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Abstract

This research studies analytical properties of one of the special functions, 

the Lambert W  function. W  function was re-discovered and included into the 

library of the computer-algebra system M a p l e  in 1980’s. Interest to the function 

nowadays is due to the fact that it has many applications in a wide variety of 

fields of science and: engineering. ,

The project can be broken into four parts. In the first part we scrutinize a con­

vergence of some previously known asymptotic series for the Lambert W  function 

using an experimental approach followed by analytic investigation. Particularly, 

we have established the domain of convergence in real and complex cases, given 

a comparative analysis of the series properties and found asymptotic estimates 

for the expansion coefficients. The main analytical tools used herein are Implicit 

Function Theorem, Lagrange Inversion Theorem and Darboux’s Theorem.

In the second part we consider an opportunity to improve convergence prop­

erties of the series under study in terms of the domain o f, convergence and rate 

of convergence. For this purpose we have studied a new invariant transformation 

defined by parameter p, which retains the basic series structure. An effect of 

parameter p on a size of the domain of convergence and rate of convergence of 

the series has been studied theoretically and numerically using M a p l e . We have 

found that an increase in parameter p results in an extension of the domain of 

convergence while the rate of convergence can be either raised or lowered.

We also considered an expansion of W (x ) in powers of In x. For this series 

we found three new forms for a representation of the expansion coefficients in 

terms of different special numbers and accordingly have obtained different ways

in



to'compute the expansion coefficients. As an extra consequence we have obtained 

some combinatorial relations including the Carlitz-Riordan identities.

In the third part we study the properties of the polynomials appearing in the 

expressions for the higher derivatives of the Lambert W  function. It is shown 

that the polynomial coefficients form a positive sequence that is log-concave and 

unimodal, which implies that the positive real branch of the Lambert W  function 

is Bernstein and its derivative is a Stieltjes function.

In the fourth part we show that many functions containing W a re  Stieltjes 

functions. In terms of the result obtained in the third part, we, in fact, obtain one 

more way to establish that the derivative of W  function is a Stieltjes function. 

We have extended the properties of the set of Stieltjes functions and also proved 

a generalization of a conjecture of Jackson, Procacci &; Sokal. In addition, we 

have considered a relation of W  to the class of completely monotonic functions 

and shown that W  is a complete Bernstein function. .

We give explicit Stieltjes representations of functions of W, We also present 

integral representations of W  which are associated with the properties of its being 

a Bernstein and Pick function. Representations based on Poisson and Burniston- 

Siewert integrals are given as well. The results are obtained relying on the fact 

that the all of the above mentioned classes are characterized by their own integral 

forms and using Cauchy Integral Formula, Stieltjes-Perron Inversion Formula and

properties of W  itself. ..............  ’ ........

Keywords: Lambert W  function; asymptotic series; domain of convergence; 

special numbers; unimodal sequences; log-concave sequences; integral representa­

tions; Stieltjes functions; completely monotonic functions; Bernstein functions
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Chapter 1

Introduction

“All truths are easy to understand once they are discovered; the point 
is to discover them” -  Galileo Galilei

1.1 Historical remarks

The Lambert function W (z) is defined as the root of the transcendental equation

W (z) exp(W(z)) =  z . (1.1)

According to (Corless, Gonnet, Hare, Jeffrey, & Knuth, 1996), (The poster ‘The 

Lambert W  Function’) the mathematical history of W  function goes back to the 

18th century and is associated with the names of such two great mathematicians 

as Johann Lambert (1728-1777) and Leonhard Euler (1707-1783). In 1758 Lam­

bert published a series solution of the trinomial equation x =  q +  xm (Lambert, 

1758). In 1779, stimulated by Lambert’s work, Euler transformed the trinomial 

equation into symmetric form  ̂ ^  .

xa — xP
a — fd

vxa+P (1.2)
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In a special case/? - »  a, the left hand, side tends to a:“  In a: and equation (1.2) 

becomes (Euler, 1779) v  ■ . : . ' ■

■ : In a: =  vxa ; : (1.3)

or

y =  veay , (1.4)

where y — In a;. Euler noticed that it would be enough to solve the equation (1.3) 

(or (1.4)) for a  =  1 because then it can be solved for any ,ct ^  ,0. Euler found a 

solution of (1.4) for a  =  1 as a series : , ■ , ; :

y =  £
00 „n-1n

n—1 n!
V

with the convergence radius of 1/e .

(1.5)

Both Lambert and Euler left the found solution unnamed. In the modern 

terminology, the series (1.5) defines the ( Cayley) tree function T(v) (Flajolet & 

Sedgewick, 2009, p. 127-128) that thus satisfies the functional equation

T(z) exp(—T(z)) =  z .

This discloses a relation between the tree function and the Lambert W  function

(cf.(l.l))

W(z) =  - T ( - z ) .  ' (1.6)

The Lambert W  function was christened two hundred years later after Lambert’s 

and Euler’s works appeared. Specifically, in 1980’s the function was included into 

the library of the computer algebra system M a p l e  and as of M a p l e » V  R e­

l e a s e  4 it is named as L am bertW . The letter W  to designate the function was 

chosen more or less accidentally (Corless, Jeffrey, & Knuth, 1997) but it certainly 

has some significance because of a significant contribution to the study of the
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properties of W  by E.M. Wright (Wright, 1949, 1955, 1959). It is worth noting 

that M a p l e  provides evaluation of W  with an arbitrary precision, which is im­

plemented on basis of the asymptotic expansions studied by de Bruijn (1961) and 

Comtet (1970). The M a p l e  implementation of W  together with the publication 

of the fundamental paper (Corless et al., 1996) ’On the Lambert W  function’ by 

R.M. Coriess, G.H. Gonnet, D.E.G. Hare, D.J. Jeffrey and D.E. Knuth opened 

doors for a wide use of the function in absolutely different areas. Interest to the 

W  function is due to the fact that it has rich beautiful and useful properties, 

has many interesting applications and plays a significant role in various research 

fields, see Section 1.4.

1.2 Definition and properties of W  __

The Lambert W  function is the multivalued inverse of the mapping W  Wew. 

The branches, denoted by Wk (fc G Z), are defined through the equations (Corless 

et ah, 1996) ..............

Vz € C, Wk(z)exv(Wk(z)) =  z ,  (1.7)

Wk(z) ~  lnfc 2 asIRz —>• oo , (1.8)

where Inkz =  In z +  2ttik, and In z is the principal branch of natural loga­

rithm (Jeffrey, Hare, & Corless, 1996). We will often consider the principal branch 

k — 0, therefore we shall usually abbreviate Wo as W  herein.

For convenience, we recall from (Corless et al.,1996) some properties of the 

principal branch that are used below. The function is continuous from .above on 

its branch cut Bel,  defined to be the interval B =  (—oo, — 1/e]. On the cut 

plane C\®, the function is holomorphic. Its real values obey —1 < W ( x ) < 0  for 

x € [—1/e, 0), W (0) =  0 and W(x) >  0 for a; >  0. The imaginary part of W(t)
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has the following range of values for real t

S W (i) e  (0 ,7r) for t e  (—00, — 1/e) and Q W (i) =  0 otherwise. (1.9)

QW(t) - »  7r as t —> —00. Also, W ( i )  is continuously differentiable for t ^  —1/e. 

5sW(z) and Qz have the same sign in the cut plane C\R, or equivalently

SW{z)%z>  0 .  (1.10)

W  has near conjugate symmetry, meaning W(z) =  W{z),  except on the branch 

cut B. We also note

W{z) =  \nz-\nW{z)  (1.11)

in the cut plane C\(—06,0]. The Taylor series near 2 =  0 is

°° n * . .
W(z)  =  ¡ 1;12)

n = l ’

with the radius of convergence 1/e (see Appendix A. 1), while the asymptotic

behaviour of W(z)  near its branch point is given by

W{z) ~  -1  +  y/2(ez +  l) z -> —1/e  . (1.13)

It follows from (1.12) and (1.8) that

W {z )/ z -^ l  as 2 - »  0 . (1-14)

W(z)/z —y 0 as z —> 0 0 . (1-15)
' *

li z =  t +  is and W(z) = u  +  iv, then «

eu(ucosv ~ vsinv) =  t, eu(usinv+ vcosv) =  s . (1-16)



For the case of real z, i.e. s =  0, the functions u =  u(t) and v =  v(t) are defined 

by

5

u = — vcotv, (1.17)

t =  t[v) =  — vcsc(v)e~VC0tv . (1.18)

For the case of pure imaginary z, i.e. t — 0, the functions u =  u(s) and v =  v(s)

u =  v tanu,

s =  s(v) =  v sec(v)evtanv ( 1.20)

The derivative of W(z)  is given by

W'(z) =
W(z)

( 1.21)
z{l +  W{z))  '

For further we also need the derivative of function u(i), defined in (1.18); it can

At) =
V V

t[v2 +  (1 +  u)2] t[v2-{■ {1 —vcotv)2] 

With (1.14) and (1.15), it follows from (1.21)

( 1.22)

W'{z) —> 1 as z —>• 0 , (1.23)

W'{z) —)■ 0 as "z -> oo . ! " (1.24)

Near conjugate symmetry implies , :
" i ‘

, , dW(z)/dz =  d\V(z)/dz 7 ,  (1-25)



For the case of real z, i.e. s =  0, the functions u =  u(t) and v =  v(t) are defined

by ; -■

5

u =  —v cotu, (1.17)

• t =  t(v) =  — vcsc(v)e~VC0tv . (1.18)

For the case of pure imaginary z, i.e. i =  0, the functions u =  u(s) and v =  u(s)

u =  vtanv, (1.19)

s =  s(v) =  vsec(v)euta‘nv . (1.20)

The derivative of W(z)  is given by

W\z)
W(z)

z{l +  W(z))
( 1.21)

For further we also need the derivative of function v(t), defined in (1.18); it can 

be conveniently found by taking the imaginary part of (1.21) and using (1.17)

if  ̂ _  v — v
V  ̂ t[v2 +  (1 + u)2\ t[v2 -\-( 1 — vcoiv )2}

With (1.14) and (1.15), it follows from (1.21)

( 1.22)

W'(z) —> 1 as z -> 0 , (i.23)

W ’{z) —)■ 0 as Z Hr oo . "  (1.24)

Near conjugate symmetry implies . . , : . p ..

dW{z)/dz =  dW(z)fdz , (1.25)
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for 2 ^ ( - o o , 0]. . :

In addition, we prove the following lemma.

L em m a 1.2.1. Function 5$W(—t) is nonnegative and bounded on the real line and 

continuously differentiable for t ^  1/e. Specifically, it is zero for t G (—oo, 1/e] 

and increases from 0 to n while t changes from 1/e to oo. Correspondingly, the 

derivative d$?W(—t)/dt is zero fort  < 1 /e and positive fort  >  1/e. In addition, 

dQW(—t)/dt =  o ( l / i )  as t —> oo.

Proof. Due to the above properties of function QW(t) (see (1.9)), the function 

^ W ( - i )  is, nonnegative and bounded for real t and Q W (—t) -> tt as f —> oo. 

The function is also continuously differentiable everywhere except t =  1/e. We 

set v(t) =  Q W (f), then by (1.22) , :

At) =
A(v(t))

A(v) =
v

V2 +  (1 —  vcotv)2 '

Hence, the derivative d^W(—t)/dt =  A(v(—t))jt, which implies that it is zero 

for t < 1/e and positive for t > 1/e as v(t) =  0 for t > —1/e and v(t) >  0 for 

t < —1/e. It remains to assertain the estimation of the derivative dQW(—t)/dt 

at large t but it immediately follows from two facts that v(—t) —» 7r as i —> oo 

and that A(v) - »  0 as v —> 7T. .................... ;.................  □

Finally we briefly give the properties of the Lambert W  function in the com­

plex plane; a detailed discussion can be found in (Corless et ah, 1996). As men­

tioned previously, the principal branch Wq(z) has a branch point at z =  —1/e. 

At this point the branches Wo(z), W-i(z)  and Wffz) have the common value 

—1 and therefore all of them have the above mentioned branch cut ®. In addi­

tion, W-i(z)  and Wffz) have one more branch cut along the negative real axis 

S =  {z  : —oo <  z <  0} because of the extra branch point at z =  0. The branch 

cut S, as B, is closed on the top for the counter-clockwise continuity (Corless et
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al.; 1996; Jeffrey et al.f 1996). All other branches of W(z)  have only the branch 

cut S.

Figure 1.1 shows the complex ranges of the branches of W  (Corless et al., 

1996). The principal branch Wq is separated from the branches W\ and W-\ 

by the curve { —77 cot 77 -(- t/z : —7r <  77 <  7r} where 77 =  & IT (cf. (1.17)). The 

boundary between W\ and W-\ is just (—00, —1]. The curves separating the rest 

of the branches are the inverse images of the negative real axis under the map 

uj I-» a;ew and described by { —77 cot 77 +  irj: 2kn <  ±77 <  (2k +  l ) 7r} for natural 

k. In accordance with the counter-clockwise continuous convention the points 

forming a boundary between two branches belong to the branch below them 

(Jeffrey et al., 1996). A similar partition of the complex plane by the branches 

of the tree function T(z) =  —W(~z)  (cf. (1.6)) was considered in (Lauwerier, 

1963). The Riemann surface of W  is given in Figure 1.2. _
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X

Figure 1.2: The Riemann surface of W(z). 

1.3 Real branches of W

The only branches that take on real values are Wq{x) and W-\{x)\ they are 

defined f o r —l / e < a : < o o  and — 1/e <  x <  0 respectively and plotted in Figure 

1.3. Wo(x) maps the positive real axis onto itself with being bounded at the 

origin, particularly, VFo(O) =  0. It is a monotone increasing function with the 

range in [—l,o o )  whereas W-i(x)  is a monotone decreasing function and takes 

on values in (—oo, —1].

Lauwerier (1963) found an interesting parametric representation of the branches 

of the tree function Tq(x) =  — Wq{—x) and T-\(x) =  — W-\{—x) (cf. (1.6)). We 

present a similar result , for the real branches of W . , :



, ; Figure 1.3: Real branches of the W  function.

T h eorem  1.3.1. The branches W0(x) andW-i(x) admit the following parametric 

representation for —1/e <  x <  0 (Corless et al, 1997)

X =  -
P p c o t h p (1.26)

sinhp~ ’

W0 =  -. p  c - r (1.27)
sinhp~ ’ .......... '

W - 1  =  - p  cv (1-28)
sinhp ’

where p >  0.

Proof. By definition (1.7)

x =  W0(x)exp(W0(x)) =  WoeWo ; ,  , (1.29)

and at the same time

x = W . i(x) exp(VF_i(a:)) = W- le^"1 . (1.30)
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We introduce a non-negative parameter : ^

, , p =  (Wq — W _i)/2  . ; ; (1.31)

Then substituting W_i =  Wo — 2p into (1.30) we obtain .

x =  ( W q — 2pjeWo~2p . ' (1.32)

Comparison between (1.32) and (1.29) results in the equation (Wo—2p)e~2p =  Wq 

with a solution
p-2  p e -p

: : > (!;33)

which is equivalent to (1.27). , :

Similarly, substituting Wo =  2p +  W_i into (1.29) we obtain

x =  (2p +  W _i)e2p+w"-1 . (1.34)

Comparison between (1.34) and (1.30) results in (2p +  W _i)e2p =  W _i; this gives

=  . (L35)

which is equivalent to (1.28).

Finally, formula (1.26) can be obtained by substituting (1.33) into (1.29) or (1.35) 

into (1.30). □

Remark 1.3.2. The main result of Theorem 1.3.1 is that the real branches of W  can 

be parameterized through parameter (1.31). This result, in fact, was discovered 

in (Barton, David, & Merrington, 1960, 1963) where studied are solutions of 

equation . . . . ■ 4 :

v ; e~a +  ka:=  1 (k >  0) , . (1.36)

where k  is known (cases k <  1 and k > 1 were considered separately in the
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former and the latter paper respectively). In particular, in (Barton et ah, 1960) 

the authors noted that if, in our notations, Wo and W~i are two roots of equation 

weu =  x then Wo — W-\ =  a, where a satisfies e~a — afW-\ =  1. It is easy to see 

that the last two relations are the same as (1.31) and (1.28) respectively in terms 

of a =  2p. The authors used this fact and the results of computations obtained 

for k <  1 in (Barton et al., 1960) to find a numerical solution for k > 1 in (Barton 

et al., 1963).

The equation (1.36) appeared in (David & Johnson, 1952), where the authors 

studied the truncated Poisson distribution, and described the maximum likeli­

hood A =  a in terms of the truncated sample mean x =  1 Jk'. The authors rightly 

noted that ‘ ...it does not seem possible to obtain an explicit expression for A’ . To­

day, fifty nine years later, due to the Lambert W  function a solution of equation

(1.36) can be written in an explicit form ' \ . .

a =

W0 I A) 'if 0 < k <  1

1 (  1 \

- + B T i  — I ’ if k > 1

or

a = 1k+ w A J r 1 / k ] '
(1.37)

where m ~  f(sgn(l — k) — l ) / 2],

Also, an equation similar to (1.36) appears in (Valluri, Gil, Jeffrey, & Basu, 

2009) where there are considered some applications of W  function to quantum 

statistics. The equation defines the extrema in energy of the distribution1 function 

for a system comprised by a large number of non-interacting equivalent particles 

(cf. (Valluri et al., 2009, Eq. (18))) and has a solution of the form similar to
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(1.37) (cf. (Valluri et al., 2009, Eq. (19))). In addition, it is shown in (Valluri et 

a l, 2009) that the critical point of the integrand in the Lambert transform

exi _  i dt

is also defined by an equation similar to (1.36); a solution of this equation for 

/ ( r )  =  1 (r  and x  =  1 is exactly the right-hand side of (1.37) (cf. (Valluri et al., 

2009, Eq. (42))).

It is also interesting that the results of Theorem 1.3.1 can be expanded in 

series containing Bernoulli numbers Bn (see Appendix B) (Corless et al., 1997).

Theorem 1.3.3. The following expansions hold (Lauwerier, 1963)

'  '  (L38)
_°°. R

W'o— I + P - E t̂ p)2" (1-39)
V " ■ , ■ . . .  • 71=1 V  ' '  : . ; ■

oo p
.W - 1 =  - l - p - £ 72 S !(2 p )2"  . (1.40)71=1 '

_°°. R: , ,  ( U i )
00 R

m ( - , y - r E s p » ) "  (L42>71=1 >  '  '
J °° p -

- l n ( ^ „ )  =  - 1 - 2 g ^ ( 2 P) - ‘ (1.43)

j  ‘ °° r>
- l n ( - ^ i )  =  l - 2 l : ^ ( 2 P ) - 1 (1-44)

Note. Lauwerier (1963) gave only two expansions that are similar to formulas

(1.38) and (1.44); at that the factor 2 in front of the sum sign in the formula 

similar to (1.44) is missed in the text of his paper. ■
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Proof. Substituting expansion (B. 14)

2P
W - l  =  1 _ P  +  S  (2njiS2pi2n

71=1 X r
(1.45)

into equation (1.33)

WQ = -2  p
, - p 2 P

e p _  e ~p e 2p -  1 ’

we obtain (1.39) and then (1.40) using connection W-\ = Wo — 2p. 

Since ln(—Wo) =  Inp — p — ln(sinhp) by (1.27), we have ,

— 1 -
coshp _  l

1 —
ep +  e~P 1

sinhp p ep -  e-p P
1 (e2p - 1) +  2 1 2 21 e 2p -  1 ~~ P ' “  e 2p - - 1

- 2 -
A h

1
“ 2 +

OO

E -
n= 1

B2n (2v)2n~ 
(2 n)\[P }

e2p +  1 
e2p ~ 14 - ln ( -W „ )  =  l

dp p
_  1 

P
_  1 

p

where in the last line we substituted expansion (1.45) divided by 2p. After elim­

inating brackets and rearrangements we obtain (1.43).

Further, it follows from (1.29) and (1.30) that — W-\ew~l =  —Woew°, therefore 

ln(—W -i)+W ~i =  ln(—Wq)+W q, which means In(—W _i) =  ln(—Wq)+W q—W -i , 

i.e.

ln (-W _ !) =  ln (-W o) +  2p . (1.46)

Thus

ÎP ^ - W - l) =  2 +  Î H - w 0) ,

which together with (1.43) gives (1.44). 

Now we integrate (1.43) in p to find

w  d  '¿n
H -W 0) =  a - P - 2 Z ^ ^ P-

n = l '  '



Since W0 =  - 1  for p =  0 and so the constant c =  0, we obtain (1.41). Substituting 

(1.41) into (1.46) gives (1.42). To derive formula (1.38) we note that — ln(—ex) =  

—1 — ln(—x) =  —1 -  (ln(—Wo) +  Wo) and substitute (1.41) and (1.39) here. □

Remark 1.3.4. The series (1.39) and (1.40) represent expansions of the real branches 

near the branch point x =  — 1/e (where Wo =  W_i =  —1, i.e. p =  0) and to­

gether with (1.38) (or (1.26)) can be used instead of the expansions in terms of 

V W  + ex) (Corless et al., 1996).

Remark 1.3.5. By definition (1.31) the double parameter p shows the difference 

between values of the real branches and therefore has an obvious geometric in­

terpretation as a distance between two points on the graph in Figure 1.3 taken 

at the same x  G '[—l/e ,0 ) . Interestingly, by (1.46) this distance would be the 

same in the graph for the logarithm of the absolute values of these branches. The 

graphs depicted in figures 1.4 and 1.5 demonstrate the same distances between 

points at x =  —0.15. ' T ' ■ ; ' ■ ' ^

14

Figure 1.4: Distance between the real branches of W :
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Figure 1.5: Distance between the logarithms of modulus of the real branches. 

1.4 Applications

The Lambert W  function has many applications in many areas of science such 

as combinatorics, applied mathematics, statistical mechanics, biology and others; 

it also gives useful analytical tools in solving engineering problems. Some of the 

applications can be found in (Corless et al., 1996). Examples of application of 

W  to solving equations, theory of probability and quantum statistics have been 

already mentioned in Remark 1.3.2. One important example relates to the study 

of delay-differential equations. The simplest delay equation, using the notation 

& =  dt ôr derivative with respect to time, is

y(t) =  ay(t -  1) ,

subject to the condition on —1 <  t <  0 that y(t) =  / ( f )  , a known function.. A 

general solution is expressed in terms of branches Wk (Heffernan & Corless, 2006)

' OO 6
y{t) =  ^ 2  cfc exp (Wk(a)t) ,

k=—oc



where the Ck can be determined from the initial conditions. One sees immediately 

that the solution will grow exponentially if any of the Wk(a) has a positive real 

part, which leads to important stability theorems in the theory of delay equations.

16

Another interesting example deals with a partial differential equation. Let us 

consider the inviscid Burgers’ equation

(1.47)

with the special initial condition u(x, 0) =  elx (Weideman, 2003). A solution of

(1.47) in the implicit form is given by u — f ( x — ut), where is an arbitrary 

differentiable function. Plugging in the initial condition we find u =  e^x~ut\ 

Using the Lambert W  function we are able to write the solution in an explicit 

form

u =  eixe~iut =$> ueiut =  eix itueiut =  iteix ,

ut +  \ (u2)x =  0

i.e. iut =  W  (itelx) and finally (Weideman, 2003)

u =
Wp jiteix) 

it

A shock forms at a singular point when itelx =  — e” 1, i.e x =  n/2 +  i(l +  In t). 

Taking real x, we find the coordinates of the. critical, point in the (rr, i)-plane 

(Weideman, 2003) , :

(ir ,̂ t*)
7r 1
2 ’ ë

One of the classical examples of application of W  is connected with the prob­

lem of iterated exponentiation (Corless et ah, 1996), where a function *
' 4

 ̂ ’ h(z) =  zzzZ ' } ‘

is to be evaluated. Since h(z) satisfies equation h(z) =  zĥz\ it can be found
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in closed form. Indeed, the last equation is equivalent to h(z) =  exp(h(z) In z) 

or (—k(z)lnz)exp(—h(z)lnz) =  — In z, hence (Corless et al., 1996), (The poster 

‘The Lambert W  Function’)

W (— In z) i . j  : ;
In z *

Many combinatorial applications of W  are due to a simple connection (1.6) 

with the tree function. Specifically, W  has applications in the enumeration of 

trees (Janson, Knuth, Luczak, & Pittel, 1993) and in graph theory (Flajolet, 

Salvy, & Schaeffer, 2004). W  also participates in asymptotic estimations of Bell 

numbers wn (Appendix B), for example, according to (Lovasz, 1993, Ex.9(b), 

P 1?)

where An =  n/W(n). .

It is also worthwhile noting that a generating function for the second-order Eule- 

rian numbers is expressed in terms of the Lambert W  function (cf. (B .ll) , (B.12)).

The engineering applications of W  can be encountered in such problems 

as modeling of non-Gaussian noises in signal processing (Chapeau-Blondeau & 

Monir, 2002), combustion modeling (O ’Malley, Jr., 1991; Corless et ah, 1996), jet 

fuel problem (Anderson, 1989). We give some details for the last one following 

(Corless et al., 1996).

Let w0 and w\ be the initial and final weights of a jet airplane respectively, Cl

and Cp the lift and drug coefficients, S the area of the horizontal projection of
.. * 

the plane’s wings, p the ambient air density. We wish to find the thrust specific

fuel consumption ct and w\ (to compute the weight of the fuel w0 — Wi) from

the equations for the endurance Et and range R which are (Anderson, 1989,

\7l+1/2An
~nVr>

, A n 71 1
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p .312-323)

E -  Cl 
Et <kCD

, WoIn —  ,
Wi

(1.48)

r = ~t ~CtCo
.(2C l\ 1̂ 2 f  1/2 l /2\
(  p s  )  K  ■ )  ■

(1.49)

For convenience, we introduce a negative parameter

y/2Et (  w0 \ 1/2 
R \pSCL)

and change variables :
wi CD

y = \ —  and c = — ctEt 
w0 CL

Then equations (1.48) and (1.49) are equivalent to c == —2 In y and

lny 
1 -  V

=  A . (1.50)

Clearly, it remains to solve equation (1.50). Since its left-hand side is a monotone 

increasing function of y with range in (—o o ,0) and its the right-hand side is a 

negative constant, the equation has the unique solution. We can rewrite (1.50) 

as (Ay)eAy =  AeA to get finally

if A < -

W -!(AeA)/A, if — 1 <
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Chapter 2

Convergence of asymptotic series for the 

Lambert W  function

“No matter how correct a mathematical theorem may appear~to be, 
one ought never to be satisfied that there was not something imperfect 
about it until it also gives the impression of being beautiful. ” -  George 
Boole

2.1 Introduction

In this chapter we study some previously known series for the Lambert W  func­

tion to specify old results, to establish the domain of convergence in real and 

complex cases, to give a comparative analysis of their properties and to find 

asymptotic expressions for the expansion coefficients. We also obtain different 

forms of representation of the expansion coefficients and present some combina­

torial consequences including the Carlitz-Riordan identities resulting from that.• . .  . . . . . .
The equation yaey =  x was solved by Comtet (1970), following de Bruijn
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(1961), as

( 1 -  T \V =  ^a(^) =  In a; — alnlnrc + au =  a ( -—■—- + u \ , )  (2.1)

where
a In In a;.— , r  =  a - -----

In a; lnx
(2.2)

and function u obeys the fundamental relation (Corless, Jeffrey, & Knuth, 1997)

1 — e~u + au — r  =  0. (2.3)

Comtet (1970) further showed that u has the series development

oo n
U=  E E ( ~ 1) ’n=  1 m— 1 n

n — m +  1
g-n-m j-m

m\
(2.4)

where [n_ ” +1] denotes Stirling cycle numbers, also called the unsigned Stirling 

numbers of the first kind (Graham, Knuth, & Patashnik, 1989; Corless et al., 

1997). This series was further developed and rearranged in (Jeffrey, Corless, 

Hare, & Knuth, 1995) in terms of the 2-associated Stirling numbers of the second 

kind (Graham et a l, 1989; Corless et a l, 1997)

fp  +  m -  11 ( - I ) p*™-1

In a particular case a =  1 the function defined by (2.1) is the Lambert W  

function (Corless, Gonnet, Hare, Jeffrey, & Knuth, 1996), i.e. $ 1(2;) =  W(x). 

In the chapter, the series (2.4) and (2.5) are considered for a > 0 in a real case 

and for a =  1 in a complex case. Specifically, in the former a >  0, i.e. in the 

expressions (2.2) x € ( l ,o o ) , and in the latter real x is changed to complex z.

The Lambert W  function is multivalued, its branches W& are defined by (1.7).
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With this definition, the first terms of the asymptotic series for Wu are :

* o ( ( ! ^ ) ’) ■ M

We shall mostly be concerned with the principal branch k =  0, which is the only 

branch that is finite at the origin and takes on realvalues on the positive real 

line. We shall abbreviate Wo to W  for the rest of the chapter. • ,

The fundamental relation (2.3) possesses a remarkable property: it can itself 

be solved in terms of the Lambert W  function (Corless et al., 1997)

,. u =  W (es) -  ^  , (2.7)v '■■■■- ■ ■ a

Where : ?■. /v - -- ;> ■ 'T “ . ■ .

s =  s(a, r) =  - — -  — In a . : - . (2.8)
a

This gives a useful representation of the Lambert W  function (Corless et al., 

1997)' " ' " ; ■ ’ "■ " '

W(z) =  W (es) (2.9)

and allows to get properties of u from those of W(z) and vice versa. For example, 

it follows from (2.7) that in the real case

(2.10)

The asymptotic series (2.4) and (2.5) were studied in the real case in (Jeffrey 

et al., 1995). In this chapter we specify and establish the domain of convergence 

of the series in both real and complex case, analyse a difference in their properties 

and find asymptotic expressions for the expansion coefficients in (2.5).

—7T <  Q u  <  7T
because the same is true for W  (cf. Figure 1.1).
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For a =  1,. along with the expansions (2.4) and (2.5) we study a series in 

terms of the second-order Eulerian numbers (Corless et a l, 1997)

W (x) = u 0 +  J 2
771=1

—— t_______ - y
m!crm(l +  cjo)2” 1“ 1 rC—-U

m — 1 
k ( - i ) l 4 + 1 , (2. 11)

where a =  \/\nx and Wo denotes the Omega constant W (1) =  0.56714329... A 

definition of the second-order Eulerian numbers is given in Appendix B.

The series (2.11) was obtained and studied in (Corless et ah, 1997) and in 

fact represents a series of the Wright w function (Corless & Jeffrey, 2002). We 

give three new forms of representation of the expansion coefficients of this series 

as well as their asymptotic estimates.

In the chapter, it is also shown that the series (2.5) can be represented in 

terms of the second-order Eulerian numbers. Some combinatorial consequences 

following from different forms for representation of the expansion coefficients in 

(2.5) and (2.11) are presented, including the Carlitz-Riordan identities.

2.2 Series (2.4) ;

2.2.1 Convergence in real case

It is shown in (Jeffrey et al., 1995) that the series (2.4) is convergent for

{e, 0 < a < 1
i (2.12)

(ctea)a , a > 1 4

Below we are going to confirm and specify this result. We first prove a statement 

in terms of variable a and r.



T h eorem  2.2.1. The domain of convergence of the series (2.4) in real case is 

defined by inequality .

\na +  (2.13)

Proof. We consider the series (2.4) in the real case and start with the fundamental 

relation (2.3) to write it in the form

' G\{o.u) =  0, (2.14a)

where we introduced a variable A =  r/<x playing a role of parameter and set

G\{a, u) =  1 — e~u +  au — crA. ~ (2.14b)

By Implicit Function Theorem (Markushevich, 1965), for fixed A G M. equations 

(2.14) determine a function . .
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.... (2.15)

with initial condition u^(0) =  0 in a domain where dG\(a,u)/du =  e~u +  a ^  0. 

Since dG\(0, tf)/du =  1 ^ 0, the mentioned initial condition is justified.

e

To find the critical points in the complex cr-plane we first solve the equation 

u +  a =  0; its roots are u =  u[k\ where .

=  — In <7 +  m{2k — 1), k € Z  . (2.16)

Substituting (2.16) into (2.14) we obtain the equation

A — 1 +  In <7 — m { 2 k  — 1) =  1 / a  (2-17)
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which, after exponentiating

: - e 1/a =  —eA~i , ‘
a

can be solved for o* in terms of the Lambert W  function , .

ffm =  l/W m i-e*-1) , (2.18)

where the m-th root is defined by the ra-th branch of W.

Comparison between equations (2.16) and (2.17) shows that at the critical points 

we have a relation A — 1 — u =  1/a and hence ^ (l/cr) =  5$(—u). Therefore, due 

to (2.10) a root crm defined by equation (2.18) is a singular point for the principal 

branch if its reciprocal has imaginary part in (—n, tx). On the other hand, in the 

right-hand side of equation (2.18) only branches Wo and W-\ have the imaginary 

part in this range (Corless et al., 1996) (and thereby can provide not only complex 

but also real roots crm unlike the other branches). Thus we conclude that there 

are only two acceptable values for m, i.e. m =  —1, 0.

Due to identity Wm(—eA_1) exp {W m(—eA-1) }  =  —eA-1 equation (2.18) can 

be written as

crm =  - e x p { l  -  A +  iym( - e A-1) }  ( m = - l , 0 ) .  (2.19)

The key point for further considerations is that the radius of convergence of the 

power series (2.15) is equal to the distance from the origin in the complex o- 

plane to the closest singular point (Titchmarsh, 1939),(Antimirov, Kolyshkin, & 

Vaillancourt, 1998, p.175, Theorem 4.3.2). In other words, due to (2.19) the 

domain of convergence is defined by inequality i

|cr| <  min | -e x p { l  -  A + W m( - e A“ 1)}| . .
me{—1,0}
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or

In \a\ <  1 -  5RA +  min m/Vm{.-eX~l) . (2.20), : me{—1,0} ...... - ■ - ;. .

Since (rr) <  3Wo(a;) for all i . G l  (Corless et al., 1996), after substituting

A =  r/a the condition (2.13) follows. : r ; ^

To express the condition (2.13) of convergence of the series (2.4) in terms of 

independent variable x in (2.2) and compare the result with (2.12) it is convenient 

to prove the following lemma. . ^  /

L em m a 2.2.2. Solution of inequality 9W _i(a;) >  a for x <  Q, where a is con­

stant, is given by

{aea, a <  — 1
■ , , ' ; ; (2.21)

—ea7?ocscr^o, a >  —1

where rjo 6 (0, 7r) is the root of equation 770 cot 770 = —a.

Proof. We set W-\(x) =  £ +  ¿77 for real negative x where £ <  —1, 7? =  0 for 

—1/e <  x <  0 and £ >  —I, —7r <  77 < 0 for x < —l/e (Corless et al., 1996). Then 

separating the real and imaginary parts in the defining equation (1.7) we obtain

x =  e ^ co s ??  — 77sin77), 0 =  e^(r]cosrj +  £ sin77) .

From these equations, one can find a dependence of £ on a: explicitly for —l /e  <  

x <  0

: ; 1 -£ = W : 1(x) (2.22)

and parametrically for x <  —l /e  *

x =  —rj csc(r))e~VC0tT1 , (2.23)

; £ =  —77COt 77 ,  ̂ -  (2.24)
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w here—7T <  77 <  0. ' ■ ■ ' • ■ • .

Now we consider inequality £ >  a in two cases comparing a with value —1. 

When a <  — 1 the inequality £ >  a holds for all a; <  — 1/e  because in this case 

£ >  —1 by (2.24). For —1/e <  x <  0 we solve inequality W -i(x) > a due to 

(2.22) with the result —1/e <  x < aea. Thus £ >  a for x < aea.

When a >  — 1 the inequality £ >  a can have a solution only for re <  —1/e  

because £ <  — 1 for the rest x. According to (2.23) and (2.24) the solution is 

given by x <  —770 csc(t]q) exp(—770 cot 770) where 770 G (—7T, 0) satisfies the equation 

—770 cot 770 =  a due to which the solution can also be written as x < —earjQ esc 770 

and 770 G (0 ,7r). Joining both cases, the lemma follows. □

Note that in the formula (2.21) when a > — 1 but o /  0 we can also write 

Xq =  aea/co s?7o. : .

T h eorem  2.2.3. The series (2.4) is convergent when

I (e /a )“ , 0 <  a <  1
x > xa =  <

eai7ocSc7?0) a > i
(2.25)

where rjo satisfies equation 770 cot 770 =  1 — In a  (0 <  770 <  n), and divergent when 

x < x a.

Proof. We consider the condition of convergence of the series (2.4) established 

by Theorem 2.2.1 in the real case, i.e. when a >  0 and x >  1. Substituting the 

expressions (2.2) in (2.13) we obtain . . - ,

UW-i >  ln a  — 1 . ‘ ' (2.26)

Applying Lemma 2.2.2 to the inequality (2.26) we come to (2.25), where xa >  1, 

which justifies the assumption x >  1. Thus the theorem is completely proved. □
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‘ Note. The statement of Theorem 2.2.3 was independently reported by A.J.E.M. 

Janssen and J.S.H. van Leeuwaarden (November, 2007).

Remark 2.2.4. In the formula (2.25) when a >  1 but a ^  e we can also write 

xa =  (e/a)asccr>°. ; ,

Remark 2.2.5. Due to (2.26) the condition of convergence of the series (2.4) for 

a =  1 can be written as

^  > - l .  (2.27)

C orollary  2.2.6. The series (2.4) for a =  l, i.e. for W function, is convergent 

for x > e and divergent for x < e.

Proof. Follows immediately from (2.25) for a =  1. □

Since the statement of Corollary 2.2.6 is very important, we give one more 

proof of it following (Jeffrey et al., 1995). , ;

T h eorem  2.2.7. The series (2.4) converges for all x > e.

Proof. We write the equation (2.3) in the form

g(u) +.f{u] cj, t ) =  0 , (2.28)

where

g{u) =  1 — e u and f  {u\ a, r ) =  cm — r

We now consider the equation (2.28) with respect to u for fixed real cr and r  

specified below. For any analytic function F(C) with a single isolated zero at 

C =  u inside a contour C in the complex (-plane, we can use Cauchy’s integral 

formula to write , .

=  —  f  ( d c .
2th Jc F(Q  ;  ^

u (2.29)
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Setting F(C) =  g(C) +  / ( C; &>T) we can write a solution of the equation (2.28) in 

the form - ' - . : - 1 . . '

u 2m Jc
+  O'

lc9(C) + /(C;*» t)
provided a proper contour C exists.

CdC, (2.30)

Let us fix an arbitrary x E (e, oo), then 0 <  a <  1 as a =  1 /ln x . Taking an 

arbitrary 5 Q. (0,1 — cr) we consider the following rectangular contour

S + it ,

< =  A
t +  i2S1/2 

—2 4*. it ,

—251/2 <  t < 25l>2 , 

, - 2  < t < 5  ,

- 2 5 1/2 <  t <  251/2 , 

, —2 < t <  5 .

(2.31)

It is straightforward to show that on this contour |p| > |/|. Hence', by Rouche’s 

theorem p and /  +  g have the same number of zeros within the contour. But 

equation g{u) — 0 has the unique root u — 0. Therefore, the function f  +  g has a 

single isolated zero and the contour can be taken for the integration contour C.

In addition to satisfying the conditions of the integration, the contour allows 

us to evaluate the integral by expanding the denominator of the integrand in 

(2.30) as an absolutely and uniformly convergent power series in f/g.

D - U ' d k  -  E ( - D l d  -  e - ^ - V c  -
9 +  f  9 1+  L k=0 k= 0

g (2.32)

- E E ( - i ) '
fm +  k'

fc=0m=0 m
(1 _  e - C y k - m - l ^ k a kT m '

Substituting this expansion into (2.30) and integrating term by term, we obtain u 

as the sum of an absolutely convergent double power series in a and r, provided

x > e.
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The domain of convergence cannot be extended to x <  e, because the series 

for du/dz diverges at x =  e. This can be seen by noting that r  =  0 at x  =  e. All 

terms reduce to zero except m =  1 which gives the sum

1
e £ ( - D ‘

k=0

which is divergent. □  □

Remark 2.2.8. The radius of convergence of the series (2.4) in terms of variable 

a — 1/lnrr equals unit. ,

We now prove a statement, relating to divergence of the series (2.4), which was 

found by us earlier than the conditions (2.25) but unlike Theorem 2.2.3 concerning 

positive o; it deals with any a ^  0. In addition, the statement demonstrates an 

interesting application of the ratio test to tlie series (2.4). ‘

T h eorem  2.2.9. The series (2.4) is divergent at least for

e“ |Q| <  'x < e6|a| (2.33)

where

b
W  (1 / \a\) when |a| <  1/e , 

1 when |a| >  1/e .

Proof. Changing indices for summing the expansion (2.4) can be written through 

a double series (Jeffrey et al., 1995)

oo oo I
t (2.34)

m=l 1=0

where

Cm.,1 “  pmji&i ) ( - 1 ) ' l +  m 
l +  l

crlrm
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For the column-series J2m cm,i the ratio test gives

limm—>oo
Cm+l,l
Cm,l

l-r I limm-+oo

Ï +  m +  1
l -f-1

(m +  1)
l +  m
l +  l

as according to (Abramowitz & Stegan, 1970)

p +  1

lim -+r
1 + 1

p—> oo
V

V 
l +  l

for fixed l

in our notations.

For the row-series we have

lim
Z -»o o

Cm,l+l
Cm,l

Ieri lim1 Z -r o o

l +  m +  1 
l +  2
l +  m 
l +  l

because by (Abramowitz & Stegan, 1970)

1 +  m
l +  l

&  (Z +  l ) 2m" 2 2m-1(m -  1)!
for fixed m.

According to (Limaye & Zeltser, 2009, Theorem 2.7) the series (2.34) (and there­

fore (2.4)) is divergent when |cr| > 1 or |r| > 1. Expressing these inequalities in 

terms of x by (2.2) and uniting the obtained sets we obtain the stated interval

(2.33) where the series (2.4) is divergent. □
' ■ _ ' ' " ■ *

By Theorem 2.2.9 for a =  1 the series (2.4) is divergent at least for e-1 <  x <  e, 

which is consistent with Corollary 2.2.6. : .

For comparison, the curves described by equations (2.25), (2.12) and (2.33)
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are depicted in Figure 2.1 by solid, dash and dashdot lines respectively. Thus the 

solid line shows the exact (lower) boundary of domain of convergence of series

(2.4). .

Figure 2.1: Boundary of domain of convergence of series (2.4)

2.2.2 Convergence in complex case

From now on we consider equations (2.1), (2.2) only for a =  1 (under the same 

relation (2.3)) and in this subsection derive the convergence conditions for the 

series (2.4) in the complex case using the results obtained in Section 2.2.1 in the 

real case. To do that we set : .

. ■ . a =  1 /In 2, r  =  In In 2/I112 , ' . t (2.35), . . ■' ■ ' ■ ' ' ' ■ ' . ' ’ " ' ' ' £ ' ' .
where z =  x  +  iy is a complex variable and In 2 denotes the principal branch of

the natural logarithm. Then the right-hand side of the series (2.4) represents a

function of the complex variable 2 and the following theorem holds. .



T h eorem  2.2.10. The domain of convergence of the series (2.4) in the complex 

z-plane is defined by ' . . ■ ■ .■ ■

’ m Vm  ( - v )  > “ i ’ (2-36)

where the branch Wm is chosen as follows

35

1—1, —7r <  arg'z < 0
■

1, 0 <  arg 2 <  7r . ' .

Proof. Repeating the proof of Theorem 2.2.1 under assumption A £ C we come to 

an equation which is different from (2.20) only by that m £ Z. Then substituting 

(2.35) in there we obtain (cf. (2.27)) 1
minmVrn f - — ) >  - 1  . (2.37)

e J

Now we cut the complex 2-plane along the negative real axis and set arg 2 £ 

(—7r,7r]. We consider inequality (2.37) in domain D =  {2  £ C| — 7r <  arg2 <  0} 

and assume that there exists some .value m =  q such that the domain , of conver­

gence in D is defined by equation . • .. . ; :

mWq{-\nz/e) >  - 1  (2.38)

and its continuous boundary is given by

mVq { - Inzfe) =  - 1  . (2.39)

The domain of convergence found in real case is defined in a similar way. .Specif­

ically, in domain {2 £ R| 2 >  0} we have q — —1 by (2.27) and the boundary 

2 — e by Corollary 2.2.6. We require that in the limiting case arg 2 -> 0— equa­

tion (2.38) become equation (2.27) and show that there is an unique value q =  — 1 

satisfying this requirement. (If there were several such values of q, it would mean
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that the boundary .£? is composed of several pieces of different curves, and to 

identify them one should reduce domain D, i.e. consider its subdomains.) Sub) 

stituting Wq (— \nz/e) =  —1 +  ir] in the defining equation (1.7) and separating 

the real and imaginary parts we find . . .  * .

sin 77 — 77 cos 77 =  arg 2 (2.40a)

; ' ; cos 77 +  77 sin 77 =  In 121 (2.40b)

These equations describe a set of the boundary points which can be found in 

the following way. Given a value for arg z one can find 77 from (2.40a) which 

being substituted in (2.40b) yields the corresponding value of ln|z|. However, 

for fixed argz £ ( - 7T, 0] the equation (2.40a) has an infinite number of solutions. 

We select a solution to provide a continuous transition to the real case when 

argz —>• 0— and when the boundary of the domain of convergence is defined 

by 5R W _i(-ln z/e ) =  —1 (cf. (2.27)). An elementary analysis of the equation 

(2.40a) shows that to meet these requirements one needs to choose a solution of 

this equation from the interval 77 £ (—7r, 0] and set q =  — 1 in (2.39). Since by 

(2.40a) such solution exists if and only if z £ D, the above assumption is approved 

and the domain of convergence in D  is described by (2.38) with q =  -1 ,  i.e.

5R W _i(-ln z/e ) > - 1  .

Due to the near conjugate symmetry property of W  function (Corless et al., 1996), 

i.e. Wk{z) =  W-k{z) when z is not on the branch cut, we obtain the convergence 

condition 3ftWi(— In z /e ) >  —1 in the domain {z  G C| 0 <  argz <  7r}. Thus the 

theorem is completely proved. . . * □

Remark 2.2.11. The ’branch splitting’ in the proved formula (2.36) is due to the 

branch choices for the Lambert W  function and similar to the effect that occurs 

in the series for W  about the branch point (Corless et al., 1997, Sec. 3).



Remark 2.2.12. The inequality opposite to (2.36) defines the domain where the 

series (2.4) is divergent. This domain is finite (it encloses the origin 2 =  0) 

and contains a subdomain defined by inequality \a\ >  1. Therefore, unlike.the 

real case (see Corollary 2.2.6) in the complex case the condition |cr| < 1 is only 

necessary but not sufficient for convergence of the series (2.4).

2.3 Series (2.5)

2.3.1 C onvergence in real case

We regard the expansion (2.5) as a power series around r  =  0 where variable a 

plays a role of a parameter. ....__

T h eorem  2.3.1. For a >  0 and, a > 0, the radius of convergence of the series

(2.5) is exactly

r*(cr) =  |1 +  cr — crlncr ±  i7rcr| , (2.41)

which is equiavalent to the condition of convergence of the series (2.5) as

| a (In a — In a) | <  y/(l +  a — alna)2 +  7rV2 . (2.42)

Proof. We rewrite the fundamental relation (2.3) in the form of equation

'  " Fa{r,u) =  0, ' (2.43)

where ’ '' ' ' ........... ’ ’ ■' ' " ‘ ■

; Fa(T,u) =  l - e ~ u+  a u - r  , ' , (2.44)

and analyse this equation similarly to that in the proof of Theorem 2.2.1. By Im­

plicit Function Theorem (Markushevich, 1965) the equation (2.43) determines

37
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a function ua{r) =  ^ mcm(cr)rm with initial condition uCT(0) =  0 in a do­

main where dFa(T,u)/du =  e~u +  a ^  0. The initial condition is justified by 

dFcx(Q,Q)/du =  1 +  a ^  0. Since the critical points are defined by the same 

equation as in Theorem 2.2.1, they are given by (2.16) and the corresponding 

values of r  are

=  1 — e~u*) +  au^  =  1 +  a — a In a +  ina(2k — 1), k G Z  (2.45)

. The radius of convergence is equal to the distance from the origin in the 

complex r-plane to the closest singular point (Antimirov et al., 1998, Theorem 

4.3.2). Among the critical points (2.45) there are two the nearest to the origin 

equidistant points which correspond to k =  0 and k =  T.

• =  1 +  a — alna — ina, ' (2.46a)

=  1 + a — a\na ina. (2.46b)

The corresponding values of u ^  are

 ̂ =  — In cr — in, ' . (2.47a)

vfp =  — Ina +  in. i (2.47b)

Since the expansion coefficients of the series (2.5) are real, the closest singu- 

. larities can appear as a conjugate pair only (Hunter & Guerrieri, 1980). Based

on the Weierstrass’s preparation theorem (Markushevich, 1965; Adachi, 2007) we■ , . ............ _ è
will show that the points (2.46) are singular, each corresponding to a square-root 

branch point of function u =  uff(r) in the complex r-plane. We will also find a 

behavior of function u =  ua(r) near the points (2.46) used then for a study of an 

asymptotic behaviour of the expansion coefficients of the series (2.5).
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Let us consider, for example, point r  =  r* . Expanding the left-hand side of 

equation (2.43) into a Taylor series near the point S wi°^ we obtain

W )  t ^  (. - « ♦ .  f g a H 3
< 9 rch / V' ' *  1 y 1 <9^2 2

. 2 W ! , r . n« ) , . ^ , , ) t £ g a +  • • • =  o ,

where dots denote the skipped terms of the higher order. Since

'n dF„{S) „  d2Fa(S) (on ^ F ,  _  ,
a .(S )  =  0, Q„  =  0, g u2 =  - e x p  ( - « i ' ) ,  and —  =  - 1du <9r

the last equation becomes

( u - u i <
-  (t -  r i0)) -  exp ( - 4 0)) — — - --------+  • • • =  o.

Thus, in accordance with the Weierstrass’s preparation theorem (Markushevich, 

1965, p . l l l ) ,  equation (2.43) is locally equivalent to the equation

(t*(0) -  r ) ~  exp (-ui0))

It follows that at r  =  ri°  ̂ function u — uff(r) has a singularity corresponding to 

a square-root branch point as near this point
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or substituting (2.47a)

u ~  — In <7 — (2.48)

It is not difficult to show that if we consider the values of the function (2.48) 

in the interior of the circle of radius (2.41) remaining in the vicinity of r  =  ri° 

then the function (2.48) taken with the plus sign only satisfies the condition 

—7T <  Qu <  0, which corresponds to =  —7T <  0 at point r  =  ri°  ̂ itself

by (2.47a). Moreover, since in the mentioned vicinity —7r < Qr/cr < 0, we have 

—7r < Q'ty <  7r by (2.7), which corresponds to the principal branch of W  function 

(Corless et al., 1996). Thus we come to conclusion that the function u — ua(r) 

behaves near the singularity (2.46a) like , :

u ~  — In cr — ITT +  i\
2 T>(0)

.(0) as T —> T(0) ■ (2.49a)

One can show in a similar way that near the singularity (2.46b) the function 

u =  Wo-(r) behaves like

u ~  — In a +  Z7T — i j as r  -*  rf1}.
T* /

(2.49b)

Thus the points (2.46) are singular and we immediately obtain expression (2.41); 

the inequality (2.42) follows from (2.41) as r  =  — <7(ln<r -  In a) due to (2.2). The 

theorem is completely proved. □

C orollary  2.3.2. For a =  l,'the series (2.5) is convergent for 0 <  a < ctq and 

divergent for a > ao where ao — 224.790951... is the only root of the equation

| — c r l n c r l  =  y/(l +  a — a  I n  a ) 2 +  7r2a2 . (2.50)

Proof. Follows immediately from (2.42). □
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"Thus, in terms of the variable a;, the series (2.5) for the Lambert W  function 

(ck =  1) is convergent for a; >  xq =  =  1.004458..., which confirms and

specifies the result obtained in (Jeffrey et al., 1995). It is also worth to emphasize 

that the domain of convergence is described by x > xo > 1 rather than x > 1 

though Xq is very close to unit.

Remark 2.3.3. Substituting values (2.46) and (2.47) into (2.7) we find W (x) =  — 1 

for both k =  0 and k — 1. Although it is well-known that this value of the 

Lambert W  function corresponds to its branch point and asymptotics (2.49) 

can be obtained immediately from the results in (Corless et al., 1996, 1997), 

we derived these asymptotic formulae to demonstrate a method based on the 

Weierstrass’s preparation theorem. . . ( . .

Remark 2.3.4. The results of Theorem 2.3.1 correspond to the properties of the 

Wright u function (see subsection 2.4.2). In particular, due to (Z8) for fixed 

a >  0, the singular points of function ua(r) can be found through those of function 

u>(s), s* =  — £ ± z7t (£ <  —1), by transformation r* =  1 — a In a — £cr ^  ina. Since 

3?r* has the minimum at £ =  —1, the closest singular points are defined by (2.46), 

which corresponds to the results of the theorem.

Remark 2.3.5. The solution a =  a0 of the equation (2.50) is much more than unit 

and can be found approximately with a good precision. Specifically, taking square 

of the both sides of (2.50) and leaving the main terms we obtain a2 — 2a2 In a +  

7r2cr2 — 2cr In a «  0. Searching for a solution of the approximate equation in the 

form a =  e x p ( i^ - ) ( l  +  J), where the exponential factor is an exact solution of 

the approximate equation with neglected last term and a correction term 5 is to 

be determined, we obtain an approximate value in deficit a0 «  e x p (L ^ ) — =  

223.8126969.... Taking into consideration of the terms of higher powers in J in a 

similar way, one can obtain a more accurate value. ; s

Remark 2.3.6. The convergence condition (2.42) has a clear geometrical interpre­

tation in (cr, r)-plane. For example, for a — 1, one can show that in accordance 

with the inequality (2.42), when a <  ctq the curve L described by r  =  — a In a is
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located inside the region S bounded by curves r  =  ± 1/(1 +  a — a In a)2 +  7t2<72, 

which expresses the condition of convergence of the series (2.5). However, at 

point ex =  o"o the curve L leaves the region S through the lower boundary curve 

that can be described for large a by the asymptotic expression

T Li^ :+1+0 (nr?);t(a) =  — \/(l +  a — a In a)2 +  n2a2 =  —a In a +  a
1

It follows that afterwards the curve L remains below the lower boundary of S, 

which corresponds to the divergence of the series (2.5) for a > a0. ^

Now we consider case cr <  0, which should be done carefully as by Implicit 

Function.Theorem it should be dF(7(0,0)/du yf 0 due to the initial condition 

Uff(0) =  0 and therefore the value a =  —1 should be excluded. It follows from 

(2.45).that when a <  0 and <7 ^  —1, i.e. o  =  |cr| el7r and |cr| ^  1 there is only one 

the nearest to the origin singularity given by (2.46b), : . ........

=  1 +  a — a\a\a\ (2.51)

that lies on the positive real axis. Correspondingly the radius of convergence 

instead of (2.41) is the modulus of the right-hand side of (2.51).

Finally, when a =  0 the series following from (2.3)

u =  - l n ( l - r )  =
; m=l

rj~m

m
(2.52)

is convergent for |r| <  1.

Note. When a =  —1, tP  =  0 by (2.51), i.e. the series diverges everywhere. 

We also note that in all cases considered above the condition of convergence 

of the series (2.5) is described in an unique manner, particularly, the radius of 

convergence is given by (2.41).
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2.3.2 C om parison  w ith  series (2.4)

Let us compare the domain of convergence for the: series (2.4) and (2.5). Both 

can be represented in the form

u = '¿r c™(a)Tm (2>53)

(see (2.34) for the series (2.4)). However, by Corollary 2.3.2 and Corollary 2.2.6 

the series (2.5) has a much wider domain of convergence than the series (2.4) 

(not only in the real case but also in the complex case, see Figure 2.2 below). To 

undestand this phenomenon we note that the domains D4 and D5 of definition of 

the function cm(cr) in the series (2.4) and (2.5) respectively are different. Specifi­

cally, the domain Z>4 contains point a =  — 1 where the conditions ofLthe Implicit 

Function Theorem are violate, which results in restriction |c| <  1 that appears as 

a necessary condition for convergence of the series (2.4). However, in the series

(2.5) cm(a) — cm(£(cr)) where £(cr) =  1/(1 +  a ), i.e. the domain D$ does not 

contain point a — — 1. Therefore the mentioned restriction does not appear and 

the domain of convergence is extending.; This correpsonds to the fact that the 

function £ =  C(c) maps the interior of the unit circle |cr| — 1 into an unbounded 

domain which is the right half-plane > 1/2. Since the series (2.4) and (2.5) 

have common values in the domain where they are both convergent, the series

(2.5) is the analytic continuation of the series (2.4).

In terms of variable £ the series (2.5) becomes (Jeffrey et al., 1995)

u = S E f ^ r V i r - r  <(2.54)
, . .  771=1  p = 0  '  ■ .

and can be regarded as a result of applying the Euler’s transformation for im­

provement of convergence of series (Hardy, 1949). Indeed, the standard Euler’s



transformation associated with changing variable to extend a domain of conver­

gence of the series (2.4) is p . =  cr/(l +  a) (Morse & Feshbach, 1953). Since in 

terms of a new varibale the fundamental relation (2.3) is written as
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1 P =
u

e~ u +  u +  t  — 1 ’

it would be natural to introduce variable (  =  1 — p =  1/(1 +  a) rather than p. 

The series (2.5),(2.54) were first found in (Jeffrey et al., 1995).

One can also show that a representation of the Lambert W  function through 

the function uT{a) = /C m =i cm('r)am, where r  plays a role of parameter, can not 

extend the domain of convergence established for series (2.5). Indeed, in this 

case equation (2.43) changes to FT(a,u) =  0 where FT(a,u) is still defined by the 

right-hand side of (2.44) but with initial condition uT(0) =  — h ^ F ^  r). By the 

Implicit Function Theorem it should be dFr (0, — ln(l — r))/du ^  0, which gives 

r  7̂  1, i.e. |t | < 1, and substituting r  =  —a In a yields 0 < a < 1/uq as a 

necessary condition for convergence (cf. 0 <  a < o$ in Corollary 2.3.2).

Thus among the series with the considered structures the series (2.5) has as 

wide as possible domain of convergence.

2.3.3 Asymptotics of expansion coefficients

Once the behavior of function u =  ua(r) near the nearest to the origin singular­

ities has been established one can find an asymptotic formula for the expansion 

coefficients of the series (2.5) using the Darboux’s theorem about expansions 

at algebraic singularities (Comtet, 1970; Bender, 1974). The similar approach, 

based on the Weierstrass’s preparation theorem and the Darboux’s theorem, was 

applied to asymptotic enumeration of trees in (Savicky & Woods, 1998).
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'According to the Darboux’s theorem (see AppendixA.2) and found estimates

(2.49) for o > 0 the expansion coefficients in the series (2.53) have an asymptotic 

formula for large m as

+ o
3 ( i )

m
t ;  j

or
/

Cm(v)

as

yph7am 2 

T (—I) =  —2y/îr. Setting r P  =

m-J I ’

TV( 1) eldl we find

Cm (<t)
2 sin (m — I)7T(J m~ \ -  ’r* 2m 2

as m - »  oo

(2.55)

(2.56)

where r* =  r*(cr) is defined by (2.41) and 9\ =  arg(l +  a  — crlncr +  i-na). 

Specifically, for a >  0

arctan
7r

7T +  arctan

■ 1 — In a + I/o ’7T
1 — ln<r +  1/cr’

if 0 <  <7 <

if (7 >

W ( l / e ) ’

W {l/e)'

It follows from (2.56) that for large m the expansion coefficients in the series

(2.5) disclose their oscillatory behavior due to sin function though the amplitude 
. . .  ̂

decays as t*(ct) >  1 for any o >  0. Since the series (2.5) can be interpreted as a

result of applying the Euler’s transformation to the series (2.4) (see (2.54)), we 

note that some cases of oscillatory coefficients resulting from the Euler’s trans­

formation are studied in (Hunter, 1987). ...... . :
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In order to find an asymptotic formula in case when a <  0, suffice it to take 

in (2.55) only the first term with (2.51)

Cm{cr)
y/2-K |cr|m2 (1 — |cr| +  |cr[ In Icrj)7” 2

as m —> oo (2.57)

Finally, for case a =  0, it follows from (2.52) that for any m G N

cm(0) =  — .
m

(2.58)

2.3.4 C onvergence in com p lex  case

Theorem 2.3.1 is extended to the complex case. ___

T h eorem  2.3.7. For complex a, the radius of convergence of the series (2.5) is

r*(cr) =  |1 +  a — a In cr — in a \ when Scr <  0 ,  (2.59a)

. r*(cr) =  |1 +  cr — a In cr +  ¿7rcr| when$scr>Q. (2.59b)

In the complex z-plane this is equiavalent to that the series (2.5) is convergent 

everywhere in the exterior of the boundary line defined by equation

|—cr In cr| =  |1 +  a — u l na  ±  ¿7rcr| , (2.60)

where a =  1/lnz and sign minus or plus is taken respectively in the upper or 

lower half-plane.
' ' ; i " 1

' ' ' 6 
Proof Repeating the proof of Theorem 2.3.1 under assumption a G C we obtain

the same equations (2.16) and (2.45) for singular points and respectively,

where k € Z. However, many of the singular points do not correspond to the



principal branch of W  function and relate to the other branches. We are going to 

find acceptable values of k for which singular points relate to the principal branch 

of W . Formally these values of k are not obvious because the logarithms (and 

their branches) in the equations (2.6) and (2.16) are different,'more precisely, 

they are taken of different variables, z in the former and a =  1 / In z in the latter.

To find acceptable values of k we substitute into equation (2.7) a relation 

r  =  —cr In a following from (2.2) to obtain ; ’ ■ • . ,

: ' u =  W (es) — 1/cr — In cr , - : ■ (2.61)

where s =  s(cr, r ) is defined by (2.8). Let us consider values of u in the e-vicinity 

of the point uik\ Comparing between (2.61) and (2.16) gives :
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in(2k — 1) +  ee1̂  =  W {es) — 1/cr , ’

where — ir < ip <  7T. Setting ¿r =  \z\el6 {—ir <  9 < tt) in a =  1/Yn.z and 

separating the imaginary part in the last equation we obtain

7r(2fc — 1) +  esin<£ =  QW  — 0 . (2.62)

Since for the principal branch —tt <  Q T  <  7r, we find —1/2 — esin^/(27r) <  k < 

3/2 — esiny?/(27r), i.e. acceptable values are k =  0 and k =  1.

Now we note that both points ri°  ̂ and are singular, particularly, they 

correspond to a square-root branch point of function u =  ua(r) for the same

reason as in the real case (see proof of Theorem 2.3.1). Taking, into account this 

result we consider equation (2.62) for e =  0 in two cases k =  0 and k =  1. When

k — 0, we have QW  =  9 — tt. Since — tt < QW <  7r, only positive 9 satisfy this

equation, 

holds for

i.e. 0 <  9 <  7r. Similarly when k =  1 we have CiW =  

-7T <  9 < 0. Thus we conclude that the curve |—cr In a\

9 +  tt which

ri0)(cr) is
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.(i) is located inlocated in the upper 2-half-plane and the curve |—crlncr| =  

the lower 2-half-plane, these curves being symmetric with respect to the real axis. 

Hence, the equation (2.60) describes the boundary of domain of convergence of 

the series (2.5) in,the complex case. In addition, since a =  (In |̂| — id)/ |ln,z|2, 

6 and O'er are of opposite signs and the equations (2.59) follow. The theorem is 

completely proved. " ... \ ! □

Remark 2.3.8. We note that the case |a| <  1 reveals a connection between the 

series (2.5) and (2.4). In "particular, the case permits to expand 1/(1 +  a) in 

powers of a in the former, that after some rearrangments can be reduced to the 

latter (Jeffrey et al., 1995). In accordance with Theorem 2.2.10 the series (2.4) is 

convergent in a subdomain V  in the complex u-plane which is defined by (2.36) 

(written in terms of a) and contained in the unit: disc U =  {a € C | |er| < 1} 

(cf. Remark 2.2.12); more precisely the boundaries of V  and U have one common 

point cr =  l  (where both series are convergent). The series (2.5) is also convergent 

in V but has a wider domain of convergence being convergent in UT) H  where 

the domain H bounded by (2.60).

The curve defined by equation (2.60) in the complex 2-plane is depicted in 

Figure 2.2 by solid line in the upper half-plane only (corresponding to the negative 

sign) as it is symmetric with respect to the real axis. The exterior of this boundary 

line can be regarded as the domain of analytic continuation of the series (2.5) from 

the part of the real axis x > xq (see Corollary 2.3.2) to the complex 2-plane. For 

comparison; in the same figure it is shown (by dash line) the boundary line of the 

domain of convergence of the series (2.4) defined by equation (2.36). Since the 

domain of convergence of the series (2.5) is located in the exterior of the curve 

depicted by solid line, it is wider than one for the series (2.4). «

In the end of this subsection we give asymptotics for the expansion coefficients 

of the series (2.5) as m —> oo when Qcr ^  0. It follows from the proof of Theorem



Figure 2.2: The domain of convergence of the series (2.5) in the complex z-plane.

2.3.7 that in this case there is only one singularity r  =  ri°  ̂ when O'er <  0 and 

r  =  r i 1̂ when O’er >  0. Therefore, one can use formula (2.55) keeping only one 

corresponding term (unlike case of real a when there occur two singularities and 

both terms constitute the asymptotic formula (2.56)). Thus, taking (2.46) we 

find .

Cm(o-)
±.i

\/27ram?/2 (1 +  a — a In a ±  ina)m
as m —> oo,

where sign ” + ” (” —” ) is taken in case of positive (negative) Qa.

2.3.5 Representation in terms of Eulerian numbers

The expansion coefficients of the series (2.5) can be expressed in terms of the 

second-order Eulerian numbers (see Appendix B). To show that we combine 

equations (2.7) and (2.53), then the coefficients cm(a) in the right-hand side of
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(2.53) are

T = 0

W {es) (2,63)
s= — In cr+ l/c

as ds/dr =  —1/a by (2.8).

Because of (2.7) the formula (2.63) is valid for m >  2, for m =  1 we have

01 (cr) =  ~ + - f w  (e‘ ) 
(7 a r r = 0

Since(Corless et al., 1996, 1997)

dm
ds™

W (e s)
Q m ( W ( e s))

{1 +  W i e * ) ) 2m- U

(2.64)

where the polynomials qn(r) can be expressed in terms of the second=order Eule- 

rian numbers (Graham et al., 1989; Corless et al., 1997) '

m —1

fc=0
and

we finally obtain

= W t - e *

ci(ff) =  r~T— ’ °™(a) l +  o-
( - l ) y - 1 y v1 IIm - \\ { - l )k 

m !(l +  o-)2m-1 ¿ -i  \  k r/C-f 1 , m >  2. (2.65)
fc=0

Substituting (2.65) into the right-hand side of (2.53) results in a desireable for­

mula #

OO -TTl

U 1 -f- a **" m !(l -f a)2m~l \  k
771=2  '  ‘

-i E ( m ,. 1 » ( - i ) ” - v
k=0

m —k ^ m —k—l (2.66)



By introducing the variable C =  1/(1 +  cr) the series (2.66) can also be written as

00 771— 1 jj  ̂u
« = t c + x ; 1 tX ( \  r  ) ) ( - i r +‘ r +‘ +1( i - c r - ' 1- 2. (2.67)

m= 2  m' fc=o '' "

We note that the expansion (2.67) does not contain terms of the second order

inC- ' -■ ■ ' ■ . '

The séries (2.5),(2.54),(2.66), and (2.67) have the same properties including 

the domain of convergence and the asymtotic estimates for the expansion coef­

ficients studied in Section 2.3.3. This fact leads to some combinatorial conse­

quences considered in Section 2.5. ! .
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2.4 Series (2.11)

2.4.1 Different representations

The series development (2.11) was obtained in (Corless et al., 1997; Corless & 

Jeffrey, 2002) and represents an expansion of W (x) in powers of cr-1 =  In a:

OO
W(x) =  w0 +  ]P a „ ( ln :c )ra (2.68)

'  '  "  '  ‘ '  '  ! ‘ '  ' 71=1  '  ‘ ' ‘

or .... OO
W (é ) = u 0 +  ^ 2 a ntn,

71=1

where t =  In a; and (Corless & Jeffrey, 2002)

&n
' 1

n !(l +  £u0)2n-1

71—1

£
n — 1

k ( - l ) ^ o l+I

(2.69)

4

4 (2.70)
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The formula (2.70) expresses the expansion coefficients an in terms of the second- 

order Eulerian numbers. We now show that these coefficients can also be repre­

sented through the unsigned associated Stirling numbers of the first kind d(m, k) 

given by (Comtet, 1970)

^  . 771
[ln(l +  v) — v]k =  k\ ^  (—l)m+fc d(m, k)^-r

777/.m=2k
(2.71)

and the 2-associated Stirling numbers of the second kind used in the series (2.5) 

(see also Appendix B).

Both representations can be obtained on the basis of a relation (Jeffrey, Hare, 

& Corless, 1996)

W {et) +  \nW{et) =  t : ^  (2.72)

and the Lagrange Inversion Theorem (Caratheodory, 1958). To apply this the­

orem it is convenient to introduce a function that is zero at t =  0. We consider 

function • .

' v =  v(t) =  Wie^/ujQ -  1 (2.73)

and write (2.72) as

t =  ojqv +  ln (l +  v).

Then by the Lagrange Inversion Theorem we obtain

00

V - E ^ i h +
ln (l +  v)' ~n

n= 1 V
(2.74)

where the operator [up] represents the coefficient of vv in a series expansion in 

v. Comparing (2.73),(2.69) and (2.74) leads to a formula for the coefficients an, 

which after applying the binomial theorem becomes r *

k fn  — 1 +  k\ [ln(l +  v) — v]k=  mn-11 Y ' i - I Ÿ  ( n - 1 +  k\ M i
n n (l +  w0)n \ n — 1 /  vka—U

:{ l+uQ)k
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or bÿ (B.5)
_  w0 (—l )n+k 1 d(n +  k — l,k)

° n ~  TF 2 ^h=0 ( l + ^ o ) " «

If instead of function (2.73) to take

(2.75)

h =  h(t) =  W  (e*) —uio—t (2.76)

and apply the Lagrange Inversion Theorem to invert a relation

t =  Wo(e h — 1) — h

coming from (2.72), then we find in a similar way

1  fn  +  k — l\  ( — 1 )k+1u$
, Qn “  n! ^  \ k J>2 (1 +  UJo)n+k'

(2.77)

Finally, one more representation for the coefficients on can be found in the fol­

lowing way. Let us consider a function

rp=  iP(t) =  W {é ) - 1 (2.78)

which is a simplified version of functions (2.73) and (2.76): now one does not 

need to provide the zero function value at t =  0 and here ^(0) =  ojq. Then it 

follows from (2.72) that

t =  e ~ * -  ip. (2.79)

This equation can also be obtained from the fundamental relation (2.3) by trans­

formation u =  ip +  In t, a =  1/i, r  =  In t/t which follow from (2.2). ^

Differentiating (2.79) in i and excluding the term e~^ from the result again



using (2.79) result in an initial value problem for ordinary differential equation '

dip _  1
' : - ‘ : ; dt l +  t +  ip' ' : 1 -

Searching a solution in the form of series .

00
ip(t) =  uj0 + ^ 2 c ntn (2.80)

n=1

by substituting it into the differential equation and equating coefficients of the 

same power in t one can finally find

3 ,4 ,. . .  

(2.81a)

At length combining (2.80),(2.78) and (2.69) gives ...........  _

Oi =  1 +  Ci, an =  cn for n >  2. (2.81b)

In practice computing the expansion coefficients in (2.68) using recurrence (2.81a) 

is faster and takes less digits to obtain a required level of accuracy than using 

either of (2.70), (2.75) or (2.77) which, however, being different representations of 

the same expansion coefficients, lead to some combinatorial relations considered 

in Section 2.5. . . . . . . . .  . . . . . . .
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Ci =
1 n—1

1 +  OJq n{ 1 +  o)0)
(n -,l)cn_i +  ^fccA:Cn- fc ) ,n =  2,

k=i

2.4.2 Convergence properties

The expansion (2.11) in fact represents a series of the Wright ui function (Corless 

et ah, 1997; Corless & Jeffrey, 2002) u(z) =  W q ^ e 2), where K{z) =,["(£& — 7r)/(27r)] 

is the unwinding number of, 2. The Wright a? function was introduced by Corless 

and Jeffrey (Corless & Jeffrey, 2002) and studied in (Wright, 1959; Corless & Jef-
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frey, 2002). When z ^  £ ± in  for £ <  —1, ui =  ui(z) satisfies equation f{z,ui) =  0 

where f(z,uj) =  ui +  lnw — 2 (cf. (2.72)). Applying the same approach as in 

Section 2.3.1 to this equation one can obtain the same results as in (Wright, 

1959; Corless et ah, 1997; Corless & Jeffrey, 2002). Specifically, the nearest to 

the origin singularities are (Corless et ah, 1997) . : , ^  , .

Z\ =  —1 — in and 22 — — 1 +  in. (2.82)

Note that they are connected with the singularities (2.46) of function u =  ua(r), 

defined by (2.3) or (2.7), through function (2.8)

Z\ =  s(<r, t*(1)) and 22 =  s(o-,ri0)).

Thus the radius of convergence is \/l +  n2 (Corless et ah, 1997) aneTthe domain 

of convergence is given by

i '  V M > - = = L - ,  ■ (2.83)
s / l  +  7T2

The estimation of uj in the vicinity of the singularities (2.82) is (Wright, 1959; 

Corless & Jeffrey, 2002) ‘

w ~  _ 1  — sgn(9:2fc)\/22fc ^1 -  as 2 -> zk, (k =  1,2)

As in Section 2.3.3, using the Darboux’s theorem one can find the asymptotic 

expression for the expansion coefficients in (2.68)

/ -.s« • V 2 n  — 1 •(—l ) n sin I — - —  arctan7T
an ~  \l ------ :■ 3 /.—  an-i — -•  as n oo.

n2 (l +  7r2) 4 * (2-84)

Thus, as in case of the series (2.5) for positive a (see (2.56)), the expansion 

coefficients in the series (2.11) disclose decaying oscillations in their behavior for 

large n.
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In real case inequality (2.83) read as exp(—y/1 +  ?r2) <  x  <  exp(\/l +  7r2). 

Thus from the point of view of the domain of convergence the series (2.11) takes 

an intermediate place between the expansion of W(x)  at the origin (Corless et al., 

1996) W(x) =  i(—n)n~lxn/n\, which is valid for —e-1 < x < e“ 1, and the 

series-(2.5) which is valid for x > xq =  1.004458... (see Corollary 2.3.2); These 

three expansions put together cover the entire region of definition of W(x).

2.5 Combinatorial consequences

In this section we collect some combinatorial consequences resulting from the 

above obtained expressions for the expansion coefficients.

Equating the right-hand sides of (2.54) and (2.67) one can find

(l +  A)n- fc- Afc-i (2.85a)

where summation in the right-hand side starts with one as { ” }>2 =  0 (Graham 

et al., 1989). Settingn  =  A/(1 — A) in (2.85a) we also find , . .

(1 - (2.85b)

The identities (2.85) were obtained by L. M. Smiley (2000) in a different way, 

where notation { { } }  was used instead of { } >2, and referred to as the Carlitz- 

Riordan identities (Smiley, 2001). Applying the binomial theorem to (2.85) leads 

to a pair of identities expressing the 2-associated Stirling numbers of the ¿second 

kind through the second-order Eulerian numbers and inversely (Smiley, .2000)
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Some estimates can also be obtained by comparing the found asymptotic formulas 

(2.56) and (2.57) with the explicit expressions for the expansion coefficients in

(2.5). For example, taking estimate (2.57) and the expansion coefficients in (2.5) 

at a =  —2 we obtain

m—1

E 'p +  m — 1 ' (m — 1)!

p=i l P J >2 2\J7nn (2 In 2 — l ) m 2
as m —>• oo (2. 86)

where the term with p =  0 is skipped (cf. (2.85a). This result is consistent with 

the formula given in (Comtet, 1970, Ex.l0(7), p.224).

Another consequence is obtained by taking the expansion coefficients in (2.5) 

at a — 0 together with (2.58) . - ' r- ' ■ •

m —1
E(-1)p+m
p—o

- i  ) P  +  m

. V
— (m — 1)!

J >2
(2.87)

Further, comparing (2.70), (2.75) and (2.77) between one another we come to the 

following three identities

1 71 — 1 U -, \1 \—̂  n — 1
\n—1 53( i+ W o )" -1 ¿ J  \\ ( - 1  ) ^  =  E (~ 1)" +t~‘ rf(nt Æ~ 1’ "  (2-88a)

k=0 (1 +  CU0) fc

( l + ^ o ) r
'n  +  f c - l l  ( ~ l ) fccu0fc * 
. ^ />2 Lüo)k<L

(2.88b)
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( - l ) n+kd(n +  k - l , k )

" ° S  ~ h >2

( - l ) fc4
(1  +  W o)*'

(2.88c)

Finally, combining either of (2.70), (2.75) or (2.77) with (2.84) gives an asymp­

totic expression for the sum involved there.

Thus, in studying the expansion series for the Lambert W  function, we, on 

the way, derived the Carlitz-Riordan identities (2.85) as well as found a formula 

for an alternating sum of 2-associated Stirling numbers of the second kind (2.87) 

and confirmed the asymptotic formula (2.86) for summation of the same numbers 

without the alternating factor. We also found formulas (2.88) where the Omega 

constant Uq plays a role of a magic number which connects sums involving the 

second-order Eulerian numbers, the associated Stirling numbers of the first kind 

and the 2-associated Stirling numbers of the second kind.

2.6 Concluding remarks

We ascertained the domain of convergence of the series (2.4) and (2.5) in real 

and complex cases and found that the series (2.5) has a much wider domain of 

convergence than that of the series (2.4) in both cases and provided an analysis 

of this fact in real case. We found asymptotic expressions for the expansion 

coefficients and obtained a representation of the series (2.5) in terms of the second- 

order Eulerian numbers. ,i

We also considered the well-known expansion of W (x) in powers of In x and 

gave an asymptotic estimate for the expansion coefficients. We found three more 

forms for a representation of the expansion coefficients of the series in terms of
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the'associated Stirling numbers of the first kind (2.75), the 2-associated Stirling 

subset numbers (2.77) and iterative formulas (2.81). Finally we presented some 

combinatorial consequences, including the Carlitz-Riordan identities, which result 

from the found different forms of the expansion coefficients of the above series.

I

i
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Chapter 3

One-parameter asymptotic series of W

“It is the mark of an educated mind to rest satisfied with the degree 
of precision which the nature of the subject admits and not to seek 
exactness where only an approximation is possible. ” -  Aristotle,

3.1 Introduction

There are several series expansions for the principal branch Wo; one of them is a 

Taylor series expansion around z =  0 and the others are asymptotic expansions for 

large 2 although these expansions are also valid for non-principal branches around 

z — 0. One practical application of the series is to provide initial estimates for 

the numerical evaluation of W ; these estimates can then be refined using iterative 

schemes. The series also have intrinsic interest. For example, the definition above 

of the branches Wk is based on partitioning the plane using the asymptotic series. 

Another interest is the fact that the asymptotic series are also convergent, and 

the nature of the convergence is one particular interest of this chapter. '

The asymptotic series for W  is defined by equation (2.1) taken with a =  1 

. W(z)  =  In2 — In\nz +  u , ; (3.1)
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where u has the series development in the form of either (2.4)

oo n
«  =  £ £ ( - d ”

n—1 m = 1
—m n

n — m +  l

g.n-m ^.m
ml

or (2.5)
00 ;_m m~1 A: +  m — 1 

k
k+m—lfk+m

>2

in terms of Stirling cycle numbers and the 2-associated Stirling subset numbers 

respectively. The used herein variables are a =  I / I 112, r  =  In In z/ In 2 and

C = 1/(1 + <r). • : :

Two further expansions introduce the variables Lr =  ln(l — r ) and 77 

a / { l - r ) .  : . ;

u +  £ ( - » ) “  £ ( - 1 )
m

U

HIIe m= 1
00 .. m—1

^ £ ■
m=1 k=0

nV ' ' ' .
n — m +  l m! ’ .

k

(3.2)

(3.3)

All of these expansions are limited in their domain of applicability by the fact 

that a and r  are each singular at 2 =  1, restricting their utility to 2 >  1. In 

addition to the domain of validity of the variables, there is the question of the 

domain of convergence of the series. For example, we show below that for z 6 l ,  

series (2.4) is convergent only for 2 >  e.

In the chapter we consider transformations of the above series and concen­

trate on their properties for 2 G R. The transformations contain a parameter p 

which can be varied, while retaining the basic series structure. Therefore we refer 

to them as one-parameter family of invariant transformations. The parameter 

effects on the domain of convergence of the series as well as their rate of conver­

gence that is the accuracy for a given number of terms. Our goal is to improve 

such convergence properties of the series by varying p. Using theoretical and



experimental methods with the help of the computer-algebra system Maple we 

will show that the parameter can be used to expandthe domain of convergence 

of the series while the rate of convergence can increase or decrease with p.
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3.2 Computer algebra tools

We shall be using a number of tools from Maple in the work below. The coef­

ficients appearing in the expansions (2.4) and (2.5) can be computed from their

generating functions as follows. The 2-associated Stirling subset numbers areo
defined by the generating function .

(a‘ - l  - * r  = ml £ ■ £ { £ } -
n >  0

Given numerical values for n and m, we expand the left-hand side symbolically 

up to the term of nth order and then extract the appropriate numerical coeffi­

cient. The next lines show an implementation of this procedure with examples in 

Maple.

> StirlingSubset2:=proc(n:¡integer,  m:¡integer)

option remember;

local f , z ;  '

f := s e r i e s (  (exp(z)-l-z)~m , z , n+1) ; 

i f  n<2*m then 

0
’ i

else

c o e ff ( f ,z ,n )*n ! /m ! ; 

end i f ;  

end proc;
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> StirlingSubset2( 6 , 3 ) , StirlingSubset2( 9 , 4 ) , StirlingSubset2(12 ,5 ) ;

15 , 1260, 190575

It can be noted that a similar method to this is used in the standard Maple 

library for Stirling Cycle numbers, which are used in (2.4). In practice, it is more 

efficient to store all of the coefficients from any series expansion, but this level of 

detail is not shown here. Similar techniques can be used for the Eulerian numbers 

used below in (2.70). ,

Another important tool from Maple for this paper is computation to arbi­

trary precision. It is a standard topic in numerical analysis that summing series 

requires a close watch on the effects of working precision, otherwise one runs the 

risk of generating ‘numerical monsters’ which are completely artificial effects of 

the computation and do not reflect any actual mathematical properties (Essex, 

Davison, & Schulzky, 2000). In all of the calculations below, the Maple envi­

ronment variable D ig its  was set and monitored to ensure that the results were 

reliable. - ' '

3.3 An invariant transformation

We reconsider the derivation of (2.4), trying the ansatz .

W  =  In 2 — ln(p +  In z) +  u .

Substituting into the defining equation W ew =  we obtain

(3.4)

<&
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Prom this, it is clear that if we define

a —
p +  \nz

and r  =
p +  ln(p +  In z) 

p +  lnz
(3.5)

then we recover the equation (2.3) originally given by de Bruijn for u and leading 

to the series (2.4). Thus the fundamental relation (2.3) is invariant with respect 

to p, with only the definitions of a and r  being changed.

; This remarkable property is due to the fact that the solution (2.1) of the 

original transcendental equation yaey =  x possesses a similarity property with 

respect to parameter a >  0 in the following sense (Jeffrey, Corless, Hare, & 

Knuth, 1995)

<S>a(x) =  a $ !  ( —  1 =  aW
x l / c

a a
(3.6)

Indeed, it follows from (2.1) and (3.6) that

j j r  ( rr1/a\ l - r
w \ — ) = — + u ’

(3.7)

where a and r  are defined by (2.2). The right-hand side of (3.7) does not include 

a explicitly. On the other hand, a is included in the left-hand side through a com­

bination z =  x llot/a. Therefore, the fundamental relation (2.3) will retain if we 

change variable x =  (az)a. Substituting this formula into (2.2) and introducing 

parameter p =  In a  we obtain exactly equations (3.5).

Thus introducing the invariant parameter p generates an infinite one-parameter 

family of series formed by replacement of variables r  and a in the original series

with expressions (3.5). Similar series for W  are associated with the invariance
■ i

observed in (Jeffrey et al., 1995) and studied in (Corless, Jeffrey, & Knuth, 1997).

We now consider the properties of the transformations for z e R ,  We shall 

start with p E M and later consider briefly one complex value of p. Both a and
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r  are singular at zs =  e~p, with the special case p — 0 recovering the previous 

observations regarding the singularities at z =  1. We note that a is monotonically 

decreasing on z > zs. For r, we have r(z0) =  0 at zq =  exp(zs—p), with r  positive 

for larger z and negative for smaller. Also we note that r  has a maximum at 

z =  exp(e2s — p). In Figure 3.1-3.2, we plot a and r, defined by (3.5), for 

different values of p. We see that for all z > zs, a decreases with increasing p, but 

r  increases. In view of the form of the double sums above it is not obvious whether 

convergence is increased or decreased as a result of these opposed changes. This 

is what we wish to investigate here.

3.4 Domain of convergence.... ...................

We wish to investigate first the domains of 'z G R for which the series (2.4) and

(2.5) converge, and how the domains vary with p. We begin with theoretical 

results. For p =  0 the domains of convergence are known from theorems 2.2.3 

and 2.3.1. Specifically, the series (2.4) converges for z > e and the series (2.5) 

converges for z > z0 =  1.004458... (see Corollary 5.1), under otherwise conditions 

the series are divergent. For arbitrary real p the following statement can be 

proved for the series (2.4).

T h eorem  3.4.1. The domain of convergence of the transformed series (2.4) is 

defined by equations : ;

i (—eP l {p +  In z)) >  p — 1 and z > e p , (3.8)

which is equivalent to
i

e1_2p, p <  0
z >  Zp =  < ,, - ■■■; ■•,  (3.9)

g-p+f70CSC7J0) p > Q



Figure 3.1: Dependence a on z for different values of parameter p.

Figure 3.2: Dependence r  on z for different values of parameter p.
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where rjo € (0 ,n) is the root of equation rjo cot % =  1 — p.

Proof. The proof of the theorem is similar to that of Theorem 2.2.3 and based 

on an application of Theorem 2.2.1 to the transformed series (2.4). In particular, 

substituting the expressions (3.5) in (2.13) we obtain in the real case, i.e. under 

assumption p + \nz >  0, the inequality (3.8). Applying Lemma 2.2.2 to the 

latter we get (3.9), where zp > e~p, which justifies the above assumption and the 

theorem follows. □

Remark 7.1 In the formula (3.9) when p >  0 but p ^  1 we can also write
—. g —P+(1“ P) secrjo

Remark 7.2 The convergence condition (3.8) ,can be extended.teethe case of 

complex z similar to the extension of the condition (2.27) for the untransformed 

series (2.4) by Theorem 2.2.10. ,

. To find out the domain of convergence of the transformed series (2.5) we can 

substitute (3.5) in (2.41) and solve the obtained equation for 2 as a function 

of p . , Since this solution can not be presented in an explicit form, we found it 

numerically. In addition, we found that this solution can be approximated with 

a very good precision by an expression which is the argument of W  function in 

(3.7) taken at z0 : ' ■ : ' ■ '

zP =  e~p (z0)e~P . (3.10)

Both results are depicted in Figure 3.3 (by solid line and circles) together with 

curve (3.9) (dash line). . ; . • . _
■ ' i

It follows from Figure 3.3 as well as from (3.9) and (3.10) that with-increase 

of parameter p the domain of convergence of the transformed series monotonely 

extends. To illustrate and qualitatively verify this result we design an appropriate 

numerical procedure. The method is simply to compute the partial sum of a series



Figure 3.3: Behavior of boundary of convergence domain as a function of p for 
series (2.4) (dasli line) and (2.5) (solid line) in real case. : : ^

to a high number of terms, using extended floating-point precision as necessary, 

and then to plot the ratio of the partial sum to the exact value (the exact value 

is obtained using a built-in Maple function LambertW(k,x), where a method 

different from series summation is used). The edge of the domain of convergence 

is then signaled by rapid oscillations and by marked deviations from the desired 

ratio of 1. (To make a graph be readable we depict only the relevant part of each 

curve.) . .

For the series (2.4) we have plotted in Figure 3.4 the partial sum to 40 terms

for different values of p. For p =  0, we see a nice illustration of Theorem 2.2.3,■ . ■ . .. . &
with the partial sum becoming unstable in the vicinity of z =  e. For positive p, 

we see the domain of convergence increased and for negative p it is decreased, in 

accordance with Theorem 3.4.1. Similar effects can be seen for (2.5), we plot in 

Figure 3.5 the partial sums for 40 terms as p varies.' The domain of convergence



for'each p is clearly seen, and confirms that the point of divergence moves to 

larger z for decreasing p and to the left for increasing p. For p =  0 this point is 

very close to 1, which sharp demonstrates the result in Theorem 2.3.1.

A similar investigation of series (3.2) shows an interesting non-monotonic 

change in the domain of convergence. In Figure 3.6 the partial sums are plotted 

and the boundary of the domain of convergence moves to the right for p 0.

Thus series (2.5) has the widest domain of convergence and the best behaviour 

with p, while the domains of convergence for series (2.4) and (3.2) become worse 

in that order. ...........

The fact that the domain of convergence of the transformed series is extending 

while the parameter p is increasing can also be found in the complex case based 

on the results of theorems 2.3.7 and 3.4.1. To make certain of this it is sufficient 

for the series (2.5), to substitute expressions (3.5) (with z € C) into equation 

(2.41) and for the series (2.4), to consult Remark 7.2. The results are presented 

for p =  —1 ,—1 /2 ,0 ,1 /2  and 1 in Figure 3.7 and Figure 3.8 for the series (2.4) 

and (2.5) respectively where the curves for p =  0 are the same as in Figure 2.2 

and the points of intersection of the curves with the positive real axis correspond 

to the points on the curves depicted in Figure 3.3. ........
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3.5 Rate of convergence

By rate of convergence, we are referring to the accuracy obtained by partial sums
■ %

of a series. Given two series, each summed to N  terms, the series giving on
4

average a closer approximation to the converged value is said to converge more 

quickly. The qualification ‘on average’ is needed because it will be seen in the 

plots below that the error regarded as a function of 2 can show fine structure
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Figure 3.4: For series (2.4), the ratio W ('40\z,p)/W(z) as functions of 2 for
- i / 2 , 0, 1. . ... ;  .

Figure 3.5: For series (2.5), the ratio W^°\z,p)/W(z) as functions of 2 for 
p =  —1,0,1. Compared with Figure 3.4, this shows convergence down to smaller
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Figure 3.6: For series (3.2), the ratio W^\z,p)/W(z)  against 2. Compared with 
figures 3.4 and 3.5, the changes in convergence are no longer monotonic in p.

which confuses the search for a general trend. Further, the comparison of rate 

of convergence between different series can vary with 2 and p. For some ranges 

o f z, one series will be best, while for other ranges of z a different series will be 

best. Although one series may converge on a wider domain than another, there 

is no guarantee that the same series will converge more quickly on the part of 

the domain they have in common. The practical application of these series is to 

obtain rapid estimates for W  using a small number of terms, and for this the 

quickest convergence is best, but this will be dependent on the domain of z.

The previous section showed that positive values of the parameter p extend
. ■ i

the domain of convergence of the series, but its effect on rate of convergence is. ■ ' «
different. Figures 3.9, 3.10 and 3.11 show the dependence on z of the accuracy 

of computations of the series (2.4),(2.5) and (3.3) respectively with N =  10 for 

p =  —1, —1/2 ,0  and 1. One can see that the behaviour of the accuracy is non-



Figure 3.7: Domains of convergence of series (2.4) in complex 2-plane for p 
—1, —1 /2 ,0 ,1 /2  and 1. "

Figure 3.8: Domains of convergence of series (2.5) in complex 2-plane for p 
—1, —1 /2 ,0 ,1 /2  and 1. ■ . . ■ ■



monotone with respect to both z and p although some particular conclusions can 

be made. For example, one can observe that for the series (2.4) at least for z <  30 

within the common domain of convergence the accuracy for p =  —1/2 ,0  and 1 

is higher than for p =  —1. .The series (2.5) and (3.3) have the same domain of 

convergence and a very similar behaviour of the accuracy. Specifically, for these 

series an increase of positive values of p reduces a rate of convergence within the 

common domain of convergence i.e. for 2 >  1.5. However, at the same time for 

z >  11 computations with p =  - 1  are more accurate than those with positive p 

and for 5 <  2 <  18 the highest accuracy occurs when p =  —1/2.

The next two figures 3.12 and 3.13 display the dependence of convergence 

properties of the series (2.4) and (2.5) respectively on parameter p for different 

numbers of terms N  =  10,20 and 40. Again, the curves in these figures confirm 

that the accuracy strongly depends on parameter p and is non-monotone and show 

that on the whole an increase of the number of terms improves the accuracy. It is 

also interesting that there exists a value of p for which the accuracy at the given 

point is maximum; this value depends very slightly on N  and approximately is 

p «  —0.75 in Figure 3.12 and p «  —0.5 in Figure 3.13.

The explained behaviour of the accuracy depending on parameter p shows 

that introducing parameter p in the series can result in significant changes in 

accuracy. The pointed out non-monotone effects of parameter p on a rate of 

convergence can be due to the aforementioned non-monotone behaviour of r.

3.6 Branch —1 and complex p
§

i
The above discussion has considered only real values for the parameter p. We 

briefly shift our consideration to complex p and to branch — 1. For z in the domain 

—1/e <  2 <  0, we have that W-i(z)  takes real values in the range [—1 , - 00).
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Figure 3.9: For series (2.4) with N — 10, changes in accuracy'in- z for p 
- 1 , - 1 / 2 , 0  and 1. ‘ .

Figure 3.10: For series (2.5) with N  =  10, changes in accuracy in 2 for p 
- 1 , - 1 / 2 , 0  and 1.
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Figure 3.11: For series (3.3) with N =  10, changes in accuracyln 2 for p =  
- 1 ,  - 1 /2 ,0  and 1. *

Figure 3.12: For series (2.4), the accuracy as a function of p at fixed point 2 =  18 
for N =  10,20 and 40.
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Figure 3.13: For series (2.5), the accuracy as a function of p at fixed point 2 =  9 
for N  =  10,20 and 40. . --—.

The general asymptotic expansion (2.6) takes the form

W-i(z)  =  ln(^) — 2m — ln(ln(2) — 27tz) +  u . (3-11)

This will clearly be very inefficient for z € [—1/e, 0) because each term in the 

series will be complex, and yet the series must sum to a real number. If, however, 

we utilize the parameter p, we can improve convergence enormously.

We again adopt the ansatz used above to write

Wk(z) =  [lnfc z +  p] -  \p +  ln(p +  \nk z)\ +  P +  lnfc z)- +  v , (3.12)
p +  mkz

where v stands for the remaining series which will not be pursued here. By.setting 

p =  in, we can rewrite [ln_i 2 +  in) as ln(—z). A numerical comparison of partial



sums can be used to show the improvement. We compare

H '-V  =  t a ( z )  -  2m -  l n ( l n ( z )  -  2m) +  ^  . (3-13)

=  ln ( -z )  -  ln(— In (-z ) )  +  ■1° (~  . ■ (3.14)

The results are shown in table 3.1. We note that the transformed series is exactly 

correct at 2 =  — 1/e and asymptotically correct as 2 —> 0, and therefore the error 

is a maximum somewhere in the domain. In contrast the untransformed series 

has an error that increases as z —1/e.

80

' z W -l(z ) w - i  W W [2}{z)
- 0.01 -6.4728 -6.4640 -6.3210 -  0.04815z
- 0.1 -3.5772 -3.4988 -3.4124 -  0.3223i
- 0.2 -2.5426 -2.3810 -2.5182 -0.51531
- 0.3 -1.7813 -1.5438 -2.0087 -  0.6621i
- 1 / e . '.."“ I - 1 -1.7597 -0.7450*

Table 3.1: Numerical comparison of series transformation with p == in.

The accuracy is also shown graphically in figure 3.14. Notice that although 

the approximation W _i given in (3.14) is exactly equal to W-\ at z =  —e~l, the 

local behaviour is different. We know that W -i has a square-root singularity,A «
while W- 1 is regular there. This is why the maximum error occurs at z =  —e .

3.7 Concluding remarks

We considered an invariant transformation defined by the parameter p and applied
. ■ i

it to the series for the Lambert W  function to obtain an infinite one-parameter
i

family of series. We studied an effect of parameter p on convergence properties 

of the transformed series of this class. It is shown that an increase of p results 

in an extension of the domain of convergence of the series and thus the series
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Figure 3.14: Errors in approximations (3.13) and (3.14) for W-.

obtained under the transformation with positive values'of p have a wider domain 

of convergence than the original series does. However, at the same time a rate of 

convergence can be found to be reduced when the parameter p increases. There­

fore in such a case within the common domain of convergence of the series with 

different positive values of p the series with the minimum value of p would be the 

most effective.

Z
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Chapter 4

Unimodal sequences show that Lambert W  is 

Bernstein ' ' " :; : ! " ■ ;;

“Wherever there is number, there is beautyi” -  Diadochus Proekis

4.1 Introduction

In this chapter we study the properties of the polynomials (their coefficients) 

arising in the expressions for the higher derivatives of the principal branch of the 

Lambert W  function. We consider such properties as positiveness, unimodality 

and log-concavity. The most important consequence coming from the properties 

of the polynomial coefficients is that the derivative dW{x)/dx is a completely 

monotonic function (Sokal, 2008). By (Berg, 2008, Definition 5.1), an infinitely 

differentiable function is called Bernstein function if its derivative is completely 

monotonic. Thus W  is a Bernstein function (see also Section5.5). Below we
. . ' i

consider three forms of the higher derivatives of W.
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4.2 First form

The nth derivative of the principal branch W  is given implicitly by

<r w ( x )  =  ^ ( - n W i ^ ) p ( W ( X)) , f o r n > l i  ( 4 1 )
dxn (1 +  W  (x ))2,1-1

where the polynomials pn(w) satisfy Pi(w) =  1, and the recurrence relation

pn+i(w) = -(n w  +  3 n - l ) p n(w) +  (l +  w)p'n(w) for n >  1 . (4.2)

In (Corless, Jeffrey, & Knuth, 1997), the first five polynomials were printed ex­

plicitly:

Pi(w) =  1 , p2(u>) = - 2 - w  , p-j(w) =  9 +  8w +  2w2 ~

Pa(w) =  —64 — 79w — 36w2 — 6w3 ,

Pô(w) =  625 +  974w -f- 622w2 -f 192w3 +  24w4 .

The coefficients were also listed in (Sloane, 2008, A042977). These initial cases 

suggest the conjecture that each polynomial (—1 )n_1pn(w) has all positive co­

efficients, and if this is true, then dW(x)/dx is a completely monotonie func­

tion (Sokal, 2008). We prove the conjecture and prove in addition that the coef­

ficients are unimodal and log-concave.

4.2.1 Formulae for the coefficients

In view of the conjecture, we write

n —1

Pn(w) =  (~ l)n kW (4.3)
k=0
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We now give several theorems regarding the coefficients. ‘ : ■ T —

Theorem 4.2.1. The coefficients ¡3njk defined in (4.3) obey the recurrence rela­

tions

A,o =  n "-1 , A u =  3»" -  (n +  1)” -  n »-1 ,,  . (4.4) 

A,,n-i =  ( « - ! ) ! ,  A ,in-2 =  ( 2 n - 2 ) ( n - ; l ) ! , }  . .  (4.5)

A.+1 ,k =  (3 n - k -  1 )0 n,k +  nPUtk - i -  (k l)A,/c+i , 2 <  3 . (4.6)

Proof. By substituting (4.3) into (4.2) and equating coefficients. □

Theorem 4.2.2. An explicit expression for the coefficients # is

m= 0 x '  q- 0 x ^ 7
(4.7)

Proof. We rewrite (4.1) in the form

P„(w (x )) =  ( i  + dxr

From the Taylor series of W(x) around x  =  0, given in (Corless, Gonnet, Hare, 

Jeffrey, k  Knuth, 1996), we obtain

dnW{x)  ^  (-m )
dxn = E

m—1

±L (m -n )\
Xm —n

m=n

Substituting this into the expression of pn, using x =  Wew and changing the 

index of summation, we obtain the equation ;

Pn(w) =  (1 +  U))2n~1 ¿ ( - l ) " 4-5- 1^  +  s )w +s-1!iL e (ri+s)w . * (4.8)
5 •

s = 0

We expand the right side around w =  0 and equate coefficients of w. □

i
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Remark 4.2.3. The polynomials pn(w) can be expressed in terms of the diagonal 

Poisson transform D n[fs\z] defined in (Poblete, Viola, & Munro, 1997), namely, 

by (4.8) -  : v V  7 .

pn{w) =  ( - l ) n_1( l  +  u;)2(n-1)D „[(n  +  s)n_1; -w ] . ! (4.9)

T h eorem  4.2.4. The coefficients can equivalently be expressed either in terms of 

shifted r-Stirling numbers of the second kind { ” ^ . }  ■ defined in (Broder, 1984),

m = 0  '

2n — 1\ ( 2n — 1 +  m 
n +  m

(4.10)

or in terms of Bernoulli polynomials of higher order Bn\X) defined in (Norlund,

1924),

**  = V t - i r M  ( m ^ r
771=0

or in terms of the forward difference operator A  (Graham, Knuth, & Patashnik, 

1989, p. 188), : : ; : f ,

f c - s r ;
2 n - l \  ( -1 ) m

m =0 k — m l ml

Proof. We convert (4.7) using identities found in (Broder, 1984) and (Lopez & 

Temme, 2010) respectively.

and

□
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4.2.2 Expressions for the coefficients in terms of Stirling polynomials

We express the coefficients in terms of Stirling polynomials an(x) and gener­

alized Stirling polynomials a^(x) introduced in (Graham et ah, 1989, §6.2) and 

(Schmidt, 2010, Sect. 5.2.1) respectively. For this purpose we apply by a straight­

forward way the definitions of the mentioned polynomials through the generating 

functions which are '

e* -  1 - En>0

d (z)SDn
n\

M zn (4.12)

(4.13)

(4.14)

Specifically, to use polynomials (Tn(x) we note that the left-hand side of equa­

tion (4.12) is a product of the left-hand side of (4.13) and exponential function

(v-x)z  _  i y  ~  X Y£
n>0 n!

(4.15)

Then, taking the right-hand sides of these equations we obtain

n> 0 n>0 n>0
(4.16)

which gives relation

B ^ {u ) =  xn\ ¿  <rn- q(x) ^
9=0

. (4-17)
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With using this relation the formula (4.11) can be written in the form

a -,* =  E  ^  E ( - i ) m+1 (* "_ “ „ ! )  + • <4-18)
q = 0  *  m - Q  '  '  v '

(4.19)

The left-hand sides of equations (4.14) and (4.19) are the same when a =  l/{v — 

x  +  1). Taking this a and equating the right-hand sides of these equations we 

find relation '

: ■ B^\u) =  n \ (v -x  +  l)nalJ ^ -x+l\x) . ' (4.20)

With using this relation the formula (4.11) can be written in the form 

^  = E t - 1) " (fSm) ̂  +m!~ 1 > ! ■ (4-21)

To use polynomials cr%(x) we note that by (4.12)

az
eaz _  i -En>0

B ^ (p)
n\

anzn

4.2 .3 P rop erties  o f  the coefficients

We now give theorems regarding the properties of the We recall the following 

definitions (Stanley, 1989). A sequence Cq, Ci . . .  Cn of real numbers is said to be 

unimodal if for some 0 <  j  < n we have c0 <  ci <  . . .  <  cj >  Cj+i >  . . .  >  cn, and 

it is said to be logarithmically concave (or log-concave for short) if Cfc_iCfc+i <  c2k 

for all 1 <  k < n — 1. We prove that for each fixed n, the /3n,fc are unimodal and 

log-concave with respect to k. Since a log-concave sequence of positive terms is 

unimodal (Wilf, 2005), it is convenient to start with the log-concavity property.

T h eorem  4.2.5. For fixed n >  3 the sequence {k\fin,k}k=o *s log-concave.
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Proof. Using (4.7) we can write

(

k\@n,k =  (2n
k
m %myk—m >

where ; : . ;

^ : x™ = Y l ( nf ) ai '  ai = + i)m+n_1 , (4.22)
j =o '

and ym =  l /(2 n  — 1 — m)\ . Since the binomial convolution preserves the log- 

concavity property (Walkup, 1976; Wang & Yeh, 2007), it is sufficient to show 

that the sequences {a;m}  and {ym} are log-concave. We have ; , ; • ,

aj^aj+i =  ( - 1  y -^ n  +  j  -  l )m+n~1( - i y +1(n + j  +  l ) " * " - 1 

=  ( - l ) 2i ((n +  j ) 2 -  l ) m+n_1 <  (—l ) 2j (n +  j ) 2(m+n_1) =  aj .

Thus the sequence {d j}  is log-concave and so is {x m}  due to (4.22) and the 

afore-mentioned property of the binomial convolution. The sequence {ym} is 

log-concave because

1 1 , ; 
ym-iUm+i -  ( 2 n _ 1 - m  +  1) ! ( 2n _ 1 - m _ 1)!

2n — 1 — m 1 1 2
2n — 1 — m +  1 (2u — 1 — m)l (2n — 1 — rn)l < ’ ,

Now we prove that the coefficients /3n)fc are positive. The following two lemmas 

are useful. ■

L em m a 4.2.6. If a positive sequence {k\ck}k>0 is log-concave, then *

(i) {(k  +  l)cfc+i/cfc} is non-increasing;

(ii) {cfc} is log-concave;
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(iii) the terms Ck satisfy . : i : ;

coCk+m (0 <  m < k 4- 1) . (4.23)

Proof. The statements (i) and (ii) are obvious. To prove (iii) we apply a method 

used in (Asai, Kubo, & Kuo, 2000). Specifically, by (i) we have for 0 <  p < k

1 ^  k -t- p 4* 1 Ck+p-i-i
, : . cp -  p + 1  ck ' :

Apply the last inequality for p =  0,1,2, ...,m  with m <  k +  1, and form the

products of all left-hand and right-hand sides. As a result, after the cancellation

we obtain : ' ’ ■ .'
Cjyi ^  k T  1 k -f- 2 k ~f- Til Ck-
cQ ~ 1 2 m 1 Ck ’ "

which is equivalent to (4.23). □

L em m a 4.2.7. If the coefficients are positive, then for fixed n >  3 they 

satisfy
(k +  lffinM i < y l _ 1 , (4.24)

Pn,k

Proof. By Theorem 4.2.5 and under the assumption of lemma, for fixed n > 3 

the sequence meet the conditions of Lemma 4.2.6. Applying the

inequality (4.23) with m =  1 to this sequence gives (k +  l)/3nik+i/ffi,k <  Pn,i/Pn,o- 

Then the lemma follows as due to (4.4)

n — 1 .

□

T h eorem  4.2.8. The coefficients ¡5Utk are positive.

fin,i _  3nn — (n +  l ) n -  ri
fin, 0 n

n— 1
n—1 =  3n 1 < 3n — 2n — 1 =
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Proof. We prove the statement by induction on n. It is true for n <  5 (see 

§1). Assume that for some fixed n all the members of the sequence {Pn,k}kZo are 

positive. Since /3n+i,o =  (n +  l ) n >  0 and ¡3n+i,n =  n\ >  0 by (4.4) and (4.5), we 

only need to consider k =  1 ,2,..., n — 1.

Substituting inequalities /3n,k+i < ( n -  1 )/?«,*:/(& + 1 ) and Pn,k-\ > k/3n,k/(n- 
1), which follow from (4.24), in the recurrence (4.6) immediately gives the result

k \
2 n + ------ - pn ,k >  0 .n — 1 /

Thus the proof by induction is complete. □

C orollary  4.2 .9. The sequence {Pn,k}kZo *’s log-concave and unimodal forn >  3.

Proof: By Theorem 4.2.8 the sequence {¡3n,k} kZo positive, therefore by Theorem

4.2.5 and Lemma 4.2.6(H) it is log-concave and unimodal. ; □

k Th *”  1
Pn+l,k ^  (Sh k l ) ^ n , f c T “ Pn,k (^ T l) ^  ^ Pn,k

4.2 .4  R ela tion  to  C arlitz ’ s num bers

There is a relation between the coefficients /3ntk and numbers B(n,j, A) introduced 

by Carlitz (1980). Comparing the formula (4.10) with (Carlitz; 1980, eq.(6.3)) 

and taking into account that he uses the notation R(n,m,r) =  { ^ r} r, we find

, Pn,k =  ( - 1  )kB(n -  l ,n — 1 -  k, n) . (4.25)

It follows that for n >  3, the sequence {B(n — 1, k, n ) } ) l j  is log-concave together 

with {/3n,k}nkZ l   ̂ ......

; Using the property (Carlitz,1980, eq.(2.7)) that o B ( K , j , X )  =  (2k — 1)!!, 

we can compute pn(w) at the singular point where W  =  — 1 (cf. (4.1)). Thus, 

substituting w =  —1 in (4.3) gives pn(~  1) =  (—l ) n-1(2n — 3)!!. Thus w =  — 1 is
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not a zero of pn{w). 1 .  ̂ .

We also note that the numbers B(kJ,  A) are polynomials of A and satisfy a 

three-term recurrence (Carlitz, 1980, eq. (2.4)) .

B(kJ,X) =  +  j  -  X)B(k -  1, j, X) +  (k - J  +  X)B[k -  1, j  -  1, A) (4.26)

with B ( k , 0, A) =  (1 —  A)s, B(0,j,X) =  5jy0. This gives one more way to com­

pute the coefficients (3nyk, specifically, for given n and k we find a polynomial 

B(n — 1, n — 1 — k, A) using (4.26) and then set A =  n to use (4.25).

4.2.5 Consequences

It has been established that the coefficients of the polynomials^ (—l ) n-1p„(u;) 

are positive, unimodal and log-concave. These properties imply an important 

property of W. In particular, it follows from formula (4.1) and Theorem 4.2.8 

that (—l)n~x{dW/dx)^-1} >  0 for n >  1. Since W{x)  is positive for all positive re 

(Corless et al., 1996), this means that the derivative W' is completely monotonic 

and W  itself is a Bernstein function (Berg, 2008).

Some additional identities can be obtained from the results above. For exam­

ple, computing f3ntn-1 by (4.10) and comparing with (4.5) gives

E ( - D
; 2n — 1 
n — m — 1

2n 1 +  m
n +  m n

( n -  1)! .

A relation between { 2n̂ f1̂ m} n and B^~_  ̂(n) can be obtained from (4.10) and 

(4.11), but this is a special case of (Carlitz, 1980, eq. (7.5)). It is also interesting to 

note that (4.10) and (4.11) can be inverted. Indeed, in these formulae for fixed n, 

the sequence (—1 ) fc/?„,fc is a convolution of two sequences, therefore its generating 

function G(w) is a product of the generating functions of these two sequences
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and we can write G(w) =  (1 — w)2n~1F(w ), where F(w) represents a generating 

function of the sequence { 2n~ ^ m} n in case of formula (4.10) or of the sequence

case ,°f (4.11). Now, since F(w) =  G(w)( 1 — —

G(w) J2k>o (22n -2fc) wfc> the inverse of, for example, (4.10) is

(4.27)

With connection (4.25) this equation is a special case of (Carlitz, 1980, eq.(2.9))

4.3 Second form

Compared to (4.1), there are two more forms to represent the derivatives of W. 

One of them is linked to the results obtained in (Dumont & Ramamdnjisoa, 1996), 

they show that

dnW(x) _ (—1)" xexp(—nW(x))  /  1 \
dxn =  ~  (1 +  W(x))n ' Q n \l +  W(x)J  ’

where
n — 1

Q n { y ) =  ^ 2 b ntky k

k—Q

Coefficients bnik satisfy the recurrence relation

(4.29)

bn,k — (n l)^n—i,k 4" (n 4" k 2)6n_ iifc_i, b\tq — 1 . (4.30)

They are related to the Ramanujan sequence (Berndt, 1985) ^ ( r ,  s) and the
. .. . . . .  , ■ ' 1 ■ i ' ■

sequence Q n , k { x ) ,  introduced by Shor (1995) =  i>k+i(n — l,n )  =  Qn,fc(0).

These sequences arise in the study of Cayley’s formula of the number of trees, 

their combinatorial interpretations are given in (Shor, 1995; Zeng, 1999; Chen & 

Guo, 2001). The values for coefficients bnik are listed in (Sloane, 2008, A054589).
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Comparing the aforementioned representations for the higher derivatives gives

n—1 n—1
Pn,kWk =  '%2bn>n- . i - k ( l  +  w )k . ;

k=0 fc=0

It follows that the relations between coefficients bnk and ¡3nk are

(4.31)

n —1
Pn,k ~  ^   ̂ ^  ) bn,n— 1 —m

m = k

(4.32)

and
n — 1

bn,n—l —k ~  ' y   ̂ (  1 ) m —k

m = k

m
Ik fin,m (4.33)

4.3.1 Positivencss

In (Zeng, 1999) there is a combinatorial proof that Q n , k ( x )  is a polynomial of 

(x +  1) with non-negative integer coefficients. So 6niU_ i _ m =  Qn,n-i-m(0) >  0.

Also, positiveness immediately follows from the recurrence (4.30) by induction 

on n. ..........  -

4.3.2 Log-concavity

Coefficients bn<k are log-concave because being defined by the recurrence (4.30) 

they relate to triangular arrays which are necessarily log-concave (Kurtz, 1972).

Note that coefficients f3n̂  have a property which is stronger than log-concavity. 

The sequence {k\/3nik} is also log-concave. However, the coefficients bn̂  do not 

have this property. For example, a difference kb^k — (k +  l)bn̂ -ibntk+i computed 

with values taken from table (Sloane, 2008, A054589) for n =  6 and k =  1 is 

—6240, i.e. negative, therefore sequence {k\bntk} is not log-concave.
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4.3.3 Unimodality

Since a positive and log-concave sequence is unimodal, properties 1 and 2 imply 

unimodality of bUtk.

Remark 4.3.1. It follows from (4.32) that the sequence PUik is positive because 

so is the sequence bn In addition, since the sequence bn>k is log-concave, so is 

Pnjt due to (4.31) and Brenti’s criterion (Brenti, 1994). This way to ascertain the 

properties of the coefficients /3n<k through the ones of the coefficients bn̂  was first 

pointed out by Chapoton (2010) and was found independently by Pakes (2011). 

The author became familiar with the form (4.28) from (Chapoton, 2010).

Remark 4.3.2. Since the coefficients are related to numbers B(n,j,  A) (cf. 

(4.25)), the relation (4.33) will connect the bn>k as well to the same numbers.

4.4 Third form

One more form to represent the higher derivatives of W  immediately follows from 

that mentioned in (Knuth, 2005, Ex. 50, p. 84, 136-137) in terms of the tree 

function T(x ) =  —W ( —x ) '

dnW(x)  . exp(-w W ,(a)) (  W{x) \ 
dxn (1 + W (a ;))"  n \l  +  W{x)J  ’ K 1

where polynomials n—l
p n (x )  =  ( - l ) n 1 ^ 2 { - ^ ) ka n,kXk ,

fe=0

with the coefficients an̂  satisfying the recurrences

(4.35)

Pn+i(i) = n(x -  2)P„(x) + (x -  i f p ’jx),  Pi(x) = 1
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and

On,o =  nn \ an)n_ 1 =  (2n -  3)!! ,

&n+l,fc =  2(?7. -f- +  (ïl -f- Aî l)^n,A:—1 "t~ (& 4” l)&n,fc-fl •
(4.36)

The numbers anik and row sums

n —1
Sn =  ^   ̂ Qn,fc 

fc=0

are given in (Sloane, 2008, A048160, A005264). The exponential generating func­

tion of the sequence Sn satisfies

(1 +  x ) exp (A (a;) ) =  1 +  2 A{x) .

This equation can be solved in terms of W  function as *

~ 5  -  ^  )  •

Then, using the well-known expansion of W  near the origin (Corless et al., 1996) 

and taking small x  (more precisely, satisfying inequality \x +  1| < 2 /v/e) one can 

find eventually ; ; ,
........................ n -1 oo  m- 1

^ 2 d n ,k  =  ^ 2  (m  _  - M  nm-rr,/0 > ( 4 < 3 7 )
k=0 (m — n)\ 2mem/2 ’

m = n

where the infinite sum on the right-hand side is thus integer. .........

Comparing representations (4.1) and (4.34) gives the relation between coeffi­

cients (3n>k and an,fc

; m=0 n —l — k
(4.38)



' ' " ' / u  -  • <4-39)
m=0 '  '

It follows from (4.36) by induction on n that all aUtk are positive. In addition, 

based on the relation (4.38) one can show that for fixed n >  3 the sequence 

(°n,fc}fc=o *s log-concave. Indeed, the relation can be written in the form

k .
Q"n,k =  ^   ̂ Emyk—m >

m=0 > - /

where xm =  (—l)mf3n,m and ym =  (p+pm) , p =  n — l — k. The former is log-concave 

because so is /3n>m by Corollary 4.2.9 and the latter is log-concave because

.. .. +  (p +  l)m  2 ^ 2
■ , . m2 + (p +  l ) m + p

Thus, an>k is convolution of two log-concave sequences and therefore it is so as 

well. ; '.
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At last, being positive and log-concave the sequence { c + f c } ^  is unimodal.

4.5 Concluding remarks

In fact, the above considered polynomials (4.3), (4.29) and (4.35) arise in formulae 

for the following expression with the higher derivatives of W  =  W(x)

flnW  . . . . . .
; (1 +  W Y e"w —  , -  (4.40)

when we want to write it in terms of polynomials with respect to different combi­

nations of W, namely, W, 1/(1 + IT) and W/(\ +  W) respectively. The expression
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(4.40) can be written in different forms, particularly,

,, + = (i + w f rw  i J-'w"
'  J dxn W "  Ac" da:"-1 ’

where W7 =  dW/dx.

It is worth noting that Knuth (2005) considers polynomials

’ ^  (4-41)
■ ” " ■ fc=o ’ ■ ; '

rather than (4.35). Note that the alternating factor (—l )k does not effect on 

log-concavity.

Finally, it follows from the above consideration that the polynomials

n—1 n—1 n—1
^2Pn,kXk , Y 2 bn’kxk and ^ 2 an,kXk (4.42)

; ¿= 0  k = 0 k = 0  .

have the same properties, in particular, all of them are positive, log-concave and 

unimodal. Positiveness of the polynomial coefficients means that the derivative 

W'  is completely monotonic and W  itself is a Bernstein function.

In addition, numerical experiments show that the polynomials share one more 

common property that is associated with their roots. Specifically, for n >  2 the 

even polynomials, which are of odd order, have one real root and (n — 2 )/2  pairs 

of complex conjugate roots while the odd polynomials, which are of even order, 

have only complex roots (in the form of (n — l ) /2  complex conjugate pairs). The 

roots of polynomials (4.41) and (4.35) differ in the sign o f their real parts only, 

therefore the latter have the same property of the roots. , , 4
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Chapter 5

Stieltjes, Poisson and similar representations 

of functions of W  '

“Integral transforms are like opera glasses: The knowledgeyou gain 
from them depends on which end you look through. ” -  Micha Hofri

5.1 Introduction

In this chapter we show that many functions of W  are members of a number 

of function classes, namely, the classes of Stieltjes functions, Pick functions and 

Bernstein functions, including subclasses Thorin-Bernstein functions and com­

plete Bernstein functions. This is mainly due to the fact that IT is a real sym­

metric function, in the terminology of (Baker & Graves-Morris, 1981, p. 160) (see 

also (Titchmarsh, 1939, p. 155)), with positive values on the positive real line. A 

description of the mentioned classes can be found in a review paper (Berg, 2008) 

and a recently published book (Schilling, Song, & Vondracek, 2010). b

The above mentioned classes are of particular interest because they are char­

acterized by their own integral forms. As a consequence, the W  function is rich in 

integral representations and we give explicit integral representations of functions



of W. In the chapter we also extend the properties of the set of Stieltjes functions 

in Sections 5.2 and 5.6. In addition, we give one more proof of the fact established 

in the previous chapter that W  function is Bernstein. Moreover, we show that 

IF is a complete Bernstein function. ;

The classes of Stieltjes functions and Bernstein functions are intimately con­

nected with the class of completely monotonie functions that have many appli­

cations in different fields of science; the list of appropriate references is given in 

(Alzer & Berg, 2002). Therefore we shall also study the complete monotonicity 

of some functions containing W.

The properties and integral representations mentioned above have interesting 

computational implications. For example, that W(z)/z is a Stieltjes function 

means that the poles of successive Padé approximants interlace and all lie on 

the negative real axis (Balter & Graves-Morris, 1981, p. 186) (here in the interval 

—oo <  z <  — 1/e). In addition, some of the integral representations permit 

spectrally convergent quadratures for numerical evaluation.

5.2 Stieltjes functions

We now review the properties of Stieljes functions, again concentrating on results 

that will be used in this’ paper. We must note at once that there exist several 

different definitions of Stieltjes functions in the literature, and here we follow the 

definition of Berg (Berg, 2008).

D efin ition  5.2.1. A function /  : (0 ,oo) —> R  is called a Stieltjes function if it 

admits a representation *

. f (x)  =  a +  [  (x >  0), (5.1)
• J 0 X -f  l
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where a is a non-negative constant and a is a positive measure on [0, oo) such 

that / 0°°(1 +  £)_1dcr(i) <  oo. . ■ : ■ ' ■

A Stieltjes function is also called a Stieltjes transform (Berg & Forst, 1975, 

p. 127). Except in Section 5.3.3 below, the term Stieltjes function will here always 

refer to definition (5.1). ■ '
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T h eorem  5.2.2. The set S of all Stieltjes functions forms a convex cone (Berg 

& Forst, 1975, p.127) and possesses the following properties.

(i) f e S \ {0 } =* f(l/x) e S

(ii) f e S \ ^  xf(x) e s

;iii) f e s (C> o)

» U q £ S \ { 0 ) ^ f o

(v) f,g e e S

(vi) f ,g  e S  =$■ f agl a e S  (0 <  a <  1)

(vii) /  G S => / “  G S (0 <  a <  1) , , : . ;

(viii) / e S \ { o } ^ ± ( $ g - i )  e S

(ix) /  6 S \ { 0 }  ,\imx^o+xf(x) -  c >  0 f (x)  -  c/x € S .

(x) f e s ^ f a( 0 ) - f a( l / x ) e s  (0 <  <a <  1) A -

(xi) /  e S \ {0} => i  (l -  € S .

(xii) f  ES,  lim ^oo f (x)  =  c >  0 => (d3 -  f p) e S  ( - 1  <  ¡3 <  0) *

In the above statements constants c and /(0 )  =  lim ^ o +f{%) are assumed to be 

finite.
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Proof. Properties (i)-(vii) are listed in (Berg, 2008); property (vi) is due to the 

fact that the Stieltjes cone is logarithmically convex (Berg, 1979) and property 

(vii) is its immediate consequence. Property (viii) is taken from (Bender k  

Orszag, 1999, p. 406). Property (ix) follows from properties (ii) and (viii) in 

the following way: /  G S \ { 0 }  g(x) =  l/(xf(x)) 6 S => (g(0)/g(x) -  l)/x =  

( xf (x)/c— l)/x G S => f (x)  — c/x G S. The last three properties (x)-(xii) will 

be proved in Section 5.6. □

A Stieltjes function /  has a holomorphic extension to the cut plane C\(—oo, 0] 

satisfying f ( z ) =  f (z)  (see (Berg, 1979), (Alzer k  Berg, 2006) and (Schilling et 

ah, 2010, p. 11-12)) ...

, f (z)  =  a +  [  (jarg(*)| <  tt). - (5.2)

In addition, a Stieltjes, function f (z)  in the cut plane C\(—oo, 0] can be repre­

sented in the integral form (Baker & Graves-Morris, 1981, p.158)

^ ) = /  T x S  (Iarg(*)| .C 7T) , (5.3)JQ 1 +  uz

where $ ^ )  is a bounded and non-decreasing function with finite real-valued mo­

ments / 0°° tn d$(t) ( n 0,1 ,2 , . . .  ). The integral (5.3) is used in (Baker k, Graves- 

Morris, 1981, Ch. 5) for a study of Padé approximants to the Stieltjes functions; 

it is equivalent to the representation (5.2) by virtue of the following observation. 

According to properties (i) and (ii), if a function /  G S then / ( l/x)/x G S as 

well and hence the latter admits representation (5.1)

x f a +  [  
Jo

oo da(t) 
x +  t
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wKich after replacing x with 1/x gives

/ ( * )
a i°° da(t)
x + J0 1 +  xt ’

where the first term can be included into the integral since a >  0 and 1/x is a 

Stieltjes function (see e.g. (Berg, 2008)). Finally, one considers the holomorphic 

extension of the last integral to the cut plane C\(—oo, 0] similar to obtaining 

(5.2). Conversely, starting with formula (5.3) and taking the same operatons in 

reverse order we will come to (5.2).

There are various kinds of necessary and sufficient conditions implying that a 

function /  is a Stieltjes function. Some of them are based on the classical results 

established by R. Nevanlinna, F. Riesz, and Herglotz. Here we quote two such 

theorems taken from (Akhiezer, 1965, p. 93) and (Berg, 2008, Theorem 3.2).

T h eorem  5.2.3. A function g(z) admits an integral representation in the upper 

half-plane in the form

g{z) =  f (3* > 0) , (5.4)
Ju U ~ Z

with a non-decreasing function $(u ) of bounded variation on K (i.e. fR d$(u) < 

oo for smooth &(u)), if and only if g(z) is holomorphic in the upper half-plane 

and

>  0 and sup \yg(iy)\ <  oo . (5.5)
l < y < o o

Note that the function g (z) is in the class of Pick functions defined in Sec­

tion 5.8. ■ . 1
■ ■ ■ ■ 1 . ; . ; . . - • . " *
To apply Theorem 5.2.3 to the integral (5.3) one should set g(z) =  —f ( —l/z)/z 

(cf. (Baker & Graves-Morris, 1981, (6.12) on p. 215)), then conditions (5.5) read
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as

$Sf(—l/z)/z <  0 and sup \f(i/y)\ <  oo . (5.6)
K y <  oo

T h eorem  5.2.4. A function f  : (0, oo) —>• R is a Stieltjes function if and, only if 

f (x)  >  0 for x > 0 and there is a holomorphic extension f(z),  z =  x +  iy, to the 

cut plane C\(—oo, 0] satisfying

^f (z)  <  0 forAsz >  0. (5.7)

Remark 5.2.5. The inequalities (5.7) being a part of a characterization of the 

Stieltjes functions express a necessary condition for /  to be a Stieltjes function. 

In the terminology of (Bender & Orszag, 1999, p.358), a holomorphic function 

f  (z) is called a Herglotz function if Q f >  0 when Qz > 0, O'/ =  0 when Qz =  0 

and Q?/ <  0 when Gz <  0. Thus, for /  to be a Stieltjes function TTts necessary 

that /  be an anti-Herglotz function (cf. (Bender & Orszag, 1999, p. 406)).

5.3 Stieltjes functions containing W(z)

In this section we consider a number of functions containing W(z)  and prove that 

they are Stieltjes functions. We begin with the function W{z)jz.

5.3.1 T h e  fu nction  W(z)/z

The fact that W(z)fz  is a Stieltjes function could be established conveniently 

by applying one of the criteria stated in Section 5.2. However, we first present 

a direct proof that is of great importance for further investigations. Moreover, 

compared with using the criteria above, the present way allows us to make useful 

observations which are given in the remarks following the proof and used in further 

evidence. K-h. V ; "
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T h eorem  5.3.1. W(z)/z is a Stieltjes function.

Proof. From (1.14), the function W{z)/z is single-valued and holomorphic in the 

same domain as W(z),  namely D =  {z e C \ z  £ B }, and can be represented by 

the Cauchy’s integral formula

Ü M  =  _ L  / Ä «  ,
2 2m Jc t(t — z) (5.8)

where C is the standard ‘keyhole4 contour which consists of a small circle around 

the branch point t =  — 1/e of radius, say r, and a large circle around the origin 

of radius, say R ; the circles being connected through the upper and lower edges 

of the cut along the negative real axis. Then for sufficiently small r and large R 

the interior of the contour C encloses any point in D. __

Let us consider the integral (5.8) in the limit in which r -> 0 and R - »  oo. 

Using asymptotic estimations (1.13) and (1.8), it is easily seen that the contribu­

tions of each circle to the integral (5.8) go to zero. As a result, in accordance with 

the assignment of values of W  function on the branch cut, the integral becomes

W(z)  1 r 1/e W(t)
à L

dt -f-
H

, w { t )t(t — z ) “ “ ' 2m J_i /e t(t — z)
dt ,

which reduces to

(5.2)

where

W(z)

■. r e ,
' j - o o  t(t ~  z)

(5-9)

—t transforms the integral (5.9) to the form

r  1 ^ d t , .J 1 /e  Z + t t
i \ (5.10)

7T ,
! (5-11)

According to Lemma 1.2.1, /i(i) G (0,1) for t G (1/e, oo), therefore f™e fj,(t)dt/[t( 1+
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i)] '<  oo and the conditions in Definition 5.2.1 are satisfied. Thus the integral 

(5.10) is a Stieltjes function. □

' Remark 5.3.2. The function W(z)/z is a real symmetric function as is any Stieltjes 

function (this immediately follows from Definition 5.2.1), which just corresponds 

to the near conjugate symmetry property.

Remark 5.3.3. The representation of W{z)/z in the form (5.3) equivalent to (5.10)

is
W(z) = f ~Jo 1

d$(i) (5.12)
o ± +  tz

where d$(t) =  fi(l/t)dt. Since y,(l/t) e  (0,1) for t € (0,e) by Lemma 1.2.1, 

&'(t) >  0 and thus <$(£) is a bounded and non-decreasing function. In addition, 

all the moment integrals / 0e tn d$(t) (n =  0 ,1 ,2 , . . .  ) exist. This remark is useful 

for justifying the use of Padé approximants for the evaluation of W^z) based on 

the theory in (Baker & Graves-Morris, 1981, Ch. 5) (see Appendix'C).

Remark 5.3.4. An existence of representation (5.12) also follows from Theorem 

5.2.3. Indeed, for function f (z)  =  W(z)/z conditions (5.6) read as

Q W (—1/z) >  0 and sup \yW(i/y)\ <  oo .

The first condition is satisfied by (1.10) because Q(—1/z) and are of the same 

sign. To verify the second condition we set W(i/y) =  u +  iv and put s =  l/y in 

(1.19) and (1.20). As a result, since 0 <  v <  7r/2 for y > 0, we obtain

\yW(i/y)\2 — y2(u2 +  v2) =  y2v2( 1 +  tan2 v) — y2v2/cos2 v =  e~2vta,nv <  1.

To extend the result to the lower half-plane Q\z <  0 it is enough to take the 

complex conjugate of both sides of the representation (5.3) and use the near 

conjugate symmetry of W. Thus Theorem 5.2.3 gives us one more way to prove 

that W(z) jz  is a Stieltjes function. " ..................
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5.3.2 O ther functions :

By Theorem 5.3.1 W(x)/x G S. Using this result and the properties of the set 

<S listed in Section 5.2 we now give some classes of functions that are members of

S. - . ' '

T h eorem  5.3.5. The following functions belong to the set S, for x  >  0.

(a) l / ( c  +  W{x)), c >  0

(b) W * { l / x ) , 0 < a < l

(c) x0W fi(l/x), -1  <  /? <  0 - ; : ’•

(d) W{x)/[x{c +  W(a:))], c >  0 ,

(e) \/W{x) — 1/x ' ' ’

(f) c +  W (xP ) , c>  0, —1 <  /3 <  0

(g) l / ( c  +  W(xa)), c >  0, 0 <  a <  1

(h) x ^ W - ^ i x ^ l  1 +  VU(^)]1- 7, 0 <  o  <  1, -1  < p  <  0, 0 <  7 <  1

(i) 1 — xaW a(\/x), 0 <  a <  1 .

(j) 1 -  x ~ ^ W a{xp)[l +  W{xp))-a, 0 <  o  <  1, - 1  <  0 <  0

Proof. We use the properties listed in Theorem 5.2.2.

(a) We apply property (ii) to W(x)/x to find that 1 /W{x) G S and then apply 

(iii) to 1/W{x).

(b) We first apply (i) to f {x)  =  1 /W{x)  that is in S by statement (a) and find 

W (l/a ;) G S. Then we apply (vii) to W{l/x).
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(c) Apply (i). to W(x) jx  and apply then (vii) to the result. ;

(d) Apply (xi) to the function in the statement (a) using W (0) =  0.

(e) Apply (viii) to W(x)/x using (1.14) or apply (ix) to the function in the 

statement (a) with c =  0.

(f) Apply (v) to the function in the statement (a) and g(x) =  x@ (—1 <  /? <  0) 

that is in S (Berg & Forst, 1975; Berg, 2008).

(g) Apply (iv) to the function in the statement (a) andg(x)  =  x~a G «S for

. •. 0 <  Q- <  1. . ■ : .

(h) Apply (v) to functions f [x)  =  W(x)/x and g(x) =  x@ (—1 <  /? <  0) 

and find x^W~1{x^) G S. Hence by (vii) a(x) =  xQ̂ W~a(x/3) G S for 

0 <  a <  1. Then apply (v) to the function in the statement (a j with c =  1 

and g(x) =  x@ to get b(x) =  1 + W (x/3) G <S. Finally apply (vi) to a(x) and 

b(x).

(i) Apply (xii) to the function in the statement (c) with (3-= —1 using (1.14) 

(or apply (x) to W(x)/x).

(j) Apply (x) (or (xii)) to the result of application of (iv) (respectively (v)) to 

, the function in the statement (d) with c =  1 and g(x) =  x& (—1 <  ¡3 <  0).

□

C orollary  5.3.6. The derivative dW(x)/dx is a Stieltjes function.

Proof. Follows from Theorem 5.3.5 (d) with c =  1 and formula (1.21). □

The next theorem proves and generalizes a conjecture in (Jackson, Procacci, 

& Sokal, 2009). ^  :
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Theorem 5.3.7. The following functions are Stieltjes functions for fixed real 

a 6 (0, e]

w  = — '''"'U+•*))/ - w'wi2.l +  z

Fi(z) =  ( y - r - r l  /  w
+  -2.

(5.13)

(5.14)

Proof We first apply Theorem 5.2.4 to the function Fq(z). To do so we note 

that Fq(z) > 0 for real z >  0 (a e  (0, e]) and Fq(z) is a holomorphic function in 

the cut plane C\(—oo,0] (cf. the branch cut B). For convenience, we define a 

function V(z)  = $$F0(z), then it remains to show that V(z)  <0  in the upper half­

plane. Since V(z)  is a harmonic function in the domain ^  >  0, it is subharmonic 

there. Thus we can apply either the maximum principle for harmonic functions 

in the form of (Axler, Bourdon, & Ramey, 2001, Corollary 1.10) or the.maximum 

principle for subharmonic functions (Doob, 1984, p. 19-20). In botlrcases, to get 

the desired result it is sufficient to ascertain that the, superior limit of V(z)  at 

all boundary points including infinity is less than or equal to 0 (Alzer & Berg, 

2002). In other words, V(z)  <  0 for Qz >  0 if (cf. (Koosis, 1988, p.27))

lim V(z) < 0  ($Sz > 0)
|a|—>oo

and .

lim sup V(x  +  iy) <  0 for all x e  M . (5.15)
2/~>0+ ■ ;

Since F0(z) ~  \/\nz for large due to (1.8), V(z) ->• 0 as \z\ oo and the first 

condition is satisfied.

To verify the second condition we introduce variables t =  a (l +  x) and s =  ay 

and set W (t +  is) =  u +  iv where u — u(t,s),v  =  v(t,s). We also introduce a 

constant b =  W(a) S (0,1]. Then the condition (5.15) becomes H(t) >  0 for all
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t G R, where

H(t) =  limsup
s —>0+

[:t(t — a) +  s2](u2 +  v2 — b2) (u2 +  ti2) (26 — w) — b2u )
V (f2 +  s2)[u2 +  ( 6 - n ) 2) + “S(i2 +  s2)[«2 +  (6-ti)2] J '

(5.16)

For analysis of function H(t), it is convenient to consider the following five 

cases: (i) —oo <  t < — 1/e, (ii) —1/e <  t <  0, (iii) t =  0, (iv) (0 <  t < a) U (a < 

t <  oo), and (v) i =  a. We start with the case (i). Since V(z) is continuous (from 

above) on the real line z =  x G R, the expression under the limit sign in (5.16) is 

continuous in domain { ( t , s)|i € R, s > 0}. Then using relation (1.17) we obtain

m  =
V V‘

[(b +  vcotv)2 + v 2] \sin'v o - ? ) -

We have v E (0 ,7r) for t E (—oo, —1/e), hence v2/ sin2u >  1. SinceTPc b <  1, we 

conclude that in case (i) H(t) >  0. Taking into account that v =  0 in cases (ii), 

(iv) and (v) and relations (1.19) and (1.20) in case (iii) it is not difficult to show 

that in all of these cases H ( t) =  0. Thus H(t) >  0 for all real t, i.e. the condition

(5.15) is satisfied and F q(z) is a Stieltjes function.

The theorem for the function F\{z) follows from the relation

F,(z) =  - F 0 ( - y ^ )  (5.17)

because in terms of the conditions of Theorem 5.2.4 the transformation in the 

right hand-side of (5.17) retains the properties of Fq(z). In particular, ^sFi(z) <  0 

for'Of2 >  0 because, first, and S (—z/(l +  z)) are of the opposite signs and 

secondly, $sF0(z) >  0 for Qfz < 0 which follows from Fq(z) =  F0(z) duetto near 

conjugate symmetry and the established above non-positivity of QF0(z) in the 

upper half-plane. Thus Fi(z) is also a Stieltjes function. □

Remark 5.3.8. We make a note about a behavior of functions (5.13) and (5.14) for
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large and small z. Specifically, using (1.8) and (1.14) one can obtain respectively 

Fq{z) - »  0 and Fffz) —>■ a/W2(a) as z —> oo. Using (1.21) we find F0ii ~  c/z as 

2 -*  0, where c =  (1 +  W {a))2/W{a). ;: •

We now have even a stronger than Theorem 5.3.7 result in the following 

corollary. ■ - - . . - :

C orollary  5.3.9. With the constant c defined in Remark 5.3.8 the differences 

Foti — c/z are Stieltjes functions for fixed a £ (0,e\ .

Proof. Follows, from: Remark 5.3.8 and the property (ix) given in Theorem 5.2.2.

□

5.3.3 Is W  a Stieltjes fu nction? *

The principal branch of the Lambert W  function itself is not a Stieltjes function 

in the sense of Definition 5.2.1. It can be shown in different ways. For example, 

one can apply Theorem 5.2.3 to W{z) to see that the second condition (5.6) fails. 

Indeed, when 2 =  is we have by (1.19) and (1.20)

|sW"(is)| =  sVu2 +  v2 =  v2 sec2(u)eutani; - »  oo as v-^ir/2.

The same conclusion can be reached using Theorem 5.2.4 because (1.10) contra­

dicts (5.7). Finally, W  is not a Stieltjes function because it is not an anti-Herglotz 

function (cf. Remark 5.2.5).

' ' ■ i
Note, however, that W  function can be regarded as a Stieltjes function in

• ■ ■ • „ , • ■■ _ , ■

the sense of a definition given in (Tokarzewski, 1996) and (Brodsky, Ellis, Gardi, 

Karliner, & Samue, 1997) or used in (Tokarzewski & Telega, 1998) and different 

from (5.3) by the factor 2 in the right hand-side. W  function can also be consid­



ered as a generalized Stieltjes transform by the definition in (Saxena & Gupta, 

1964) (which is different from that of the generalized Stieltjes transform defined 

in (Widder, 1938, p. 30) and studied, for example, in (Schwarz, Art. No. 013501) 

and (Sokal, 2010)). Finally, in (Schilling et ah, 2010), the terms Stieltjes function 

and Stieltjes representation are not treated as equivalent (compare definitions 

(Schilling et ah, 2010, p. 11) and (Schilling et ah, 2010, p. 55)). By these defini­

tions W (z ) has a Stieltjes representation (which is the result of multiplication of 

the representation (5.10) by z) though it is not a Stieltjes function.
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5.4 Explicit Stieltjes representations

The Stieltjes representation for W{z)/z given in (5.10) and (5.11)-its.elf contains 

W, which can be regarded as self-referential. Here we give representations con­

taining only elementary functions for this and other functions related to W.

T h eorem  5.4.1. The following representation of function W(z)/z holds (The 

poster ‘The Lambert W Function’)

W{z) _  1 f~ v2 +  (1 — vcotv)2 
z +  ucsc(u)e-,;coti;-  ±7T Jo

dv (|arg2:| <  n) .

Proof. We start with (5.9) and, noting (1.9), change to the variable v 

The integral becomes ,

(5.18)

W(z) _  1 r  V dv 
Z TT J0 t{z -  t) v'(t) ’

(5.19)

where the variables t and v are related by (1.18) and the derivative v'(t) is defined 

by (1.22). After:substitutions the result follows. • ; ; : □

Remark 5.4.2. Since the integrand in (5.18) is an even function (with respect to
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t;), the integral admits the symmetric form

W(z) 1_  j_ r —
27r J_n z -

v 2 +  (1  -  v c o t v ) 2 , .. . .
------------ r-----------— dv ( arg 2 <  7r)2: +  z;csc(7;)e“ l'C0tv

This integral has a C 00 periodic extension and thus the midpoint rule is spectrally 

convergent for its quadrature (see e.g. (Weideman, 2002)).

We now take advantage of Corollary 5.3.6 and derive an integral representation 

of W'{z).

T h eorem  5.4.3. The derivative ofW  function has the following Stieltjes integral 

representation

W'(z) =
W (z )

z(l +  W (z))
- I  r7T J 0

dv
z +  v csc(v)e

(|arg2| (5.20)

Proof. We take the formula (5.2) with a =  0 due to (1.24)

W'(z) =  7  
^0

00 dp(t) 
z +  t ’

(5.21)

where the unknown function ¡i{t) can be determined using the Stieltjes-Perron 

inversion formula (Henrici, 1977, p. 591) (see also Section A.3)

1 ,u(t) =  — lim ^  W  (r +  is)dT

for all continuity points on the ¿-axis. Since pit) is defined to arbitrary constant, 

after integrating one can set

p(t) — — lim Q W (—t +  is) =  —0W o(—¿) ,
7T s-+0+ 7T

(5.22)

where the limit uses the continuity from above of W  on its branch cut. The same 

result can be obtained using one of Sokhotskyi’s formulas (Henrici, 1986, p. 138).
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' Check that function (5.22) satisfies the conditions in Definition 5.2.1. By 

Lemma 1.2.1 the domain of integration in (5.21) is defined by 1/e < t < oo. 

In addition, the function fi(t) can be regarded as a positive measure such that 

dfi(t)/dt =  o(l/t) at large t. Therefore J'1tJe( l + i ) _1d/w(t) <  oo and the conditions 

in Definition 5.2.1 are satisfied. Thus (5.21) takes the form

1 dQW0( - t ) dt 
z +  t dt

(5.23)

Changing to variable v =  ^W o(-t) in the integral (5.23) with using (1.18) we 

obtain (5.20). □

Remark 5.4.4. The formula (5.23) can also be found by considerations similar 

to those used in the proof of Theorem 5.3.1. In addition, (5.23)~is a result of 

differentiating (5.10) with subsequent integration by parts. Finally, comparing 

formulae (5.10) and (5.23) shows that the latter is obtained from the former when 

we formally replace the ratios W {z)fz  and ¡a(t)/t respectively with the derivatives 

dW(z)/dz and dfi(t)/dt at the same time.

Remark 5.4.5. The formulae (5.10) and (5.23) were also found in (Pakes, 2011). 

Corollary 5.4.6.

* d y  =  p e N
V

(5.24)

Proof. The integral (5.20) can be written as

=  Ì
n\ kn= 1

(5.25)

where t is defined by (1.18) and the left-hand side is obtained by differentiation 

of the series (1.12) that is convergent for \z\ < 1/e. Since |i| >  1/e and therefore



\z\ <  |i|, we can expand (z — t)~l in the non-negative powers of z. Equating the 

coefficients of the same power of 2 in (5.25) we obtain an equality

=  r dJL
K } n\ W o  tn

which after substituting (1.18) results in (5.24). □
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It is obvious that if the integral (5.24) is known then going back from it to 

(5.25) we find (5.20). The integral (5.24) was conjectured by Nuttall for realp >  0 

(Nuttall, 1985); Bouwkamp found a more general integral (Bouwkamp, 1986), for 

which Nuttall’s conjecture is a special case, using a representation of TTpp/r(p+l) 

via a Hankel-type integral. Thus the Stieltjes representation of the derivative 

of W  function (5.20) allows one to compute the integral (5.24) and  ̂conversely, 

starting with the integral of Nuttall-Bouwkamp one can obtain formula (5.20) in 

a way completely different from that used in the proof of Theorem 5.4.3. It is 

interesting to note that the connection between (5.24) and Lambert W  was noted 

by W.E. Hornor and C.C. Rousseau before W  was named (see editorial remarks 

in (Nuttall, 1985)).

Coming back to the results of Theorem 5.3.5 we consider the assertion (a) 

with c =  1 and assertion (e) by which 1/(1 -\-W(z)) G S and 1/W(z) — 1/z G S. 

We can derive integral representations of these functions in the same manner as 

it was done for W '{z) in the proof of Theorem 5.4.3. The result is in the following 

theorem. . , '

T h eorem  5.4.7. The following Stieltjes integral representations hold

1 1 r
1 +  W{z) ~  n J0 1

dv
+  zevcotv sinv/v

(|arg2| <  tt) , ‘ (5.26)
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1 _  i i r v2 +  (i -  scotti)2 .. . .
W (z) z 7T J0 vcsc(v) (vcsc(v) +  zevcotv) V |arg* l< 7r

(5.27)

Corollary 5.4.8.

W (z) =  In 1 + V2 +  (1 — vcotv)'
7T Jo vcsc(v) (vcsc(v) +  zevcotv) dv (5.28)

Proof. By substituting (5.27) 'mW(z) =  \n(z/W(z)) (cf. (1.11)). □

Remark 5.4.9. The formulae (5.20) and (5.26) were first found by A. Sokal (Sokal, 

2008) where it was also pointed out that the found explicit Stieltjes representa­

tions can be used to obtain those for functions containing W(l/z) by just replac­

in g z with 1/z. For example, formula (5.20) yields

W W *). 1 f  d”  flare ~1 < it) .
l +  W{l/z) 7r Jo 1 +  zvcsc(v)e~VC0tv

5.5 Completely monotonie functions

We denote by CM  the set of all completely monotonic functions, which are defined 

as follows (Alzer & Berg, 2006).

D efin ition  5.5.1. A function /  : (0, oo) —> IR is called :a completely monotonic 

function if /  has derivatives of all orders and satisfies (—l ) n/ ^ ( x )  >  0 for x > 0, 

n =  0 ,1 ,2 ,...

The set of Stieltjes functions is contained in the set of completely monotonic 

functions, and thus all of the functions listed in Theorem 5.3.5 are completely 

monotone. The set CM  is a convex cone containing the positive constant func­

tions; a product of completely monotonic functions is again completely monotone
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(Berg k  Forst, 1975, p. 61).;By Bernstein’s theorem (Berg k  Forst, 1975, Theo­

rem 9.3), a function /  € CM  if and only if it is of the form

e~x̂ du{0  (x >  0), (5.29)

where v is an uniquely determined positive measure on [0, oo). Completely mono­

tonie functions are in turn connected with the set of Bernstein functions denoted 

by B. ;

D efin ition  5.5.2. (Berg, 2008, Definition 5.1) A function /  : (0, oo) [0, oo) is 

called a Bernstein function if it is C°° and f  is completely monotonie.

Since W', G S C CM, IF is a Bernstein function. The same fact has been 

established in Section 4.2.5 in a different way based on the properties of the 

polynomials appearing in the higher derivatives of W. .

A Bernstein function f ( x ) admits the Lévy-Khintchine representation

(1 -  e~*$) dv{£) , (5.30)

where a ,b>  0 and v is a positive measure on (0, oo) satisfying / 0°° 6(H -£)_liM £) <  

oo. It is called the Lévy measure. The equation (5.30) is obtained by integrating 

(5.29) written for f  (Berg, 2008).

An important relation between the classes S and B is given by the assertion 

(Berg, 2008, Theorem 5.4) ; .

g e S \ {0 }= >  l/g G B V (5.31)

■ Ô

Combining this with the function composition result (Berg, 2008, Corollary 5.3) 

that /  G CM  and g G B implies /  o g e  B we obtain the following lemma.

Lem m a 5.5.3. If f  G CM and g G <S \ {0 } then f(l/g) 6 CM.

poo
f (x )  =  a +  bx +

Jo
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This lemma extends the list of completely monotonic functions containing W .

T h eorem  5.5.4. The following functions are completely monotonic

(a) xxW (x) ( x > 0 , X < —l).

(b) xxW a(x^) [l +  W(x^)Y (x >  0, a ,7  >  0, — 1 <  ¡3 <  0, A <  0).

(c) xxW Q(x~P) [1 +  W(x~P)Y (x >  0, a , 7 <  0, - 1  <  p <  0, A <  0).

(d) 1 -  x~â W â {xp)[l +  W {x0 ] 7" 1 (x >  0, 0 <  a  <  1, - 1  <  ¡3 <  0, 0 <  

7 <  !)•

Proof (a) Since W(x)/x G S C CM and a:“  G CM for a <  0, the function 

xxW {x) (A <  —1) is a product of two completely monotonic^functions and 

the statement (a) follows. .........  '

(b) Take function f a{x) — x~a G CM {x > 0, a >  0) and functions g(x) =  

l/W{xP) and h(a;) =  1/(1 +  W{x^)) where — 1 <  ¡3 <  0. Since 1/g G S and 

1/h G S by Theorem 5.3.5 (f) with c =  0 and c =  1 respectively, by Lemma

5.5.3 we have, f a(g(x)) =  g~a(x) G CM and f 7(h(x)) =  h~1(x) € CM 
(7 >  0). Substituting functions g(x) and h(x) in the power functions and 

taking a product of obtained completely monotonic functions with xx G CM 
(x >  0, A <  0), the statement (b) follows.

(c) Consider function f\{x) =  xx G CM (x > 0, A <  0) and functions g(x) =  

W(x~P) and h(x) =  1 +  W(x~P) where — 1 <  /5 <  0. Since 1/g G S 
and 1/h G S by Theorem 5.3.5 (g) with c =  0 and c = 1  respectively, by 

Lemma 5.5.3 we have f a{9(%)) — 9a(x) ^ CM and / 7(h(o;)) =  hy(x) G CM
. ' ' ' i

for a <  0 and 7 <  0. Substituting functions g(x) and h(x) and taking a 

product of obtained functions with fx(x), the statement (c) follows.



(d) By Theorem 5.3.5 (h) and the assertion (5.31), for x >  0, 0 <  a < 1 ,  —1 <  

P <  0, 0 <  7 <  1 we have f{x )  =  ga,y(x)[l +  W{x^)]1~l 6 B, where 

g(x) =  x~^W{x^). In addition, the function f(x )  is bounded, particularly, 

0 <  f (x )  < 1 because 0 <  [1 +  W(x^)]y~1 <  1 and 0 <  g(x) < 1 (the 

latter follows from the fact that g{x) goes to 0 and la s  x tends to 0 and 

oo respectively and g'{x) >  0, which can be established using (1.14), (1.15) 

and (1.21)). Then by (Berg, 2008, Remark 5.5) the assertion (d) follows.
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; ' □
We considered only sufficient conditions for a function to be a completely 

monotonie. To find the necessary and sufficient conditions is a much more compli­

cated problem so that in some cases it requires (at least as the first step) using the 

methods of experimental mathematics (Shemyakova, Khashin, & Jeffrey, 2010).

5.6 Complete Bernstein functions

A very important subclass in B is the class of complete Bernstein functions de­

noted by CB.

D efin ition  5.6.1. (Schilling et ah, 2010, Definition 6.1) A Bernstein function /  

is called a complete Bernstein function if the Lévy measure in (5.30) is such that 

dv(t)/dt is a completely monotonie function.

We point out four connections between classes CB and S used in this paper 

(for additional relations between these classes see (Schilling et ah, 2010, Chapter 

7)). By Proposition 7.7 in (Schilling et ah, 2010),

f e s ^  f(0) -  f(x ) e  CB , ’ ’ (5.32)
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where the limit of f(x )  at re =  0 (from the right) is assumed to be finite. Also if 

/  is bounded and /  G CB, there exists a bounded g G <S with lim ^oo g(x) — 0 

such that . . ■ ■ ■ .

' f(x ) =  f(0) +  g (Q )-g (x )  . (5.33)

In addition, (Schilling et al., 2010, Theorem 7.3) and (Schilling et al., 2010, 

Theorem 6.2(i),(ii)) establish

' f e C B & l / f e S \ { 0 }  , (5.34)

f e C B &  f(x)/x  G S . (5.35)

Now we go back to the properties of the set S listed in Section 5.2 to prove 

the last three properties therein. Let f  E S \ {0 }. —.

(x) Apply sequentially (vii), (5.32), (5.34), (i), to obtain / “  G S (0 <  a < 

1) => f a(0) -  f a(x) e  CB =4> g(x) =  [ / “ (0) -  / “ (a;)]-1 G S => l/g(l/x) =  

/ “ ( 0 ) - f ( l / x ) G 5 ;  ' -  .

. (xi) Apply sequentially (5.32), (5.34), (ii), to obtain /(0 )  — f ( x )  G CB =$■ 

g{x)  =  [ /(0 ) -  /(rr)]_1 G S  =* 1 / ( x g ( x ) )  =  (/(0) -  f { x ) ) / x  G <S =̂  ( 1 -  

/(z ) //(0 )) /z  € S] , ; ,

(xii) By (vii), / “  G S (0 <  a <  1). Suppose that lim ^ o f(x ) =  b <  oo and 

lim ^oo f (x )  =  c where 0 <  c <  oo. Then b~a < f~ a < c~a, i.e. f~ a is bounded. 

In addition, f~ a G CB by (5.34). Therefore the statement (5.33) can be applied,

i.e. there exists a bounded function g G 5 , limx_>005i(rc) =  0 such that we can
■ ' i

write g(x) =  ^(0) +  b~a — f~ a(x). Taking the last equation in the limit rr -> oo■ . . . ■ . . . ■ i .
we obtain #(0) +  b~a =  c~a, hence g =  c~a — f~ a and the assertion follows.

In closing this section we note that the statement (5.34) with 1/W G S  

(by Theorem 5.3.5(a) with c =  0) immediately results in W  G CB. Being a



complete Bernstein function W  has an integral representation that is the result 

of multiplication of (5.18) by 2 (Schilling et ah, 2010, Remark 6.4), which reflects 

the relation (5.35). In addition, the complete Bernstein functions are closely 

connected to the Pick functions considered in Section 5.8.

5.7 Bernstein representations ^

Not only does W  € CB as shown, it also belongs to another subset of Bernstein 

functions. , ■ . . • -

D efin ition  5.7.1. (Schilling et ah, 2010, Definition 8.1) A Bernstein function /  

is called a Thorin-Bernstein function if the Lévy measure in (5.30) is such that 

tdu(t)/dt is completely monotonie function.

To find out whether W  is a Thorin-Bernstein function we apply Theorem

8.2 in (Schilling et ah, 2010), which establishes five equivalent assertions (i)-(v) 

which we refer to below. In particular, in accordance with assertions (i) and

(ii), W (x) is a Thorin-Bernstein function because W (x) maps (0 ,00) to itself, 

IP(0) =  0 and W'(x) G S. Then W (x) admits two integral representations 

stated in the assertions (v) and (iii). The former has been already obtained; it 

is given by (5.10). The latter can be derived from the former, which is shown in 

the following theorem. ,

T h eorem  5.7.2. The principal branch of the W  function can be represented as 

the integral . ; ; ' ..
' •' . i

W(z) =  -  T in  ( l  +  z— evcotv
n.J 0 A  v
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J dv (|argz| <  7r) . (5.36)
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Proof. Integration (5.10) by parts with accounting for (1.9) gives

W (x) =  — [  l n f l  +  - ) ^ W ( - t ) d t .  (5.37)7T J\je  '  t / dt

By Lemma 1.2.1 a measure Q W (—t) satisfies the requirements in the assertion

(iii). Changing to the variable v = ^ W (-t )  with the help of (1.18) and taking a 

holomorphic extension of the result to the cut 2-plane C\(—oo, 0] satisfying near 

conjugate symmetry, we obtain (5.36). □

Remark 5.7.3. In the terminology of (Schilling et al., 2010, p. 75), the integral 

form (5.37) is the Thorin representation of W  function and p(t) =  Q W (—£)/7r is 

the Thorin measure of W. .

Remark 5.7.4. Differentiating the representation (5.36) for W(z) gives formula 

(5.20) for W'{z). " "

Remark 5.7.5. The representation (5.37) (up to changing t to —t) was obtained 

in (Caillol, 2003) as a dispersion relation for the principal branch of W  function 

using the Cauchy’s integral formula in a manner similar to the method applied for 

the proof of Theorem 5.3.1. The same formula was also found in (Pakes, 2011).

As a Bernstein function, W  can be written in the form (5.30) with a =  0 

and b =  0 due to IP(0) =  0 and (1.15). It allows us to establish one more 

representation of W. T  ■ . :■ h ! ;

T h eorem  5.7.6. For the principal branch of W  function the following formula 

holds
r°° i  _

W (z) =  ----- ( « *  > 0), (5.38)
J O S  i

where : " . s
1 pit

= — e x p (—^ucsc(v)e~vcotv) dv. (5.39)
7T Jo
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Proof. We consider the Stieltjes integral form (5.1) for the derivative

, ; w ,( x ) = r m  ,Jo x + 0
and use representation (x +  0)~l =  / 0°° e~(x+9̂ d£ to write it in the form

Comparing (5.40) and the result of differentiating (5.30) we find the relation 

between measures ¡x and v (Berg, 2005)

Using formula (5.22) and changing the variable v =  QW(—9) (see-(1.18)) we 

obtain *

’ dv =  (5.41)

where </?(£) is defined by (5.39). We collect the intermediate results and take 

a holomorphic continuation of (5.30) to the right half-plane $tz >  0 where the 

integral (5.38) is convergent, in accordance with near conjugate symmetry (cf. 

Proposition 3.5 in (Schilling et al., 2010)). □

Note that by (5.39) function ip(£) G CM, as should be, because W  is still a 

Thorin-Bernstein function (cf. Definition 5.7.1)

Remark 5.7.7. Formulae (5.38)-(5.39) were also obtained in (Pakes, 2011).

5.8 Pick representations 4

J_e-Bide • (5-40)
p o o  f  poo

W'{x) — J  | J e~ êdfx(9)

D efin ition  5.8.1. (Berg, 2008, Definition 4.1) A function f ( z ) is called a Pick 

function (or Nevanlinna function) if it is holomorphic in the upper half-plane
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$$z >  0 and S /  >  0 there.

A Pick function f(z )  admits an integral representation (Berg, 2008, Theorem

4.4)

where

f(z ) — ocq +  boz + r  1
J—00 (f *

4- tz
z)(l +  t2)

da(t) (Q z>  0) , (5.42)

ao =  5?/(i), b0 =  lim A -*V̂y—>oo zy
(5.43)

and a positive measure a satisfies

lim — [  Q?/(£ is)cp(t)dt =  f  <p(t)da(t) 
S-+0+ 7r , ,  Jr . (5144)

for all continuous functions <p : R  - »  R with compact support. The formula (5.42) 

with the integral written in terms of a measure da{t) — 7 r ( l  +  t2)~lda{t) is called 

a Nevanlinna formula (Levin, 1996, p. 100).

Since W (z) is a holomorphic function in the upper half-plane 5$z > 0 with the 

property (1.10), W{z) is a Pick function. It also follows from the two facts that 

W  £ CB (see Section 5.6) and that the complete Bernstein functions are exactly 

those Pick functions which are non-negative on the positive real line (Schilling et 

al., 2010, Theorem 6.7). Thus W  admits a representation (5.42) and in view of 

that the following theorem holds.

T h eorem  5.8.2. The principal branch o fW  function can be represented in the 

form ■ ■ ■

W (z )= a 0 +  -  f  K(z,v)t(v)dv (|argz| .< 7r) ■, (5.45)
................. ■ ' " ■ ■■■ tt J0 ■ v  • '■ ■

where ao =  $t.W(i) =  0.3746990..,

_  {l +  zt(v))(v2 + ( l - v c o t v ) 2) 
j ( * - i ( u ) ) ( l - K 2(u)) :

(5.46)
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and t(v) is defined by (1.18).

Proof. Apply formulas (5.43)-(5.44) to function f(z ) — W(z) , '

a0 =  ^W (i), 60 = l i m ^ i ^ ,  da(t) =  -$sW(t)dt.oo %y 7T

Using (1.15), we see &o =  0. Since 9 W (i) =  0 for t >  —1/e (cf. (1.9)), we obtain

^ ) = “" + i £ /e( ^ w ^ ) T O t  (sz>o)- (5-47)

By the change of variable v =  3W (t) in the integral (5.47) (see (1.18)) we obtain 

formula (5.45) that is also valid in the lower half-plane Gz < 0 in accordance with 

near conjugate symmetry of W. , □

C orollary  5.8.3.

W(z)
z

7o e x p < — — [  K(z,v)t(v)dv 
l tt Jo

(|argz| <  tt) , (5.48)

where 70 =  e =  0.6874961...

Proof.. It immediately follows from (5.45) owing to the identity W(z)/z

Now we take advantage of the fact that if function /  € <S then —/  and l/f 

are Pick functions (Berg, 2008). Therefore, since W(x)Jx € S, —W(x)/x and 

x/W(x) are Pick functions that admit a representation (5.42). We can obtain a 

representation (5.42) for functions — W(x)/x and x/W(x) similar to the deriva­

tion of formula (5.45), and the result is in the following theorem.

=  e~w(-zK 

□
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T h eorem  5.8.4. For the principal branch of the W  function the following for­

mulas hold

— —  =  /3o +  -  [  K(z,v)dv  (|argz|<7r), (5.49)

ttftt =  Vo -  -  l  K(z,v)e~2vcotvdv (|argz| < 7r) , (5.50)W  (Z)  7T Jo

where K (z,v) is defined by (5.46), (3q =  5 ]  =  $sW(i) =  0.5764127.., 

T7o =  U\i/W(i)] =  1.2195314.. .

The constants in (5.45) and (5.48)-(5.50) obey the relations a 0 +  ifio =  W (i), 

7o =  e "a°> =  f30/cos(30, r]0 = Po/{d& + 0$).

We add in one more integral representation associated with bhe_ Nevanlinna 

formula which follows from the result obtained by Cauer (Cauer, 1932). Specifi­

cally, based on the Riesz-Herglotz formula (Levin, 1996, p. 99) Cauer proved that 

if a real symmetric function f(z )  with non-negative real part is holomorphic in 

the right 2-half-plane, it can be represented as

(5.51)

where constant b > 0 and

h(r) =  — lim 5ft [  f ix  +  iy)dy . (5.52)
7T x -> 0  J q ,

In fact, the formula (5.51) follows from the Nevanlinna formula (or (5.42)) after 

changing the variable 2 —> —iz, which transforms the upper half-plane onto the 

right half-plane, and taking into account f(z )  =  f(z).

/ ( * )  =  2 b + f
dh(r) 
z2 +  r

T h eorem  5.8.5. The following representation of function W{z)/z holds

W (z) 2 [v2 +  (1 +  utanu)2] v sec(u)e1,taniJ_  2 r  
7T Jo 22 -f- v2 sec2(u)e2vtant'

tanvdv (5ft2 >  0) . (5.53)
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Proof. Since W  function meets the above requirements, the formulas (5.51) and 

(5.52) can be applied with the result

W(z)
z

2 R W {is),
(9?2 >  0) ,

where we set b =  0 due to (1.15) and r =  s2.

Changing the variables defined by (1.19)-(1.20) we obtain

W(z) _  2 f n/2 vtaxiv ds
, 2 7r JQ z2 +  s2(v)dv V '

Similar to (1.22) one can find

(5.54)

dv _  v i
ds s(v) [v2 +  (1 +  utanu)2] '

(5.55)

Substituting (5.55) and (1.20) into (5.54), the theorem follows. □

Remark 5.8.6. Comparison of the formula (5.53) with the representation (5.18) 

(taken in the right 2-half-plane) shows that the integrand in the former contains 

z2 rather than z, which can be profitable in using the integral representations for 

numerical evaluation of W(z) at large 2.
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5.9 Poisson’s integrals

T h eorem  5.9.1. The following two formulae: of Poisson 1 (Poisson, 1823) hold 

for x  £ (—1/e, e)

W (x) =  -
cos §9 xe-cos9 cos (|0 -f sin 0)

7r Jq 1 — 2xe~cos0 cos(6 +  sin0) +  x2e~2cose C° S ^
(5.56)

2
W(a;) = —7T

sin §f? + xecosflsin (ffl — sinfl)
1 +  2xecos6lcos(f? — sinf?) +  x2e2cosd 2

(5.57)

Proof We consider the defining equation (1.7) for given real z =  x

W ew = x  ; : (5.58)

and interpret it as an equation with respect to W. Then we can write the equation 

in the form F(W ) =  0 where ' ' ■ ■

F (C) =  C -  xe~< . (5.59)

Let T be the positively-oriented circumference of the unit circle |(| =  1 in 

the complex C-plane and domain G be the interior of T. The function F (()  is

holomorphic in G and by Rouche’s theorem it has a single isolated zero there when 

\x\ <  1/e because in this case |— xe~̂ \ < |£| on T. Therefore, using Cauchy’s

lrThe second formula is explicitly given in (Poisson, 1823, sec. 80, p. 501) in terms of the 
tree function T{x) (see (5.62) and (5.63) below) and proved using the Lagrange Inversion 
Theorem (Whittaker & Watson, 1927, p. 133) and a series expansion of the logarithmic function 
— ln(l — etx<t>) in powers of e%x where the expansion coefficients <pn/n  are exactly the coefficients 
of the complex exponential Fourier series for the same function. On the other hand, today it 
is well known (Caratheodory, 1958, p. 143-145) that there is a tight connection between the 
classical Poisson Formula and the Cauchy Integral Formula. Our proof is based on the latter 
and thereby differs from that given in the original.
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integral formula with taking T for the integration contour we can write

W L fIni Jr
no

2ni Jr F (C) C<*C. : (5.60)

for |rc[ <  1/e.

Since F'(() =  1 +  xe~ =  1 +  £ by (5.59) and (5.58), we obtain

ew(l +  eie)i8
W  =  —27T J 1 — X6~~ cos^—i(^+sin0)

d e , (5.61)

where we set £ =  eld, —tt < 9 < ir. Separating the real and imaginary parts of 

the integrand in (5.61) we find that the former is an even function of 9 whereas 

the latter is an odd one. Thus, the integral of the imaginary part vanishes, as 

should be, and the integral of the real part gives double the value of the integral 

on [0,7r]. As a result, after some arrangements, we come to integral (5.56).

If, instead of (5.58), we consider the equation defining the (Cayley) ‘tree 

function' T(x) (Flajolet & Sedgewick, 2009, p.127-128)

Te~T = x (5.62)

and introduce function # (£ )  =  £ — x e in a similar way as function (5.59) then 

after analogous considerations and taking into account a relation

: W {x) =  - T ( - x )  V ; (5.63)

in the final result we obtain formula (5.57). r

Now we discuss the domain of validity of the integrals (5.56) and (5.57) which 

is actually wider than the interval —1/e <  x <  1/e arisen above in applying 

Rouche’s theorem. It immediately follows from the fact that IT is a single valued 

function and therefore -F(£), the denominator in (5.60), has a single zero in G
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for each such a: that |C| <  1, i.e. for —l/ e< .x  <  e. Since Rouche’s theorem is a 

consequence of the argument principle (see e.g. (Markushevich, 1965)), it would 

be instructive to obtain this result using the latter. To do this, say for integral 

(5.56), we apply the argument principle to function (5.59) in case when x >  0. It 

is easy to see that function 77 =  F (()  performs a conformal mapping of the strip 

{ —oo <  <  oo, —7r <Y$C <  7r}, containing entire the domain G, to the complex

77-plane cut along two semi-infinite lines on which 77 =  £ ±  in, £ >  1 +  In x. We 

also cut the 77-plane along the negative real axis to take |arg 77] <  tt in the cut 

plane and consider an image of T which is defined by equations

pcosp  =  cos# — xe~cos0 cos(sin0) ,

p sin p =  sin 9 +  xe~cos 6 sin(sin 9) ,

where p =  |t)| and '<p =  avgr).

The equations (5.64) are invariant under transformation 9 —> —6, (p —> —p 

and describe a closed curve f  that is symmetric with respect to the real axis in 

the 77-plane. Suppose that while a variable point (  moves along Y once in the 

C-plane, the image point 77 =  F(£) moves on f  once in the 77-plane, making one 

cycle about the origin. Then the change in argument of 77 is 27r and therefore, by 

the argument principle the function F (()  has a single zero in G (Markushevich, 

1965, p. 48). For this it is necessary that two points on T corresponding to ip =  0 

and <p =  7r are located on the real axis on the opposite sides of the origin, i.e. 

with positive p to be measured on the opposite rays. Substituting 0 =  it in (5.64) 

gives pcosp =  — 1 — xe and psin^ =  0. It can be p >  0 only when tp =  7r; then 

p =  1 -\-xe is positive for any a; >  0. When 9 =  0, we have pcosp =  1 — x/e and 

psinp =  0. Now p =  0 and p =  1 — x/e >  0 when x < e. Thus for 0 <  x < e 

the: curveT encloses the origin. Since for these a; the right-hand side of equation 

(5.64b) vanishes, i.e. Q77 =  0 sequentially at 9 — —it, 9 =  0 and 9 =  7r as 9 

continuously changes from —7r to tt, the curve T  is traversed once with exactly

(5.64a)

(5.64b)
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one cycle about the origin being made. This corresponds to the fact that the 

inverse of the mapping 77 =  F(£) is continuous in the domain bounded by the 

curve f  and on T itself and hence T  consists only of simple points (Markushevich, 

1967, Theorem 2.22). Thus, by the argument principle the function F (() has 

a single zero in G. Summarizing up the obtained results we conclude that the 

integral (5.56) is valid for x £ (—1/e, e). The integral (5.57) can be considered in 

a similar manner. = □

Remark 5.9.2. The integral representations (5.56) and (5.57) can be immediately 

applied to the tree function using relation (5.63). .

Remark 5.9.3. We can apply the above approach to the equation (1.11). To 

eliminate a singularity at the origin we compose the integration contour of a 

small circle of radius, say r, and the unit circle, both centered at the origin and 

connected through the cut along the negative real axis. Then, making r go to 

zero, we find for 0 <  x < e

W (x) =  tp(x) +  -  f  -  
7T Jo 1

9 3 3
cos -  +  9 sin -9  — cos -9  In rr a

----------—----------------------- ----------5— cos -d6 ,
+  26 sin 9 +  62 — 2 cos 9 In x  +  In2 x 2

where

ip(x) =  [  
Jo

t -  1
7r2 +  (In a; + 1 —  Ini)2

dt

5.10 Burniston-Siewert representations

One of the analytic methods for solving transcendental equations is based on a 

canonical solution of the suitably posed Riemann-Hilbert boundary-value problem 

(Henrici, 1986, p. 183-193). This method was found and developed by Burniston 

and Siewert (Burniston & Siewert, 1973), its versions, variations and applica­

tions were also considered by other authors. By the method, a solution of a 

transcendental equation is represented as a closed-form integral formula that can



be regarded as an integral representation of the unknown variable. Below we con­

sider such integrals for W  function which are based on the results of application 

of the Burniston-Siewert method to solving equation'(5.58) obtained in paper 

(Anastasselou & Ioakimidis, 1984a) and the classical work (Siewert & Burniston, 

1973). i; '

We start with two formulas derived in , (Anastasselou & Ioakimidis, 1984a) 

and apply them to function (5.59) : ; , ; /  , :

'  W(x)  =  —-F(O) exp ( - ¿ j  ln (f K ) / 0 d c| _ (5.65)

4 M f F ) rfc  . (5 -66)

where the integration contour T is the unit circle |£| =  1 and x 6 (—1 ~fe, e). Since 

F (0) =  —x  and W(x)/x =  e~w x̂\ formula (5.65) is simplified

W {x) =  ^~. f . (5.67)
. ; 2m Ji> C

We set £ =  eid, -7r <  9 < tt. Then, as F (£ )/£  =  F(eld)e~ie =  R(0) +  iI(0), where

R(9) =  1 — a;e-cos0cos(0 +  sinö),

1(0) =  xe~cos0 sin(9 +  sinö),

and d£/£ =  idO, the integral (5.67) is reduced to
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Similarly, the integral (5.66) can be represented in the form

W ( x ) f /  {2 aictan(I (9) / R(9)) sin# In (R2(9) + 12(9)) cos 9} d9 ,

(5.69)

where we have taken into account that arg(R(9) +  il(9)) — arctan(I(9)/R(9)) as 

R(9) >  0 for 0 <  9 < n and —1/e <  x < e. We note that the integral (5.68) has

a simpler form than (5.69). Integrals similar to the above with using a function 

$ (£ ) =  — x in our notations instead of (5.59) in formulas (5.65) and (5.66)

(without simplification (5.67)) are given in (Anastasselou & Ioakimidis, 1984a).

Thus the integrals (5.68) and (5.69) representing the principal branch of the 

Lambert W  function are valid in the domain that contains interval (—1/e, 0). 

However, there is one more branch that is also a real-valued function on this 

interval, this is the branch —1 with the range (—oo, —1) (recall Wo >  —1 and 

W o(-l/e) =  W _i(—1/e) =  —1) (Corless, Gonnet, Hare, Jeffrey, & Knuth, 1996). 

A representation of this branch can be obtained on the basis of a simple inter­

pretation of formula (5.66) given in (Anastasselou & Ioakimidis, 1984b)

: -  (5-70)
where the circle C is defined by equation |£ +  c| =  c — 1 with arbitrary constant 

c >  1 and —1/e <  x <  —(2c — l)e 1-2c. Transformations of (5.70) leading to a 

definite integral are similar to those used above to obtain the integrals (5.68) and 

(5.69) and skipped here together with a bulky result.

We return to the principal branch and use the result in (Siewert & Burniston,.. . , . *
1973, formula(13)) to write (Wolfram Research, Inc.) 1

4

W (z) =  1 +  (In z — 1) exp
i r  /  In z + 1 — In t +  iic

2tc Jq \ln z + 1 — In i — m
dt

1 + 1
(5.71)
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or

TTr/ n , „v ( 1 f°° arg(lnz + 1 — Ini +  in) , 1
W (z) =  1 +  (In* -  1) exp J  1 +  t------------ J-d tj  , (5.72)

where z ^ [— 1 / e, 0]. In case of real z =  x > 1/e, when the expression In z + t — Ini 

is real and positive (for t 6 (0, oo)), the formula (5.72) is simplified and reduced

to . . .  . ■ ..... \

. . . .  . . . . l f ° °  (  7T \ dt
W (x) =  1 +  I n i  -  1) exp < —  arctan ;-------- -— :—-  ------

w  v 7r./o \lnx +  t - \ n t j l  +  t

OO 7T (5.73)

or, after integrating by parts

W {x) =  1 +  (ln z  — 1) exp J t -  1 ln (l +  t)
7T2 +  (In a: + 1 — In i)2 t

d t) . (5.74)

We emphasize that the domain x > 1/e of validity of the formulae (5.73) and 

(5.74) is different from that of (5.68) and (5.69).

For the case x G (—1/e, 0), we refer the reader to (Siewert & Burniston, 1973, 

formulae (32)) where the principal branch W q and the branch W - \  are represented 

in the form of a combination of two expressions similar to the right-hand side of 

(5.72).

Remark 5.10.1. We can regard the integral in the formula (5.71) as an improper 

integral depending on parameter p =  \nz and consider it in the limit p -> oo 

(when * —>• oo). Since the integrand is a continuous function of two variables t 

and p in the domain under consideration and the integral is uniformly convergent 

with respect to p, we can take the limit under the integral sign and find that 

the integral vanishes as the integrand goes to zero. Then the formula (5.71) 

reproduces the asymptotic result (1.8). ■

Finally we note that by use of elementary complex analysis in (Kheyfits, 2004)
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there is obtained a common closed form representation for all the branches Wk(z) 

in the complex zqfiane through simple quadratures. ;

5.11 Concluding remarks

In this chapter we derived various integral representations of the principal branch 

of the Lambert W  function using different approaches. The most part of them 

is associated with functions of W  which belong to various classes of functions 

admitting certain integral representations. Among other classes we considered 

in detail the classes of Stieltjes functions and complete monotonic functions and 

by the example of functions containing W  in fact demonstrated different ways to 

establish belonging of a function to these classes, --—

Besides their own importance the derived integral representations have some 

applications. One of them has been mentioned in connection with finding Nuttall- 

Bouwkamp integral (5.24). Other definite integrals appear in taking the obtained 

integrals with a particular value of 2. For example, integrals (5.18), (5.26), (5.27), 

(5.53) taken at z  =  e  yield respectively

l

l

77 V2 +  (1 —  u cotu )2 
0 l  +  ucsc(w)e-(1+i;cotu)

V2 +  (1 —  ucotu )2 
o  v  cs c ( v ) (v  csc(u) +  e1+vcotv)

dv =  7T ,

, e -  1
dv =  -------------7T ,

L

dv

L
o 1 +  e1+l,cotl' svcîv/ v  2 

717,2 [v2 +  (1 +  utanu)2] sec('u)evtani;-1

1
-  7T

tan v d v  — ~ tx0 1 +  v 2 sec2(u)e2h'tanu-1)

Another advantage that can be taken of the obtained results is based on a compar­

ison between different representations of the same function. This reveals equiva-



lent forms of the involved integrals. In addition, since some of the integrals are 

simpler than others, such equations can be regarded as a simplification of the 

latter. For example, equating integrals (5.49) and (5.18) shows that the former 

can be simplified and reduced to the latter.

At last we mention that the Pick representations (5.45), (5.48), (5.49), and

(5.50) can be considered as integrals expressing properties of the kernel K (z,v ) 

defined by (5.46). .
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Chapter 6

Conclusion

“The whole is more than the sum of its parts.” -  Aristotle

We studied different analytical properties of the Lambert W-function. A part 

of them relates to the convergence of the asymptotic series of W. In particular, 

we ascertained the domain of convergence of the series in terms of Stirling cycle 

numbers and the series in terms of the 2-associated Stirling subset numbers in 

real and complex cases. We found that the latter has a much wider domain of 

convergence than the former in both cases and we provided an analysis of this 

fact in the real case. We also found asymptotic expressions for the expansion 

coefficients and obtained a representation of the series with a wider domain of 

convergence in terms of the second-order Eulerian numbers.

We applied an invariant transformation defined by the parameter p to the 

above series to obtain one-parameter families of series. We found that an increase 

of p results in an extension of the domain of convergence of the series. Thus the 

series obtained under the transformation with positive values of p have a wider 

domain of convergence than the original series does. However, at the same time a 

rate of convergence can be found to be reduced when the parameter p increases. 

Therefore in such a case within the common domain of convergence of the series



with different positive values of p the series with the minimum value of p would 

be the most effective. In practice, the obtained results can be applied to compute 

rapid estimates for W  using a small number of terms in the series at the expense 

of an appropriate choice of a particular value of parameter p, for example, in 

evaluating of the Lambert W  function in computer-algebra systems.

We also considered the well-known expansion of W(x)  in powers of In a; and 

gave an asymptotic estimate for the expansion coefficients. We found three more 

forms for a representation of the expansion coefficients of the series in terms of 

the associated Stirling numbers of the first kind, the 2-associated Stirling sub­

set numbers and iterative formulas. This allows us to compute the expansion 

coefficients in different ways to meet requirements in accordance with available 

computer resources. Finally we presented some combinatorial consequences, in­

cluding the Carlitz-Riordan identities, which result from the found different forms 

of the expansion coefficients of the above series. ; ,

We studied three forms for the higher derivatives of the Lambert W  function. 

Each form contains its own sequence of polynomials. It is shown that all of 

these polynomials have similar properties. Specifically, their coefficients form 

positive sequences that are log-concave and unimodal. This property implies that 

the principal branch of W  function is Bernstein and its derivative is a Stieltjes 

function. Relations of the polynomial coefficients to the shifted r-Stirling numbers 

of the second kind, the Bernoulli polynomials of higher order as well as Carlitz 

numbers are found as well.

We derived various integral representations of the principal branch of the Lam-
• ' ■ i

bert W  function using different approaches. The most part of them is associated
6

with functions of W  belonging to various classes of functions admitting certain 

integral representations. Among other classes we considered in detail the classes 

of Stieltjes functions and complete monotonic functions and by the example of
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functions based on W  in fact demonstrated different ways to establish belonging 

of a function to these classes.

Besides their own importance the derived integral representations have some 

applications. One of them is computing values of some particular definite inte­

grals as well as more complicated consequences such as the mentioned Nuttall- 

Bouwkamp integral. Another one is a proof of convergence of successive Pade 

approximants for numerical evaluation of W  function. In addition, some of the 

found integral representations permit spectrally convergent quadratures.

We also note that some advantages can be taken of the comparison between 

different representations of the same function. This reveals equivalent forms of 

the involved integrals. Besides, since some of the integrals are simpler than others, 

such equations can be regarded as a simplification of the latter.

Thus, in the accomplished work we found a number of new beautiful properties 

of the Lambert W  function which are also useful for practical needs.
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A p p e n d i x  A  

Analytical Tools

A .l  Lagrange Inversion Theorem

Theorem A .1.1. Let function be analytic at co =  0 andlpl0) ^  0. Then a 

solution of equation z =  uip(uj) is given by series (Goursat, 1904, § 190)

u  =  E
' dn~l 
dojn~l - UI—0

Z"
n!

1 (A .l)

Note. Theorem A .1.1 and formula (A .l) are called Lagrange Inversion Theo­

rem and Lagrange Inversion Formula respectively. There are other forms of for­

mula (A .l) for equations of more general form (see, e.g. (Goursat, 1904, § 189)). 

We give an example of application of formula (A .l).

Example. Let us consider equation z =  wew in the vicinity of 2 =  0 (cf. (1.7)). 

To apply formula (A .l) we set ificS) =  ew. The function fj{co) satisfies all the 

requirements of Theorem A .1.1, therefore we can write *

OO

E
n = l

dn~l
dwn~l

zn
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Since

we have

dk
duik

dn~x 
du)n~l '

e~nu =  (—n)fcek . —nuj

( - n ) n—1
J cj=0

and finally obtain

OJ
r?

n=l
(A.2)

The radius of convergence of the series (A.2) is 1/e, which can be easily seen 

using the ratio test !

(—n)n 1/n\
(—n — 1 )n/(n  +  1)!

—n
n \ n +  l  t  1 \ (  h  _!------   ] --------= 1 1 -1 —  1 1 -------) -> e 1 as n - »  oo

n — l j  n \ n j  A n

A.2 Darboux’s Theorem

Definition A .2.1. (Bender, 1974) A function f ( z ) is said to have an algebraic 

singularity at 2 =  a if f (z)  can be written as a function analytic at z =  a plus a 

finite sum of terms of the form

»
z\9 ’ 
a)

where g(z) is analytic at 'z =  a, g(a) ^  0 and 9 is a real or complex number such 

that —9 $ Z. The real part of 9 is called the weight of the singularity.

Theorem A .2.2. (Darboux’s Theorem)(Bender, 1974) Let f (z)  =  Y^Locnzn &e
*

analytic at z — 0 and /iawe only algebraic singularities at z =  a ,̂ fc =  1,2,..., AT 

on its circle of convergence \z\ =  R. Let the leading behavior of f (z)  near the
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singularity z =  a/, is of the form (A.3)

Qk{z)

for each k . Then

l  y '  /  l  . \
nt i  “ ¡E m )  W n ^J

where d — maxk?R{Ok) and T(s) is the gamma function.

A.3 Stieltjes-Perron Inversion Formula

T h eorem  A .3 .1 . (Stieltjes-Perron Inversion Formula) (Henrici, 1977, p. 591) 

Let ip be a bounded, nondecreasing real function defined on (—00, 00), and let f  

be defined by
r°° 1 ;' ! ; ,

f (z)  =  — — # ( r ) i^z <  0) •
J-0 0  Z -r  T

Then for arbitrary real a and r

\ bP{r+) +   ̂ = ^\nn+ SsJ  ̂ /(A -  i^dA .
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A p p e n d i x  B

Special Numbers

U nsigned Stirling num bers o f  the first kind (Stirling cycle  num bers)

(Graham, Knuth, & Patashnik, 1989; Corless, Jeffrey, & Knuth, 1997). 

Notation: _____
n
m

Generating function:

lnm(l  + z) =  m\ ¿ ( —1)m + n

n—0
n
m

Recurrence relation:

(B .l)

n
m

=  (n -  1)
71— 1

m +
71— 1
777— 1 (B.2)

Stirling num bers o f  the secon d  kind (Stirling subset num bers) (Graham 

et al., 1989; Corless et al., 1997).

Notation: *

Generating function: OO S
(ez -  l ) m =  m\ ^ 2  I 

n=0 t

77 1 £  
7nj7l!

(B.3)



151

Recurrence relation:

n
m m

n — 1
m

n+  \m
1
1

n
0

(B.4)

U nsigned associated Stirling num bers o f  the first kind (Comtet, 1974). 

Notation:

d(n, m)

Generating function:

OO

£ (n—2m

Recurrence relation:

[ln(l +  z) — z]m =  m\ —l ) n+m d(n, m)—r , (B.5)
n\

d(n, m) =  (n — l)[d(n — l,m) +d(n — 2,m — 1)] , d(0 ,0) =  1 (B.6)

2-associated Stirling num bers o f  the second kind (2 -associated Stir­

ling subset num bers) (Graham et al., 1989; Corless et al., 1997).

Notation:
n
m >2

Generating function:

n> 0   ̂ ^ > 2

(B.7)

Recurrence relation:

{n 1 in  — 1Ï . f  n — 2
\ = m {  i> + ( n - l ) \  w  ,m >2 m >2 m — 1 >2

=  ¿n,(
>2

(B.8)
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Shifted r-S tirlin g  num bers o f  the second kind (non-central Stirling 

num bers o f  the secon d  kind) (Broder, 1984; Koutras, 1982).

Notation:
n +  r 
m +  r

Generating function:

— erz ( e * - l ) m =  y  
m! +

n +  r X £l
1 r n!

(B.9)

Recurrence relation:

{n + r) x fn + r — 1) , fn + r -
=  (m +  l)s  . > +m +  r m +  r r —1 m + r —

S econ d -order Eulerian num bers (Graham et al., 1989; Corless et al.,. 

1997).

Notation:

Generating functions (Bergeron, Flajolet, & Salvy, 1992; Gosper, Jr., 1998):

t +  W (—t exp (z(t — l ) 2 — t)) oo n
t - 1

l  -  l/t
1 +  1 f W  (—¿exp (z( 1 — t)2 — ¿))

= EEn—1 k~ l 
oo n

r T ï ï  =  S èn=0 k—0

(B .ll)

(B.12)

Recurrence relation:

* »  -  < **  «  « ”  *  ’ » * ( = » - 1- «  « *  :  : »  ■ a - « . . .  ■ ( : » -
4 (B.13)



B ernoulli num bers (Graham et al., 1989). 

Notation:

Bn

Generating function:

OO „ - ooZ Zn „ 1 V—>rr = EB»s = 1-2z+̂
00 Jin

B,
¿ i  ” (2» ) ' ’

because Bq =  1,B\ — —1/2 and B2n+ 1 =  0 for all natural n. 

Recurrence relation (Namias, 1986):

j  n —1
Bo =  1, Bn =  5 3

2( !  "  2n) Uo \k
" ' 2  kBk

B ernoulli polynom ials o f  higher order (Norlund, 1924).' 

Notation:

b{;\  a)

Generating function:

'  '  n—0

Recurrence relation:

ritf+1>W = (r -  n)ijM(A) + (A -  r)i-J?M(A)

B ell num bers (Graham et al., 1989). 

Notation:
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(B.14)

(B.15)

(B.16)

(B.17)
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Generating function:
00 zn 

exp (ez -  1) =  ^ E 7 n^j-
n=0 *

(B.18)

Recurrence relation: n /  \
^ 0  “  lj ^ n + 1  ^  ^ \  fc /

fc=0 ^  '
(B.19)
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A ppendix C

Padé Approximants for The Lambert W  

Function

D efin ition  C .0 .2 . (Baker & Graves-Morris, 1981) A Pade approximant of func­

tion f (z)  is a rational function '

a0 d" aiz d- ••• +  (¿LX1'
1 +  biz +  ... +  bMzM .

that has a Maclaurin expansion which is consistent with a power series represen­

tation
OO

; , f ( Z) =  J 2 CnZ'1 • ' ;
n=0

C .l [3/2] Padé approximant to function W(z)/z

Take Maple commands

> alias(W = LambertW):
> Order :=  24:
> S :=  seriesC W (z)/z, z ) :
> convert(S, ratpoly, 3 , 2 ) ;

1 + 1159 1193 9
505 * +  2020 *
, 1664 4819
1 H---------z -I----------

505 2020

133
1212

i

i



This rational approximation is used in Maple to evaluate W(z)  near z =  0.
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Figure C .l: [3/2] Padé approximant for W (z)/z .

C.2 Other Padé approximants to function W(z)/z

Create Padé table
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>  PadeTable:=seq( con vertí S, ra tp o ly , k ,k+ l ) ,  k= 1 ..5  ) ;

PadeTable :=

1+r i +
228
85

z +
451
340

313 1193
1 + -  z +  -  z2 1 +  —— z +  nAn 

3 6 85 340
z2 +

133
204

, 381096 848073
1 +  „ 7~.~ „  Z +94423 188846 ¿2 +

40532
34545

1 + 475519 757921
94423

z +
94423

z2 +
12216739
2832690

z3 +.
798983
1618680

/  47306490920 __ 37036845053 _2 41047808321 3 2872158214405 _4
^ +  8773814169 2 +  3899472964 2 +  6824077687 2 +  2948001560784 2

/  56080305089 __ 505009940819 3312529329503 3.
y +  8773814169 2 +  35095256676 2 +  245666796732 2

1983576598463 4 5398089761801
+  421143080112 2 +  14740007803920 2

/  785811326134885740 1903782046557342357 2 17847238752587009620 3
^116440941682504219 116440941682504219 1047968475142537971

39421183629620894251 4 114116410233241419299 5
+  5589165200760202512 2 +  146715586519955315940 2

902252267817389959 -  5262745803701951975
+  116440941682504219 2 +  232881883365008438 2 

32143771854091130317 ,  323321518334509534531 4
1047968475142537971 16767495602280607536

2791593533536950416359 5 85787023633308822991 6
t  586862346079821263760 2 +  320106734225357052960 2
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C.3 Theory for Stieltjes series

A  Stieltjes function is defined by the Stieltjes-integral representation

d$(u)
1 +  zu

(see ... for more details).

A  formal expansion of the integral is called a Stieltjes series

OO

k= 0

T h eorem  C .3.1 . (Existence) All [M +  J/M] Padé approximants, with J > —1, 

to Stieltjes series exist and are nondegenerate.

T h eorem  C .3 .2. (Convergence) Let f (z)  be a Stieltjes series with radius of 

convergence R >  0 and for given arbitrary numbers A  > R and 0 <  6 < R, a 

domain D(A,5) be the set of all points in \z\ < A  that are at least a-distance S 

from the cut (—oo, —R]. Then any sequence of [Mk +  Jk/Mk] Padé approximants, 

with Jk >  —1, of f (z)  converges uniformly to f(z) in D(A,5).

Thus even though the Padé approximants are constructed from the Stieltjes
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series convergent only in \z\ < R, their validity extends far beyond the circle of 

convergence. The convergence properties of Pade approximants of Stieltjes series 

hinge on the properties of their poles.

T h eorem  C .3 .3 . (Property of poles) The poles of the [M +  J/M] Pade approx­

imants, with J >  — 1, lie on the real axis in the interval — oo <  2 <  —R.

C.4 Applications to W  function

W{z)/z is a Stieltjes function, therefore Theorems C.3.1 and C.3.2 ensure the 

existence and convergence of Pade approximants to this function. Moreover, 

since R =  1/e, by Theorem C.3.3 the poles of Pade approximants should lie 

in the interval —00 <  z <  —1/e. What does Maple tell us about that?

> dens:= map( denom, PadeTable ) ;

dens :=  [6 +  14 z +  5 z2, 1020 +  3756 2 +  3579 z2 +  665 z3,

11330760 +  57062280 z +  90950520 z2 +  48866956 z3 +  5592881 z4, 

14740007803920 +  94214912549520 z +  212104175143980 z2 +198751759770180 z3 

+  69425180946205 z4 +  5398089761801 z5,

3521174076478927582560+27284108578797872360160 z+79572716551973513862000 z2

+  108003073429746197865120 z3 + 67897518850247002251510 z4# '
+  16749561201221702498154 z5 +  943657259966397052901 z6]

> rts:=m ap( t-> [fs o lv e (t,z ,c o m p le x )], dens ) ;
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rts :=  [[-2.271779789, -0.5282202113],

[-4.093800259, -0.8444844878, -0.4436701401],

[-6.455610949, -1.270425123, -0.5987475960, -0.4125658307], 

[-9.352503587, -1.799352788, -0.8039719015, -0.5077480857,-0.3974882010], 

[-12.78157444, -2.429207992, -1.053237111, -0.6337948309, -0.4628223076,

' -0.3889869449]]

> [m in (rts), m ax(rts)] ;

[-12.78157444,-0.3889869449]

Compare this interval with

(—oo, -0.3678794412)
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Appendix D

Permission for Using Published Material

Chapter 3 is mainly a reprint of (Kalugin & Jeffrey, 2010). This article was 

published in ‘Lecture Notes in Computer Science’ , publisher ‘Springer’ . In 

the publisher’s website, in the section RESOURCES FOR Authors/Permissions 

they state: .

You must obtain written permission to reuse or reproduce material found 

in our books and journals, unless:

— You are a Springer author seeking to reuse your own material.

— You are planning on using our material in a dissertation.

Although you are not required to obtain written permission for the above 

mentioned exceptions, the reproduced material must be accompanied by a 

full citation.

h ttp : //www. springerpub. com/resources/Authors/Permissions

Chapter 4 is mainly a reprint of (Kalugin k. Jeffrey, 2011). This article was 

published in the journal ‘Comptes Rendus Mathmatiques’ (Mathematical 

Reports of the Academy of Science of the Royal Society of Canada). Permis­

sion to reuse the paper is given by George A. Elliott (elliott@math.toronto.edu) 

who sent the thesis author, at his request, the following message by e-mail 

on July 28, 2011 (6:25 PM):

http://www.springerpub.com/resources/Authors/Permissions
mailto:elliott@math.toronto.edu


’Dear Mr. Kalugin, Thanks very much for your letter. As Managing Editor 

of Mathematical Reports of the Academy of Science of the Royal Society 

of Canada, I grant permission for you to reprint your paper in your thesis. 

Yours sincerely, George A. Elliott’ .

• Chapter 5 is mainly a reprint of (Kalugin, Jeffrey, Corless, & Borwein, 2011). 

This article has been accepted for publication by the journal ‘Advances 

in Computational Mathematics’ , publisher ‘Springer’ . In the publisher’s 

website, in the section RESOURCES FOR Authors/Perm issions they state: 

You must obtain written permission to reuse or reproduce material found 

in our books and journals, unless:

— You are a Springer author seeking to reuse your own material.

— You are planning on using our material in a dissertation.

Although you are not required to obtain written permission for the above 

mentioned exceptions, the reproduced material must be accompanied by a 

full citation.

http://www.springerpub.com/resources/Authors/Permissions
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