130 research outputs found

    Nonlinear Dynamic Modelling and Analysis of a 3-D Overhead Gantry Crane System with System Parameters Variation

    Get PDF
    Overhead cranes are widely used in industry for transportation of heavy loads. The natural sway of crane payloads is detrimental to safe and efficient operation. However, the crane acceleration, required for motion, always induces undesirable load swing. This paper presents dynamic modelling of a 3-D overhead gantry crane system based on closed-form equations of motion. The Lagrangian method is used to derive the dynamic model of the system. A dynamic model of the system incorporating payload and rope length is developed. Then the effects of payload and rope length on the response of the system are discussed. Extensive results that validate the theoretical derivation are presented in the time and frequency domains

    Nonlinear Control of Flexible Two-Dimensional Overhead Cranes

    Get PDF
    Considering gantry cable as an elastic string having a distributed mass, we constitute a dynamic model for coupled flexural overhead cranes by using the extended Hamilton principle. Two kinds of nonlinear controllers are proposed based on the Lyapunov stability and its improved version entitled barrier Lyapunov candidate to maintain payload motion in a certain defined range. With such a continuously distributed model, the finite difference method is utilized to numerically simulate the control system. The results show that the controllers work well and the crane system is stabilized

    Input shaping-based control schemes for a three dimensional gantry crane

    Get PDF
    The motion induced sway of oscillatory systems such as gantry cranes may decrease the efficiency of production lines. In this thesis, modelling and development of input shaping-based control schemes for a three dimensional (3D) lab-scaled gantry crane are proposed. Several input shaping schemes are investigated in open and closed-loop systems. The controller performances are investigated in terms of trolley position and sway responses of the 3D crane. Firstly, a new distributed Delay Zero Vibration (DZV) shaper is implemented and compared with Zero Vibration (ZV) shaper and Zero Vibration Derivative (ZVD) shaper. Simulation and experimental results show that all the shapers are able to reduce payload sway significantly while maintaining desired position response specifications. Robustness tests with ±20% error in natural frequency show that DZV shaper exhibits asymmetric robustness behaviour as compared to ZV and ZVD shapers. Secondly, as analytical technique could only provide good performance for linear systems, meta-heuristic based input shaper is proposed to reduce sway of a gantry crane which is a nonlinear system. The results show that designing meta-heuristic-based input shapers provides 30% to 50% improvement as compared to the analytical-based shapers. Subsequently, a particle swarm optimization based optimal performance control scheme is developed in closed-loop system. Simulation and experimental results demonstrate that the controller gives zero overshoot with 60% and 20% improvements in settling time and integrated absolute error value of position response respectively, as compared to a specific designed PID-PID anti swing controller for the lab-scaled gantry crane. It is found that crane control with changing cable length is still a problem to be solved. An adaptive input shaping control scheme that can adapt to variation of cable’s length is developed. Simulation with real crane dimensions and experimental results verify that the controller provides 50% reduction in payload sway for different operational commands with hoisting as compared to the average travel length approach

    Comparison of Linear and Nonlinear MPC on Operator-In-the-Loop Overhead Cranes

    Get PDF
    Model Predictive Control has been proved to enhance the control performance of overhead cranes. However, in Operator-In-the-Loop (OIL) overhead cranes the trajectory of the payload strongly depends on the runtime decisions of the user and can not be predicted beforehand. Simple assumptions on the future references evolution have therefore to be made. In this paper we investigate the applicability of linear and nonlinear MPC strategies to the case of OIL overhead cranes, based on different assumptions on the future evolution of the length of the hoisting cable

    Minimum Time Control of a Gantry Crane System with Rate Constraints

    Full text link
    This paper focuses on the development of minimum time control profiles for point-to-point motion of a gantry crane system in the presence of uncertainties in modal parameters. Assuming that the velocity of the trolley of the crane can be commanded and is subject to limits, an optimal control problem is posed to determine the bang-off-bang control profile to transition the system from a point of rest to the terminal states with no residual vibrations. Both undamped and underdamped systems are considered and the variation of the structure of the optimal control profiles as a function of the final displacement is studied. As the magnitude of the rigid body displacement is increased, the collapse and birthing of switches in the optimal control profile are observed and explained. Robustness to uncertainties in modal parameters is accounted for by forcing the state sensitivities at the terminal time to zero. The observation that the time-optimal control profile merges with the robust time-optimal control is noted for specific terminal displacements and the migration of zeros of the time-delay filter parameterizing the optimal control profile are used to explain this counter intuitive result. A two degree of freedom gantry crane system is used to experimentally validate the observations of the numerical studies and the tradeoff of increase in maneuver time to the reduction of residual vibrations is experimentally illustrated

    Dynamic Modelling And Analysis Of 3D Overhead Gantry Crane System

    Get PDF
    The overhead gantry crane systems are extensively used in harbours and factories for transportation of heavy loads. The crane speeding up,required for motion,always induces undesirable load swing.This writings present dynamic modelling of a 3D overhead gantry crane system based on closed-form equations of motion.By using the Lagrange technique,a 3D overhead gantry crane system nonlinear dynamic model is deriving.Then perform a linearization process to obtain a linear model dynamic system.Finally, simulation results systems responses of the derived nonlinear and linear model are presented showing the accuracy and performance of both model

    Fuzzy sliding mode control of an offshore container crane

    Full text link
    © 2017 A fuzzy sliding mode control strategy for offshore container cranes is investigated in this study. The offshore operations of loading and unloading containers are performed between a mega container ship, called the mother ship, and a smaller ship, called the mobile harbor (MH), which is equipped with a container crane. The MH is used to transfer the containers, in the open sea, and deliver them to a conventional stevedoring port, thereby minimizing the port congestion and also eliminating the need of expanding outwards. The control objective during the loading and unloading process is to keep the payload in a desired tolerance in harsh conditions of the MH motion. The proposed control strategy combines a fuzzy sliding mode control law and a prediction algorithm based on Kalman filtering for the MH roll angle. Here, the sliding surface is designed to incorporate the desired trolley trajectory while suppressing the sway motion of the payload. To improve the control performance, the discontinuous gain of the sliding control is adjusted with fuzzy logic tuning schemes with respect to the sliding function and its rate of change. Chattering is further reduced by a saturation function. Simulation and experimental results are provided to verify the effectiveness of the proposed control system for offshore container cranes

    Modelling and control of offshore crane systems

    Full text link
    University of Technology Sydney. Faculty of Engineering and Information Technology.Cranes are widely used in transportation, construction and manufacturing. Suspended payloads in crane system are caused to swing due to actuator movement, external disturbance such as wind flows, and motion of the crane base in the case of portable cranes. Recently, offshore cranes have become a new trend in stevedoring and in offshore construction as they can help to avoid port congestion and also to exploit ocean engineering applications. For crane operations, it is important to satisfy rigorous requirements in terms of safety, accuracy and efficiency. One of the main challenges in crane operations has been identified as the sway motion control, which is subject to underactuation of crane drive systems and external disturbances. Particularly in offshore cranes, the harsh conditions can produce exogenous disturbances during the load transfer at various scenarios of offshore crane operations in practice. Therefore, it is interesting as to how to design robust controllers to guarantee high performance in the face of disturbances and parameter variations in offshore cranes. The motivation for this thesis is based on recent growing research interest in the derivation of dynamic models and development of control techniques for offshore cranes in the presence of, for example, the rope length variation, sway, ocean waves and strong winds in offshore crane systems. Accordingly, the work for this thesis has been conducted in the two main themes, namely analytical modelling and control design, for which new results represent its contributions. Dynamic models of two types of offshore crane systems, namely the offshore gantry crane and offshore boom crane, are derived in the presence of vessel’s ocean wave-induced motion. The effect of wind disturbances on the payload sway is also considered in the modelling. In the control context, sliding mode control techniques for a generic form of underactuated mechanical Lagrangian systems are presented, including the conventional first-order, second-order and adaptive fuzzy sliding mode controllers. The major component in this part of the thesis is the design of sliding mode control laws based on the developed offshore crane models for trajectory tracking problems, in the presence of persistent disturbances in severe open-sea conditions. Extensive simulation results are presented to demonstrate the efficacy of the models and robustness of the designed controllers

    Position and sway control of a nonlinear tower crane system using input shaping techniques

    Get PDF
    Crane systems are the most widely used tools in the shipping yards and construction sites to transport goods from one point to another. The emergence of high riser-building, encourages the use of modern systems particularly tower crane systems to conveniently execute various tasks within the shortest possible time. However, those systems suffered greatly from undesired swinging during the process. Conversely, this significantly posed problems to the systems, resulting to inaccurate positioning of the payload, unease of operation by the human operator and in some cases even damage to the system. This paper investigates the performance of input shaping techniques for sway control of a tower crane system. Unlike the conventional optimal controllers, input shaping is simple to design and cost effective as it does not require feedback sensors. Several input shapers were implemented and their performances were compared which are useful for future sway control designs. The nonlinear model of the system was derived using the Lagrange’s energy equation. To investigate the performance and robustness of input shaping techniques, zero vibration (ZV), zero vibration derivative (ZVD), zero vibration derivative-derivative (ZVDD) and zero vibration derivative-derivative-derivative (ZVDDD) were proposed with a constant cable dimension in an open loop configuration. Simulation and experimental results have shown that ZVDDD with the slowest response has the highest level of sway reduction and robustness to modelling errors as compared to ZV, ZVD and ZVDD. Moreover, to improve the response, a negative amplitude zero vibration derivative-derivative (NAZVDD) was designed and its performance was compared with ZVDD. It is found that NAZVDD gives a faster response with small robustness penalty as compared to ZVDD
    corecore