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Crane systems are the most widely used tools in the shipping yards and 

construction sites to transport goods from one point to another. The emergence of 

high riser-building, encourages the use of modern systems particularly tower crane 

systems to conveniently execute various tasks within the shortest possible time. 

However, those systems suffered greatly from undesired swinging during the 

process. Conversely, this significantly posed problems to the systems, resulting to 

inaccurate positioning of the payload, unease of operation by the human operator and 

in some cases even damage to the system. This paper investigates the performance of 

input shaping techniques for sway control of a tower crane system. Unlike the 

conventional optimal controllers, input shaping is simple to design and cost effective 

as it does not require feedback sensors. Several input shapers were implemented and 

their performances were compared which are useful for future sway control designs. 

The nonlinear model of the system was derived using the Lagrange’s energy 

equation. To investigate the performance and robustness of input shaping techniques, 

zero vibration (ZV), zero vibration derivative (ZVD), zero vibration derivative-

derivative (ZVDD) and zero vibration derivative-derivative-derivative (ZVDDD) 

were proposed with a constant cable dimension in an open loop configuration. 

Simulation and experimental results have shown that ZVDDD with the slowest 

response has the highest level of sway reduction and robustness to modelling errors 

as compared to ZV, ZVD and ZVDD. Moreover, to improve the response, a negative 

amplitude zero vibration derivative-derivative (NAZVDD) was designed and its 

performance was compared with ZVDD. It is found that NAZVDD gives a faster 

response with small robustness penalty as compared to ZVDD.  
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Sistem Crane adalah alat yang paling banyak digunakan di kilometer 

perkapalan dan tapak pembinaan untuk mengangkut barang-barang dari satu titik 

yang lain. Kemunculan tinggi riser-bangunan, menggalakkan penggunaan sistem 

moden terutamanya menara sistem kren untuk mudah melaksanakan pelbagai tugas 

dalam masa yang sesingkat mungkin. Walau bagaimanapun, sistem tersebut 

menderita akibat berayun yang tidak diingini semasa proses tersebut. Sebaliknya, ini 

menimbulkan masalah dengan ketara kepada sistem, mengakibatkan kepada 

kedudukan yang tidak tepat muatan, rasa tidak senang operasi oleh pengendali 

manusia dan dalam beberapa kes walaupun kerosakan kepada sistem. Kertas ini 

mengkaji prestasi teknik membentuk input untuk kawalan kekuasaan sistem kren 

menara. Tidak seperti pengawal optimum konvensional, membentuk input adalah 

mudah untuk mereka bentuk dan kos efektif kerana ia tidak memerlukan sensor 

maklum balas. Beberapa pembentuk input telah dilaksanakan dan persembahan 

mereka berbanding yang berguna untuk reka bentuk kawalan bergoyang masa depan. 

Model tak linear sistem itu diperoleh dengan menggunakan persamaan tenaga 

Lagrange. Untuk menyiasat prestasi dan keteguhan teknik input membentuk, sifar 

getaran (ZV), sifar getaran terbitan (ZVD), sifar getaran derivatif-derivatif (ZVDD) 

dan getaran sifar derivatif-derivatif-derivatif (ZVDDD) telah dicadangkan dengan 

satu dimensi kabel berterusan dalam konfigurasi gelung terbuka. Simulasi dan 

keputusan eksperimen telah menunjukkan bahawa ZVDDD dengan jawapan yang 

paling perlahan mempunyai tahap tertinggi mengurangkan gegaran dan keteguhan 

kepada kesilapan pemodelan berbanding ZV, ZVD dan ZVDD.  
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INTRODUCTION 

1.1 Introduction  

Crane systems are the most widely used tools in the industries, ware-houses, 

shipping yards, construction sites, mining sites, power plants, among others, to 

perform manipulations or guides products to be transported from one point to another 

(Zrni et al., 2014; Renuka & Mathew, 2013). The ever increasing need of products of 

huge sizes, as well as the emergence of high risers, encourages the use of modern 

systems particularly tower crane systems to conveniently execute various tasks 

within the shortest possible time. There are commonly three different kinds of crane 

systems depending upon the application; gantry cranes, tower cranes and boom 

cranes (Izzuan et al. 2013). 

Gantry cranes (see Figure 1.1) consist of a moving element (trolley) which 

moves along a horizontal rail (jib). Usually the jib is supported by pairs of legs at 

both ends. When the trolley can only moves in one direction, the crane is known as 

two dimensional (2D) and when it moves in two directions, it is known as three 

dimensional (3D). Due to their simple operation and less cost, gantry cranes are 

commonly used in the industries, mining sites, shipping yards, transport industries 

etc (Al-mousa and Pratt 2000) 
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Figure 1.1 Gantry crane system  

A rotary (also tower) cranes, consist of jib that moves (rotates) horizontally 

about a fixed vertical support. The cart can move either linearly as the case of gantry 

or rotates within the operating range of the crane. The payload is connected to the 

trolley by a set of cables (see Figure 1.2). Because of these additional flexibility, 

rotary cranes are commonly used in the construction sites and transport industry 

(Masoud 2003) 

 

Figure 1.2 Tower crane system  
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Boom cranes as shown in Figure 1.3, consists of a rotating base where the 

boom is connected. The payload is attached to the tip of the boom by a set of cables 

and pulleys. As the base rotates, the boom tip can be placed at any point horizontally 

within the reach of the crane. Boom cranes offers more flexibility than gantry crane 

and tower cranes of the same capacity. They are usually mounted on ships or harbour 

pavements to transfer cargo between offshore structures and ships (Masoud 2003) 

 

Figure 1.3 Boom crane system  

However, those systems suffered greatly from undesired deflection and 

swinging during the process. Conversely, these detrimental phenomenon, 

significantly posed problems to the systems, resulting to inaccurate positioning of the 

payload, unease of operation by the human operator and in some cases even a 

damage to the system (Renuka and Mathew 2013; Yoon et al., 2014). 

On the other hand, the need to provide suitable working condition for the 

human operator and also to minimized maintenance cost due to system failure, 

thousands of researchers engaged in studying the dynamic behaviour of the crane 
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system and proposed various control strategies in order to achieve optimum 

performance of the crane systems (Singhose 2009). In this research work, a tower 

crane system is considered. 

1.2 Problem Statement 

The major concern with the operation of crane systems is to transport, load 

and unload the load easily from one point to another as quickly as possible. 

However, the critical issue that hinders the efficiency of the crane system is the 

oscillation of the payload. This persistent swinging constitutes; inaccurate 

positioning of the payload, longer time of task completion, difficult automation by 

the human operator and damage to the system or the operating environment.  

1.3 Objectives 

The main objectives of this research work are as follows: 

a) To design positive and negative input shapers for sway control of a tower 

crane. 

b) To design a combined closed-loop and input shaping control. 

c) To implement and investigate the effectiveness of the controller using 

simulation and experiment. 
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1.4 Scope of Study 

This project is limited to: 

a) A tower crane system 

b) Design of positive and negative input shapers  

c) MATLAB software for the simulation of  a tower crane nonlinear model 

d) Implementation of the controllers in real-time on a lab-scale tower crane. 

1.5 Significances and Original Contributions of This Study 

This work made several contributions to the improvement of the nonlinear 

tower cranes some of which have been published (see Appendix A). This includes: 

a) Study of the dynamic behaviour of the tower crane 

b) Designed of positive and negative input shaping control algorithms for sway 

reduction of the payload. 

1.6 Thesis Structure and Organization 

This research work is organised as follows. Chapter 1 elaborates the general 

overview of the crane systems, Chapter 2 provides the review of the related literature 

on the crane systems in relation to the modelling and control of the cranes. Chapter 3 

describes the description of the tower crane, derivation of the mathematical model of 

the system as well as the control design. Chapter 4 discusses implementation of input 
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shaping schemes on tower crane system, chapter 5 presents and discusses the 

obtained results. Finally, Chapter 6 presents the conclusion and the future 

recommendations.  
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