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Input Uncertainty Sensitivity Enhanced
Non-Singleton Fuzzy Logic Controllers for
Long-Term Navigation of Quadrotor UAVs

Changhong Fu, Andriy Sarabakha, Erdal Kayacan, Christian Wagner, Robert John and Jonathan M. Garibaldi

Abstract—Input uncertainty, e.g., noise on the on-board cam-
era and inertial measurement unit, in vision-based control of
unmanned aerial vehicles (UAVs) is an inevitable problem. In
order to handle input uncertainties as well as further analyze
the interaction between the input and the antecedent fuzzy sets
(FSs) of non-singleton fuzzy logic controllers (NSFLCs), an input
uncertainty sensitivity enhanced NSFLC has been developed
in robot operating system (ROS) using the C++ programming
language. Based on recent advances in non-singleton inference,
the centroid of the intersection of the input and antecedent
FSs (Cen-NSFLC) is utilized to calculate the firing strength
of each rule instead of the maximum of the intersection used
in traditional NSFLC (Tra-NSFLC). An 8-shaped trajectory,
consisting of straight and curved lines, is used for the real-time
validation of the proposed controllers for a trajectory following
problem. An accurate monocular keyframe-based visual-inertial
simultaneous localization and mapping (SLAM) approach is
used to estimate the position of the quadrotor UAV in GPS-
denied unknown environments. The performance of the Cen-
NSFLC is compared with a conventional proportional integral
derivative (PID) controller, a singleton FLC (SFLC) and a Tra-
NSFLC. All controllers are evaluated for different flight speeds,
thus introducing different levels of uncertainty into the control
problem. Visual-inertial SLAM-based real time quadrotor UAV
flight tests demonstrate that not only does the Cen-NSFLC
achieve the best control performance among the four controllers,
but it also shows better control performance when compared to
their singleton counterparts. Considering the bias in the use of
model based controllers, e.g. PID, for the control of UAVs, this
paper advocates an alternative method, namely Cen-NSFLCs, in
uncertain working environments.

Index Terms—Fuzzy logic controller (FLC), unmanned aerial
vehicle (UAV), non-singleton FLC (NSFLC), input uncertainty
sensitivity enhanced NSFLC, monocular visual-inertial SLAM.

I. INTRODUCTION

RECENTLY, quadrotor unmanned aerial vehicles (UAVs)
have been applied for a wide range of indoor and outdoor

civilian applications, e.g., traffic surveillance [1], search and
rescue [2], image velocimetry [3], orchard monitoring [4], 3D
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reconstruction [5], wildlife protection [6], perch and stare [7],
forest management [8] and person following [9]. The main
advantages of these quadrotor UAVs are their small size, low
cost, vertical take-off and landing capability as well as their
easy maintenance. However, demand for almost perfect design
of flight controllers for such aerial vehicles in particular on
the operation boundaries remains a challenging task due to
several factors, such as inherent underactuation characteristics,
coupled translation-rotation dynamics, gyroscopic moments,
non-linear dynamic models, aerodynamic damping and on-
board mechanical vibration as well as internal (e.g., lack
of modeling and inaccuracy of onboard sensors) or external
(e.g., illumination variations and blurred areas on onboard
captured images) uncertainties. In the literature, conventional
controllers, e.g., proportional-integral-derivative (PID) [10],
linear quadratic regulator [11], and sliding-mode control [12],
have been utilized for the control of quadrotor UAVs to achieve
fully autonomous flights. When a linear approximation of the
nonlinear dynamic model of the quadrotor UAV is employed
to represent the system, lack of modeling might disrupt control
performance. Furthermore, the assumption of having small
attitude angles must be satisfied during the quadrotor UAV
flights because of the same assumption during the lineariza-
tion. However, certain applications, e.g. aggressive maneuvers
and fast speed applications, push the working conditions
towards the nonlinear region, resulting in more uncertainties
in the control of the quadrotor UAV. Therefore, an advanced
model-free control approach is required to improve the control
performance and maneuverability of the quadrotor UAVs for
fast and aggressive maneuvers under uncertain and noisy
working conditions.

Fuzzy logic controllers (FLCs) have been extensively used
for the control of nonlinear systems due to their capability of
handling uncertainties and delivering adequate control without
the requirement for the precise mathematical model of the
system which is often either unavailable or highly time-
consuming to obtain. Although there are several fuzzy control
implementations for the navigation of UAVs [13]–[16], most
of them are based on singleton FLCs (SFLCs), which focus
on high-level navigation instead of exploring the effect of
input uncertainty on the UAV control performance. On the
other hand, it is reported in the literature that non-singleton
FLCs (NSFLCs) give more promising results when compared
to their singleton counterparts for non-linear servo systems
[17], chaotic time series prediction [18], and UAV control [19],
where nonlinearites and uncertainties are more visible in the



IEEE/ASME TRANSACTIONS ON MECHATRONICS 2

system.
Although both SFLCs and NSFLCs use the same style of

fuzzy rule base, inference engine and defuzzifier, there is a dif-
ferent fuzzifier in the NSFLC which treats the inputs as fuzzy
sets (FSs) to deal with input uncertainties better. In this paper,
we aim to explore the potential of our recently introduced
non-singleton FLC (Cen-NSFLC) [20], [21], where the firing
strength of each rule is calculated by using the centroid of
the intersection between the input and antecedent fuzzy sets
(FSs) rather than the maximum of their intersection applied
in traditional NSFLCs (Tra-NSFLCs), to handle uncertainties
better, thereby improving the trajectory tracking accuracy in
GPS-denied unknown environment. Although the Tra-NSFLC
is capable of handling uncertainties by capturing them from
control inputs, it does not offer fine-grained uncertainty infor-
mation tracking, i.e., it is not highly sensitive to the shape of
the input of FSs, leading to significant loss of information in
the intersection of the input and antecedent models. In [20],
[21], the novel approach to NSFLCs has shown promising
results in the problems of Mackey-Glass and Lorenz chaotic
time-series predictions with different levels of injected noise.
An earlier version of this paper presented in [19] conducted
extensive quadrotor UAV flight tests in a Java-based simu-
lation environment. Different fuzzifiers were employed for
the NSFLCs, and different levels of noise were embedded as
the inputs of the SFLCs, Tra-NSFLCs and Cen-NSFLCs to
evaluate the hovering performances of the quadrotor UAVs.
Additional works in this paper contain the implementation
of all controllers in C++ within the robot operating system
(ROS) in real time; substantial demonstrations; as well as
detailed explanations and analysis for real quadrotor UAV
flight experiments and real-world uncertainty affecting real
world sensors. In addition, the conventional PID controller has
been used to compare and contrast the control performances
of the aforementioned FLCs.

Another motivation of this paper is to investigate whether
the Cen-NSFLC can better cope with the input uncertainties
from monocular keyframe-based visual-inertial simultaneous
localization and mapping (SLAM). In the literature, motion
capture systems are utilized as an external sensor to estimate
the position of the quadrotor UAVs [22], but this approach is
very expensive and works only in a limited indoor space.

A large number of onboard sensors are available for the
quadrotor UAVs. The GPS device is well researched for
outdoor tasks to navigate quadrotor UAVs [23], however the
GPS signal is unreliable in urban canyons or dense forest,
and it is completely lost in indoor environments. The laser
range finder is applied as an alternative sensor to provide
both localization and environment information [24], but it
often requires more power, computing capability and payload
capacity from the UAV, has a restricted perception distance and
generates a 2D reconstruction map because of the limited 2D
field-of-view. The RGB-D sensor is capable of offering vision-
based localization for UAVs [25], but the depth information
is only available for few meters. The stereo camera can
be applied for estimating the quadrotor UAV position [26],
however when the distance between the UAV and the observed
environment is much larger than the baseline, the depth es-

timation becomes inaccurate, sometimes invalid. Considering
the size, weight, cost, power consumption, mounting flexibility
and the capability to extract useful information from complex
surrounding environments of onboard sensors, the monocular
camera is the most competitive tool for quadrotor UAVs. The
rich visual information from the camera can be utilized to
provide real-time robust vision-based position estimation for
quadrotor UAVs [27]. However, the visual position estimation
algorithms highly depend on feature tracking performances,
i.e., inaccurate and uncertain position estimations will be
generated under conditions of large illumination changes, fast
rotations and translations and low feature detection.

To summarize, the main contributions of this study are:

• To the best of our knowledge, this is the first time that the
Cen-NSFLC is implemented for any real-world control
problem;

• To the best of our knowledge, the Cen-NSFLC is uti-
lized to work with the monocular keyframe-based visual-
inertial SLAM in the long-term navigation of quadrotor
UAVs for the first time;

• The control performances of conventional PIDs, SFLCs,
Tra-NSFLCs, and Cen-NSFLCs are compared in terms
of their trajectory tracking accuracy in a real-time UAV
application;

• Since different flight speeds generate different uncer-
tainties in the control system in a visual-inertial SLAM
application, different input uncertainty levels are explored
with different flight speeds;

• Several real-time implementation guidelines are presented
to design a NSFLC for the control of quadrotor UAVs.

The rest of this paper is organized as follows: Section
II presents the FLC, the traditional NSFLC and the input
uncertainty sensitivity enhanced NSFLC, i.e., the Cen-NSFLC.
Section III introduces the dynamic model of quadrotor UAVs
used in the real-time tests. In Section IV, monocular keyframe-
based visual-inertial SLAM is explained. Section V presents
the real flight results. Finally, some conclusions are drawn
from the study, and future directions are given in Section VI.

II. INPUT UNCERTAINTY SENSITIVITY ENHANCED
NSFLC (CEN-NSFLC)

A. Fuzzy Logic Controller (FLC)

Figure 1 shows the general structure of a FLC [28], which
includes three parts: (1) fuzzifier part (red block); (2) inference
engine part (blue block): it combines fuzzified inputs with IF-
THEN rules using a t-norm to derive the firing strength for
each rule from the rule base (purple block); and (3) defuzzifier
part (green block). The inference engine and defuzzifier parts
are the same in both NSFLCs and SFLCs. However, the
difference between SFLCs and NSFLCs is the handling of
the crisp inputs in the fuzzifier part.

1) Singleton FLC: For the SFLC, its singleton fuzzifier
maps a crisp input x into a fuzzy set X with support x′, i.e.,:

µX(x) =

{
1, x = x′

0, x 6= x′.
(1)
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Fig. 1: Overview of the FLC structure.

Remark 1: The fuzzifier of the SFLC does not model
input uncertainty. To better cope with noisy, imprecise input
measurements, this work employs a non-singleton fuzzifier.

2) Non-Singleton FLC: For the NSFLC, its non-singleton
fuzzifier, in our work, maps a crisp input x into a Gaussian
membership function, as shown in Fig. 1:

µX(x) = exp

[
−(x− x′)2

2σ2
F

]
, (2)

where σF is the spread.
Remark 2: The non-singleton fuzzifier used here implies

that the given input value x′ is the most likely value to be
correct one from all the values in its immediate neighborhood.
The Gaussian function is selected for the non-singleton fuzzi-
fier in our work due to the measurement results from practical
experiments. Fig. 2 shows the example related to the pixel
value changes over time on the fixed locations of the image
frame.

B. Tra-NSFLC for Navigation of Real Quadrotor UAVs

In Fig. 3, the mapping between the inputs and output of
the Tra-NSFLC is illustrated. Taking the x-position controller
(shown in Fig. 5) for example, it has three different inputs:
position error e, the integral of error

∫
e, i.e., accumulated past

error, and the derivative of error de, i.e., predicted future error.
Each input is fuzzified as a fuzzy set (FS) by the fuzzifier (red
block in Fig. 1). The fuzzified result is shown in Fig. 3 as the
red Gaussian distribution. The maximum of the intersection of
the input and antecedent FSs is utilized to calculate the firing
strength. Assume that the Tra-NSFLC contains only two rules,
i.e.,

IF e is A1
e AND de is A1

de AND
∫
e is A1∫

e
THEN y is C1,

IF e is A2
e AND de is A2

de AND
∫
e is A2∫

e
THEN y is C2.

Each rule has specified an AND relationship between the
mappings of the three input variables, the minimum of the
three is used as the combined firing strength of each rule.
Then the output of each rule is the consequent FS at the
aforementioned combined firing level. For the two rules, the
maximum of both output FSs is used as the output FS Y .
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Fig. 2: Pixel value variation on the image frame over time
which shows the uncertainty in the image information.

Finally, the output FS Y is defuzzified, the defuzzification
result is the output of the NSFLC, i.e, control command φ∗ .

The input-output mapping is represented by:

µY (y) = max[µY 1(y), µY 2(y)] (3)

where,

µY 1(y) = min[µC1(y), min[µ1
e, µ

1
de, µ

1∫
e]],

µ1
e = max[µXe(e) ? µA1

e
(e)],

µ1
de = max[µXde(de) ? µA1

de
(de)],

µ1∫
e = max[µX∫

e
(

∫
e) ? µA1∫

e
(

∫
e)],

where µX∗(∗) ? µA1
∗
(∗) is the intersection of X∗ and A1

∗. For
µY 2(y), the equations are similar.

C. Input Uncertainty Sensitivity Enhanced NSFLC (Cen-
NSFLC)

As introduced in subsection II-B, for Tra-NSFLCs, the
calculation of the firing strength is taking the maximum of
the intersection of the input FS and antecedent FS, as shown
in the red dashed rectangle of Fig. 3. Figure 4 shows two
different input FSs, i.e. X1

e and X2
e , which are intersected

with an antecedent A1
e. Although the actual input FSs are

different, the firing levels calculated by the Tra-NSFLC are
the same in both cases, i.e., µX1

e
(emax) = µX2

e
(emax) = a.
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Fig. 3: The general mapping between the inputs and output of the Tra-NSFLC for the navigation of a real quadrotor UAV.

Thus, two different inputs or more specifically, inputs with a
different associated uncertainty distribution has result in the
same firing level, thereby obtaining the same output from
the Tra-NSFLC. In [20], [21], the centroid of the intersection
of an input and an antecedent is introduced to enhance the
input uncertainty capture capability for the NSFLSs, i.e.,
Cen-NSFLSs. It is demonstrated for time-series prediction
problems with promising results. In this work, a Cen-NSFLC
is used to address real-world uncertainty affecting the control
inputs of the real quadrotor UAV.

Given a discrete FS X1
e with a membership function

µX1
e
(ei), the Centroid of X1

e is defined as below:

xcen(X
1
e ) =

∑n
i=1 eiµX1

e
(ei)∑n

i=1 µX1
e
(ei)

, (4)

Fig. 4: Intersection of different input fuzzy sets X1
e and X2

e

with the same antecedent fuzzy set A1
e. a, b and c point

locations are different firing strengths. (Adapted from [20],
[21])

where n is the number of discretization levels (n=100 in our
work) utilized in a discrete system.

The centroid of the intersection of an input X∗ and an
antecedent A1

∗, i.e. centroid of X∗ ∩A1
∗, the new input-output

mapping is:

µY (y) = max[µY 1(y), µY 2(y)] (5)

where,

µY 1(y) = min[µC1(y), min[µ1
e, µ

1
de, µ

1∫
e]],

µ1
e = µXe∩A1

e
(xcen(Xe ∩A1

e)),

µ1
de = µXde∩A1

de
(xcen(Xde ∩A1

de)),

µ1∫
e = µX∫

e∩A1∫
e
(xcen(X∫

e ∩A1∫
e)).

For µY 2(y), the equations are similar. The above formulas rep-
resent that the firing level of an antecedent is its membership
degree at the centroid of the intersection with the input set.

Remark 3: We would like to emphasize the differences of
the FLC, SFLC, Tra-NSFLC and Cen-NSFLC. The general
structure of an FLC is shown in Fig. 1. According to the
different types of fuzzifiers, i.e., singleton and non-singleton
fuzzifiers, the FLC is divided into two types: singleton FLC
(SFLC) and non-singleton FLC (NSFLC). In a traditional
NSFLC (Tra-NSFLC), the maximum of the intersection of
the input and antecedent fuzzy sets is utilized to calculate
the firing strength. On the other hand, the firing strength is
computed using the centroid of the intersection of the input
and antecedent fuzzy sets in the Cen-NSFLC. In the literature,
the Cen-NSFLC has so far not been applied for the long-
term navigation of real quadrotor UAVs. Our Cen-NSFLC
implementation is able to send the control commands to real
quadrotor UAVs at 100 Hz, which is adequate for the control
response during fast UAV trajectory following applications.
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III. QUADROTOR UAV DYNAMICS AND CONTROL
SCHEME

A. Quadrotor Dynamics

For describing the rigid body dynamics of the quadrotor
UAV, two coordinate systems are employed: the inertial refer-
ence frame FI = {~xI , ~yI , ~zI} and body-fixed reference frame
FB = {~xB , ~yB , ~zB}. The origin of the body reference frame
is located at the center of mass of the quadrotor UAV. The
axes ~xB and ~yB lie in the plane defined by the centers of the
four rotors and respectively point toward the right and forward
of the quadrotor UAV, as shown in the red dashed rectangle
of Fig. 5.

The control of translational and rotational motions of the
quadrotor UAV are achieved by changing the thrust of each
rotor fi, i = 1, . . . , 4, in various combinations. The thrust from
an individual rotor is varied by changing its angular speed ωi,
i = 1, . . . , 4. Then, the control vector c of the quadrotor UAV
is considered as follows:

c =
[
T τφ τθ τψ

]T
, (6)

where T is the total thrust, τφ, τθ and τψ are externally applied
moments known as rolling, pitching and yawing moments,
respectively. Under these considerations, the relation between
c and ωi becomes [29]:

T = b
(
ω2
1 + ω2

2 + ω2
3 + ω2

4

)
τφ =

√
2
2 bl

(
ω2
1 + ω2

2 − ω2
3 − ω2

4

)
τθ =

√
2
2 bl

(
−ω2

1 + ω2
2 − ω2

3 + ω2
4

)
τψ = d

(
−ω2

1 + ω2
2 + ω2

3 − ω2
4

)
,

(7)

where b is the propeller thrust coefficient, d is the propeller
drag coefficient and l is the arm length of the quadrotor UAV.

The absolute position of a quadrotor UAV is described by
the three Cartesian coordinates (x, y and z) of its center
of mass in the inertial reference frame and its attitude by
the three Euler angles (φ, θ and ψ). These three angles are
respectively called roll, pitch, and yaw. The time derivative
of the quadrotor UAV position (x, y, z) gives the absolute
velocity of the quadrotor UAV’s center of mass expressed in
FI , i.e., v =

[
ẋ ẏ ż

]T
=
[
u v w

]T
. Similarly, the time

derivative of the attitude provides the angular velocity in FI ,

i.e., ω =
[
φ̇ θ̇ ψ̇

]T
. ωB =

[
p q r

]T
is the body angular

rates. The quadrotor dynamical model is given below:

ẋ = u u̇ = 1
m

(
cφcψsθ + sφsψ

)
T

ẏ = v v̇ = 1
m

(
cφsψsθ − cψsφ

)
T

ż = w ẇ = 1
mcφcθT − g

φ̇ = p+ sφtθq + cφtθr ṗ =
Iy−Iz
Ix

qr + 1
Ix
τφ

θ̇ = cφq − sφr q̇ = Iz−Ix
Iy

pr + 1
Iy
τθ

ψ̇ =
sφ
cθ
q +

cφ
cθ
r ṙ =

Ix−Iy
Iz

pq + 1
Iz
τψ,

(8)

where c∗, s∗ and t∗ denote cos ∗, sin ∗ and tan ∗, m is the
quadrotor mass, g is the gravity acceleration (g = 9.81m/s2),
Ix, Iy , and Iz are moments of inertia, respectively.

Remark 4: The aforementioned quadrotor dynamic equa-
tions are coupled, nonlinear and the system to be controlled
is underactuated. In addition, the input uncertainty, e.g., noise
on the camera and inertial measurement unit (IMU), in vision-
based control of UAV is an inevitable problem. All these
features have motivated us to use a fuzzy logic controller,
instead of a model-based linear controller, which is able to
handle nonlinear systems with uncertainties.

B. Control Scheme

The overall structure of the closed-loop control of the
quadrotor UAV is illustrated in Fig. 5. It mainly consists
of three modules, i.e., the quadrotor UAV platform (Parrot
AR.DRONE 2.0 Elite Edition, equipped with a front-looking
monocular RGB camera, a 3-axis accelerometer and a 3-
axis gyroscope. The quadrotor UAV publishes captured im-
age frames at 30Hz with a resolution of 640×360 pixels,
gyroscope measurements and the estimated horizontal velocity
at 200 Hz), monocular keyframe-based visual-inertial SLAM
module, and position controller.

Let p∗ = [x∗, y∗, z∗, ψ∗] be the desired position defined by
the end user, p̂ = [x̂, ŷ, ẑ, ψ̂] is the estimated position from
the keyframe-based visual-inertial SLAM algorithm during the
quadrotor UAV flight, the position error ep = p∗− p̂ = [x∗−
x̂, y∗ − ŷ, z∗ − ẑ, ψ∗ − ψ̂]. The position controller computes

Fig. 5: The closed-loop control structure for the long-term navigation of the quadrotor UAV in real-time application.
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the desired control command u∗ = [φ∗, θ∗, v∗z , v
∗
ψ]
T for the

quadrotor UAVs in order to reach the desired position p∗.
Remark 5: The roll angle, pitch angle, vertical velocity

and yaw rotational speed in the desired control command are
normalized to [−1, 1], i.e., φ∗, θ∗, v∗z , v

∗
ψ ∈ [−1, 1] .

IV. MONOCULAR KEYFRAME-BASED VISUAL-INERTIAL
SLAM

Recently, monocular keyframe-based visual simultaneous
localization and mapping (SLAM) has become a key tech-
nology for different types of robots, especially for the UAVs,
to estimate their positions. In the literature, the most represen-
tative monocular keyframe-based SLAM approach is feature-
based parallel tracking and mapping (PTAM) [30]. It is the
first work to present the idea of splitting visual tracking and
mapping into parallel threads. It has been demonstrated to be
successful in different real-time applications. In our work, an
efficient local geometric filter [9], which effectively handles
outlier feature correspondences based on a forward-backward
pairwise dissimilarity measure E, is used to improve the
visual feature tracking thread. The E for every pair of feature
correspondences, i.e., cik=(xik−1, xik) and cjk=(xjk−1, xjk), i 6= j,
is defined as below:

E(cik, c
j
k) =

1

2

[
E(cik, c

j
k|Hk) + E(cik, c

j
k|H

−1
k )
]
, (9)

where,

E(cik, c
j
k|Hk) =

∥∥∥(xik − xjk)−Hk(x
i
k−1 − x

j
k−1)

∥∥∥ ,
E(cik, c

j
k|H

−1
k ) =

∥∥∥(xik−1 − xjk−1)−H−1k (xik − x
j
k)
∥∥∥ .

where ‖∗‖ is the Euclidean distance, xik is the ith feature
location on the kth image frame. Hk is a homography transfor-
mation [31], estimated by the feature correspondences between
image frame Ik−1 and Ik, and H−1k is the inversion of this
homography transformation. Then a hierarchical agglomera-
tive clustering approach [32] is utilized to filter out outlier
correspondences based on an effective single-link approach
with the forward-backward pairwise dissimilarity measure E,
thereby reducing the ambiguity correspondences and filter the
erroneous correspondences. Figure 6 shows some onboard
captured images with feature (green point) tracking results.

The SLAM algorithm used in this study belongs to the
feature-based SLAM approach. In practice, the visual SLAM
algorithm highly depends on feature tracking performance.
Specifically, inaccurate and uncertain position estimations
will be generated under the condition of larger illumination
changes, faster rotations and translations, and fewer feature
detection. Moreover, monocular vision cannot determine the
real scale of the environment and camera motion alone,
which is essential in robot control. In this work, the onboard
inertial measurement unit is used as the proprioceptive device
for resolving the scale ambiguity to achieve the monocular
keyframe-based visual-inertial SLAM.

Remark 6: This is the first work to implement the monocular
keyframe-based visual-inertial SLAM for working with the
Cen-NSFLCs. All degrees-of-freedom have been controlled in
real-world UAV flight experiments.

(a) (b)

(c) (d)

Fig. 6: Onboard captured images with feature (green point)
tracking results during fast UAV trajectory following applica-
tion. Note that different feature tracking performances due to
large rotations (Fig. 6a and Fig. 6b) and fast translations (Fig.
6c and Fig. 6d).

V. REAL-WORLD UAV FLIGHT EXPERIMENTS

Real-world quadrotor UAV flight experiments are conducted
and evaluated in the OptiTrack motion capture system labo-
ratory at Nanyang Technological University, Singapore. The
OptiTrack system can provide real-time rigid body position
measurement, i.e., ground truth, in a three-dimensional space
with an update rate of 240 Hz and accuracy of 0.1mm. All
the controllers, i.e., conventional PID, SFLC, Tra-NSFLC, and
Cen-NSFLC, are developed in C++ within ROS. To evaluate
different levels of input uncertainty affecting the control inputs
of the quadrotor UAV, four different types of flight experiments
with different flight speeds are carried out:
• Test 1: hovering at a fixed position, the target position of

quadrotor UAV is [0, 0, 1, 0]m;
• Test 2: following a time-based 3D ′8′ shape trajectory

with maximum flight speed 1.0m/s;
• Test 3: the same trajectory as the one in Test 2 with

maximum flight speed 1.5m/s;
• Test 4: the same trajectory as the one in Test 2 with

maximum flight speed 2.0m/s.
In Test 1, the UAV flight speed can be considered as 0m/s.

The proposed real-time trajectory is generated based on the
minimize snap property [33], and several manoeuvrable flights,
i.e., ascending and descending straight lines as well as curves,
have been defined to evaluate the robustness of each controller.
Note that the monocular keyframe-based visual-inertial SLAM
estimation is used as the control input of the quadrotor UAV,
the ground truth from the OptiTrack system is used only for
performance evaluations, not for obtaining the global position
of the UAV. To evaluate the performances, all controllers were
designed and iteratively tuned, with an emphasis on investing
equal amounts of design effort for each controller. The UAV
flight data collected from one hundred experiments are ana-
lyzed. Real-time UAV flights in the OptiTrack lab and another
environment are shown at https://youtu.be/xcFqg2ZTQTI.

https://youtu.be/xcFqg2ZTQTI
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A. Monocular Keyframe-based Visual-Inertial SLAM Perfor-
mance

Since the focus of this paper is the evaluation of different
levels of input uncertainty affecting the control inputs, we
review the monocular keyframe-based visual-inertial SLAM
(and its properties) as the key input generating technique. The
relationship between the flight speed and uncertainty level is
shown in Fig. 7a. To evaluate the SLAM performance, the root
mean squared error (RMSE) between the ground truth (G) and
the SLAM estimation (E) is used. Figure 7a shows the average
SLAM performance results with different UAV flight speeds.

As can be seen from Fig. 7a, the SLAM algorithm obtains
the best position estimation result during the UAV hovering
flight tests. As the UAV flight speed is increasing, the position
estimation accuracy is decreasing. The average RMSEGEs of
Tests 2, 3 and 4 have increased 0.139m, 0.16m and 0.199m
compared to the UAV hovering flight tests. Figure 7a also
shows that increased flight speed results in higher position
input uncertainty. Similarly, experiments showed that varia-
tion amount in illumination, rotation and translation speeds,
reduction in detected features - are all postiviely correlated to
increasing uncertainty/noise levels in the position estimation
inputs. For example, the quadrotor UAV during the hovering
flights always looks at the same scene, i.e., same illumination
and number of detected features, without capturing the blurred
image frames.

Figure 7b, 7c and 7d shows x, y and z translation estima-
tions (red color) of two rounds of the trajectory following
application which is controlled by the Cen-NSFLC with a
maximum flight speed of 2m/s. The ground truths (black
color) of the x, y and z translations from the OptiTrack system
are used for performance comparisons. As can be seen from
Fig. 7b, 7c and 7d, although faster flights result in more
challenging pose estimations in the monocular keyframe-based
visual-inertial SLAM, the pose estimations can match the
ground truths fairly well. Therefore, the SLAM estimations are
accurate enough to be used as the control inputs in the long-
term navigation of the real-world quadrotor UAV. Moreover,
the quadrotor UAV locations labeled in Fig. 7b, 7c and 7d are
also shown with external views in Fig. 8.

Remark 7: In order to elaborate the performance of the pre-
sented FLCs in this paper, different levels of input uncertainty
conditions have been generated due to different UAV flight
speeds. Specifically, larger UAV flight speeds will result in
faster rotations and translations, fewer feature detection as well
as bigger illumination changes in SLAM. Due to the fact that
the SLAM algorithm highly depends on the feature tracking
performance, the challenging condition of faster rotations will
result in inaccurate and uncertain position estimations. In other
words, the higher speed for the UAV, the more uncertainties
in the localization, therefore more uncertainties in the input of
the presented FLCs.

B. Control Performance

The control performances of the PID, SFLC, Tra-NSFLC
and Cen-NSFLC are evaluated based on the RMSE between
the ground truth (G) and the reference trajectory (R), i.e.,

RMSEGE(m)
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Fig. 7: Monocular keyframe-based visual-inertial SLAM per-
formances.

RMSEGR. Fig. 9 shows the control performance results, i.e.,
average RMSEGRs calculated from one hundred flight tests.

From Fig. 9, it can be observed that the Cen-NSFLC con-
sistently obtains the best performance across all speed levels.
The control performances of the FLCs are better than those
of the conventional PID controller, while both NSFLCs can
obtain superior control performance compared to the SFLC,
and the Cen-NSFLC outperforms the Tra-NSFLC.

Figure 10 shows the control performances of all the con-
trollers in one round of the trajectory following application
with the maximum flight speed of 2m/s. As can be seen
from these three figures, all the controllers can navigate the
quadrotor UAVs to follow the online generated trajectory,
but the control performance ranking is the Cen-NSFLC, Tra-
NSFLC, SLFC, and PID controller. Although the Euclidean
errors of the SFLC and Tra-NSFLC in some parts of trajectory
are less than the one of the Cen-NSFLC, the overall control
performance of the Cen-NSFLC is better than the ones of the
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(a) Location 1. (b) Location 2. (c) Location 3. (d) Location 4. (e) Location 5.

Fig. 8: External views for the ’8’ shaped trajectory following of a quadrotor UAV for a maximum flight speed of 2m/s.
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Fig. 9: Control performances of all controllers for different
flight speeds.

SFLC and Tra-NSFLC. The Cen-NSFLC outperforms the PID
controller during all parts of the trajectory following.

Remark 8: The main aim of this study is to elaborate input
uncertainty dealing capability of different FLCs. For this goal,
the following strategy is followed: It is a well-known fact that,
in SLAM, different UAV flight speeds result in different inac-
curate and uncertain position estimations. Therefore, different
levels of uncertainties are sent to the inputs of the presented
FLCs. In addition to test handling uncertainties capability in
the FLC/NSFLC, several types of maneuverable flights, i.e.,
ascending and descending straight lines and curves, have been
defined to evaluate the robustness of the controller. In real-
time UAV application, in which UAV trajectories are generated
online, when a PID controller is tuned with respect to curve
line trajectories, it provides oscillatory responses for straight
lines. On the other hand, a PID controller tuned with respect to
straight line trajectories provides larger steady-state error for
curve lines. We would like to emphasize that the trial-and-error
approach has been used to achieve as close as to the optimal
performance for all types of trajectories, i.e., straight and
curve line trajectories and also for different speed values for
PID controller. Unlike PID, the presented FLCs are nonlinear
controllers, and they provide better performances in particular
for uncertain working environments.

VI. CONCLUSIONS AND FUTURE WORK

This study explores the real-world real-time trajectory fol-
lowing problem of quadrotor UAVs under different levels of
input uncertainty. A comprehensive evaluation of real UAV
control performance has been conducted in the context of
varying flight speeds with monocular keyframe-based visual-
inertial SLAM as the primary navigation input source. Overall,
four individual controllers were compared: the conventional
PID controller and three different types of FLCs, i.e., a
SFLC and two NSFLCs: Tra-NSFLC and the novel Cen-
NSFLC, also providing the first real-world application of
the Cen-NSFLC framework. The key objective of this work
was not to identify the best control performance possible,
but to compare the relative performance of the different
controllers under different levels of input uncertainty from
the real-world onboard sensors, i.e. the camera and IMU.
The flight experiments conducted in this paper show that the
control performances of the FLCs are better than those of
the conventional PID controller, that the NSFLCs can obtain
superior control performance (exhibiting better noise rejection)
compared to the SFLC, and the Cen-NSFLC outperforms the
Tra-NSFLC, especially at the higher flight speeds. Importantly,
significant effort was made to allow for comparable levels
of controller design effort for all controllers, i.e. while all
controllers could be tuned further, we are confident we have
been able to provide a fair basis for their comparison based
on the parameters selected. It is also worth noting that the
input uncertainty model employed for the NSFLCs (a Gaussian
distribution associated with a crisp input) is a simplistic model
which for example does not capture manufacture-published
uncertainty levels of the sensors. As the best-performing Cen-
NSFLC is designed to extract maximum information form the
input uncertainty model, we expect that even small amounts
of refinement in the input uncertainty models will result in
further improved performance.

As part of future work, we will focus on exploring the
possibility of making the presented NSFLCs adaptive while
using them for navigating quadrotor UAV. Adaptive FLCs may
help to improve the trajectory following accuracy when an
external performance measure is available [34], e.g., after the
quadrotor UAV starts to conduct the second circular line turn,
thereby obtaining the minimum Euclidean errors throughout
the whole trajectory. On the other hand, improving the input
uncertainty model may in itself result in improved performance
as alluded to above. Finally, we are planning to apply the
outcomes of this work to the design of type-2 fuzzy controllers
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Fig. 10: Trajectory following performances of all controllers
in Test 4.

to explore if type-2 NSFLCs can deliver further improved
performance.
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