118 research outputs found

    Featureless blood pressure estimation based on photoplethysmography signal using CNN and BiLSTM for IoT devices

    Get PDF
    Continuous blood pressure (BP) acquisition is critical to health monitoring of an individual. Photoplethysmography (PPG) is one of the most popular technologies in the last decade used for measuring blood pressure noninvasively. Several approaches have been carried out in various ways to utilize features extracted from PPG. In this study, we develop a continuous systolic and diastolic blood pressure (SBP and DBP) estimation mechanism without the need for any feature engineering. The raw PPG signal only got preprocessed before being fed to our model which mainly consists of one-dimensional convolutional neural network (CNN) and bidirectional long short-term memory (BiLSTM) network. We evaluate the resulting SBP and DBP value by the root-mean-squared error (RMSE) and mean absolute error (MAE). This study addresses the effectiveness of the model by outperforming the previous feature engineering-based methods. We achieve RMSE of 11.503 and 6.525 for SBP and DBP, respectively, and MAE of 7.849 and 4.418 for SBP and DBP, respectively. The proposed method is expected to substantially enhance the current efficiency of healthcare IoT (Internet of Things) devices in BP monitoring using PPG signals only

    A Comparison of Deep Learning Techniques for Arterial Blood Pressure Prediction

    Get PDF
    Continuous vital signal monitoring is becoming more relevant in preventing diseases that afflict a large part of the world’s population; for this reason, healthcare equipment should be easy to wear and simple to use. Non-intrusive and non-invasive detection methods are a basic requirement for wearable medical devices, especially when these are used in sports applications or by the elderly for self-monitoring. Arterial blood pressure (ABP) is an essential physiological parameter for health monitoring. Most blood pressure measurement devices determine the systolic and diastolic arterial blood pressure through the inflation and the deflation of a cuff. This technique is uncomfortable for the user and may result in anxiety, and consequently affect the blood pressure and its measurement. The purpose of this paper is the continuous measurement of the ABP through a cuffless, non-intrusive approach. The approach of this paper is based on deep learning techniques where several neural networks are used to infer ABP, starting from photoplethysmogram (PPG) and electrocardiogram (ECG) signals. The ABP was predicted first by utilizing only PPG and then by using both PPG and ECG. Convolutional neural networks (ResNet and WaveNet) and recurrent neural networks (LSTM) were compared and analyzed for the regression task. Results show that the use of the ECG has resulted in improved performance for every proposed configuration. The best performing configuration was obtained with a ResNet followed by three LSTM layers: this led to a mean absolute error (MAE) of 4.118 mmHg on and 2.228 mmHg on systolic and diastolic blood pressures, respectively. The results comply with the American National Standards of the Association for the Advancement of Medical Instrumentation. ECG, PPG, and ABP measurements were extracted from the MIMIC database, which contains clinical signal data reflecting real measurements. The results were validated on a custom dataset created at Neuronica Lab, Politecnico di Torino

    대규모 인구 모델과 단일 가슴 착용형 장치를 활용한 비침습적 연속 동맥 혈압 모니터링 시스템

    Get PDF
    학위논문 (박사) -- 서울대학교 대학원 : 공과대학 협동과정 바이오엔지니어링전공, 2021. 2. 김희찬.최근 수십 년 동안 비침습적 연속 혈압 모니터링에 대한 필요성이 점차 대두되면서 맥파 전달 시간, 맥파 도달 시간, 또는 광용적맥파의 파형으로부터 추출된 다양한 특징들을 이용한 혈압 추정 연구들이 전세계적으로 활발하게 진행되었다. 하지만 대부분의 연구들은 국제 혈압 표준을 만족시키지 못하는 매우 적은 수의 피험자들 만을 대상으로 주로 혈압 추정 모델을 개발 및 검증하였기 때문에 성능의 정확도가 적절하게 검증되지 못했다는 한계점이 있었고, 또한 혈압 추정 파라미터 추출을 위한 생체 신호들을 측정하기 위해 대부분 두 개 이상의 모듈을 필요로 하면서 실용성 측면에서 한계점이 있었다. 첫 번째 연구는 대규모 생체신호 데이터베이스들을 분석함으로써 임상적으로 허용 가능한 수준의 정확도가 적절히 검증된 혈압 추정 모델을 개발하는 것을 목적으로 진행되었다. 본 연구에서는 1376명의 수술 중 환자들의 약 250만 심박 주기에 대해 측정된 두 가지 비침습적 생체신호인 심전도와 광용적맥파를 활용한 혈압 추정 방식들을 분석하였다. 맥파 도달 시간, 심박수, 그리고 다양한 광용적맥파 파형 피처들을 포함하는 총 42 종류의 파라미터들을 대상으로 피처 선택 기법들을 적용한 결과, 28개의 피처들이 혈압 추정 파라미터로 결정되었고, 특히 두 가지 광용적맥파 피처들이 기존에 혈압 추정 파라미터로 가장 주요하게 활용되었던 맥파 도달 시간보다 우월한 파라미터들로 분석되었다. 선정된 파라미터들을 활용하여 혈압의 낮은 주파수 성분을 인공신경망으로 모델링하고, 높은 주파수 성분을 순환신경망으로 모델링 한 결과, 수축기 혈압 에러율 0.05 ± 6.92 mmHg와 이완기 혈압 에러율 -0.05 ± 3.99 mmHg 정도의 높은 정확도를 달성하였다. 또 다른 생체신호 데이터베이스에서 추출한 334명의 중환자들을 대상으로 모델을 외부 검증했을 때 유사한 결과를 획득하면서 세 가지 대표적 혈압 측정 장비 기준들을 모두 만족시켰다. 해당 결과를 통해 제안된 혈압 추정 모델이 1000명 이상의 다양한 피험자들을 대상으로 적용 가능함을 확인하였다. 두 번째 연구는 일상 생활 중 장기간 모니터링이 가능한 단일 착용형 혈압 모니터링 시스템을 개발하는 것을 목적으로 진행되었다. 대부분의 기존 혈압 추정 연구들은 혈압 추정 파라미터 추출을 위해 필요한 생체신호들을 측정하기 위해 두 군데 이상의 신체 지점에 두 개 이상의 모듈을 부착하는 등 실용성 측면에서 한계를 나타냈다. 이를 해결하기 위해 본 연구에서는 심전도와 광용적맥파를 동시에 연속적으로 측정하는 단일 가슴 착용형 디바이스를 개발하였고, 개발된 디바이스를 대상으로 총 25명의 건강한 피험자들로부터 데이터를 획득하였다. 손가락에서 측정된 광용적맥파와 가슴에서 측정된 광용적맥파 간 파형의 특성에 유의미한 차이가 있기 때문에 가슴에서 측정된 광용적맥파에서 추출된 피처들을 대응되는 손가락에서 측정된 광용적맥파 피처들로 특성을 변환하는 전달 함수 모델을 개발하였다. 25명으로부터 획득한 데이터에 전달 함수 모델을 적용시킨 후 혈압 추정 모델을 검증한 결과, 수축기 혈압 에러율 0.54 ± 7.47 mmHg와 이완기 혈압 에러율 0.29 ± 4.33 mmHg로 나타나면서 세 가지 혈압 측정 장비 기준들을 모두 만족시켰다. 결론적으로 본 연구에서는 임상적으로 허용 가능한 수준의 정확도로 장기간 일상 생활이 가능한 비침습적 연속 동맥 혈압 모니터링 시스템을 개발하고 다수의 데이터셋을 대상으로 검증함으로써 고혈압 조기 진단 및 예방을 위한 모바일 헬스케어 서비스의 가능성을 확인하였다.As non-invasive continuous blood pressure monitoring (NCBPM) has gained wide attraction in the recent decades, many studies on blood pressure (BP) estimation using pulse transit time (PTT), pulse arrival time (PAT), and characteristics extracted from the morphology of photoplethysmogram (PPG) waveform as indicators of BP have been conducted. However, most of the studies have used small homogeneous subject pools to generate models of BP, which led to inconsistent results in terms of accuracy. Furthermore, the previously proposed modalities to measure BP indicators are questionable in terms of practicality, and lack the potential for being utilized in daily life. The first goal of this thesis is to develop a BP estimation model with clinically valid accuracy using a large pool of heterogeneous subjects undergoing various surgeries. This study presents analyses of BP estimation methods using 2.4 million cardiac cycles of two commonly used non-invasive biosignals, electrocardiogram (ECG) and PPG, from 1376 surgical patients. Feature selection methods were used to determine the best subset of predictors from a total of 42 including PAT, heart rate, and various PPG morphology features. BP estimation models were constructed using linear regression, random forest, artificial neural network (ANN), and recurrent neural network (RNN), and the performances were evaluated. 28 features out of 42 were determined as suitable for BP estimation, in particular two PPG morphology features outperformed PAT, which has been conventionally seen as the best non-invasive indicator of BP. By modelling the low frequency component of BP using ANN and the high frequency component using RNN with the selected predictors, mean errors of 0.05 ± 6.92 mmHg for systolic blood pressure (SBP), and -0.05 ± 3.99 mmHg for diastolic blood pressure (DBP) were achieved. External validation of the model using another biosignal database consisting of 334 intensive care unit patients led to similar results, satisfying three international standards concerning the accuracy of BP monitors. The results indicate that the proposed method can be applied to large number of subjects and various subject phenotypes. The second goal of this thesis is to develop a wearable BP monitoring system, which facilitates NCBPM in daily life. Most previous studies used two or more modules with bulky electrodes to measure biosignals such as ECG and PPG for extracting BP indicators. In this study, a single wireless chest-worn device measuring ECG and PPG simultaneously was developed. Biosignal data from 25 healthy subjects measured by the developed device were acquired, and the BP estimation model developed above was tested on this data after applying a transfer function mapping the chest PPG morphology features to the corresponding finger PPG morphology features. The model yielded mean errors of 0.54 ± 7.47 mmHg for SBP, and 0.29 ± 4.33 mmHg for DBP, again satisfying the three standards for the accuracy of BP monitors. The results indicate that the proposed system can be a stepping stone to the realization of mobile NCBPM in daily life. In conclusion, the clinical validity of the proposed system was checked in three different datasets, and it is a practical solution to NCBPM due to its non-occlusive form as a single wearable device.Abstract i Contents iv List of Tables vii List of Figures viii Chapter 1 General Introduction 1 1.1 Need for Non-invasive Continuous Blood Pressure Monitoring (NCBPM) 2 1.2 Previous Studies for NCBPM 5 1.3 Issues with Previous Studies 9 1.4 Thesis Objectives 12 Chapter 2 Non-invasive Continuous Arterial Blood Pressure Estimation Model in Large Population 14 2.1 Introduction 15 2.1.1 Electrocardiogram (ECG) and Photoplethysmogram (PPG) Features for Blood Pressure (BP) Estimation 15 2.1.2 Description of Surgical Biosignal Databases 16 2.2 Feature Analysis 19 2.2.1 Data Acquisition and Data Pre-processing 19 2.2.2 Feature Extraction 25 2.2.3 Feature Selection 35 2.3 Construction of the BP Estimation Models 44 2.3.1 Frequency Component Separation 44 2.3.2 Modelling Algorithms 47 2.3.3 Summary of Training and Validation 52 2.4 Results and Discussion 54 2.4.1 Feature Analysis 54 2.4.1.1 Pulse Arrival Time versus Pulse Transit Time 54 2.4.1.2 Feature Selection 57 2.4.2 Optimization of the BP Estimation Models 63 2.4.2.1 Frequency Component Separation 63 2.4.2.2 Modelling Algorithms 66 2.4.2.3 Comparison against Different Modelling Settings 68 2.4.3 Performance of the Best-case BP Estimation Model 69 2.4.4 Limitations 75 2.5 Conclusion 78 Chapter 3 Development of the Single Chest-worn Device for Non-invasive Continuous Arterial Blood Pressure Monitoring 80 3.1 Introduction 81 3.2 Development of the Single Chest-worn Device 84 3.2.1 Hardware Development 84 3.2.2 Software Development 90 3.2.3 Clinical Trial 92 3.3 Development of the Transfer Function 95 3.3.1 Finger PPG versus Chest PPG 95 3.3.2 The Concept of the Transfer Function 97 3.3.3 Data Acquisition for Modelling of the Transfer Function 98 3.4 Results and Discussion 100 3.4.1 Construction of the Transfer Function 100 3.4.2 Test of the BP Estimation Model 101 3.4.3 Comparison with the Previous Study using the Single Chest-worn Device 104 3.4.4 Limitations 106 3.5 Conclusion 108 Chapter 4 Thesis Summary and Future Direction 109 4.1 Summary and Contributions 110 4.2 Future Work 113 Bibliography 115 Abstract in Korean 129 Acknowledgement 132Docto

    Intelligent electrocardiogram acquisition via ubiquitous photoplethysmography monitoring

    Get PDF
    Recent advances in machine learning, particularly deep neural network architectures, have shown substantial promise in classifying and predicting cardiac abnormalities from electrocardiogram (ECG) data. Such data are rich in information content, typically in morphology and timing, due to the close correlation between cardiac function and the ECG. However, the ECG is usually not measured ubiquitously in a passive manner from consumer devices, and generally requires ‘active’ sampling whereby the user prompts a device to take an ECG measurement. Conversely, photoplethysmography (PPG) data are typically measured passively by consumer devices, and therefore available for long-period monitoring and suitable in duration for identifying transient cardiac events. However, classifying or predicting cardiac abnormalities from the PPG is very difficult, because it is a peripherally-measured signal. Hence, the use of the PPG for predictive inference is often limited to deriving physiological parameters (heart rate, breathing rate, etc.) or for obvious abnormalities in cardiac timing, such as atrial fibrillation/flutter (“palpitations”). This work aims to combine the best of both worlds: using continuously-monitored, near-ubiquitous PPG to identify periods of sufficient abnormality in the PPG such that prompting the user to take an ECG would be informative of cardiac risk. We propose a dual-convolutional-attention network (DCA-Net) to achieve this ECG-based PPG classification. With DCA-Net, we prove the plausibility of this concept on MIMIC Waveform Database with high performance level (AUROC > 0.9 and AUPRC > 0.7) and receive satisfactory result when testing the model on an independent dataset (AUROC > 0.7 and AUPRC > 0.6) which it is not perfectly-matched to the MIMIC dataset

    Deep Learning Algorithms for Time Series Analysis of Cardiovascular Monitoring Systems

    Get PDF
    This thesis investigates and develops methods to enable ubiquitous monitoring of the most examined cardiovascular signs, blood pressure, and heart rate. Their continuous measurement can help improve health outcomes, such as the detection of hypertension, heart attack, or stroke, which are the leading causes of death and disability. Recent research into wearable blood pressure monitors sought predominately to utilise a hypothesised relationship with pulse transit time, relying on quasiperiodic pulse event extractions from photoplethysmography local signal characteristics and often used only a fraction of typically bivariate time series. This limitation has been addressed in this thesis by developing methods to acquire and utilise fused multivariate time series without the need for manual feature engineering by leveraging recent advances in data science and deep learning methods that showed great data analysis potential in other domains

    Cuffless bood pressure estimation

    Get PDF
    L'hypertension est une maladie qui affecte plus d'un milliard de personnes dans le monde. Il s'agit d'une des principales causes de décès; le suivi et la gestion de cette maladie sont donc cruciaux. La technologie de mesure de la pression artérielle la plus répandue, utilisant le brassard pressurisé, ne permet cependant pas un suivi en continu de la pression, ce qui limite l'étendue de son utilisation. Ces obstacles pourraient être surmontés par la mesure indirecte de la pression par l'entremise de l'électrocardiographie ou de la photopléthysmographie, qui se prêtent à la création d'appareils portables, confortables et peu coûteux. Ce travail de recherche, réalisé en collaboration avec le département d'ingénierie biomédicale de l'université de Lund, en Suède, porte principalement sur la base de données publique Multiparameter Intelligent Monitoring in Intensive Care (MIMIC) Waveform Datasetde PhysioNet, largement utilisée dans la littérature portant sur le développement et la validation d'algorithmes d'estimation de la pression artérielle sans brassard pressurisé. Puisque ces données proviennent d'unités de soins intensifs et ont été recueillies dans des conditions non contrôlées, plusieurs chercheurs ont avancé que les modèles d'estimation de la pression artérielle se basant sur ces données ne sont pas valides pour la population générale. Pour la première fois dans la littérature, cette hypothèse est ici mise à l'épreuve en comparant les données de MIMIC à un ensemble de données de référence plus représentatif de la population générale et recueilli selon une procédure expérimentale bien définie. Des tests statistiques révèlent une différence significative entre les ensembles de données, ainsi qu'une réponse différente aux changements de pression artérielle, et ce, pour la majorité des caractéristiques extraites du photopléthysmogramme. De plus, les répercussions de ces différences sont démontrées à l'aide d'un test pratique d'estimation de la pression artérielle par apprentissage machine. En effet, un modèle entraîné sur l'un des ensembles de données perd en grande partie sa capacité prédictive lorsque validé sur l'autre ensemble, par rapport à sa performance en validation croisée sur l'ensemble d'entraînement. Ces résultats constituent les contributions principales de ce travail et ont été soumis sous forme d'article à la revue Physiological Measurement. Un volet additionnel de la recherche portant sur l'analyse du pouls par décomposition (pulse de composition analysis ou PDA) est présenté dans un deuxième temps. La PDA est une technique permettant de séparer l'onde du pouls en une composante excitative et ses réflexions, utilisée pour extraire des caractéristiques du signal dans le contexte de l'estimation de la pression artérielle. Les résultats obtenus démontrent que l'estimation de la position temporelle des réflexions à partir de points de référence de la dérivée seconde du signal donne d'aussi bons résultats que leur détermination par la méthode traditionnelle d'approximation successive, tout en étant beaucoup plus rapide. Une méthode récursive rapide de PDA est également étudiée, mais démontrée comme inadéquate dans un contexte de comparaison intersujet.Hypertension affects more than one billion people worldwide. As one of the leading causes of death, tracking and management of the condition is critical, but is impeded by the current cuff-based blood pressure monitoring technology. Continuous and more ubiquitous blood pressure monitoring may be achieved through simpler, cheaper and less invasive cuff-less devices, performing an indirect measure through electrocardiography or photoplethysmography. Produced in collaboration with the department of biomedical engineering of Lund Universityin Sweden, this work focuses on public data that has been widely used in the literature to develop and validate cuffless blood pressure estimation algorithms: The Multiparameter Intelligent Monitoring in Intensive Care (MIMIC) Waveform Dataset from PhysioNet. Because it is sourced from intensive care units and collected in absence of controlled conditions, it has many times been hypothesized that blood pressure estimation models based on its data may not generalize to the normal population. This work tests that hypothesis for the first time by comparing the MIMIC dataset to another reference dataset more representative of the general population and obtained under controlled experimental conditions. Through statistical testing, a majority of photoplethysmogram based features extracted from MIMIC are shown to differ significantly from the reference dataset and to respond differently to blood pressure changes. In addition, the practical impact of those differences is tested through the training and cross validating of machine learning models on both datasets, demonstrating an acute loss of predictive powers of models facing data from outside the dataset used in the training phase. As the main contribution of this work, these findings have been submitted as a journal paper to Physiological Measurement. Additional original research is also presented in relation to pulse decomposition analysis (PDA), a technique used to separate the pulse wave from its reflections, in the context of blood pressure estimation. The results obtained through this work show that when using the timing of reflections as part of blood pressure predictors, estimating those timings from fiducial points in the second derivative works as well as using the traditional and computationally costly successive approximation PDA method, while being many times faster. An alternative fast recursive PDA algorithm is also presented and shown to perform inadequately in an inter-subject comparison context

    Artefact reduction in photoplethysmography

    Get PDF
    The use of optical techniques in biomedical monitoring and diagnosis is becoming increasingly widespread, primarily because of the non-invasive nature of optically derived measurements. Physiological analysis is usually achieved by characterisation of the spectral or temporal properties of the interaction between light and the anatomy. Although some optical measurements require complex instrumentation and protocols, recent technological advances have resulted in robust and compact equipment that is now used routinely in a multitude of clinical contexts. Unfortunately, these measurements are inherently sensitive to corruption from dynamic physical conditions or external sources of light, inducing signal artefact. Artefact is the primary restriction in the applicability of many optical measurements, especially for ambulatory monitoring and tele-medicine. The most widely used optical measurement is photoplethysmography, a technique that registers dynamic changes in blood volume throughout the peripheral vasculature and can be used to screen for a number of venous disorders, as well as monitoring the cardio-vascular pulse wave. Although photoplethysmographic devices are now incorporated into many patient-monitoring systems, the prevalent application is a measurement known as pulse oximetry, which utilises spectral analysis of the peripheral blood to estimate the arterial haernoglobin oxygen saturation. Pulse oximetry is well established as an early warning for hypoxia and is now mandatory under anaesthesia in many countries. The problem of artefact is prominent in these continuous monitoring techniques, where it is often impossible to control the physical conditions during use. This thesis investigates the possibility of reducing artefact corruption of photoplethysmographic signals in real time, using an electronic processing methodology that is based upon inversion of a physical artefact model. The consequences of this non-linear artefact reduction technique for subsequent signal analysis are discussed, culminating in a modified formulation for pulse oximetry that not only has reduced sensitivity to artefact but also possesses increased generality. The design and construction of a practical electronic system is then used to explore both the implementation issues and the scope of this technique. The performance of artefact reduction obtained is then quantified under realistic experimental conditions, demonstrating that this methodology is successful in removing or reducing a large proportion of artefact encountered in clinically relevant situations. It is concluded that non-linear artefact reduction can be applied to any photoplethysmographic technology, reducing interpretation inaccuracies that would otherwise be induced by signal artefact. It is also speculated that this technology could enable the use of photoplethysmographic systems in applications that are currently precluded by the inherent severity of artefact
    corecore