479 research outputs found

    Modeling and nonlinear adaptive control of an aerial manipulation system

    Get PDF
    Autonomous aerial robots have become an essential part of many civilian and military applications. The workspace and agility of these vehicles motivated great research interest resulting in various studies addressing their control architectures and mechanical configurations. Increasing autonomy enabled them to perform tasks such as surveillance, inspection and remote sensing in hazardous and challenging environments. The ongoing research promises further contributions to the society, in both theory and practice. To furthermore extend their vast applications, aerial robots are equipped with the tools to enable physical interaction with the environment. These tasks represent a great challenge due to the technological limitations as well as the lack of sophisticated methods necessary for the control of the system to perform desired operations in an efficient and stable manner. Modeling and control problem of an aerial manipulation is still an open research topic with many studies addressing these issues from different perspectives. This thesis deals with the nonlinear adaptive control of an aerial manipulation system (AMS). The system consists of a quadrotor equipped with a 2 degrees of freedom (DOF) manipulator. The complete modeling of the system is done using the Euler-Lagrange method. A hierarchical nonlinear control structure which consists of outer and inner control loops has been utilized. Model Reference Adaptive Controller (MRAC) is designed for the outer loop where the required command signals are generated to force the quadrotor to move on a reference trajectory in the presence of mass uncertainties and reaction forces coming from the manipulator. For the inner loop, the attitude dynamics of the quadrotor and the joint dynamics of the 2-DOF robotic arm are considered as a fully actuated 5-DOF unified part of the AMS. Nonlinear adaptive control has been utilized for the low-level controller where the changes in inertias have been considered. The proposed controller is tested on a high fidelity AMS model in the presence of uncertainties, wind disturbances and measurement noise, and satisfactory trajectory tracking performance with improved robustness is achieved

    A review of aerial manipulation of small-scale rotorcraft unmanned robotic systems

    Get PDF
    Small-scale rotorcraft unmanned robotic systems (SRURSs) are a kind of unmanned rotorcraft with manipulating devices. This review aims to provide an overview on aerial manipulation of SRURSs nowadays and promote relative research in the future. In the past decade, aerial manipulation of SRURSs has attracted the interest of researchers globally. This paper provides a literature review of the last 10 years (2008–2017) on SRURSs, and details achievements and challenges. Firstly, the definition, current state, development, classification, and challenges of SRURSs are introduced. Then, related papers are organized into two topical categories: mechanical structure design, and modeling and control. Following this, research groups involved in SRURS research and their major achievements are summarized and classified in the form of tables. The research groups are introduced in detail from seven parts. Finally, trends and challenges are compiled and presented to serve as a resource for researchers interested in aerial manipulation of SRURSs. The problem, trends, and challenges are described from three aspects. Conclusions of the paper are presented, and the future of SRURSs is discussed to enable further research interests

    Suspended Load Path Tracking Control Using a Tilt-rotor UAV Based on Zonotopic State Estimation

    Full text link
    This work addresses the problem of path tracking control of a suspended load using a tilt-rotor UAV. The main challenge in controlling this kind of system arises from the dynamic behavior imposed by the load, which is usually coupled to the UAV by means of a rope, adding unactuated degrees of freedom to the whole system. Furthermore, to perform the load transportation it is often needed the knowledge of the load position to accomplish the task. Since available sensors are commonly embedded in the mobile platform, information on the load position may not be directly available. To solve this problem in this work, initially, the kinematics of the multi-body mechanical system are formulated from the load's perspective, from which a detailed dynamic model is derived using the Euler-Lagrange approach, yielding a highly coupled, nonlinear state-space representation of the system, affine in the inputs, with the load's position and orientation directly represented by state variables. A zonotopic state estimator is proposed to solve the problem of estimating the load position and orientation, which is formulated based on sensors located at the aircraft, with different sampling times, and unknown-but-bounded measurement noise. To solve the path tracking problem, a discrete-time mixed H2/H∞\mathcal{H}_2/\mathcal{H}_\infty controller with pole-placement constraints is designed with guaranteed time-response properties and robust to unmodeled dynamics, parametric uncertainties, and external disturbances. Results from numerical experiments, performed in a platform based on the Gazebo simulator and on a Computer Aided Design (CAD) model of the system, are presented to corroborate the performance of the zonotopic state estimator along with the designed controller

    Aerial Manipulation: A Literature Review

    Get PDF
    Aerial manipulation aims at combining the versatil- ity and the agility of some aerial platforms with the manipulation capabilities of robotic arms. This letter tries to collect the results reached by the research community so far within the field of aerial manipulation, especially from the technological and control point of view. A brief literature review of general aerial robotics and space manipulation is carried out as well

    AutoTrans: A Complete Planning and Control Framework for Autonomous UAV Payload Transportation

    Full text link
    The robotics community is increasingly interested in autonomous aerial transportation. Unmanned aerial vehicles with suspended payloads have advantages over other systems, including mechanical simplicity and agility, but pose great challenges in planning and control. To realize fully autonomous aerial transportation, this paper presents a systematic solution to address these difficulties. First, we present a real-time planning method that generates smooth trajectories considering the time-varying shape and non-linear dynamics of the system, ensuring whole-body safety and dynamic feasibility. Additionally, an adaptive NMPC with a hierarchical disturbance compensation strategy is designed to overcome unknown external perturbations and inaccurate model parameters. Extensive experiments show that our method is capable of generating high-quality trajectories online, even in highly constrained environments, and tracking aggressive flight trajectories accurately, even under significant uncertainty. We plan to release our code to benefit the community.Comment: Accepted by IEEE Robotics and Automation Letter

    A Survey on Aerial Swarm Robotics

    Get PDF
    The use of aerial swarms to solve real-world problems has been increasing steadily, accompanied by falling prices and improving performance of communication, sensing, and processing hardware. The commoditization of hardware has reduced unit costs, thereby lowering the barriers to entry to the field of aerial swarm robotics. A key enabling technology for swarms is the family of algorithms that allow the individual members of the swarm to communicate and allocate tasks amongst themselves, plan their trajectories, and coordinate their flight in such a way that the overall objectives of the swarm are achieved efficiently. These algorithms, often organized in a hierarchical fashion, endow the swarm with autonomy at every level, and the role of a human operator can be reduced, in principle, to interactions at a higher level without direct intervention. This technology depends on the clever and innovative application of theoretical tools from control and estimation. This paper reviews the state of the art of these theoretical tools, specifically focusing on how they have been developed for, and applied to, aerial swarms. Aerial swarms differ from swarms of ground-based vehicles in two respects: they operate in a three-dimensional space and the dynamics of individual vehicles adds an extra layer of complexity. We review dynamic modeling and conditions for stability and controllability that are essential in order to achieve cooperative flight and distributed sensing. The main sections of this paper focus on major results covering trajectory generation, task allocation, adversarial control, distributed sensing, monitoring, and mapping. Wherever possible, we indicate how the physics and subsystem technologies of aerial robots are brought to bear on these individual areas

    Input uncertainty sensitivity enhanced non-singleton fuzzy logic controllers for long-term navigation of quadrotor UAVs

    Get PDF
    Input uncertainty, e.g., noise on the on-board camera and inertial measurement unit, in vision-based control of unmanned aerial vehicles (UAVs) is an inevitable problem. In order to handle input uncertainties as well as further analyze the interaction between the input and the antecedent fuzzy sets (FSs) of non-singleton fuzzy logic controllers (NSFLCs), an input uncertainty sensitivity enhanced NSFLC has been developed in robot operating system (ROS) using the C++ programming language. Based on recent advances in non-singleton inference, the centroid of the intersection of the input and antecedent FSs (Cen-NSFLC) is utilized to calculate the firing strength of each rule instead of the maximum of the intersection used in traditional NSFLC (Tra-NSFLC). An 8-shaped trajectory, consisting of straight and curved lines, is used for the real-time validation of the proposed controllers for a trajectory following problem. An accurate monocular keyframe-based visual-inertial simultaneous localization and mapping (SLAM) approach is used to estimate the position of the quadrotor UAV in GPS denied unknown environments. The performance of the Cen-NSFLC is compared with a conventional proportional integral derivative (PID) controller, a singleton FLC (SFLC) and a Tra-NSFLC. All controllers are evaluated for different flight speeds, thus introducing different levels of uncertainty into the control problem. Visual-inertial SLAM-based real time quadrotor UAV flight tests demonstrate that not only does the Cen-NSFLC achieve the best control performance among the four controllers, but it also shows better control performance when compared to their singleton counterparts. Considering the bias in the use of model based controllers, e.g. PID, for the control of UAVs, this paper advocates an alternative method, namely Cen-NSFLCs, in uncertain working environments
    • …
    corecore