424 research outputs found

    Fault Diagnosis Techniques for Linear Sampled Data Systems and a Class of Nonlinear Systems

    Get PDF
    This thesis deals with the fault diagnosis design problem both for dynamical continuous time systems whose output signal are affected by fixed point quantization,\ud referred as sampled-data systems, and for two different applications whose dynamics are inherent high nonlinear: a remotely operated underwater vehicle and a scramjet-powered hypersonic vehicle.\ud Robustness is a crucial issue. In sampled-data systems, full decoupling of disturbance terms from faulty signals becomes more difficult after discretization.\ud In nonlinear processes, due to hard nonlinearity or the inefficiency of linearization, the “classical” linear fault detection and isolation and fault tolerant control methods may not be applied.\ud Some observer-based fault detection and fault tolerant control techniques are studied throughout the thesis, and the effectiveness of such methods are validated with simulations. The most challenging trade-off is to increase sensitivity to faults and robustness to other unknown inputs, like disturbances. Broadly speaking, fault detection filters are designed in order to generate analytical diagnosis functions, called residuals, which should be independent with respect to the system operating state and should be decoupled from disturbances. Decisions on the occurrence of a possible fault are therefore taken on the basis such residual signals

    The Design of Fixed-Time Observer and Finite-Time Fault-Tolerant Control for Hypersonic Gliding Vehicles

    Get PDF
    This paper proposes a fault-tolerant control scheme for a hypersonic gliding vehicle to counteract actuator faults and model uncertainties. Starting from the kinematic and aerodynamic models of the hypersonic vehicle, the control-oriented model subject to actuator faults is built. The observers are designed to estimate the information of actuator faults and model uncertainties, and to guarantee the estimation errors for converging to zero in fixed settling time. Subsequently, the finite-time multivariable terminal sliding mode control and composite-loop design are pursued to enable integration into the faulttolerant control, which can ensure the safety of the postfault vehicle in a timely manner. Simulation studies of a six degree-of-freedom nonlinear model of the hypersonic gliding vehicle are carried out to manifest the effectiveness of the investigated fault-tolerant control system

    Propulsion Controls and Diagnostics Research at NASA Glenn Research Center

    Get PDF
    With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. Also the propulsion systems required to enable the National Aeronautics and Space Administration (NASA) Vision for Space Exploration in an affordable manner will need to have high reliability, safety and autonomous operation capability. The Controls and Dynamics Branch (CDB) at NASA Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet these challenges through the concept of Intelligent Propulsion Systems. This paper describes the current activities of the CDB under the NASA Aeronautics Research and Exploration Systems Missions. The programmatic structure of the CDB activities is described along with a brief overview of each of the CDB tasks including research objectives, technical challenges, and recent accomplishments. These tasks include active control of propulsion system components, intelligent propulsion diagnostics and control for reliable fault identification and accommodation, distributed engine control, and investigations into unsteady propulsion systems

    IEEE Access Special Section: Recent Advances in Fault Diagnosis and Fault-Tolerant Control of Aerospace Engineering Systems

    Get PDF
    With the rapid development of automation technologies, aerospace engineering systems, including aircraft, satellite, and spacecraft, have become increasingly susceptible to system/component malfunctions. Failure to take appropriate responses to even relatively minor defects can result in highly destructive events. A conventional feedback control design may result in an unsatisfactory performance or even instability in the event of malfunctions. Because of this, fault diagnosis (FD) and fault-tolerant control (FTC) technologies that can ensure the safety of handicapped systems have attracted significant interest. FTC design and relevant techniques have provided a flexible framework for dealing with these challenges since the 1970s. There has been significant progress since the 1970s by the active research community, through symposiums and seminars, as well as the vast number of publications on the subject. The research illustrates that FD and FTC are effective and applicable in many engineering plants, especially for aerospace engineering systems. However, it still remains a challenging research area in applications relating to aircraft, spacecraft, and satellites

    Aeronautical engineering: A continuing bibliography with indexes (supplement 238)

    Get PDF
    This bibliography lists 458 reports, articles, and other documents introduced into the NASA scientific and technical information system in March, 1989. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics

    Adaptive Multivariable Integral TSMC of a Hypersonic Gliding Vehicle with Actuator Faults and Model Uncertainties

    Get PDF
    This paper presents a fault-tolerant control (FTC) strategy for a hypersonic gliding vehicle (HGV) subject to actuator malfunctions and model uncertainties. The control-oriented model of the HGV is estabilished according to the HGV kinematic and aerodynamic models. A single-loop design for HGV FTC under actuator faults is subsequently developed, where newly developed multivariable integral terminal sliding mode control (TSMC) and adaptive techniques are integrated. The multivariable integral TSMC is capable of ensuring the finite-time stability of the closed-loop system in the presence of actuator malfunctions and model uncertainties, while the adaptive laws are employed to tune the control parameters in response to the HGV status. Simulation studies based on a six degree-of-freedom (DOF) nonlinear model of the HGV are illustrated to highlight the effectiveness of the developed FTC scheme

    Anti-disturbance fault tolerant initial alignment for inertial navigation system subjected to multiple disturbances

    Get PDF
    Modeling error, stochastic error of inertial sensor, measurement noise and environmental disturbance affect the accuracy of an inertial navigation system (INS). In addition, some unpredictable factors, such as system fault, directly affect the reliability of INSs. This paper proposes a new anti-disturbance fault tolerant alignment approach for a class of INSs sub- jected to multiple disturbances and system faults. Based on modeling and error analysis, stochastic error of inertial sensor, measurement noise, modeling error and environmental disturbance are formulated into different types of disturbances described by a Markov stochastic process, Gaussian noise and a norm-bounded variable, respectively. In order to improve the accuracy and reliability of an INS, an anti-disturbance fault tolerant filter is designed. Then, a mixed dissipative/guarantee cost performance is applied to attenuate the norm-bounded disturbance and to optimize the estimation error. Slack variables and dissipativeness are introduced to reduce the conservatism of the proposed approach. Finally, compared with the unscented Kalman filter (UKF), simulation results for self-alignment of an INS are provided based on experimental data. It can be shown that the proposed method has an enhanced disturbance rejection and attenuation performance with high reliability

    Langley aerospace test highlights, 1985

    Get PDF
    The role of the Langley Research Center is to perform basic and applied research necessary for the advancement of aeronautics and space flight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Significant tests which were performed during calendar year 1985 in Langley test facilities, are highlighted. Both the broad range of the research and technology activities at the Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research, are illustrated. Other highlights of Langley research and technology for 1985 are described in Research and Technology-1985 Annual Report of the Langley Research Center

    Fault Diagnosis and Fault-Tolerant Control of Unmanned Aerial Vehicles

    Get PDF
    With the increasing demand for unmanned aerial vehicles (UAVs) in both military and civilian applications, critical safety issues need to be specially considered in order to make better and wider use of them. UAVs are usually employed to work in hazardous and complex environments, which may seriously threaten the safety and reliability of UAVs. Therefore, the safety and reliability of UAVs are becoming imperative for development of advanced intelligent control systems. The key challenge now is the lack of fully autonomous and reliable control techniques in face of different operation conditions and sophisticated environments. Further development of unmanned aerial vehicle (UAV) control systems is required to be reliable in the presence of system component faults and to be insensitive to model uncertainties and external environmental disturbances. This thesis research aims to design and develop novel control schemes for UAVs with consideration of all the factors that may threaten their safety and reliability. A novel adaptive sliding mode control (SMC) strategy is proposed to accommodate model uncertainties and actuator faults for an unmanned quadrotor helicopter. Compared with the existing adaptive SMC strategies in the literature, the proposed adaptive scheme can tolerate larger actuator faults without stimulating control chattering due to the use of adaptation parameters in both continuous and discontinuous control parts. Furthermore, a fuzzy logic-based boundary layer and a nonlinear disturbance observer are synthesized to further improve the capability of the designed control scheme for tolerating model uncertainties, actuator faults, and unknown external disturbances while preventing overestimation of the adaptive control parameters and suppressing the control chattering effect. Then, a cost-effective fault estimation scheme with a parallel bank of recurrent neural networks (RNNs) is proposed to accurately estimate actuator fault magnitude and an active fault-tolerant control (FTC) framework is established for a closed-loop quadrotor helicopter system. Finally, a reconfigurable control allocation approach is combined with adaptive SMC to achieve the capability of tolerating complete actuator failures with application to a modified octorotor helicopter. The significance of this proposed control scheme is that the stability of the closed-loop system is theoretically guaranteed in the presence of both single and simultaneous actuator faults

    2020 NASA Technology Taxonomy

    Get PDF
    This document is an update (new photos used) of the PDF version of the 2020 NASA Technology Taxonomy that will be available to download on the OCT Public Website. The updated 2020 NASA Technology Taxonomy, or "technology dictionary", uses a technology discipline based approach that realigns like-technologies independent of their application within the NASA mission portfolio. This tool is meant to serve as a common technology discipline-based communication tool across the agency and with its partners in other government agencies, academia, industry, and across the world
    corecore