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Abstract—Recently chaos theory has emerged as a powerful
tool to address forecasting problems of nonlinear time series,
since it is able to meet the dynamical and geometrical structures
of very complex systems, reaching higher accuracy on the
prediction values than the classical approaches. This paper aims
at applying the chaos theory principles to different problems, in
order to pursue high levels of accuracy on the predicted results.
After the verification of the chaotic behavior of the datasets taken
into analysis through the largest Lyapunov exponent research, the
detection of the suitable embedding dimension and time delay
has been carried out, in order to reconstruct the phase space
of the underlying dynamical systems. Three different predictive
methods have been proposed for different datasets. Finally, the
performance comparison with the moving average model, a
deep neural network based strategy, and a chaos theory based
algorithm recently proposed in literature has been provided.

Index Terms—Chaos Theory, Forecasting, Nonlinear Time
Series Analysis.

I. INTRODUCTION

Recently, the ever increasing diffusion of vehicles has
resulted in cities with remarkable levels of urban traffic, fatali-
ties, injuries, and congestion [1]. Within this context, the smart
city concept has emerged, opening the doors towards several
promising applications. In particular, an unprecedented chance
to create a wide variety of new services has been provided [1]–
[3], involving the efficient data-collection and data-processing,
and providing support to smart infrastructure, smart healthcare,
smart governance, smart mobility, smart technology, etc. [3].
Furthermore, many research efforts have been made to design
modern solutions to control mobility and traffic, especially in
order to lower road congestion and improve the transportation
efficiency [4], [5]. Therefore, the Intelligent Transportation
Systems (ITS) has gained much attention, favoring the devel-
opment of proper strategic solutions to reduce the drawbacks
due to the growing spread of vehicles. In particular, in order
to limit the traffic congestion, one of the main objective is the
reduction of the utilization of cars, by promoting the usage
of public transportation during the rush hours. Transportation
network companies (TNC) such as Uber or Lyft offer peer-to-
peer ride-sharing services to move people from and to homes
and offices, or to the public transportation stations. These types
of services constitute a promising way to ensure to people
a fast and comfortable solution to reduce the utilization of
their own cars. Within this context, by considering the TNC
perspective, the accurate prediction of traffic demands plays a
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Figure 1. Ride-sharing service in smart city

crucial role to properly allocate resources and, consequently,
to avoid resource waste or delays on services provision. For
all these reasons, traffic forecasting and mobility forecasting
have gained significant momentum in the area of ITS. The
application of forecasting procedures to the ITS [6]–[8] area
focuses on the prediction of traffic conditions, a given number
of hours ahead in the future.

In general terms, we refer to short-, medium-, and long-term
forecasting. The first one involves predictions with horizons
from few minutes up to few days ahead, and the second one
deals with time horizons from few days to few months ahead.
Instead, the long-term forecasting is referred to predictions
from quarters to years ahead [9]. Although medium and long-
term forecasting generally involve the prediction about risk
management and profitability planning, the short-term fore-
casting is frequently applied to traffic demands and mobility
prediction because of its satisfactory accuracy [9], [10]. The
short-term forecasting has been extensively studied in litera-
ture, and many different methods have been proposed [10],
[11].

Roughly speaking, the whole family of the predictive meth-
ods can be divided into two different main branches: the
approaches based on the classic time series analysis (TSA),
and the techniques based on the deep learning. The former
branch includes methods such as the Auto-Regressive (AR),
the Auto-Regressive and Moving Average (ARMA), or the
Auto-Regressive Integrated Moving Average (ARIMA) [12]–
[14], while the methods based on the latter approach are the
strategies based on Artificial Neural Network (ANN), Support
Vector Machine (SVM), Support Vector Regression (SVR) and
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so on [15]–[18]. TSA has been widely used for a very long
time to solve a vast number of forecasting problems, by

guaranteeing limited complexity and good performance on
prediction accuracy. However, recently, the ever increasing
complexity on the time series, due to the intrinsic complexity
of the current problems, has lead to a performance reduction
on accuracy applying the TSA. Therefore, despite TSA has
provided good solution to many problems during past years,
recently the high level complexity of the current problems
scenarios have limited the applicability of the TSA due to
its inability in performing valuable predictions on time series
with complex behaviors. From the other side, the deep learning
approaches reach very accurate results, but require a large
amount of data to be trained, procedure that is extremely
computationally expensive. Therefore, the overall prediction
performance results compromised by these drawbacks that
constitute a strong bottleneck, since many application scenar-
ios need to rapidly predict new values and do not have a large
samples set to work on.

In this situation, Chaos Theory (CT) has emerged as a
powerful tool to perform nonlinear TSA [10], [19]. More
in depth, CT studies the behavior of the nonlinear dynamic
systems that exhibit strong sensitivity to the initial system
conditions, in which the irregular behavior hides determinism.
The apparent irregular behavior in the observed time series
space is a typical characteristic of the nonlinear time series.
Furthermore, the degree of complexity of a time series is
generally strictly related to the nonlinearity of the underlying
system. CT provides, under certain conditions on the time
series taken into account (i.e., nonlinearity and chaotic behav-
ior), useful strategies to address and manage such complexity,
by resulting in high levels of accuracy prediction, avoiding
the expensive training procedure, typical for example of the
deep learning approaches. However, it is important to note
that one of the major drawback of the CT based strategies
is that it requires the verification of the chaotic trend of the
analyzed time series, since it performs good results in presence
of chaotic features.

The chaotic nonlinear time series class, in the corresponding
phase space, exhibit a strange attractor with a regular structure
that allow us to observe its geometrical properties and dynam-
ics in order to predict the future behavior of the original time
series.

This paper proposes different applications of the CT prin-
ciples to solve the forecasting problem. The prediction has
been conducted on real data in Chengdu from Didi, a Chinese
TNC, and two sets from Google dataset search, concerning
the Uber pickup requests in New York City and in Bangalore,
respectively. More in depth, the main contributions of this
work are:
• Validation of the chaotic behavior of the considered

datasets, provided by the largest Lyapunov exponent
analysis. The analysis consist of estimating the divergence
rate of close trajectories associated to the scalar time
series, during its evolution;

• Applications of the CT principles to design three different
predictive algorithms for different datasets. In particular,
the reconstruction of the phase space for each dataset has

been pursuit, and proper forecasting algorithms proposed.
Furthermore, the forecasting algorithms are based on
local predictive mechanisms, and for the third dataset a
hybrid approach is presented, combining both local and
global approximations;

• Comparison of the proposed approaches with the well-
known moving average (MA) model [20], that presented
in [21], based on the CT as well, and the deep learning
approach proposed in [22]. System performance has been
provided in terms of mean squared error, mean absolute
deviation and mean absolute percentage error.

The rest of paper is organized as follows. Section II pro-
poses an in-depth review of the related literature. In Section III,
we propose the problem formulation, and in Section IV the
nonlinear time series analysis based on CT is addressed.
Section V presents the forecasting algorithms proposed, and
in Section VI the experimental results are shown. Finally, the
conclusions are drawn in Section VII.

II. RELATED LITERATURE

The classical TSA methodologies are applied in pa-
per [6],[12],[23],[7],[8]. Paper[6] proposes a short-term spatio-
temporal forecasting approach to estimate the future taxi-
passengers demand. The method aims at predicting the number
of service requests that emerge at taxi ranks, by exploiting the
real-time information exchanged among taxis. The paper com-
bines both the predictive ARIMA and the time-varying Poisson
models to realize the passengers demand prediction [12], [23].
Authors in [7] model the univariate vehicular traffic flow with
the seasonal ARIMA, providing theoretical evidences about
the suitability of this model in solving the short-term traffic
conditions forecasting problems. Similarly, in [8], the study of
traffic forecasting problem on large IEEE802.11 infrastructures
is addressed. More in depth, authors in [8] evaluate the
performance of many modified versions of the moving average
and ARIMA algorithms, at different time scale, to forecast the
access points load in wireless networks. Paper [8] highlights
the importance of fine-grained prediction horizons and recent
past data, to obtain high levels of accuracy on the forecast
values. Furthermore, many works based on machine learning
approaches have been proposed. Examples are represented by
paper [10], [24], [25]. Within the short-term traffic prediction,
[10] combines the CT principles with the SVM, to improve the
accuracy on the forecast values. In particular, authors in [10]
adopt as measure of similarity the dynamic time warping to
mitigate the negative effects of possible bursty points outside
the neighborhood area of the processed point.

In [24] is provided a short-term passenger demand forecast-
ing of light rail services. In particular, authors in [24] propose a
novel neural networks model to fit non-stationary time series,
aiming at minimizing the prediction error. Furthermore, the
model formulated in [24] is based on the multi-layer percep-
tron one and the back-propagation algorithm is applied during
the training process. Work [25] compares the forecasting
performance applying both ANNs and Box Jenkins methods
to airline passenger demand, calculated over the past five year
daily data. An ANN strategy is also adopted in paper [26],
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Figure 2. The trend behavior of Dataset 1. Figure 3. The trend behavior of Dataset 2. Figure 4. The trend behavior of Dataset 3.

in which a multilayer perceptron neural network is adopted
to forecast the lightning occurrences. The recurrent neural
networks are sequentially applied in paper [27], where the
main objective is the real-time prediction of the taxi demand
in the city of New York. Paper [22] proposes a forecasting
framework based on the combination of the feed forward
neural network and the long short term memory approach, to
evaluate the electricity consumption. Differently, paper [28]
predicts the urban traffic passengers flows by proposing a
predictive structure based on convolutional neural networks
and a graph representation of the traffic data, in order to extract
the spatio-temporal information of the analyzed samples series.
A spatio-temporal analysis has been provided also in [29], in
which the demand for shared bicycles in three typical subway
stations in the city of Beijing is predicted. The forecasting
framework proposed in [29] is based on an improved version
of the Xgboost method and the idea of sliding window. Within
the CT approaches, in papers [21], [30], CT is applied to
forecast the electricity price. Specifically, in [30] the electricity
price is modeled as a multivariate time series, since it depends
on many different factors. Then, authors in [30] provide the
phase space reconstruction of the corresponding chaotic time
series and find the forecasting function by fitting all points
in the phase space, by applying the Elman model, which is
one of the most common recurrent neural network. Paper [21]
addresses the same problem presented in [30] but, after phase
space reconstruction, in order to improve the accuracy on
the predicted results, authors use the add-weighted one-rank
multi-steps prediction method [31]. Authors in [32] apply CT
principles as well, to forecast the grids load data. Subsequently
to the phase space reconstruction, paper [32] proposes the
introduction of a weight on the largest Lyapunov exponent
with the aim at mitigating the effect of significantly divergent
trajectories, in order to reduce the forecasting error. This
implies that during the prediction process, points close to
the processed one with divergent trajectory will give a lower
contribution on the prediction. Differently, paper [33] exploits
CT to predict the urban daily water demand. In [33], the
prediction of each point is made by considering the behavior,
in the phase space, of only its nearest point. Another situation
in which chaotic and nonlinear behaviors are widely present,

is that of wind power generation. Within this context, the wind
power exhibits fluctuations very difficult to predict.

Paper [34] deals with the system power forecasting, through
the use of CT combined with the wavelet packet one. In [34]
the wavelet packet theory is used to decompose the history of
wind power data between high and low frequency components.
Then, the frequency components are reconstructed with the
single branch and the phase space is built for each single
branch. Whether, during the process, the time series shows
a non-chaotic behavior, prediction is performed by using back
propagation neural network, otherwise through CT. The usage
of both wavelet and CT has been also adopted in [35] to predict
traffic in wireless sensor networks. This paper proposes the ap-
plication of CT principles to both the high and low frequency
parts of the original signal, and builds the predictive function
considering the near points most influential than the far ones.
Paper [36] addresses the forecasting of the load of power. In
particular, it provided a short term prediction by combining
CT with the fuzzy approach. In the method proposed by [36],
closer the points in the phase space are to the value to be
forecast, the greater is their impact on the predicted result.
Finally, paper [37] aims at predicting a nonlinear time series
for human actions and dynamic textures synthesis through a
CT approach. Specifically, the phase space is reconstructed
considering the corresponding multivariate time series and
future predictions are made using a nonparametric data driven
model, based on a kernel which is a decreasing function of the
distance from the point that has to be predicted [38]. Then,
the future multivariate time series values are built by extracting
the univariate time series from the reconstructed phase space.

The main contributions of this paper are the analysis of the
behavior of three different and real service request dataset,
deriving from Didi, the biggest TNC in China, and from the
Google data search engine. In fact, for each dataset, the largest
Lyapunov exponent has been analyzed and its chaotic behavior
verified. Furthermore, in order to pursuit a CT based approach,
the reconstruction of the phase space associated to each scalar
time series taken into account has been addressed. Finally,
three different CT predictive algorithms, one for each dataset
considered, have been proposed and comparison with the MA
approach, those presented in paper [21] and paper [22] has
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Figure 5. The optimal value of τ for Dataset 1, Dataset 2 and Dataset 3.

Figure 6. The optimal value of m for Dataset 1, Dataset 2 and Dataset 3.

been provided, in terms of mean squared error, mean absolute
error and mean percentage error.

III. PROBLEM STATEMENT

Given a scalar time series X = {xi}Ni=1, xi represents the
value observed at time i and N is the whole number of samples
of the time series X . More in depth, X comes out from a
previous sampling procedure in the city of interest. As regards
the Didi dataset, the city of Chengdu has been modeled as a
rectangle R of dimension P ×Q, where ρp,q , p ∈ [0, P ) and
q ∈ [0, Q), represents the region with coordinates p and q.
A service request demand ru is represented as a quintuple in
the form (ru,id, ru,pc, ru,pt, ru,dc, rh,dt), in which ru,id is the
request ID, ru,pc the pick-up coordinates, ru,pt is the pick-up

time, rh,dc identifies the coordinates of the destination, and
ru,dt the time of arrival at destination. Our analysis has been
conducted by grouping all the requests based on the pick-
up time. Therefore, time has been partitioned into equal slots
starting from 0. Hence, the k-th time slot is identified by the
interval [k× S, (k+ 1)× S), where S is the time span of the
interval. Consequently, the passenger demand at the interval
k, i.e., xk, is given by

xk = |{u ∈ [0,N ) : ru,pc ∈ R∧rh,pt ∈ [k×S, (k+1)×S)}|,
(1)

where N is the total number of received requests and | · |
means the number of elements belonging to the set. The
other two sets have been taken on Google dataset search, and
each request of the first of them is identified by the triplets
(πd, πt, πa), where πd is the pick-up date, πt the pick-up time
and πa the pick-up address. Differently, each request of the last
dataset is composed of six fields, i.e, (µr, µp, µd, µs, µu, µo),
where µr is the request identifier number, µp represents the
pick-up point, µd the driver number, µs the status of the
ride (completed or ongoing), and µu and µo are the pick-
up time and the drop off time, respectively. Given the time
series X , forecasting problem involves the prediction about
the future behavior, δ steps ahead in the future. This paper
deals with the short-term forecasting, aiming at minimizing
the forecasting error that, generally speaking, is a measure of
the gap between the predicted and the real value of the time
series analyzed. Despite there exist many different metrics to
evaluate the forecasting error [11], this paper considers the
minimization of the mean squared error (MSE) defined as

MSE =
1

M

M∑
i=1

(x̂i+δ − xi+δ)2, (2)

where M represents the number of the samples in test data, and
x̂i+δ and xi+δ are the actual and the predicted values at time
i+δ. In addition, in order to provide an exhaustive analysis, we
have also considered the mean percent error (MAPE) defined
as

MAPE =
1

M

M∑
i=1

∣∣∣∣ x̂i+δ − xi+δxi+δ

∣∣∣∣ · 100, (3)

and the mean absolute deviation (MAD) given by

MAD =
1

M

M∑
i=1

|x̂i+δ − xi+δ|. (4)

It is important to note that metrics (2) and (4) highlight
the variability of the forecasting error, while (3) expresses the
error in terms of percentage on the actual data.

In the following section, in order to clarify the motivation
behind the insight of the proposed forecasting algorithms, the
technical background about CT principles is provided and the
phase space reconstruction procedure explained.

IV. CHAOS THEORY APPROACH

The class of the chaotic nonlinear dynamical systems in-
cludes the nonlinear dynamical systems whose behavior is
unpredictable on the long term, and exhibit strong sensitivity to
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Figure 7. Scalar time series analysis and prediction procedure based on CT

Ffnn(T ) =

N−m−1∑
i=1

Θ

(
|z(m+1)
i −z(m+1)

j |
|z(m)
i −z(m)

j |
− T

)
Θ( σT − |z

(m)
i − z(m)

j |)

N−m−1∑
i=1

Θ( σT − |z
(m)
i − z(m)

j |)
; (5)

the initial conditions, that implies small changes in the initial
state result in significant differences on the final states [39],
[40]. Generally speaking, the nonlinear dynamical systems
with chaotic behavior present apparent irregular trend which
hides the deterministic features of these systems. A system
state is specified by a m dimensional vector z, while the
system dynamics can be expressed by [19]

zn+1 = F(zn), (6)

in which F is a m dimensional map. It is important to highlight
the relation between equation (6) and the set X . Indeed,
the elements of X are a sequence of scalar measurements,
therefore, the conversion of the observations into state vectors
has to be performed. In order to execute such conversion,
the phase space reconstruction procedure [37], [41] has been
conducted. After the phase space reconstruction procedure,
the important features of chaotic time series can be caught
by analyzing the underlying dynamics and the geometrical
structure of its corresponding attractor, i.e., the set of values
to which the system tends to evolve.

For the sake of simplicity, hereafter we refer to the dataset
derived from Didi as Dataset 1, Dataset 2 for the dataset of
the Uber pickups in New York City, and finally Dataset 3 for
the Uber service requests in Bangalore.

In the following, the paper provides a brief theoretical
background about the phase space reconstruction in Sec-
tion IV-A, then in Section IV-B the time delay is presented. In
Section IV-C the embedding dimension is discussed. Finally,
Section IV-D presents the largest Lyapunov exponent analysis.

A. Phase Space Reconstruction

Given the chaotic scalar time series X , the first step towards
the comprehension of its behavior is the reconstruction of
the phase space (PSR) associated with it, in order to pursuit

the analysis of its strange attractor, as illustrated in Figure 7.
Due to the Takens’ delay embedding theorem, which affirms
the existence of a map between the real phase space and its
reconstructed version [37], the PSR is provided by associating,
to each element xi in X , a vector in the form

zi = [xi, xi+τ , . . . , xi+(m−1)τ ], (7)

where τ is the time delay and m is the embedding dimension.
As detailed in Section IV-B and Section IV-C, a proper choice
of the values of τ and m is crucial to pursuit a suitable PSR.

B. Time Delay Estimation

As it is evident from (7), m and τ strongly impact the
transformation of the scalar time series to the phase space
vectors represented by zi. According to this, time delay τ
rules the temporal distance between two successive points
in the phase space vector, i.e., zi and zi+1, and its optimal
value minimizes the redundancy between points xi+τ and xi,
maximizing the knowledge about xi+τ from xi. In this paper
we compute the exact value of delay τ with the approach
based on the evaluation of the amount of mutual information
between pairs of points xi+τ and xi, with τ that minimizes
the mutual information between observations [42].

In practical terms, for each measured data, the histogram
of the probability distribution of the data is created. Then, by
varying time the delay τ , the mutual information xi and xi+τ
results expressed by [43]

I(τ) =
∑
f,j

pf,j(τ) log pf,j − 2
∑
f

log pf , (8)

where pf is the probability that xi is in the f -th bin of the
histogram, while pf,j is the probability that xi and xi+τ fall
in the f -th and j-th bin of the histogram, respectively.
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As depicted in Figure 5, the values of τ for Dataset 1,
Dataset 2 and Dataset 3 are τ = 5, 6 and 7, respectively.
Indeed, Figure 5, shows the plot of the mutual information I
when τ changes. In order to select the proper value for time
delay τ , i.e., the minimum time delay, the optimal value of
τ is in correspondence of the first local minimum of the I
function.

C. Embedding Dimension Estimation

As in the case of τ , to choose a proper value of m is very
important to observe the determinism underlying the system
associated to time series X , with the least computational effort.
In this paper, we adopt the false nearest neighbors method [44].
The idea behind this method is that, since the presence of
chaos can induce an exponential divergence on the trajectories
of two nearby points, there exist some points in the data set
that are neighbors in the embedding space but for which their
temporal evolution exponentially diverges. Hence, this method
consists, for each point in X , in finding its nearest neighbor
in m dimension. Then, the ratio between their distance in
m + 1 dimensions and m dimensions is calculated. Finally,
whether the resulted ratio is greater than a fixed threshold r,
the neighbor is considered false.

Hence, given a fixed threshold T , the false nearest neighbors
function can be defined as in (5) on the top of the previous
page. in which σ is the standard deviation of the data, j is
index of the nearest point, and Θ is the Heaviside step function
given by

Θ(ν) =

{
0 ν < 0;
1 ν ≥ 0.

(9)

Figure 6 shows the Ffnn function by varying the embedding
dimension m, and the proper value of m is m = 3, 6 and
4, respectively. Indeed, for each set of data, the right value
of m is the value for which is minimum the number of false
nearest neighbors, hence, graphically, it is in correspondence
of the last m value before the plot of Ffnn drops to zero.

D. Largest Lyapunov Exponent

Once the PSR has been pursued, in order to verify the
chaotic behavior of X , we analyze the largest Lyapunov
exponent. There exist many approaches to check the presence
of chaos in a time series [21], and the study of the largest
Lyapunov exponent is one of the most used. The main idea
behind such technique is the study of the distance of two close
vectors in the phase space over the time transition [45]. Hence,
considering two trajectories y and x, i.e., solutions of (6),
close in the state space, the evolution of their mutual distance
is given by

yn+1 − xn+1 = Jn(yn − xn) +O(||yn − xn||2), (10)

where Jn is the m×m Jacobian matrix of F. Then, supposing
Λi the eigenvalue of J, the Lyapunov exponents are given
by [19]

λi = lim
N→∞

1

2N
ln|Λ(N)

i |. (11)

Hence, the study of the largest Lyapunov exponent aims
at evaluating the sign of the value of the largest Lyapunov

Table I
LARGEST LYAPUNOV EXPONENT

Dataset Lyapunov Exponent
Dataset 1 0.7
Dataset 2 1.6
Dataset 3 0.3

exponent, that represents the rate of separation of close tra-
jectories in the phase space. Since the positive value of such
divergence rate is a strong signature of the presence of chaos,
it represents a suitable criterion for establishing the chaotic
nature of a time series. In this respect, this paper computes
the largest Lyapunov exponent by applying the Rosenstein
method [46], which is based on the estimation of the local
divergence rates of trajectories over the whole data set in the
phase space. Specifically, the local divergence is estimated on
the neighborhood of each point of X in the phase space. The
general idea of the method is the measurement, for each xi
in X , of the expansion rate in a particular time span δ of the
trajectories. In particular, the expansion rate for time span δ
is given by

E(δ) =
1

t

N∑
i=1

ln

(
1

|N (zi)|
∑

zz∈Nε(zi)

|zi+δ − zz+δ|
)

; (12)

where N (zi) is the neighborhood of point zi in the phase
space. More in depth, Nε(zi) derived from the selection of
vectors zz in m dimension, closer than a given value ε in the
max norm. Hence, in order to define the neighborhood of zi,
it is necessary to determine the indices z for which

||zz − zi|| ≤ ε. (13)

The details of algorithm are reported in [46] and in our case,
the resulted largest Lyapunov for all the three dataset analyzed
has been reported in Table I. Since the largest Lyapunov
exponents are a real number greater than zero, the considered
time series indeed exhibit a chaotic behavior [19], [30], which
justify the validation of our proposed chaotic framework.

V. TIME SERIES FORECASTING

The general idea behind the prediction of the behavior of
X , is the approximation of the map F in (6).

In order to predict the future behaviors of Dataset 1, Dataset
2, Dataset 3, we apply the PSR and the suitable values
for time delay τ and embedding dimension m have been
calculated in accordance with Sections IV and IV-C. In
general term, there exist two main approaches to address the
approximation problem of F function in (6): the local and
the global approximation approach. One of the most used
local prediction method is the neighbors based prediction,
that evaluates the future behavior of the points belonging to
a neighborhood around the point which has to be predicted.
Then, the resulted forecast value is given by the average of the
values of the neighbors points. Both the algorithms proposed
for Dataset 1 and Dataset 2 constitute two general improved
versions of the classical neighbors based prediction approach,
in which each term is properly weighted. Despite different



0018-9545 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVT.2019.2930363, IEEE
Transactions on Vehicular Technology

7

Figure 8. The predicted values by varying the
number of considered neighbors for Dataset 1.

Figure 9. The predicted values by varying the
number of considered neighbors for Dataset 2.

Figure 10. The predicted values by varying the
number of considered neighbors for Dataset 3.

dataset may require different weight definitions, typically, the
attribution of high weights to points close to that needing
prediction, or to those that exhibit a high degree of similarity
with the point to be forecast, could result in accuracy of
prediction, compared with the standard version of the modified
method. One strength point of local methods is that it does
not involve any model for F , while, as better explained later,
the determination of the suitable number of neighbors to
consider for the prediction is not a trivial issue. Furthermore,
when determinism is weak on the dataset or for long term
predictions, local methods result ineffective, since they tend
to reproduce past trends. Differently, the algorithm proposed
for Dataset 3 also considers the global approach. Roughly
speaking, the global approaches constitute a more advanced
technique compared to the local methods, but they often lead to
more difficult problem management since modeling F implies
the determination of many parameters.

Summarizing, as concerns the first two datasets, we propose
two prediction algorithms based on a local approximation
of F . Differently, the prediction procedure for Dataset 3
constitutes a hybrid approach between the local and global
approximation. In order to predict the value δ steps ahead of
xi, i.e. xi+δ , with a local approximation of F , we consider
the neighborhood around zi in the phase space, of radius ε,
i.e., Nε(zi).

A. Forcasting Algorithm for Dataset 1

The algorithm that we propose to predict the future behavior
of Dataset 1, i.e., the number of Didi requests collected in a
given hour in the city of Chengdu, is based on the evaluation,
for each zj ∈ Nε(zi), of its trajectory and its value at time
j + δ, hence xj+δ . Then, the weighted mean value over all
the future behaviors of the points belonging to Nε(zi) is
computed, and the weight βj is defined as

βj =
1

|xj+δ − xi|
. (14)

As it is straightforward to note, the higher is the similarity
between xj and xj+δ , the higher is the value of βj . Conse-

Algorithm 1 Forecasting Algorithm for Dataset 1

1: Input: chaotic time series X , prediction horizon δ, radius
ε, t index of the value to forecast;

2: Select the delay time τ suitable for X , by evaluating the
average mutual information in accordance with subsec-
tion IV-B;

3: Select the embedding dimension m suitable for X , by
applying the false nearest neighbors method in accordance
with subsection IV-C;

4: Build neighborhood Nε(zi) around zi and radius ε;
5: for each zj ∈ Nε(zj) do
6: evaluate its value xj+δ along the trajectory of xi, δ

steps ahead;
7: compute its weight αj as detailed in (14) ;
8: end for
9: Find the forecast value of x̂j+δ as expressed in (15);

10: Output: forecast value x̂j+δ .

quently, the predicted value of xi+δ , i.e., x̂i+δ , being η the
number of points in Nε(zi), is given by

x̂i+δ =
1

η

∑
zj∈Nε(zi)

βixi+δ. (15)

Hence, the whole prediction procedure for Dataset 1 can be
summarized as follows

• compute the optimal value for time delay τ according to
Section IV-B;

• compute the optimal value for embedding dimension m
according to Section IV-C;

• build Nε(zi);
• for each zj ∈ Nε(zi), measure xj+δ;
• for each zj ∈ Nε(zi), calculate βj ;
• determine x̂i+δ in accordance with (15).

The details of the forecast procedure are illustrated in Algo-
rithm 1.
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Algorithm 2 Forecasting Algorithm for Dataset 2

1: Input: chaotic time series X , prediction horizon δ, radius
ε, t index of the value to forecast;

2: Select the delay time τ suitable for X , by evaluating the
average mutual information in accordance with subsec-
tion IV-B;

3: Select the embedding dimension m suitable for X , by
applying the false nearest neighbors method in accordance
with subsection IV-C;

4: Build neighborhood Nε(zi) around zi and radius ε;
5: for each zj ∈ Nε(zi) do
6: evaluate its value xj+δ along the trajectory of xj , δ

steps ahead;
7: compute its weight γj as detailed in (16) ;
8: end for
9: Find the forecast value of x̂i+δ as expressed in (17);

10: Output: forecast value x̂i+δ .

B. Forcasting Algorithm for Dataset 2

In order to predict the trend of Dataset 2, hence the number
of total Uber pickups requests for a given hour in the city
of New York, we define the following weight based on the
similarity between the point object of prediction xi and the
neighbor point xj . Hence, γj is defined as

γj =
1

|xi − xj |
. (16)

Consequently, the prediction formula is expressed by

x̂i+δ =
1

η

∑
zj∈Nε(zi)

γixi+δ. (17)

The whole prediction procedure has been reported in the
follows and reported in Algorithm 2, and its behavior is
summarized in the following
• compute the optimal values for time delay τ and em-

bedding dimension m according to Section IV-B and
Section IV-C, respectively;

• build Nε(zi);
• for each zj ∈ Nε(zi), measure xj+δ;
• for each zj ∈ Nε(zi), calculate γj as reported in (16) ;
• determine x̂i+δ in accordance with (17).

C. Forcasting Algorithm for Dataset 3

This algorithm aims at predicting the behavior of Dataset 3,
hence the number of total uber service requests in Banglore
in a given hour. The algorithm prediction for Dataset 3 is
a hybrid approach between the local approximation and the
global one. Specifically, in order to improve the accuracy about
the very short term forecasting, we provide a global nonlinear
approximation of F given by the radial basis function [19]
defined as follows

zi+1 = F(zi) = θ0 +

g∑
w=1

θwφ(|zi − ζw|), (18)

Figure 11. Forecasting error expressed in terms of mean squared error for
Dataset 1.

Figure 12. Forecasting error expressed in terms of mean squared error for
Dataset 2.

where ζw are the g centers of the attractor, ζ0 and ζw are
coefficients, and φ is the Lorentzian function expressed by

φ(ψ) =
1

[1 + ( ra )2]
, (19)

with a constant. The joint utilization of both the approximation
models presented in (17) and (18) has been pursued and, while
the first approach ensures a lower long-term forecasting error,
the second one improves the performance of the short-term
forecasting. The prediction procedure acts as follows

• compute the most suitable value for time delay τ accord-
ing to Section IV-B;
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Figure 13. Forecasting error expressed in terms of mean squared error for
Dataset 3.

Table II
ORDER OF MAGNITUDE OF COMPLEXITY

Time delay estimation O(N · logN)

Embedding Dimension O(N2 +4 · ξ · t+ ξ2 ·N)

Phase Space Reconstruction O(λ ·m)

Nearest neighbors procedure O(N)

• compute the most suitable value for embedding dimen-
sion m according to Section IV-C;

• build the approximation of F according to (18);
• build Nε(zi);
• for each zj ∈ Nε(zi), measure xj+1;
• for each zj ∈ Nε(zi), calculate γj ;
• assign to x̂i+1 the most accurate value between the values

obtained from the application of the local and the global
approximation.

The details about the forecasting method for Dataset 3 is
illustrated in Algorithm 3.

D. Practical Considerations

Since the value of ε directly impacts on the number of
considered neighbors, the choice of such value crucially affects
the prediction performance. Due to the fact that there not
exists an exact method to determine the optimal value for
ε [21], in Figure 8, Figure 9 and Figure 10 is reported
the predictive performance of the algorithms designed for the
three datasets. The better behavior is evident considering a
number of neighbors η = 13 and η = 12 for Dataset 1 and
Dataset 2, respectively, while for Dataset 3 the suitable value
is η = 16. The time complexity is approximately the same for
all the three algorithms previously presented. Let X be the

time series composed of N scalar values, the estimation of
the optimal value of τ requires a computational complexity in
the order of O(N · logN), while by applying the procedure
to find the suitable embedding dimension m the maximum
amount of time taken is O(N2 + 4 · ξ · t + ξ2 · N), where ξ
is the number of considered m values. Furthermore, the phase
space reconstruction exhibits a computational complexity of
O(λ · m), where λ = N − (m − 1)τ . Finally, the nearest
neighbors procedure has a complexity in the order of O(N).
Hence, we can conclude that the overall time complexity is

O(N · logN)+O(N2 +4 ·ξ ·N +ξ2 ·N)+O(λ ·m)+O(N).
(20)

The order of magnitude of the forecasting based on CT
strategy steps are reported in Table II.

Algorithm 3 Forecasting Algorithm for Dataset 3

1: Input: chaotic time series X , prediction horizon δ, radius
ε, i index of the value to forecast;

2: Select the delay time τ suitable for X , by evaluating the
average mutual information in accordance with subsec-
tion IV-B;

3: Select the embedding dimension m suitable for X , by
applying the false nearest neighbors method in accordance
with subsection IV-C;

4: build the global approximation of F as in (18);
5: build neighborhood Nε(zi) around zi and radius ε;
6: y = 1;
7: for each zj ∈ Nε(zj) do
8: evaluate h = xj+y along the trajectory of xi, y steps

ahead;
9: compute its weight γj as detailed in (16) ;

10: end for
11: Find the forecast value of x̂j+1 as expressed in (17);
12: select the most accurate forecast value between the ones

originated from the local and the global approach;
13: repeat until the prediction is δ steps ahead;
14: Output: forecast value x̂j+δ .

VI. EXPERIMENTAL RESULTS

In this paper we analyzed three sets of data related to the
nonlinear time series represented by Datatset 1 derives from
sampled data collected in the city of Chengdu, from Didi
Chuxing, the biggest TNC in China. The dataset contains
the passengers requests of one month, from 11/01/2016 to
11/30/2016, and the whole dataset contains more than 6.11
million of passengers requests. The whole area has been
divided into 20 × 20 same-size grids. Every grid is a square
with sides equal to 700 meters, and the longitude of the focus
area is from 30.60E to 30.73E, the latitude is from 104.00N to
104.15N, while the considered surface is about 207.35 10 km2.
Furthermore, Dataset 2 and Dataset 3 have been retrieved from
Google Dataset Search where they are named as Uber pickups
in New York City and Uber request data respectively. Dataset
2 derives from a sampling period from April to September



0018-9545 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVT.2019.2930363, IEEE
Transactions on Vehicular Technology

10

Figure 14. Mean absolute deviation for Dataset 1.

Figure 15. Mean absolute deviation for Dataset 2.

2014, while Dataset 3 is referred to Uber service requests data
in Bangalore from 11/07/2016 to 15/07/2016.

In order to provide an exhaustive analysis, we compare
our methods with the well known moving average (MA)
model [20], with a complexity linear in the number of the
samples considered to provide forecasting, and with the CT
based approach proposed in [21] (CTA) whose complexity is
in the order of magnitude of O(N2). Furthermore, we also
propose performance comparison with the deep neural network
method (DL) designed in [22]. Furthermore, all the approaches
have been applied by using 3 days of samples to forecast 5
and 9 hours ahead.

Figures 17, 18 and 19 show the performance comparison
among the proposed algorithm, the CTA, the MA, and the

Figure 16. Mean absolute deviation for Dataset 3.

Figure 17. Mean absolute percentage error for Dataset 1.

DL models in terms of MSE. Despite all the four predictive
approaches get worse as the prediction horizon increases, it
is clearly evident as the proposed forecasting methods reach
better results in all the three application dataset, by considering
the same number of training days for all the methodologies
applied. In fact, each algorithm guarantees a higher accuracy
respect to the CTA, the MA, and the deep neural network
strategies. In order to analyze the strategies performance in
terms of measure of the variability of the forecast errors, MSE
and MAD have been represented in Figures 11 - 16. As is
evident to note, in Figures 11 - 16 the forecasting accuracy
is better when the proposed algorithms is adopted. Then, it is
clearly evident that both the MSE and MAD increase for high
values of δ. It is due to the general difficulty in predicting
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Figure 18. Mean absolute percentage error for Dataset 2.

Figure 19. Mean absolute percentage error for Dataset 3.

behavior for long interval times. In order to better quantify
the meaning of the MSE and MAD, Figures 17 and 19 show
the performance of the proposed algorithms in comparison
with the considered alternatives, expressed in terms of MAPE
metric. The results confirm the good performance of the
proposed approach in comparison with the alternatives taken
into account, for all the three different strategies proposed
for each dataset. In conclusion, the proposed CT approaches
provide a suitable solution to forecast values in complex and
nonlinear dynamical systems, by investigating and capturing
their underlying dynamics and geometrical structure, in the
corresponding reconstructed phase space, and chasing the time
series behavior, guaranteeing more accuracy than the MA,
CTA, and the DL models.

VII. CONCLUSIONS

This paper addresses the problem of the prediction of
the service requests for the TNCs. In particular, different
algorithms for different real datasets have been presented. The
predictive methods designed for the three analyzed dataset
are based on the CT principles and the corresponding phase
space has been reconstructed, the chaotic behavior studied,
through the analysis of the largest Lyapunov exponent. Fur-
thermore, a different CT based algorithm has been proposed
for the different datasets studied. The validity of the proposed
strategies have been confirmed by simulations and comparison
with the MA, the CT based approach presented in [21], and the
one discussed in [22]. Finally, system performance has been
expressed in terms of mean squared, mean absolute error and
mean percent forecasting error.

ACKNOWLEDGEMENT

This work was partially supported by the Project “GAU-
ChO—A Green Adaptive Fog Computing and Networking
Architecture” funded by the MIUR, Progetti di Ricerca
di Rilevante Interesse Nazionale, Bando 2015 under Grant
2015Y PXH4W_004. (Corresponding author: Romano Fan-
tacci), and by US MURI AFOSR MURI 18RT0073 , NSF
CNS-1717454, CNS-1731424, CNS-1702850, CNS-1646607.

REFERENCES

[1] S. Yi, H. Wei, L. Xiao-bo, L. Bin, and L. Tao, “Study of two-dimensional
motion estimation technique in vehicle tracking,” in the 6th International
Conference on ITS Telecommunications, Chengdu, China, June 2006.

[2] S. Rhee, “Catalyzing the internet of things and smart cities: Global city
teams challenge,” in 1st International Workshop on Science of Smart
City Operations and Platforms Engineering (SCOPE) in partnership
with Global City Teams Challenge (GCTC) (SCOPE - GCTC), Vienna,
Austria, April 2016.

[3] N. Mohamed, J. Al-Jaroodi, S. Lazarova-Molnar, I. Jawhar, and S. Mah-
moud, “A service-oriented middleware for cloud of things and fog
computing supporting smart city applications,” in IEEE SmartWorld
Congress, San Francisco, CA, August 2017.
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