956 research outputs found

    Nonlinear Dynamic Chaos Theory Framework for Passenger Demand Forecasting in Smart City

    Get PDF
    Recently chaos theory has emerged as a powerful tool to address forecasting problems of nonlinear time series, since it is able to meet the dynamical and geometrical structures of very complex systems, reaching higher accuracy on the prediction values than the classical approaches. This paper aims at applying the chaos theory principles to different problems, in order to pursue high levels of accuracy on the predicted results. After the verification of the chaotic behavior of the datasets taken into analysis through the largest Lyapunov exponent research, the detection of the suitable embedding dimension and time delay has been carried out, in order to reconstruct the phase space of the underlying dynamical systems. Three different predictive methods have been proposed for different datasets. Finally, the performance comparison with the moving average model, a deep neural network based strategy, and a chaos theory based algorithm recently proposed in literature has been provided

    Recent Advances in Graph-based Machine Learning for Applications in Smart Urban Transportation Systems

    Full text link
    The Intelligent Transportation System (ITS) is an important part of modern transportation infrastructure, employing a combination of communication technology, information processing and control systems to manage transportation networks. This integration of various components such as roads, vehicles, and communication systems, is expected to improve efficiency and safety by providing better information, services, and coordination of transportation modes. In recent years, graph-based machine learning has become an increasingly important research focus in the field of ITS aiming at the development of complex, data-driven solutions to address various ITS-related challenges. This chapter presents background information on the key technical challenges for ITS design, along with a review of research methods ranging from classic statistical approaches to modern machine learning and deep learning-based approaches. Specifically, we provide an in-depth review of graph-based machine learning methods, including basic concepts of graphs, graph data representation, graph neural network architectures and their relation to ITS applications. Additionally, two case studies of graph-based ITS applications proposed in our recent work are presented in detail to demonstrate the potential of graph-based machine learning in the ITS domain

    Traffic Time Headway Prediction and Analysis: A Deep Learning Approach

    Get PDF
    In the modern world of Intelligent Transportation System (ITS), time headway is a key traffic flow parameter affecting ITS operations and planning. Defined as “the time difference between any two successive vehicles when they cross a given point”, time headway is used in various traffic and transportation engineering research domains, such as capacity analysis, safety studies, car-following, and lane-changing behavior modeling, and level of service evaluation describing stochastic features of traffic flow. Advanced travel and headway information can also help road users avoid traffic congestion through dynamic route planning, for instance. Hence, it is crucial to accurately model headway distribution patterns for the purpose of analyzing traffic operations and making subsequent infrastructure-related decisions. Previous studies have applied a variety of probabilistic models, machine learning algorithms (for example, support vector machine, relevance vector machine, etc.), and neural networks for short-term headway prediction. Recently, deep learning has become increasingly popular following a surge of traffic big data with high resolution, thriving algorithms, and evolved computational capacity. However, only a few studies have exploited this emerging technology for headway prediction applications. This is largely due to the difficulty in capturing the random, seasonal, nonlinear, and spatiotemporal correlated nature of traffic data and asymmetric human driving behavior which has a significant impact on headway. This study employs a novel architecture of deep neural networks, Long Short-Term Neural Network (LSTM NN), to capture nonlinear traffic dynamics effectively to predict vehicle headway. LSTM NN can overcome the issue of back-propagated error decay (that is, vanishing gradient problem) existing in regular Recurrent Neural Network (RNN) through memory blocks which is its special feature, and thus exhibits superior capability for time series prediction with long temporal dependency. There is no existing appropriate model for long term prediction of traffic headway, as existing models lack using big dataset and solving the vanishing gradient problem because of not having a memory block. To overcome these critics and fill the gaps in previous works, multiple LSTM layers are stacked to incorporate temporal information. For model training and validation, this study used the USDOT’s Next Generation Simulation (NGSIM) dataset, which contains historical data of some important features to describe the headway distribution such as lane numbers, microscopic traffic flow parameters, vehicle and road shape, vehicle type, and velocity. LSTM NN can capture the historical relationships between these variables and save them using its unique memory block. At the headway prediction stage, the related spatiotemporal features from the dataset (HighwayI-80) were fed into a fully connected layer and again tested with testing data for validation (both highway I-80 & US 101). The predicted accuracy outperforms previous time headway predictions

    Impact of COVID-19 on port terminal performance in the United States of America

    Get PDF

    Advances in Public Transport Platform for the Development of Sustainability Cities

    Get PDF
    Modern societies demand high and varied mobility, which in turn requires a complex transport system adapted to social needs that guarantees the movement of people and goods in an economically efficient and safe way, but all are subject to a new environmental rationality and the new logic of the paradigm of sustainability. From this perspective, an efficient and flexible transport system that provides intelligent and sustainable mobility patterns is essential to our economy and our quality of life. The current transport system poses growing and significant challenges for the environment, human health, and sustainability, while current mobility schemes have focused much more on the private vehicle that has conditioned both the lifestyles of citizens and cities, as well as urban and territorial sustainability. Transport has a very considerable weight in the framework of sustainable development due to environmental pressures, associated social and economic effects, and interrelations with other sectors. The continuous growth that this sector has experienced over the last few years and its foreseeable increase, even considering the change in trends due to the current situation of generalized crisis, make the challenge of sustainable transport a strategic priority at local, national, European, and global levels. This Special Issue will pay attention to all those research approaches focused on the relationship between evolution in the area of transport with a high incidence in the environment from the perspective of efficiency

    APPLICATION OF A SYSTEM DYNAMICS MODEL TO IMPROVE THE PERFORMANCE OF MAKE-TO-ORDER PRODUCTION

    Full text link

    Selected Papers from the 8th Annual Conference of Energy Economics and Management

    Get PDF
    This collection represents successful invited submissions from the papers presented at the 8th Annual Conference of Energy Economics and Management held in Beijing, China, 22–24 September 2017. With over 500 participants, the conference was co-hosted by the Management Science Department of National Natural Science Foundation of China, the Chinese Society of Energy Economics and Management, and Renmin University of China on the subject area of “Energy Transition of China: Opportunities and Challenges”. The major strategies to transform the energy system of China to a sustainable model include energy/economic structure adjustment, resource conservation, and technology innovation. Accordingly, the conference and its associated publications encourage research to address the major issues faced in supporting the energy transition of China. Papers published in this collection cover the broad spectrum of energy economics issues, including building energy efficiency, industrial energy demand, public policies to promote new energy technologies, power system control technology, emission reduction policies in energy-intensive industries, emission measurements of cities, energy price movement, and the impact of new energy vehicle
    • …
    corecore