12 research outputs found

    Appearance-Based Gaze Estimation in the Wild

    Full text link
    Appearance-based gaze estimation is believed to work well in real-world settings, but existing datasets have been collected under controlled laboratory conditions and methods have been not evaluated across multiple datasets. In this work we study appearance-based gaze estimation in the wild. We present the MPIIGaze dataset that contains 213,659 images we collected from 15 participants during natural everyday laptop use over more than three months. Our dataset is significantly more variable than existing ones with respect to appearance and illumination. We also present a method for in-the-wild appearance-based gaze estimation using multimodal convolutional neural networks that significantly outperforms state-of-the art methods in the most challenging cross-dataset evaluation. We present an extensive evaluation of several state-of-the-art image-based gaze estimation algorithms on three current datasets, including our own. This evaluation provides clear insights and allows us to identify key research challenges of gaze estimation in the wild

    Robust Gaze Estimation Based on Adaptive Fusion of Multiple Cameras

    Get PDF
    Gaze movements play a crucial role in human-computer interaction (HCI) applications. Recently, gaze tracking systems with a wide variety of applications have attracted much interest by the industry as well as the scientific community. The state-of-the-art gaze trackers are mostly non-intrusive and report high estimation accuracies. However, they require complex setups such as camera and geometric calibration in addition to subject-specific calibration. In this paper, we introduce a multi-camera gaze estimation system which requires less effort for the users in terms of the system setup and calibration. The system is based on an adaptive fusion of multiple independent camera systems in which the gaze estimation relies on simple cross-ratio (CR) geometry. Experimental results conducted on real data show that the proposed system achieves a significant accuracy improvement, by around 25%, over the traditional CR-based single camera systems through the novel adaptive multi-camera fusion scheme. The real-time system achieves less than 0.9 degrees accuracy error with very few calibration data (5 points) under natural head movements, which is competitive with more complex systems. Hence, the proposed system enables fast and user-friendly gaze tracking with minimum user effort without sacrificing too much accuracy

    Bypassing the Natural Visual-Motor Pathway to Execute Complex Movement Related Tasks Using Interval Type-2 Fuzzy Sets

    Get PDF
    In visual-motor coordination, the human brain processes visual stimuli representative of complex motion-related tasks at the occipital lobe to generate the necessary neuronal signals for the parietal and pre-frontal lobes, which in turn generates movement related plans to excite the motor cortex to execute the actual tasks. The paper introduces a novel approach to provide rehabilitative support to patients suffering from neurological damage in their pre-frontal, parietal and/or motor cortex regions. An attempt to bypass the natural visual-motor pathway is undertaken using interval type-2 fuzzy sets to generate the approximate EEG response of the damaged pre-frontal/parietal/motor cortex from the occipital EEG signals. The approximate EEG response is used to trigger a pre-trained joint coordinate generator to obtain desired joint coordinates of the link end-points of a robot imitating the human subject. The robot arm is here employed as a rehabilitative aid in order to move each link end-points to the desired locations in the reference coordinate system by appropriately activating its links using the well-known inverse kinematics approach. The mean-square positional errors obtained for each link end-points is found within acceptable limits for all experimental subjects including subjects with partial parietal damage, indicating a possible impact of the proposed approach in rehabilitative robotics. Subjective variation in EEG features over different sessions of experimental trials is modelled here using interval type-2 fuzzy sets for its inherent power to handle uncertainty. Experiments undertaken confirm that interval type-2 fuzzy realization outperforms its classical type-1 counterpart and back-propagation neural approaches in all experimental cases, considering link positional error as a metric. The proposed research offers a new opening for the development of possible rehabilitative aids for people with partial impairment in visual-motor coordination

    A Review and Analysis of Eye-Gaze Estimation Systems, Algorithms and Performance Evaluation Methods in Consumer Platforms

    Full text link
    In this paper a review is presented of the research on eye gaze estimation techniques and applications, that has progressed in diverse ways over the past two decades. Several generic eye gaze use-cases are identified: desktop, TV, head-mounted, automotive and handheld devices. Analysis of the literature leads to the identification of several platform specific factors that influence gaze tracking accuracy. A key outcome from this review is the realization of a need to develop standardized methodologies for performance evaluation of gaze tracking systems and achieve consistency in their specification and comparative evaluation. To address this need, the concept of a methodological framework for practical evaluation of different gaze tracking systems is proposed.Comment: 25 pages, 13 figures, Accepted for publication in IEEE Access in July 201

    Regression Based Gaze Estimation with Natural Head Movement

    Get PDF
    This thesis presents a non-contact, video-based gaze tracking system using novel eye detection and gaze estimation techniques. The objective of the work is to develop a real-time gaze tracking system that is capable of estimating the gaze accurately under natural head movement. The system contains both hardware and software components. The hardware of the system is responsible for illuminating the scene and capturing facial images for further computer analysis, while the software implements the core technique of gaze tracking which consists of two main modules, i.e., eye detection subsystem and gaze estimation subsystem. The proposed gaze tracking technique uses image plane features, namely, the inter-pupil vector (IPV) and the image center-inter pupil center vector (IC-IPCV) to improve gaze estimation precision under natural head movement. A support vector regression (SVR) based estimation method using image plane features along with traditional pupil center-cornea reflection (PC-CR) vector is also proposed to estimate the gaze. The designed gaze tracking system can work in real-time and achieve an overall estimation accuracy of 0.84Âș with still head and 2.26Âș under natural head movement. By using the SVR method for off-line processing, the estimation accuracy with head movement can be improved to 1.12Âș while providing a tolerance of 10cm×8cm×5cm head movement

    Gaze estimation and interaction in real-world environments

    Get PDF
    Human eye gaze has been widely used in human-computer interaction, as it is a promising modality for natural, fast, pervasive, and non-verbal interaction between humans and computers. As the foundation of gaze-related interactions, gaze estimation has been a hot research topic in recent decades. In this thesis, we focus on developing appearance-based gaze estimation methods and corresponding attentive user interfaces with a single webcam for challenging real-world environments. First, we collect a large-scale gaze estimation dataset, MPIIGaze, the first of its kind, outside of controlled laboratory conditions. Second, we propose an appearance-based method that, in stark contrast to a long-standing tradition in gaze estimation, only takes the full face image as input. Second, we propose an appearance-based method that, in stark contrast to a long-standing tradition in gaze estimation, only takes the full face image as input. Third, we study data normalisation for the first time in a principled way, and propose a modification that yields significant performance improvements. Fourth, we contribute an unsupervised detector for human-human and human-object eye contact. Finally, we study personal gaze estimation with multiple personal devices, such as mobile phones, tablets, and laptops.Der Blick des menschlichen Auges wird in Mensch-Computer-Interaktionen verbreitet eingesetzt, da dies eine vielversprechende Möglichkeit fĂŒr natĂŒrliche, schnelle, allgegenwĂ€rtige und nonverbale Interaktion zwischen Mensch und Computer ist. Als Grundlage von blickbezogenen Interaktionen ist die BlickschĂ€tzung in den letzten Jahrzehnten ein wichtiges Forschungsthema geworden. In dieser Arbeit konzentrieren wir uns auf die Entwicklung Erscheinungsbild-basierter Methoden zur BlickschĂ€tzung und entsprechender “attentive user interfaces” (die Aufmerksamkeit des Benutzers einbeziehende Benutzerschnittstellen) mit nur einer Webcam fĂŒr anspruchsvolle natĂŒrliche Umgebungen. ZunĂ€chst sammeln wir einen umfangreichen Datensatz zur BlickschĂ€tzung, MPIIGaze, der erste, der außerhalb von kontrollierten Laborbedingungen erstellt wurde. Zweitens schlagen wir eine Erscheinungsbild-basierte Methode vor, die im Gegensatz zur langjĂ€hrigen Tradition in der BlickschĂ€tzung nur eine vollstĂ€ndige Aufnahme des Gesichtes als Eingabe verwendet. Drittens untersuchen wir die Datennormalisierung erstmals grundsĂ€tzlich und schlagen eine Modifizierung vor, die zu signifikanten Leistungsverbesserungen fĂŒhrt. Viertens stellen wir einen unĂŒberwachten Detektor fĂŒr Augenkontakte zwischen Mensch und Mensch und zwischen Mensch und Objekt vor. Abschließend untersuchen wir die persönliche BlickschĂ€tzung mit mehreren persönlichen GerĂ€ten wie Handy, Tablet und Laptop
    corecore