S, for £ >0.

(0) 1/(c+W@), e20
(b) We(1/z),0<a<1
(©) SPWA(1/z),~1< <0

@ WE e WE)e20 e e
© YW@)=1/z"

(f) o+ W(z8), >0, -1< <0

® 1Y+ W@, c20,05as]
@)%WMP#@QH+W@anosa5L—1$65a03731_,

(i) 1—z2W*(1/z),0<a <1

() 1-27*PWe@f)1+ W ()|, 0<a <1, ~1< B <0
} Proof. We use the properties listed in Theorem 5.2.2. = -

(a) We apply property (ii) to W(z)/z to find that 1 /W(z)eS and then apply
(iii) to 1/W(z). ’

(b) We ‘ﬁr’st’aipply (1) to flz) = 1 / W)(h:v)‘thaf isin S By statement (a) and find
" W(1/z) € S. Then we apply (vii) to W(1/z).
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‘(c) “Apply (i).to W(z)/z and apply then (vii) to the result.
(d) Apply (xi) to the functlon in the statement (a) usmg W(O) = 0

(e) Apply (vm) to W(x)/x using (1 14) or apply (1x) to the function in the

statement (a) with ¢ = 0.

(f) Apply (v) to the functlon in the statement ( ) and g( ) = 28 (~1< B <0)
that i 1s in S (Berg & Forst 1975 Berg, 2008) PN

(g) Apply (iv)to the function in the statement (a) and g(z) =27 € S for
0<a<lL

;k(h)r"jVApp‘ly. (v) to fulictions f( ) = ( )/:1: and g( ) i ( 1 <ﬁ < 0)

. A’ and find zﬂW 1(z6) € S. Hence by (vu) a(:c) = a:"‘ﬁW“"(a:ﬁ) €S for'

" 0< <a < 1 Then apply ( ) to the functlon in the statement (T with ¢ = 1

~ and g( ) = 28 to get b(x ) =1 +W($ﬂ) € S Flnally apply (v1) to a(z) and

(i) Apply (xii) to the function in the statement (c) with 8= —1 using (1.14)

(or apply (x) to W(z)/z).

() Apply (x) (or (xii)) to the result of epplicatioh;of (iv) (respectively (v)) to
- the function in the statement (d) with ¢ =1 and g(z) = z# (=1 < 8 < 0).

a
Corollary 5.3.6. The derivative dW (z)/dz is-a Stieltjes function.
Proof. Follows from Theorem 5.3.5 (d) with ¢ =1 and formula (1.21). o O

The next theorem proves and generalizes a conjecture in (Jackson, Procacci,

& Sokal, 2009).



112

Theorem 5.3.7. The following functions are Stieltjes functions for fixed real

a6 (0,e€

W =g, U wWwi2. 63

Fi(z) = (y-_[-_rzl / w (5.14)
Proof We first apply Theorem 5.2.4 to the function Fq(z). To do so we note
that Fg(z) > 0 for real z > 0 (a e (0, e]) and Fg(z) is a holomorphic function in
the cut plane C\(—o00,0] (cf. the branch cut B). For convenience, we define a
function V(z) = $$F0(z), then it remains to show that V(z) <O in the upper half-
plane. Since V(z) is a harmonic function in the domain ~ > 0, it is subharmonic
there. Thus we can apply either the maximum principle for harmonic functions
in the form of (Axler, Bourdon, & Ramey, 2001, Corollary 1.10) or the.maximum
principle for subharmonic functions (Doob, 1984, p. 19-20). In botlrcases, to get
the desired result it is sufficient to ascertain that the, superior limit of V(z) at
all boundary points including infinity is less than or equal to O (Alzer & Berg,

2002). In other words, V(z) < 0 for Qz > 0 if (cf. (Koosis, 1988, p.27))

lim V(z) <0 ($Sz> 0)

la]|—o00

and

limsupV(x +i1y) < Ofor all x e M. (5.15)
~$‘|— . -

Since FO(z) ~ \/\nz for large due to (1.8), V(z) >=0as Y\ o0 and the first

condition is satisfied.

To verify the second condition we introduce variables t = a(l + x) and s = ay
and set W(t + is) = u+ iv where u —u(t,s),v = v(t,s). We also introduce a

constant b= W(a) S (0,1]. Then the condition (5.15) becomes H(t) > 0 for all
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| t € R, where
Ny S A I P SR S U '@u’vz)‘(zg;z;)_'m B
H(t) _hﬁﬁljp{ @+ D + (o= e }

(5.16)

For aﬁelyeis of funetion H (1), itv is convenient to ceneider the feiioWing five
cases: (i) —oo <t < —1/e, (ii) —~1/e <t < 0, (iii) t = 0, (iv) 0<t<a)U(a<
t < 00), and (v) t = a. We start ‘with the case (i). Since V(2) is continuous (from
above)*on the real line z = € R, the expression under the limit sign in (5.16) is

continuous in domain {(¢,s)|t € R, s > 0}. Then using relation (1.17) we obtain

H(t)‘= [(b+’uco’:)v)2 e (SIZ -~ - bZ) (1 — %) .

'We have vE (0 ) for t € (—oo, —1/e), hence v*/ sin®v > 1. SlnceT< b<1, we

conclude that in case (1) H(t) > 0. Taking into account that v = 0 in cases (11)
(iv) and ( ) and relatlons (1.19) and (1.20) in case (111) it is not difficult to show
that in all of these cases H (t) = 0. Thus H (t) > O for all real t, i.e. the cond1t10ny
(5 15) is satlsﬁed and Fo (z) is a Stieltjes functlon |

* The theorem for the function F;(z) follows from the relation

'Fl(e)=—F§<—1j_'é)- o | (5.17)

because in terms of the conditions of Theorem 5.2.4 the transformation in the
right hand-side of (5.17) retains the properties of Fy(z). In particular, SFj(z) <0
for 2z > 0 because, first, Sz and S(—z/(1 + 2)) are of the opposite signs and
secondly, $Fp(z) = 0 for Oz < 0 which follows from Fo( ) Fg( ) due? ‘to near
conJugate symmetry and the estabhshed above non-p081t1V1ty of S‘Fo( ) m the |
upper half—plane Thus F1( ) is also a StleltJes functlon ‘~ - D

Remarlc 5.3.8. We make a note about a behavior of functions (5 13) and (5. 14) for
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large and small 2. Specifically, using (1.8) and (1.14) one can obtain respectively
Fy(2) = 0 and Fi(2) = a/W?(a) as z = oo. Using (1. 21) we find F01 ~c/z as
z = 0, where ¢ = (1+ W(a ))Z/W( ). o

We now have even a stronger than .Theoremvf5.3.7-result in the following

corollary.

Corollary 5.3.9. Wzth the constant c deﬁned m Remark 5. 3 8 the dzﬁerences
Foy—c/z are Stzeltjes functions for fized a € (0, e] - '

Proof. Followe,fmm«,Remark 5.3.8 and the property (ix) given in Theorem 5.2.2.
| O

5.3.3 Is W.a Stieltjes function?

The prmmpal branch of the Lambert W function itself is not a StleltJes function
in the sense of Deﬁmtlon 5 2 1. It can be shown i 1n different ways. For example
one can apply Theorem 5.2.3 to W (z) to see that the second condition (5.6) fails.
Indeed, when z = is we have by (1.19) and (1.20)

|sW (is)] = sVu? + v? = v? sec?(v)e” ™Y — oo as v /2.

The same conclusion can be reached using Theorem 524 becatse (,1;10) contra-
dicts (57) FinaHy, W is not a Stieltjes function because it is not an anti-Herglotz

function (cf. Remark 5.2.5).
o ;
Note, however, that W function can be regarded as a Stxeltjes functlon in
the sense of a deﬁmtlon g1ven in (Tokarzewskl, 1996) and (Brodsky, Elhs, Gardl,
Karhner & Samue 1997) or used in (Tokarzewski & Telega, 1998) and different

from (5.3) by the factor z in the right hand-side. W function can also be consid-
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ered as a generalized Stieltjes transform by the definition in (Saxena & Gupta,
| 1964) (which is dlfferent from that of the generallzed Stieltjes transform defined
in (Widder, 1938 p 30) and studied, for example in (Schwarz, Art. No. 013501)
and (Sokal, 2010)). Fmally, in (Schllhng et al., 2010) the terms Stieltjes function
and Stieltjes representatlon are not treated as equlvalent (compare deﬁmtmns
(Schilling et al., 2010 p. 11) and (Schilling et al., 2010 p 55)). By these defini-
tions W(z ) has a Stleltjes representatlon (Wthh is the result of multlphca’mon of

the representatlon (5. 10) by 2) though it is not a Stleltjes functlon
5.4 Explicit Stieltjes representations

‘The Stieltjes r‘epresent'ation for W(z)/z give;nv*in,:(5.10) and’(5.11)-itself contains
W, which can be regarded as self-referential. Here we give representations con-

taining only elementary functions for this and other functions related to W.

Theorem 5.4.1. The following representation of function W(z)/z holds ( The
poster ‘The Lambert W Function’) N

& (argd <7) .  (5.18)

Wi(z) 1*_/"11)2 + (1 = vcot v)?
0

z T Jo z+ vesc(v)eveoty

Proof. We start with (59) and, noting (‘1.9), change to the variable v = SW (¢).

Thé integral becomes

W) 1 [ v  dv
z "%'/0 t(z—t)v(t) ' - $(5'19)

where the variables ¢ and v are related‘by (1.18) and the _derivative v'(t) is defined
by (1.22). After substitutions the result follows. -~ = . . T

Remark 5.4.2. Since the integrand iyny"l(5;18)‘ is an even function (with respect to
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v), the integral admits the symmetric form: . "

W(z) 1 ‘7'402+(1-'ucotv) |

z o 27{' —r z+UCSC( )e-—vcotv (|argz| < 7T) .

Th1s 1ntegra1 has a C’°° perlodlc extensmn and thus the mldpomt rule is spectrally

convergent for its quadrature (see e.g. (Weldeman 2002))

We now take advantage of Corollary 5.3.6 and derive an integral represent‘ation

of W'(z).

Theorem 5.4.3. The derwatwe of W functzon has the followmg Stzeltjes zntegml

representatzon

o i Wy _,‘1 p g Dy
W) T 21+ W(z) _';A z +vese(v)erveoty Iargz[ <E)" - (5:20)

Proof. We take the formula (5.2) with a = 0 due to (1.24)

e [TH0

where the unknown function 4(t) can be determined usihg the Stieltjes-Perron
inversion formula (Henrici, 1977, p.591) (see also Section A.3)

"/.L()'=— lim & [ W’(T+'Ls)d

i s-—)0+ oo

for all contmulty pomts on the t-axis. Smce /,c(t) is deﬁned to arbitrary constant,

after mtegratmg one can set

w(t) = ;T-sgr&_ SW(—t+1is) = ;%Wo(—t) , ‘ (5.22)
Where the limit uses the contmulty from above of W on its branch cut The same

result can be obtamed usmg one of Sokhotskyl s formulas (Hennm 1986 p 138)
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"Check that function (5.22) satisfies the conditions in Definition 5.2.1. By
Lemma 1.2.1 the domain of integration in (5.21) is defined by 1/e < t < oo.
In addition, the function fi(t) can be regarded as a positive measure such that
dfi(t)/dt = o(I/t) at large t. Therefore J1e(1+ i)_1div(t) < oo and the conditions
in Definition 5.2.1 are satisfied. Thus (5.21) takes the form

1 dQWO(-t)dt

5.23
z+t dt ( )

Changing to variable v = "Wo(-t) in the integral (5.23) with using (1.18) we

obtain (5.20). O

Remark 5.4.4. The formula (5.23) can also be found by considerations similar
to those used in the proof of Theorem 5.3.1. In addition, (5.23)~is a result of
differentiating (5.10) with subsequent integration by parts. Finally, comparing
formulae (5.10) and (5.23) shows that the latter is obtained from the former when
we formally replace the ratios W {z)fz and ja(t)/t respectively with the derivatives

dW(z)/dz and dfi(t)/dt at the same time.

Remark 5.4.5. The formulae (5.10) and (5.23) were also found in (Pakes, 2011).

Corollary 5.4.6.

* dy = peN (5.24)

Proof. The integral (5.20) can be written as

(5.25)

x —

n=1 N

where t is defined by (1.18) and the left-hand side is obtained by differentiation

of the series (1.12) that is convergent for N\ < 1/e. Since [i] > 1/e and therefore
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|2| < |t|, we can expand (z — ¢)~! in the non-negative powers of z. Equating the

coefficients of the same power of z in (5.25) we obtain an equality

T L A -
n! T Jo i
which after substituting (1.18) results in (5.24). O

It is ObViOilé that if the integral (5.24) is k'no‘\&n'thervl géing i)éck from if. tb
(5.25) we ﬁnd (5.20). The 1ntegra1 (5.24) was conjectured by.Nuttall for real p > 0
(Nuttall 1985) Bouwkamp found a more general 1ntegral (Bouwkamp, 1986) for
whlch Nuttall s conjecture is a special case, us1ng a representatlon of 7rp” / P(p—l— 1)
v1a a Hankel—type integral. Thus the Stieltjes representatlon of ‘the derivative
of W function (5 20) allows one to compute the 1ntegral (5.24) and nd conversely,
startmg with the integral of Nuttall—Bouwkamp one can obtain formula (5.20) in-
a way completely different from that used in the proof of Theorem 5.4.3. It is
interesting to note that the connection between (5. 24) and Lambert W was noted
by W.E. Hornor and C.C. Rousseau before W was named (see editorial remarks

in (Nuttall, 1985)). .. .

Coming back to the results of Theorem 5.3.5 we consider the assertion (a)
with ¢ = 1 and assertion (e) by which 1/(1 + W (2)) € S and 1/W(z) - 1/z €S.
We can derive integral répresentations of these functidns in the same manner as
it was done for W’(2) in the. proof of Theorem 5.4.3. The result is in the following
theorem. -

Thebrerﬁ‘ 5.4.7. The following Stieltjes integral representations hold
" ,

oo b _;1/.". ) - (latg 2] < ) (5.26)
’1+W(z)_7r: o 1+ ze**sinv/v (g S o
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11T 2+(1.—.vcbtv)2- B
IR . (B2
-z + _/0 vese(v) (vesc(v) + zeveotv) dv (Iarg z| < ) (5 v7)

Corollary 5.4.8.

v sz 7 P4 (1 - veotw)? Jeo v e
W(z) =In [1 + ;r-/o v ese(v) (vese(v) + ze”mtv)dv ' (5.28)
Proof By substltutlng (5. 27) in W(z) (z/W( ) ( (1 11)) R

Remark 5 4, 9 The formulae (5.20) and (5.26) were ﬁrst found by A. Sokal (Sokal,
2008) where it-was also pointed out that the found explicit Stieltjes representa-

tions can be used to obtain those for functions contalmng w(1/ z) by just replac—

mg z with 1/z. z. For example, formula (5.20) y1€1ds
Wil/z). 1/" dv
1+ W(1/2) T 0 1-!_-251) csc(v)e~veotv (Iargz] <.

5.5 Completely monotonic functions

We déﬁo‘ce by CM the set of all completely monotonic functions, which are defined
as follows (Alzer & Berg, 2006).
Definition 5.5.1. A function f : (0, o00) — R is called:a completely monotonic
function if f has derivatives of all orders and satisfies (—1)"f ™ (z) > 0 for z > 0,
n=01,2,.. |
)

The set of Stieltjes functions is contained in the set of completely monotonic
functions, and thus all' of the functions listed in Thédrein‘5;3.5 are completely
monotone. The set CM is a convex ‘cone containing the positive constant func-

tions; a product of completely monotonic functions is again completely monotone
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(Berg k Forst, 1975, p. 61).;By Bernstein’'s theorem (Berg k Forst, 1975, Theo-

rem 9.3), a function / € CM if and only if it is of the form

e~x™u{0 (x > 0), (5.29)

where V is an uniquely determined positive measure on [0, 00). Completely mono-
tonie functions are in turn connected with the set of Bernstein functions denoted
by B. ;

Definition 5.5.2. (Berg, 2008, Definition 5.1) A function / : (0, 00) [0, 00) is

called a Bernstein function if it is C°° and f is completely monotonie.

Since W', G S C CM, IF is a Bernstein function. The same fact has been
established in Section 4.2.5 in a different way based on the properties of the

polynomials appearing in the higher derivatives of W.

A Bernstein function f(Xx) admits the Lévy-Khintchine representation

poo
f(x) = a+ bx+ 3 (1- e~*$ dvif) , (5.30)
o

where a,b> 0and v is a positive measure on (0, 00) satisfying /0°6(H-£)_IiIM£) <
0o. It is called the Lévy measure. The equation (5.30) is obtained by integrating

(5.29) written for f (Berg, 2008).

An important relation between the classes S and B is given by the assertion

(Berg, 2008, Theorem 5.4) ;

geS\{0}=> I/gGB V (5.31)
. o)
Combining this with the function composition result (Berg, 2008, Corollary 5.3)

that / GCM and g G B implies / og e B we obtain the following lemma.

Lemma 5.5.3. Iff GCM and g G<S\{0} thenf(l/g) 6 CM.
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" This lemma extends the list of completely monotonic functions containing W.
Theorem 5.5.4. The following functions are coirgzzs‘létely hzonot_on_ic I

2-

@ @WE) >0, A< 1)

(b) We@F)[1+W(zP)]" (>0, ,7>0,-1<B<0,AL0)

© PWEH) 1+ WP (050,070, ~1SFSOAL0).

(d) 1- w‘“ﬁ’YW"‘”’(xﬁ){l +W(E@P) ! (2>0,0<a<1 -1< ,8 <0,0<
v7<1).

Proof (a) Since W(z)/z € S € CM and z* € "CM for a <0, the functlon
| ’\W( ) (AL < - —1) is a product of two completely monotonlvfunctlons and

the statement (a) follows.

(b) Take function fo(z) = 27> € CM (= > 0, « > 0) and functions g(z) =
1/W(z?) and h(z) =1/(1+ W (z?)) where -1 < 8 < < 0. Since 1/g € S and
1/h € S by Theorem 5.3.5 (f) with ¢ = 0 and ¢ = 1 respectively, by Lemma
5.5.3 we have f,(9(z)) = g7*(z) € CM and f,(h(z)) = h™"(z) € CM
(y > 0). Substituting functions g(z) and h(z) in the power functions and
taklng a product of obtamed completely monotomc functlons Wlth x? € CM

i (z >0, A< O) the statement (b) follows 4

(c)- Consuier function. f>‘( ) =z € CM (:L' > 0 A <0) and functlons g(z) =
W(m‘ﬁ) and h(z) = 1+ W(z~#) where -1 < 8 < 0. Since 1/g € S
- and 1 /h € S by Theorem 5.3.5 (g) with ¢ =0 and ¢ = 1ilrespe‘ct‘iyely, by
Lemma 5.5.3 we have fo(g9(z)) = g%(z) € CM and f,(h(z)) = _h"(;) GCM
fof a < 0 and v < 0. Substituting functions 9(z) éhd h(zx) and taking a

product of obtained functions with fy(z), the statement (c) follows.
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(d) - By Theorem 5.3.5 (h) and the assertion (5.31),forz >0,0<a<1,-1<

B <0,0 L9 <1 wehave f(z) = g% (z)[1 + W(zP)]"? € B, where

.. g(z) = z7PW(2#). In addition, the function f(z) is bounded, particularly,

0 < f(z) < 1 because 0 < [I+ W(zP)]""? < 1 and 0 < g(z) < 1 (the

latter follows from the fact that g(z) goes to 0 and 1 as z tends to 0 and

| o respectwely and g (z ( ) > 0, which can be established usmg (1 14) (1.15)
and (1.21)). Then by (Berg, 2008, Remark 5.5) the assertion (d) follows.

We considered only sufficient conditions for a function to be a completely
monotonic. To find the necessary and sufficient conditions is a much more compli-
" cated problem so that in some cases it requires (at least as the first step) using the

methods of experimental mathematics (Shemyakova, Khashin, & Jeffrey, 2010).

5.6 Complete Bernstein functions

A very 1mportant subclass in B is the class of complete Bernsteln funct10ns de-

noted by CB.

Definition 5.6.1. (Schilling et al., 2010, Definition 6.1) A Bernstein function f
is called a complete Bernstein function if the Levy measure in (5. 30) is such that

( ) / dt is a completely monotonic function.

We pomt out four connectlons between classes cB and S used in th1s paper
(for add1t1onal relatlons between these classes see (Sch1lhng et al., 2010 Chapter
7). By Proposition 7.7 in (Schilling et al., 2010) | R

fessiO-i@ecs, | 6
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where the limit of f(z) at z = 0 (from the right) is assumed to be finite. Also if
| f is:bounded and f € CB, there exists a bounded g € S with lim, ;. g(z) =0
such-that ‘ RS RIATS SR
f(z) = £(0) + g(0) — g() . - (5.33)

In addition, (Schilling et al., 2010, Theorem 7.3) and (Schilling et al., 2010,
Theorem 6.2(i),(ii)) establish

feCBe»l/feS\{O} | (5.34)
feCBs f@zes.  (535)

J Now we go back to the propertles of the set S hsted in Sect10n5 2 to prove
~ the last three propertles thereln Let f eS \ {O} —

(x) Apply sequentially (vii), (5.32), (5.34), (i), to obtain f« E S 0<a<
1) = f2(0) - f2(s) € CB = g(z) = [f2(0) ~ (@)™ € S = 1/g(1/x) =
10) = 1*0/2) € 55 AR o

‘_ txz) Apply sequentlally (5 32), (5...34), (11),” te obtamk f( )) — f( ) €CB =
o(@) = [F0) - F@) € § = Vlag(a) = (f0) ~ f(&))/z € § = (1~
f(=@)/f(0))/z € S;

(xii) By (vii), f° € § (0 < @ < 1). Suppose that limy_yo f() = b < 0o and
limg_e0 f(z) = ¢ where 0 < ¢ < 0. Then b~ < f~* <c™@, ie f~® is bounded.
In addition, f~* € CB by (5.34). Therefore the statement (5.33) can be applied,
i.e. there exists a bounded function g € S,limy_,c g(z) = 0 such that we can
write g(z) = g(0) + b“" — f~%(a). Taking the last equation in the limit 'z 5 00

we obtain g(0) + +bh =" hence g=c%— f and the assertion follows.

In closing this section we note that the statement (5.34) with 1/W € S
(by Theorem 5.3.5(a) with ¢ = 0) immediately results in W € CB. Being a
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complete Bernstein function W has an integral representation that is the result
of multiplication of (5.18) by z (Schilling et al., 2010, Remark 6.4), which reflects
the relation (5.35). In addi‘f,ion,. the complete Bernstein functions are closely

connected to the Pick functions considered in Section 5.8.

5.7 Bernstein representations

Not only does W 'E CB as shown, it also belongs to another subset of Bernstein

functions..

Deﬁﬁitibn‘5.7.1_. (Sé:lfilling et al., 2010, Definition 8.1) A Bernstein function f
is-called a Thorin-Bernstein function if the Lévy measure in (5.30) is such that

tdv(t)/dt is completely monotonic function.

To find out whether W is a Thorin-Bernstein function we apply Theorem
8.2 in (Schilling et al., 2010), which establishes five equivalent assertions (i)-(v)
which we refer to below. In particular, in accordance with: assertions (i) and
(if), W(z) is a Thorin-Bernstein function because W (z) maps (0,00) to itself,
W(0) = 0 and W'(z) € S. Then W(z) admits two integral representations
stated in the assertions (v) and (iii). The former has been already Sbtained; ‘it
is given by (510) The latter can be derived from the former, which is shown in

the following theorem. ,

Theorem 5.7.2. The principal branch of the W function can be represented as

the integral ,
) tH

1 sinv

s . %
W(z) = ;/0 In (1 n ZTGUCOtv) dv (largzl <7, (536)
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Proof. Integration (5.10) by parts with accounting for (1.9) gives

W (X) = ;J[\jelnfl ) W (-t)d t. (5.37)

By Lemma 1.2.1 a measure QW (—t) satisfies the requirements in the assertion
(iii). Changing to the variable v = W (-t) with the help of (1.18) and taking a
holomorphic extension of the result to the cut 2-plane C\(—oo0, 0] satisfying near

conjugate symmetry, we obtain (5.36). O

Remark 5.7.3. In the terminology of (Schilling et al., 2010, p. 75), the integral
form (5.37) is the Thorin representation of W function and p(t) = QW (—£)/# is

the Thorin measure of W.

Remark 5.7.4. Differentiating the representation (5.36) for W(z) gives formula

(5.20) for W'{z). "o

Remark 5.7.5. The representation (5.37) (up to changing t to —t) was obtained
in (Caillol, 2003) as a dispersion relation for the principal branch of W function
using the Cauchy’s integral formula in a manner similar to the method applied for

the proof of Theorem 5.3.1. The same formula was also found in (Pakes, 2011).

As a Bernstein function, W can be written in the form (5.30) with a = 0
and b = 0 due to IP(0) = 0 and (1.15). It allows us to establish one more

representation of W. T . m h !;

Theorem 5.7.6. For the principal branch of W function the following formula

holds
ree i
W(z) = —(«* > 0), ~ (5.38)
JOo S I
where "o s
1 pit
= — exp(—"ucsc(v)e~vcotv) dv. (5.39)
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Proof.. We consider the Stieltjes integral form (5.1) for the derivative

W(a) * du()

and use representation (z + 0) = [Te" k’”‘”’)gdf to write it in the form . -
W'(z) =/ {/ e"Eedu(G)}'e‘xﬁdé . : (5.40)
0 0 D

Comparmg (5 40) and the result of dlfferentla,tmg (56.30) we find the relatlon.

between measures 7 and v (Berg, 2005)

F 5/ _wd“

'Usmg formula (5 22) and changmg the varlable v = S‘W( ) (éee- (118))we
obtaln ' | o

dv = ‘O(Tf)dg, (5.41)

where (p(f) is defined by (5. 39) We collect the 1ntermed1ate results and’ take
a holomorphlc contmuatlon of (5.30) to the rlght half-plane §Rz > 0 where the
1ntegra1 (5. 38) is convergent in accordance w1th near conjugate symmetry (cf

Propos1t10n 3.5 in (Schllhng et al. 2010)) e g
~ Note that by (5.39) function o(£) € CM, as should be, because W is still a

Thorin-Bernstein function (cf. Definition 5.7.1) = v« = ERLRE
Remark 5.7.7. Formulae (5.38)—(5.39) were also obtained in (Pakes, 2011).

5.8 Pick 'represreﬁtétibns

Definition 5.8.1. (Berg, 2008, Definition 4.1) A function f(2) is called a Pick

function (or Nevanlinna function) if it is holombrphic in the upper half—piane
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Sz> 0 and Sf > 0 there.

- A Pick function f(z) admits an integral representation (Berg, 2008, Theorem

4.4)
14tz

f(z) =ap+ boz+/jo\(t 90 +t2')da(t) f(Sﬁz‘> 0), (5.42)
where SRR P T TSR SN T
a0 = RF(D), bo= lim £Gy) . . - (543)

y—roo 1Y
and a positive measure o satisfies

s—)0+ s

lim = / ¢+ isholt)dt = /R plido®) (544

for all continuous functions ¢ : R — R with compact support. The formula (5.42)
with the 1ntegra1 written in terms of a measure dcr( ) =w(1+12)" 1dcr( ) is called

a Nevanlznna formula (Levm, 1996, p. 100).

- Since W(z) is & holomorf)hic functionin the lli‘pp.yér Haif-plahe Sz > 0 with the
property (1.10), W (z) is a Pick function. It also follows from the two facts that
W € CB (see Secﬁi_on 5.6) and that the complete Bernstein functions are exactly
those Pick functions which are noh—negative on the positive real line (Schilling et
al., 2010, Theorem 6. 7) Thus W admits a representatlon (5 42) and in view of
that the followmg theorem holds. |

Theorem 5.8.2. The principal branch of W function can be represented in the

,W(z):qoi-l / K@ty (agz|<m),  (545)

where ag = RW (i ) = 0.3746990..,

(14 240)) (0 4+ (1 — veotw)?)
(z — t(v)) (1 + t3(v)) o

s K(z, v) = (5.46)
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and t(v) is defined by (1.18).

Proof. Apply formulas (5.43)-(5.44) to function f(2) =W (z) .

G0 = RW(), b= lim L) o) = %%W(t)dt.

y—oo 4y

Usmg (1 15) we see bo = O Since \sW( )=0fort>-1/e (cf. ‘(1.9))1, we obtain

ey 1 , |
W(z):ao-}-% /_ . (t_L;f+t2)SW(t)dt (S250). (5.47)

By the change of variable v = SW(t) in the integral (5.47) (see (1.18)) we obtain
formula (5.45) that is also valid in the lower half-plane Sz < 0 in accordance with

near conjugate symmetry of W.. - L ; 0
Corollary 5.8.3.

.WEZ)-:%eXp{—-% /OWK(z,v)t(v)dp»} (jorgzl <), (549)

where vy = e~RW(E) = 0.6874961...

Proof. .1t immediately follows from (5.45) owing to the identity W (z)/z = e™"®.,
O

, Now we take advantage of the fact that 1f functlon fes then —f and 1 / f
are Plck functlons (Berg, 2008) Therefore, since W(a:) /T € S W(a:) /:1: and
:c/ W(x) are Pick functlons that admlt a representatlon (5. 42) We can obtaln a
representatlon (5. 42) for functions -Wi(z ) [z and z/W(zx) similar to the deriva-

tion of formula (5. 45) and the result is in'the following theorem.
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Theorem 5.8.4. For the principal branch of the W function the following for-

mulas hold
—— =/+ - [ K(z,v)dv (Jargz]<T7r), (5.49)
Wj(?f = Vo- 7TJ|0 K(z,v)e~2vcotvdv (Jargz| < 7r) , (5.50)
where K(z,v) is defined by (5.46), g = 5 ] = $sW(i) = 0.5764127..,

To= U\i/W(i)] = 1.2195314.. .

The constants in (5.45) and (5.48)-(5.50) obey the relations a0+ ifio = W (i),
70= e"a>= f3/cos(30, 10 = Po/A{d& + 03%).

We add in one more integral representation associated with bhe Nevanlinna
formula which follows from the result obtained by Cauer (Cauer, 1932). Specifi-
cally, based on the Riesz-Herglotz formula (Levin, 1996, p. 99) Cauer proved that
if a real symmetric function f(z) with non-negative real part is holomorphic in

the right 2-half-plane, it can be represented as

dh(r)
/(*) = 2 b+ f 224t (551)
where constant b> 0 and
h(r) = —limst [ fix + iy)dy . (5.52)
mx>0 Jq

In fact, the formula (5.51) follows from the Nevanlinna formula (or (5.42)) after
changing the variable 2 — —iz, which transforms the upper half-plane onto the

right half-plane, and taking into account f(z) = f(z).

Theorem 5.8.5. The following representation of function W{z)/z holds

W(z) _ 2 r [v2+ (1 + utanu)2]vsec(u)eltan

tanvdv (52> 0) . (5.53)
T Jo 22 - v2sec2(u)evtant’
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Proof. Since W function meets the above requirements, the formulas (5.51) and

(5.52) can be applied with the result

W(z) 2 RW {is),

972 > 0) ,
) ©72 > 0)

where we set b= 0 due to (1.15) and r = s2.

Changing the variables defined by (1.19)-(1.20) we obtain

W(z) _ 2 fn22 vtaxiv ds
: 2 7rJQ z2+ s2(v)dv V'

Similar to (1.22) one can find

dv _ Y, i
ds s(v) [v2+ (1 + utanu)2] '

Substituting (5.55) and (1.20) into (5.54), the theorem follows.

(5.54)

(5.55)

O

Remark 5.8.6. Comparison of the formula (5.53) with the representation (5.18)

(taken in the right 2-half-plane) shows that the integrand in the former contains

z2 rather than z, which can be profitable in using the integral representations for

numerical evaluation of W(z) at large 2.
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5.9 Poisson’s integrals

Theorem 5.9.1. The followtng two. formulaeslof Poisson ! (Poisson, 1823)‘lh\olid
fof' z € (—=1/es€)

2/7r : cosgﬁ—xe“°°secos (g@—l—sinG) '
0

() — oy -
W(z) = T Jo 1 — 2ze—50 cos(d + sin §) + z2e—2¢050 cos 36 df (5.56)

2 /”I sin %9+me°’°§9 sin (g-() —smH) |

— | 'y
W("E) - 0 ’ 1 -+ Qxecose COS(Q — sin@) + $262cosa Sl 56 d9 (557)

Proof. We consider the defining equation (1.7) for given real z =2 -

weW =z . (558
and interpret it as an equation with respect to W. Then we can write the equation

in the form F(W) = 0 where

F(() = C'— ze™S . (5.59)

. Let T' be the positively-oriented circumference of the unit circle |(| = 1 in
the eomplex ¢-plane at;d domain G be the interiotj,pf I'. The function F(¢) is
holomorphic in G and by Rouché’s theorem it has a single isolated zero there when

|z| < 1/e because in this case |—ze¢| < [¢| on T. Therefore, using Cauchy’s

1The second formula is explicitly given in (Poisson, 1823, sec. 80, p.501) in terms of the
tree function T'(z) (see (5.62) and (5.63) below) and proved using the Lagrange Inversion
Theorem (Whittaker & Watson, 1927, p. 133) and a series expansion of the logarithmic function
—In(1—€**¢) in powers of e‘* where the expansion coefficients ¢™ /n are exactly the coefﬁments
of the complex exponential Fourier series for the same function. On the other hand today it
is well known (Carathéodory, 1958, p. 143-145) that there is'a tight connection between the
classical Poisson Formula and the Cauchy Integral Formula. Our proof is'based on the latter
and thereby dlffers from that glven in the orlgmal
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~ integral formula with taking I" for the integrationcohtour we can write

for|x[<1/e e - -
Since F'(¢) =1 +we"€ = l+ ¢ by (5 59), and (5 58) we obtaln
L ef(1ef)

A e e

where we set C = e"’ -—7r <6 < . Separating the real and 'ima‘ginary parts of
the integrand in (5. 61) we find that the former is an even function of 8 whereas
the latter is an odd one. Thus, the 1ntegra1 of the 1mag1nary part vamshes as
should be, and the mtegral of the real part g1ves double the value of the integral

on [O,7r]. As a result, after some arrangements, we come to integral (5.56).

If instead of (5. 58) we consider the equation deﬁnmg the (Cayley) ‘tree‘
functlon T( ) (FlaJolet & Sedgew1ck 2009 p. 127—128)

e e
and introduce function H (¢) = ¢ — zeS in a similar way as function (5.59) then
after analogous thsidetations and taking into acebuht arelation

W(m) = —T(-z) k» o : . :(5.63)
in;theﬁnal reeult we obtain formula (557) | |

Now we dlscuss the domaln of vahdlty of the 1ntegra1s (5 56) and (5 57) Wthh
1s actually Wlder than the 1nterval —1/ e < z < l/e arisen above in applylng
Rouche s theorem It 1mmed1ately follows from the fact that W isa s1ngle valued

function and therefore F(¢ ) the denomlnator in (5 60) has a smgle Zero m G
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for each such z that (| < 1, i.e. for —1/e <z < e. Since.Rouché’s theorem is a
| consequence of the argument principle (see e.g. (Markushevich, 1965)), it would
be instructive to obtain this result using the latter. To do this, say for integral
(5.56), we apply the argument principle to function (5.59) in case when z > 0. It |
is easy to see that function n = F(¢) performs a conformal mapping of the strip
{00 < R¢ < 00, —7 < ¢ < 7}, containing entire the domain G, to the complex
n-plane cut along two semi-infinite lines on which n = £ +im, 6 > 1 +Inz. We
also cut the. n—plane along the negatlve real ax1s to take Iarg 77| < m m the cut

plane and con51der an image of F whlch is deﬁned by equatlons

—cosf

cos(s1n9) A j(5.64&)
cososm(smO) | - (564b)

pcoscp = cos@

| psmgo- sm9+xe

where p |7)| and go = argn

The equations (5.64) are invariant under transformation § — ~0,¢ — —¢
and describe a closed curve f that is symtnetrin with ’regnne‘ct to the real axis in
the n—plane. Suppose that while a variable point ¢ ‘moves along.I‘ onceQin the
¢-plane, the image point 7 = F({) moves on I once in the -plane, making one
cycle about the origin. Then the change in argument of n is 2m and therefore, by
the argument principle the funntion F(C ) has a singilye’ zero in G (Markushevich,
1965, p. 48). For this it is necessary that two points on I corresponding to ¢ = 0
and ¢ = 7 are located on the real axis on the opposite sides of the origin, i.e.
with positive p to be measured on the opposite rays. Substituting § = 7 in (5.64)
gives pcosp = —1 — ze'and psiny = 0. It can be p > 0 only when ¢ = 7} then
p =1+ ze is positive for any'z > 0. When 6 = 0, we have pcos¢ =1—z/e and
psing = 0. Now ¢ = 0 and p = 1 —z/e > 0 when z < e. Thus for'0‘< r<e
the curve I encloses the origin. Since for these z the right-hand side of equatidn
(5.64b) vanishes, i.e. Qn = 0 sequentially at § = —7,0 = 0andf =7 as 0

continuously changes from —m to 7, the curve T is traversed once with exactly
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one cycle about the origin being made. This corresponds to the fact that the
| inverse of the mapping n = F(¢) is continuous in the domain bounded by the
curve I and on T itself and hence I" consists only of sixnple points (Markushevich,
1967, Theorem 2.22). Thus, by the argument principle the function F({) has
a single zero in G. Summarizing up the obtained results we conclude that the
integral (5.56) is valid for x € (—1/e,e). The integral (5.57) can be considered in

ammﬂarmanner ‘ o ' e O

Remark 5.9.2. The 1ntegra1 representations (5.56) and (5. 57) can be 1mmedlately

applied to the tree function using relatlon (5 63). -

Remark 5.9.3. We can apply the shove approach to the equation (1.11). To
eliminate a smgularlty at the origin we compose. the. 1ntegratlon contour of a
small circle of radius, say r, and the unit c1rc1e both centered at the origin and

connected through the cut along the negatlve real axis. Then makmg T go to

zero we find for O <zr<e

9 [T cOsg- +9sin -2-9 — cOS —g@lnx ) ‘f
Wi(z) = = : —df ,
(z) ¢(w)+7r/0, 1+ 20sin0+ 0% — 2cosflnz + 12z 2

where _
Wo) = [ it
~ Jo 2+ (Inz+t—1nt)>

5.10 . Burniston-Siewert representations

One of the analytic methods for solving transcendental equations is based on a
canonical solution of the‘suitably'p_osed Riernann-Hilbert boundary-value problefn
(Henrici, 1986, p. 183-193). This method was found and developed by Burniston
and Siewert (Burniston & Siewert, 1973), its versions, variations and applica-
tions were also considered by other authors. By the method, a solution of a

transcendental equation is represented as a closed-form integral formula that can
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be regarded as an integral representation of the unknown variable. Below we con-
| sider such integrals for W function which are based on the results of ‘application
of the ‘Burniston-Siewert method fO‘SOIvihg equation 'L(\5.58)‘Vobtained in paper
(Anastasselou & Ioakimidis, 1984a) and the classical work (Siewert & Burniston,

1973). : . S R A

We start with two formulas derived in.(Anastasselou & Ioakimidis, 1984a)

and apply them to function (5.59)

W)= —F(o)e;cp{_zjri‘/Pln(Fémc) dg} s
e =g [n () ow

‘where the 1ntegrat10n contour I is the unit circle [(] = 1 and z € ( “l7‘e e) ~Since

F(O) = —z and W( ) /x = e W@, formula‘ (5'-,65) is _s1mp11ﬁed | )

We set ¢ = e, —m < § < m. Then, as F(()/¢ = F(e¥)e™* = R(6) +iI(0), where

R(®)= 1—axe” c°E"’cos(9.—i- sin 4),
" 1(0) = e of sin(9 + sin 0), |

and d(/¢ = idf, the integral (5.67) is reduced to

W) = ;W 1n(R2<9)+12(9)) @. (568
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Similarly, the integral (5.66) can be represented in the form

W(z) = -—/ {2 arctan(I(6 )/R(G)) §in6 — In (RZ(H) + IZ( ) cos@} dg .
(5.69)
where we have taken into account that arg(R(6) + 4I(9)) = arctan(] (6)/R(6)) as
R(0) > 0for 0 < 6 < 7 and —1/e < z < e. We note that the integral (5.68) has
a sirripler form than (5.69). Integrals similar to the above with ﬁsing a functien
@(C ) = (e — z in our notations instead of (5.59) in formulas (5.65) and (5. 66) _
(without simplification (5 67)) are.glvenm (Anastasselou & Toakimidis, 1984&).

Thus the integrals (5.68) and (5.69) representing the principal branch of tHe
Lambert W funct1on are valid in the domain that contains interval (-1 /e 0).
However there is one more branch that is also a real-valued functlon on this
interval, thls is the branch —1 with the range (—oo —1) (recall Wo —1 and

Wo(— 1/6) W_l( l/e) = —1) (Corless, Gonnet Hare, Jeffrey, & Knuth, 1996).
A representatlon of thls branch can be obtalned on the basis of a 81mple inter-
pretatlon of formula (5.66) glven in (Anastasselou & Toakimidis, 1984b)

W_vl(.m)=1—2c—-é—3r-2/01n<, E_C))dC, | L (570)
Where the circle C is deﬁned by equatlon |C + c] =c—1 Wlth arbltrary constant
¢>1and —1/e < z < —(2c — 1)e!7?¢. Transformations of (5.70) leadlng to a

deﬁmte mtegral are similar to those used above to obtaln the 1ntegrals (5 68) and

(5 69) and sklpped here together with a bulky result

. 'We return to the principal branch and use the result in (Siewert & Burniston,

1973, formula(13)) to write (Wolfram Research,'Inc.) o :

4

| o . i [ ln2+t;lnt¥i;;£7r ”dtk N
W) =1 (lnz_l)exp(%/ ln(lnz+t——lnt—i7r>1+t> (5.71)
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or

W(z)=1+(nz—-1)exp {__%/0 arg(ln z -l-1t+——tlnt + i)

dt} . (5.72)

where z ¢ [—1/e,0]. In case of real z = z > 1/e, when the expression In z+t—Int
is real and positive (for ¢ € (0, 00)), the formula (5.72) is simplified and reduced

to .

: T i R Y R
W(:v)—1+(1n:c—1)exp{--—/ arctan (l x-i-t—lnt) 1+t}(573)

or, eftef‘in"cegrlatihg by parts

W(x)— Vl + (lna: .1) e}.cp{ /0 T+ (Inz+t—Int)2 ¢ dt} - (5.74)

o

We emphasme that the domain z > 1 /e of vahdlty of the formulae (5 73) and
(5 74) is dlfferent from that of (5.68) and (5. 69) -

.. For the case z € (—1/e, 0), we refer the reader to (Siewert & Burniston, 1973,
formulae (32)) where the principal branch W, and the branch W_; are represented
in the form of a combination of two expressions similar to the right-hand side of
(5:72). f
Remark 5.1‘0.1. We can regard fche integral in the formula (5.71) as an improper
integral depending; on parameter p = 1nz and consider it in the limit p — 00
(when z — o00). Since the integrand is a continuous function of two variables ¢
and p in the domain undeli consideration and the inﬁegral is uniformly convergent
with respect to p, we can take the limit under the mtegral sign and find that
the integral vanlshes as the 1ntegrand goes to zero. Then the formula (5.71)

reproduces the asymptotic result (1.8). -

Finally we note that by use of elementary complex analysis in (Kheyﬁts, 2004)
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there is obtained a common closed form representation for all the branches Wy(2)

in the complex 2-plane through simple quadratures. |
5.11 Concluding remarks

Tn'this chapter we derived various integral representations of the principal branch
of the Lambert W function using different approaches. The most part of them.
is associated with functions of W which belong to various classes of functions
admitting certain integral representations. Among other classes we considered
in detail the classes of Stieltjes functions and complete monotonic functions and
by the example of functions containing W in fact demonstrated diﬁerent ways to

establish belonging of a function to these classes, —

‘Besides their own importance the derived integral representations have some
applications. One of them has been mentioned in connection with finding Nuttall-
Bouwkamp integral (5.24). Other definite integrals appear in taking the obtained
integrals with a particular value of 2. For example, integrals (5.18), (5.26), (5.27),
(5.53) taken at z = e yield respectively

T 2 1— t 2
/ v® + (1 — veotv) do=r
0

1 + vesc(v)e~(1tvcoty)

(v) ('U CSC(’U) + eltv cotv) v —

™ 2 - 2 o—
/ v? + (1 — vcotwv) gy = & lﬂ_’
o VCSC e

/" dv - 17r
o l+eltveotvsing/y 277

/ "2 + (1+vtanv)usec()ertert L1
0 1 + v? sec?(v)e2(vtanv—1) - 2

Another advantage that can be taken of the obtained results is based on a compar-

ison between different representations of the same function. This reveals equiva-
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lent forms of the involved integrals. In addition, since some of the integrals are
simpler than others, such equations can be regarded as a simplification of the
latter. For example, equating integrals (5.49) and (5.18) shows that the former

can be simplified and reduced to the latter.

At last we mention that the Pick representations (5.45), (5.48), (5.49), and
(5.50) can be considered as integrals expressing properties of the kernel K(z,v)

defined by (5.46).
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Conclusion

. “The whole is more than the sum of its parts.” — Aristotle

-+We studied different analytical properties of the Lambert W.function. A part
of them relates to the convergence of the asymptotic series of W. In particular,
we ascertamed the domam of convergence of the serles in terms of Stlrhng cycle
numbers and the serles in terms of the 2—ass001ated Stlrhng subset numbers in
real and complex cases We found that the latter has a much wider domaln of
convergence than the former in both cases and We prov1ded an analys1s of th1s
fact in the real case We also found asymptot1c expressmns for the expansmn
coeﬂiments and obtalned a representatlon of the serles Wlth a w1der domaln of

convergence in terms of the second-order Eulerlan numbers

We applied an invariant transformation defined by the parameter p to the
above series to obtaln one—parameter famlhes of serles We found that an 1ncrease
'of p results in an extens1on of the domarn of convergence of the serles Thus the
serles obtalned under the transformatmn w1th posmve values of p have a w1der
domam of convergence than the orlglnal serles does However at the same tlme a
rate of convergence can be found to be reduced when the parameter P 1ncreases

Therefore in such a case within the common domaln of convergence of the series
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‘with different positive values of p the series with the minimum value of p would
be the most effective. In practice, the obtained results can be applied to compute
rapid estimates for W using a small number of terms in the series at the expense
of an appropriate ch01ce of a particular value of parameter D, for example, in

evaluatmg of the Lambert W function in computer—algebra systems

We also considered the well-known expansion of W (z) in powers of Inz and
gave an asymptotic estimate for the expansion coeflicients. We found three more
forms for a representation of the expansion' coefficients of the series in terms of
the associated Stirling numbers of the first kind the 2—assooiated Stirling sub-
set numbers and 1terat1ve formulas. This aliows us to compute the expans1on
coeffiments in diﬁ"erent ways to meet requirements in accordance with avallable
computer resources Fmally we presented some comblnatorlal _c_o_nsequences in-

cludmg the Carhtz—Riordan 1dent1t1es which result from the found different forms

of the expansion coefficients of the above series.

'We‘studied three 'forms ‘for. the higher derivatives of the Lambert W function.
Each form contains its own sequence of polynomials. It is shown that all of
these polynomials have similar properties. Specifically, their coefficients form
positive sequences that are log-concave and unimodal. This property implies that
the principal branch of W function is Bernstein and its derivative is a Stieltjes
function. Relations of the polynomial coefficients to the shifted r-Stirling numbers
of the second kind, the Bernoulli polynomials of higher order as well as Carlitz

numbers are found as well.

We derived various integral representations of the principal branch of the Lam-
bert W function using different approaches. The most part of them 1; associated
with functions of W belonging to various classes of functions admitting certain
integral representations. Among other classes we considered in detail the classes

of Stieltjes functions and complete monotonic functions and by the example of
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functions based on W in fact demonstrated different ways to establish belonging

of a function to these classes.

Besides their own importance the derived integral representations have some
applications. One of them is computing values of some particular definite inte-
grals as well as more complicated consequences such as the mentioned Nuttall-
Bouwkamp integral. Another one is a proof of convergence of successive Padé
approximants for numerical evaluation of W function. In addition, some of the

found integral representations permit spectrally convergent quadratures.

We also note that some advantages‘ can be taken of the comparison between
different representations of the same function. This reveals equivalent forms of
the involved integrals. Besides, since some of the integrals are simpler than others,

such equations can be regarded as a simpliﬁcétion of the latter.

Thus, in thé accomplished work we found a number of new beautiful properties

of the Lambert W function which are also useful for practical needs.
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Appendix A

Analytical Tools

A .l Lagrange Inversion Theorem

Theorem A.1.1. Letfunction be analytic at o= 0 andlpl0) ~ 0. Then a

solution of equation z = uip(uj) is given by series (Goursat, 1904, § 190)

" dn-l 1 z"

Al
u=E dOjn"‘l _U_in ( )

Note. Theorem A.1.1 and formula (A.l) are called Lagrange Inversion Theo-
rem and Lagrange Inversion Formula respectively. There are other forms of for-
mula (A.l) for equations of more general form (see, e.g. (Goursat, 1904, §189)).

We give an example of application of formula (A.l).

Example. Let us consider equation z = wewin the vicinity of 2= 0 (cf. (1.7)).
To apply formula (A.l) we set ificS) = ew. The function fj{co) satisfies all the

requirements of Theorem A.l.1l, therefore we can write *

E dn~1 Zn
= dwn~I
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Since
d?Jl:ke~m: (ke
we have
dn~x
W= =0 ™
and finally obtain .
g | (A2)

The radius of convergence of the series (A.2) is 1/e, which can be easily seen

using the ratio test !

(—)n I/m\ n n +
(— —Dn/(n + 1)! n—1j n \ nj A n

IN ( h !

A.2 Darboux’s Theorem

Definition A.2.1. (Bender, 1974) A function f(z) is said to have an algebraic
singularity at 2 = a if f(z) can be written as a function analytic at z = a plus a

finite sum of terms of the form

»

z\9"’
a)
where ¢g(z) is analytic at 'z= a, g(a) ™ 0 and 9 is a real or complex number such

that —9 $ Z. The real part of 9 is called the weight of the singularity.

Theorem A.2.2. (Darboux’s Theorem)(Bender, 1974) Let f(z) = Y~ Locnzn &
analytic at z —0 and /iawe only algebraic singularities at z = a®, t= 1,2,..., AT

on its circle of convergence YA\ = R. Let the leading behavior of f(z) near the

[ t !
=11-1— 11 - ) -=>g 1l as n-» 00
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singularity z = a/, is of the form (A.3)

K{2)

for each k . Then

ly ! /1 .\
Ntl «em) W n~"J

where d —maxk?R{Ok) and T(s) is the gamma function.

A.3 Stieltjes-Perron Inversion Formula

Theorem A.3.1. (Stieltjes-Perron Inversion Formula) (Henrici, 1977, p. 591)
Let ip be a bounded, nondecreasing real function defined on (—00, 00), and let f

be defined by
rOO 1 H | .

f(Z) = J-OO_ZTT# (r) iAZ < O) hd

Then for arbitrary real a and r

\ bP{r+) + N = M\nn+SsJ™ /(A- INdA.
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Appendix B

Special Numbers

Unsigned Stirling numbers of the first kind (Stirling cycle numbers)

(Graham, Knuth, & Patashnik, 1989; Corless, Jeffrey, & Knuth, 1997).

Notation: _
n
Generating function:
n
Inm(l + z) = m\¢; (—™*" (B.1)
n—9 m
Recurrence relation:
n , -1 11—1 ©.2)
=D '

Stirling numbers of the second kind (Stirling subset numbers) (Graham
et al., 1989; Corless et al., 1997).

Notation:

Generating function:
@S¢

(ez- Iym= M~"2 I7nj7|! (B.3)
n=0 t
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Recurrence relation:
(n) h;i’ nii "ni“w '
-mla)o ) e o

- Unsigned associated Stirling numbers of the first kind (Comtet, 1974).
Notation:
d(n,m)

Generating function:

- [In(1+2) = z]m = m! i (=1)ntm d(n, m)i—? o (B5)

n=2m

Recurrence relation:

-

) = (n— Dd(n—1m) L dn—2m—1), d0.0)=1  (BS)

‘2-associated Stirling numbers of the second kind (2-associated Stir-

ling subset numbers) (Graham et al., 1989; Corless et al,, 1997).

eh

Notation:
Generating function: .

(ez _ 1— z)ﬁ = ‘mv! Z {n}> ; | o

T e T Y L WV
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Shifted r-Stirling numbers of the second kind (non-central Stirling

numbers of the second kind) (Broder, 1984; Koutras, 1982).

Notation:
n+r
m+r
Generating function:
n+r
—erz(e*-1)m=y X £ (B.9)
m! + 1rni

Recurrence relation:

{:‘+ ) xfn+r—1 , fn+r-
= (m+ I)s >+

+r m+r 4 m+ r—

Second-order Eulerian numbers (Graham et al., 1989; Corless et al.,.
1997).

Notation:

Generating functions (Bergeron, Flajolet, & Salvy, 1992; Gosper, Jr., 1998):

00 N
t+ W (—texp(z(t —1)2—t))

¢ o1 :EE (B.1)

. ==

|- I/t ® 0
e (B.12)

1+ 1fW (—exp (z(1 —0)25L)) = &= F_g

Recurrence relation:

oy oo LKFF oV O* ’»*(: »-1-« «* : » ® a -« ... [ (:» -



" Bernoulli numbers (Graham et al., 1989)

Notation: |
B,
Generating function:
o n o~ 2n
z z 1 z
= B,—=1-=z B -,
er —1 Z "l 2 +2 ™ (2n)!
n=0 n=1 .

because By = 1,B; = —1/2 and Bypiy = 0 for all natural n.

Recurrence relation (Namias, 1986):

1 nl/n
=1, Ba=g—<> |, 2B
Bo=1, 2(1 = 27) (k) k

k=0

.

Bernoulli polynomials of higher order (Norlund, 1924):

Notation:
B{(N)

Generating function:

2\ N g2
(ez—l) ¢ _ZB" (‘)\)n!

n=0
Recurrence relation:

d

rBUD () = (r — n) BO(\) + (A — 7‘)5

Bell numbers (Graham et al., 1989).
Notation:

Wn

BY(A)
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(B.14)

(B.15)

(B.16)

(B.17)



Generating function:

Recurrence relation:
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(B.18)

(B.19)
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APPENDIX C

Padé Approximants for The Lambert W

Function

Definition C.0.2. (Baker & Graves-Morris, 1981) A Padé approximant of func-

ey,

tion f(2) is a rational function

ao+alz+...+aLzL
14+biz+...+ byzM L

[L/M] =

that has a Maclaurin expansion which is consistent with a power series represen-

tation

o f(z) = Z,cnz"‘
n=0

C.1 [3/2] Padé approximant to function W(z)/z

Take Maple commands

> alias(W - LambertW) : :
Order := 24: ¢

>
> S := geries( W(z)/z, z ): )
> convert(S, ratpoly, 3, 2);
, [ 1189 1103, 133
505 - 2020° " 12127
1664 4819
1+ 2

505 ° * 5020 7
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This rational approximation is used in Maple to evaluate W(z) near 2 =0.

— W(zlz
0. [3/2] Pade.

- Figure C.1: [3/2] Padé approximant for W(z)/z.

C.2 Other Padé approximants to function W(z)/z

Create Padé té,'bl'ev‘f‘ii-f Ll o o
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> PadeTable:=seq( converti S, ratpoly, k,k+l ), k=1..5 );

PadeTable :=
228 L, %51
+
1+r T g5 340
313 1193 133
1+ -z+-22 1+ —z+ nAn 22+
3 6 85 340 204
s 381096 74 848073 , 40532
e ;2 +
94423 188846 ““ 34545
475519 757921 12216739 798983

Z+ 72+ Zo+.
94423 94423 2832690 1618680

/ 47306490920 _ 37036845053 _2 41047808321 3 2872158214405 4
AN+ 8773814169 2+ 3899472964 2 + 6824077687 2 + 2948001560784 2

/ 56080305089 _ 505009940819 3312529329503 3.
y + 8773814169 2+ 35095256676 2 + 245666796732 2

1983576598463 4 5398089761801
+ 421143080112 2 + 14740007803920 2

/ 785811326134885740  1903782046557342357 2 17847238752587009620 3
N116440941682504219 116440941682504219 1047968475142537971

39421183629620894251 4  114116410233241419299 5
+ 5589165200760202512 2 + 146715586519955315940 2

902252267817389959 -  5262745803701951975
+ 116440941682504219 2 + 232881883365008438 2
32143771854091130317 , 323321518334509534531 4
1047968475142537971 16767495602280607536
2791593533536950416359 5  85787023633308822991 6
t 586862346079821263760 2 + 320106734225357052960 2
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C.3 Theory for Stieltjes series

A Stieltjes function is defined by the Stieltjes-integral representation

d$(u)
1+ zu

(see ... for more details).

A formal expansion of the integral is called a Stieltjes series

k=0

Theorem C.3.1. (Existence) All [M + J/M] Padé approximants, with J > —1,

to Stieltjes series exist and are nondegenerate.

Theorem C.3.2. (Convergence) Let f(z) be a Stieltjes series with radius of
convergence R > o and for given arbitrary numbers A > R ando < 6 < R, a
domain D(A,5) be the set of all points in YA\ < A that are at least a-distance S
from the cut (—oo, —R]. Then any sequence of [Mk+ Jk/Mk] Padé approximants,
with Jk > —1, of f(z) converges uniformly to f(z) in D(A,5).

Thus even though the Padé approximants are constructed from the Stieltjes
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series convergent only in |z| < R, their validity extends far beyond the circle of
convergence. The convergence properties of Padé approximants of Stieltjes series

hinge on the properties of their poles.

Theorem C.3.3. (Pfoper'ty of poles) The poles bf’thé [M + J/M] Padé approz-

imants, with J >'—1, lie on the real azis in the interval —0o < z < —R.
C.4 Applications to W function

W (z)/z is a Stieltjes function, therefore Theorems C.3.1 and C.3.2 ensure the
existence and convergence of Padé approximants to this function. Moreover,

since R =1 /e, by Theorem C.3.3 :the poles of Padé approximants should lie

—

in the interval —oo < z < —1/e. What does Maple tell us about that?

> dens:= map( denom, PadeTable );

dens := [6+ 14z +52°,1020 + 3756 2 + 3579 2% + 665 2,
11330760 + 57062280 2 + 90950520 2% + 48866956 2° -+ 5592881 2%,
14740007803920 + 94214912549520 z 4 212104175143980 2* + 198751759770180 2°
+ 60425180946205 2* + 5398089761801 2°,
3521174076478927582560+-27284108578797872360160 2+79572716551973513862000 2*
-+ 108003073429746197865120 2° +- 67897518850247002251510 2*
| + 16749561201221702498154 2° + 943657259966397052901 2°]

> rts:=map( t->[fsolve(t,z,complex)], dens );
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rts = [[—2.271779789, —0.5282202113],
[—4.093800259, —0.8444844878, —0.4436701401],
[—6.455610949, —1.270425123, —0.5087475960, —0.4125658307],
[—9.352503587, —1.799352788, —0.8039719015, —0.5077480857, —0.3974882010],
[~12.78157444, —2.429207992, —1.053237111, —0.6337948309, ~0.4628223076,
— 0.3889869449]]

> [min(rts), max(rts)];

[—12.78157444, —0.3889869449]
Compare this interval with

(—o00, —0.3678794412)
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APPENDIX D
:Permission for Using Published'-y Material :

e Chapter 3 is mainly a reprint of (Kalugin & Jeffrey, 2010). This article was
pubhshed in ‘Lecture Notes in Computer Smence publlsher ‘Springer’. In
the publisher’s Web81te in the sectlon RESOURCES FOR Authors /Permissions
they state:

You must obtain written permission to reuse or reproduce material found

in our books and journals, unless:

— You are a Springer author seeking to reuse your own material.

- — You are planning on using our material in a dissertation.

Although you are not required to obtain written permission for the above
mentioned exceptions, the reproduced material must be accompanied by a

full citation.
http://www.springerpub.com/resources/Authors/Permissions

e Chapter 4 is mainly a reprint of (Kalugin & Jeffrey, 2011). This article was
published in the journal ‘Comptes Rendus Mathmatiques’ (Mathematical
Reports of the Academy of Science of the Royal Society of Canada). Permis- |
sion to reuse the paper is given by George A. Elliott (elliott@math.toronto.edu)
who sent the thesis author, at his request, the following message by e-mail

on July 28, 2011 (6:25 PM):


http://www.springerpub.com/resources/Authors/Permissions
mailto:elliott@math.toronto.edu
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'Dear Mr. Kalugin, Thanks very much for your letter. As Managing Editor
of Mathematical Reports of the Academy of Science of the Royal Society
of Canada, I grant permiésion for you to reprint your paper in your thesis.

Yours sincerely, George A Elliott’.

Chapter 5 is mainly a reprint of (Kalugin, Jeffrey, Corless, & Borwein, 2011).
This article has been accepted for publication by the journal ‘Advances
in Computational Mathematics’, publisher ‘Springer’.. In,the publisher’s
website, in the section RESOURCES FOR Authors/i’ermissions.t‘hey state:
You must obtain written permission to ‘reusé,‘oﬁfrepro_dukce m.atem'ali found

in our books and journals, unless:
— You are a Springer author seeking to reuse your own material.
" — You are planning on using our material in a dissertation.

Although you are not required to obtain written permission for the above
mentioned exceptions, the reproduced material must be accompanied by a

full citation.

| http // www‘_._spr_ingerpub .com/resources/Authors/ PefmiSSions


http://www.springerpub.com/resources/Authors/Permissions
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