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Abstract—Recent advances in machine learning, partic-
ularly deep neural network architectures, have shown sub-
stantial promise in classifying and predicting cardiac ab-
normalities from electrocardiogram (ECG) data. Such data
are rich in information content, typically in morphology
and timing, due to the close correlation between cardiac
function and the ECG. However, the ECG is usually not
measured ubiquitously in a passive manner from consumer
devices, and generally requires ‘active’ sampling whereby
the user prompts a device to take an ECG measurement.
Conversely, photoplethysmography (PPG) data are typically
measured passively by consumer devices, and therefore
available for long-period monitoring and suitable in dura-
tion for identifying transient cardiac events. However, clas-
sifying or predicting cardiac abnormalities from the PPG is
very difficult, because it is a peripherally-measured signal.
Hence, the use of the PPG for predictive inference is of-
ten limited to deriving physiological parameters (heart rate,
breathing rate, etc.) or for obvious abnormalities in car-
diac timing, such as atrial fibrillation/flutter (“palpitations™).
This work aims to combine the best of both worlds: us-
ing continuously-monitored, near-ubiquitous PPG to iden-
tify periods of sufficient abnormality in the PPG such that
prompting the user to take an ECG would be informative
of cardiac risk. We propose a dual-convolutional-attention
network (DCA-Net) to achieve this ECG-based PPG classifi-
cation. With DCA-Net, we prove the plausibility of this con-
cept on MIMIC Waveform Database with high performance
level (AUROC > 0.9 and AUPRC > 0.7) and receive satis-
factory result when testing the model on an independent
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dataset (AUROC > 0.7 and AUPRC > 0.6) which it is not
perfectly-matched to the MIMIC dataset.

Index Terms—PPG, ECG, continuous monitoring, DCA-
Net, neural network with attention mechanisms.

[. INTRODUCTION

CG is a widely used medical test in predicting/classifying
E cardiac abnormalities, such as myocardial infarction, ven-
tricular hypertrophy, heart failure, etc. [1], [11], [22], [28]. The
12-lead ECG is a standard approach to performing the test in
primary care, which is measured by placing 10 electrodes on the
skin surface of the chest and limbs to record the electrical activity
of the heart. The waveform of ECG consists of a QRS complex
representing ventricular depolarisation, a P wave representing
atrial depolarisation, and a T wave representing ventricular re-
polarisation [27]. Such waveform is an informative and reliable
measure to reflect the function of the heart, therefore, is exten-
sively used in clinical practices for cardiac disease diagnosis [5],
[9], [15], [21], [31]. 12-lead ECG devices are generally bulky
with electrodes, a central unit, and accessories such as a monitor
and keyboard. In comparison, portable ECG devices such as
smartwatches and fitness trackers are smaller but are only able
to measure one ECG lead. Moreover, they would require some
user-initiated actions, for example, holding a sensor to close
a conductive circuit such that a measurement might be taken.
Therefore, ECG is difficult to acquire continuously with portable
devices. Furthermore, cardiac abnormalities such as arrhythmia
have the nature of being paroxysmal. It is challenging even for
clinical experts to choose the timing for measuring ECG. It
would be valuable to determine, from other passively-acquired,
near-ubiquitous data, whether or not a patient is at sufficient
“risk” (broadly defined) that it would be helpful to request that
the “active” ECG measurement be taken.

PPG is an optical technique to measure the cardiac cycle
by detecting blood volume changes. On the contrary to ECG,
PPG is typically measured passively by pulse oximeters, and
is often embedded as a function in portable devices, such as
fitness wristbands and smartwatches. The waveform of PPG
consists of a systolic wave and a diastolic wave, which is much
simpler and smoother than the morphology of ECG. Previous
research has shown that it is possible to use PPG to detect
obvious abnormalities in cardiac timing [30], [37]. However,
the nature of the PPG makes it very difficult to identify (let
alone predict) other types of cardiac condition, particularly,
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due to the following reasons; Firstly, PPG is a peripherally-
measured signal that indirectly monitors the operation of the
heart. Secondly, its relatively smooth morphology reflects less
cardiac information compared with ECG. Thirdly, the waveform
of PPG is prone to shape changes between different subjects,
locations where the oximeter is attached, etc. [16], [18]. Hence,
the PPG is mostly used to measure physiological parameters
such as pulse rate, respiratory rate, blood pressure, etc. [6], [57].
However, it carried more physiological information beyond just
heart/respiratory rate, and thus may be possible to construct
models that identify when the PPG corresponds to intervals in
which the ECG would yield positive identification of cardiac
abnormality. Such a system could then duly prompt the user, in
an “active learning” sense, to take an ECG measurement. It is
anticipated that, in addition to being of value for consumer-based
applications, such a system would also be extremely beneficial
for using consumer devices in healthcare settings where existing
monitoring can otherwise be either infrequent or entirely absent.

The goal of this work is to construct a PPG-based model
that aims to predict when the ECG-based model would make
a non-normal diagnosis. We emphasise that we are not aiming
to predict specific cardiac abnormalities from the PPG, given the
aforementioned difficulties in doing so-we are aiming to identify
from the PPG when the existing ECG-based models would state
that the user has a non-normal cardiac function.

To achieve such an objective, we propose an attention-
based deep neural network model, namely a dual-convolutional-
attention network (DCA-Net). DCA-Net is ResNet-backboned
and contains two convolutional attention blocks, one attend-
ing the convolutional channels and one attending the temporal
domain. We train DCA-Net on MIMIC Waveform Database
and evaluate it on the dataset provided in the PhysioNet 2015
Challenge [8]. We further compare DCA-Net with a set of
traditional and state-of-the-art machine learning models to show
its superiority.

This task imposes several difficulties including the training
data and models. To our knowledge, such application of PPG
and ECG has never been explored. This work offers a potential
solution to a significant drawback of ECG, which necessitates
active acquisition. It also addresses a fundamental challenge in
the context of cardiovascular diseases, which is their paroxys-
mal nature, making them challenging to capture through active
measurements. Therefore, the contributions of this work are in
three folds: 1) we are the first to undertake the proposed novel
application of PPG to perform active sampling of the ECG; 2)
we further propose a novel PPG classification model namely
DCA-Net to alarm abnormal ECG. Inspired by applications in
computer vision and 2D image classification models. DCA-Net
is the first to utilize a dual-convolutional attention module to
attend 1D time-series from both temporal and spatial domains;
3) our proposed model achieves the state-of-the-art performance
with a high AUROC of 0.9 and AUPRC of 0.7 on the test
set of MIMIC-III WDB. We further tested our model on an
independent test dataset and received a satisfying AUROC of
0.7 and AUPRC of 0.6, under the condition that the inde-
pendent dataset is not perfectly matched to the experimental
setting.

Il. RELATED WORK

Although ECG and PPG are fundamentally different physi-
ological signal acquisition approaches (one electrical and one
hemodynamic), they are closely related functionally, physio-
logically and morphologically [14], [25], [26], [39], [40]. Both
can be used to monitor irregular heartbeats which is a symptom
of many arrhythmias [14], [23]. Due to the various advantages
of ECG and its wide application in clinical settings, recon-
structing ECG from PPG has emerged as a popular topic in
recent years [46], [55], [56]. Such a close relationship between
PPG and ECG also prompts their joint applications of them for
clinical tasks. However, most joint applications are based on the
extracted features of the signals rather than the direct application
of the waveforms because of the high dimensionality and noise
level in the waveform. Reference [26] used features derived from
ECG and PPG for hypertension assessment; [41] also extracted
features from ECG and PPG for blood pressure estimation. For
the very few works that did integrate the two signals together,
physiological parameter estimation, especially respiration rate,
is still the primary task [10], [34]. In the application of cardiovas-
cular diseases, [7] was piloting on using both ECG and PPG to
alert atrial fibrillation (AF), however, in an experimental setting
using smart wristbands.

The vast majority of studies are single-modality based, mostly
using ECG only and much less commonly using PPG [39],
[57]. Among the studies focusing on PPG only, again, phys-
iological parameters estimation is the main application direc-
tion. However, there are studies showing the strengths of PPG
in indicating cardiovascular diseases using a wide range of
methodologies, from traditional machine learning approaches
to deep neural network models [4], [12], [33], [37], [47]. Ref-
erence [33] classified AF using extracted features from PPG
and a logistic model. The sample size in this study is only 46
with 15 AF patients. [12] used several extracted features from
PPG and a random forest model to classify AF/atrial flutter
in a cohort of 40 patients. Reference [47] applied the neural
network model (long short-term memory (LSTM) recurrent
layer + convolutional layer) to two extracted features of PPG
to classify AF using thousands of subjects. Reference [4] also
employed a neural network approach (convolutional-recurrent
neural network) but to the raw PPG signal to detect AF in
51 subjects. Most relevantly, [42] proposed an attention-based
recurrent neural network (RNN) to detect AF. The model was
first trained on ECG data and then transferred to PPG data to
improve the performance. All the above works presented high
performance/accuracy in detecting AF which shows that PPG
is indicative of some cardiac dysfunction such as AF. However,
in these works, ECG was needed for confirmation/pre-training.
Moreover, we found no research using large-scale PPG data to
target general arrhythmia.

Among the recent PPG classification works, mostly employed
an architecture of convolutional neural network (CNN), RNN or
a combination of the two. Reference [38], [45] applied 1D CNN
to the PPG segment (an interval of the waveform) classification.
References [3], [24], [38], [42] all applied a hybrid version of
CNN and RNN to classify PPG segments, among which [42] also
added attention. Since the advances of attention mechanisms,
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Fig. 1.
signal. All signals are 10 s long.

especially its successes in computer vision (CV) and natural
language processing (NLP), studies with novel attention archi-
tectures bloomed in these areas (CV and NLP) [19], [50], [51],
[52]. SENet (Squeeze-and-Excitation Networks [19]) turned
a multi-layer perceptron (MLP) into an attention module to
attend the convolutional channels. This addition of attention
to the CNN improved the image classification performance.
CBAM (Convolutional Block Attention Module [52]) improved
SENet by adding a convolutional spatial attention module and
showed superior performance in image classification as well.
The more recent work, ECA-Net (Efficient Channel Attention
Networks [51]) further improved the efficiency of the chan-
nel attention by turning the MLP into a convolutional-based
attention module but not implementing any spatial attention.
ECA-Net showed that this modification outperforms both SENet
and CBAM. The adaption and transfer from 2D image to 1D
time-series are intuitive and straightforward. Moreover, with the
success of attention in CV, its adaption to the 1D physiological
signal started to rise in recent two years. However, the applica-
tions are still limited to quality assessment and blood pressure
monitoring [2], [53]. Little research was found on the application
of cardiac disease-related tasks.

[ll. DATA

We used MIMIC-III Waveform Database (WDB) Matched
Subset [20], [32] as our training dataset. We chose the Matched
Subset due to its linkage to the clinical records —all patients in the
Matched Subset are identified and matched to the medical record
system. MIMIC-III WDB includes multi-lead ECG signals and
their paired PPG signals. The Matched Subset contains wave-
form records for 10,282 unique ICU patients. For each patient,
different lengths of the waveform data were sampled at different
time points during their hospital stays. Since different ECG
records have different numbers and kinds of leads, we selected
the 3 most common and representative ECG leads for analysis,
leads II, V and AVR. Therefore, records with these three leads
of ECG and PPG signals were included in the analysis. Notably,

T T T T
600 800 1000 1200

Time

Example of the training data in MIMIC-IIl WDB. The top three panels are the three ECG leads and the bottom panel is the matched PPG

these signals were sampled at 125 Hz. To reduce the noise level,
we only considered records that are longer than two minutes
of the signals. Considering the applicable usage in wearable
devices, we set the length of the analysing signal to be 10 seconds
and took the second 10 seconds out of the whole signal to avoid
the initial unsteadiness. An example of the raw signal segments
is shown in Fig. 1.

A. PPG Pre-Processing

Since PPG signals are generally noisy, we carefully designed
the following processing steps:

1) Raw signal flatness detection: if the value of 60 consecu-

tive time points (about 0.5 seconds) does not change over
a threshold (1e-5), we treat it as a flat signal and remove
the whole segment. This removed about 7% of the signals.

2) Normalisation: normalise each signal to zero-mean and

unit-variance.

3) Filtering: 3 rd order band-pass Butterworth filter was

applied with the low band cut being 0.5 Hz and the high
band cut being 8 Hz, a method that was proposed in [13].
4) Peak detection: we applied the Python toolbox ‘HeartpPy’
[48], [49] to detect valid peaks of the signal. If the 10 s
signal has less than 5 peaks (corresponding to lower than
30 bpm), we removed the signal from the study. This
removed another 7% of PPG signals from the dataset.

5) Skewness SQI: skewness was calculated in a sliding
window fashion. It is calculated for every 250 samples
(2 seconds) with a stride being 125 samples (1 s). If
the majority (over 50%) of the calculated skewness is
negative, we consider it as a poor-quality signal. This
further removed 14% signals.

Outlier sample replacement: lastly, we applied the Ham-
pel filter to detect outliers. For every 10 samples, MAD
(median absolute deviation) is calculated. Then segment
standard deviation is estimated in terms of the MAD value
assuming a normal distribution. Outliers are detected if
the sample value is 3 std away from the segment median,

0)
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Fig. 2.
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Examples of PPG segments with different qualities. (a) Shows a segment that passed the quality control with the raw signal shown in blue

and the processed signal shown in orange. (b)—(d) are segments that failed due to different quality control criteria listed in the pre-processing steps.
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(a) Normal

Fig. 3.
processing.

and the outliers are replaced by the segment median. This
mainly replaced the start and end of the signals.

Step 1) can be considered as a quality screening step. Steps
2) and 3) are cleaning and denoising and Steps 4)-6) are quality
controlling. After processing, we had 38,320 10s-long paired
ECG and PPG training segments in total. A snapshot of the
good and poor PPG segments is shown in Fig. 2.

Since there are no ECG labels given in the MIMIC-III WDB,
we used a highly reliable in-house ECG classification model,
AutoNet to label the ECG [43], [44]. For each ECG lead, we
applied the 5th order high-pass Butterworth filter at 0.5 Hz,
followed by powerline filtering with the powerline frequency
being 50 Hz. Then we assessed the signal quality using the
method proposed in [54]. This assessment outputs one of the
three categories of quality — unacceptable, barely acceptable or
excellent. If any of the ECG leads has ‘excellent’ quality, we
accept the segment. All ECG pre-processing was implemented
using the Python package NeuroKit2 [29].

Fig. 3 gives an example of the normal and abnormal ECG
labelled by AutoNet and their paired PPG.

IV. DUAL-CONVOLUTIONAL ATTENTION NETWORK

The backbone of the Dual-Convolutional Attention Network
(DCA-Net) is a standard ResNet [17]. Inspired by the deep

0 200 400 600 800 1000 1200

(b) Abnormal

Examples of normal (a) and abnormal (b) ECG signals labelled by AutoNet and their paired PPG signal. Signals are shown after pre-

convolutional neural networks with attention in the computer vi-
sion area [19], [51], [52], we employed a 1D dual-convolutional-
attention (DCA) module added to the ResNet-34 backbone to
classify the 1D PPG. Notably, we replaced the 2D convolutional
layers in the original ResNet with 1D convolutional layers to suit
the 1D PPG signal classification. The model architecture of 1D
DCA-Net is illustrated in Fig. 4. We added a DCA module right
before adding the residual in a normal ResNet block to form
the new ResNet+DCA block. The rest of the model architecture
stays the same with ResNet-34.

We reviewed several attention mechanisms including the
aforementioned SENet, CBAM and ECA-Net which all adopted
a single MLP/convolutional attention module or a combination
of them to learn the attention weights. We further conducted
empirical experiments to analyse the efficacy of different atten-
tion blocks and designed the DCA module trying to maximise
the advantage of the attention block to fit into the 1D scenario.
The input of DCA-Net is the 10-second long processed 1D PPG
signal and the output of the model is a binary label indicating
whether this segment of the signal is considered to be abnormal
by the model.

A. The Dual-Convolutional Attention Module

DCA-Net follows the overall architecture of ResNet. The
difference exists in each of the ResNet blocks. The DCA module
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DCA-Net overview. The top figure illustrates the ResNet+DCA module block which replaces the normal ResNet block in the backbone

model. The convolutional attention convolves over the channel dimension for the channel-wise attention and over the temporal dimension for the

temporal-wise attention.

consists of two convolutional attention blocks arranged in se-
quential order as shown in the ‘DCA module’ box in Fig. 4. The
convolutional attention relies on applying the convolution opera-
tion to a certain dimension of the data to learn the interactions be-
tween data points along that dimension. Compared with the MLP
attention module, convolutional attention is computationally
more efficient since it requires no parameters in a convolutional
layer. Moreover, [51] suggested that avoiding dimensionality
reduction, i.e. using fully-connected layers in a MLP style is
helpful towards effective channel attention learning.

The first convolutional attention is applied to the convolution
channels and the second is applied in the temporal domain.
Both the channel-wise and temporal-wise attentions adopt the
architecture illustrated in the ‘Convolutional Attention’ box in
Fig. 4 with the pooling and convolutional layers applied to the
corresponding directions. We used the same channel attention
introduced in [52] and adapted it to 1D scenario. Specifically, let
X € RV*EXD be the input of the channel-wise convolutional
attention (also the input of the DCA module), where N is the
sample/batch size, C' the number of convolution channels output
from the original ResNet layers and D is the length of the
signal (denoted as the temporal dimension). The output of the
channel-wise attention X is

X = X @ o(conv (g(X))), (1)
where  g(X) = [p1(X) || p2(X)]p, )

where p;(X) = max_pool,(X),
and p2(X)

3
“

= mean_pool ,, (X).
Inl, ® indicates the Hadamard product (element-wise matrix
multiplication); o (+) represents the Sigmoid activation function
and convg) denotes the 1D convolutional layer with kernel size
7 and convolves over the channel direction. The [-||-]p in (2)
denotes the matrix concatenation along the temporal direction,
and the subscript D in (3) and (4) show that the pooling layers are
applied in the temporal dimension as well. The function o(+) €
RN*C*1 gutputs the channel-wise attention weights which are
further expanded to the same shape of X to scale X . The scaled
X, denoted as X, is then served as input to the temporal-wise
attention. 5
Similarly, let the output of the temporal-wise attention be X.

X = X ® o(convi? (g(X))), )
where  g(X) = [p1(X) || p2(X)]e (©)
where p;(X) = max poolC(X) @)

and py(X) = mean_pool,(X). (8)

Equations (7), (8) indicate that we first operate max pooling and
mean pooling in the channel dimension, therefore, both p; (X),
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p2(X) € RNV*1D_Then the pooled matrices are then concate-
nated along the channel dimension and g(X) € RV*2*P (6).
The 1D convolutional layer convolves over the temporal dimen-

sion and outputs a single channel such that Convg) (9(X)) €
RN 1D Finally, this convolved matrix is activated by Sigmoid
and used to scale the temporal domain of the input X.

We set the kernel size in the convolutional attention block
to 7 to allow a wide coverage of the interactive learning. This
choice was also validated by heuristic experiments using kernel
sizes of 3, 5 and 7. Furthermore, the concatenation of the two
pooling layers was tested against using either pooling layer as
well as applying a convolutional layer to each pooling layer and
concatenating them afterwards. These experiments were inferior
to the current setting. There is published work showing learning
channel-wise attention first gives slightly better performance
than the parallel or channel-last order [52]. Therefore, by linking
the two convolutional attention blocks with channel-first order,
the DCA module first learns the inter-channel interaction and
then learns the temporal-wise interaction based on the channel-
attended output.

B. Model Assessment and Implementation Details

We applied DCA-Net to the MIMIC-III WDB processed PPG
using ECG labels for binary classification. The 38320 PPG
segments are split into training, validation and test sets with a
ratio of 64%:16%:20%. The model parameters are learnt using
the training set and validated on the validation set to avoid
over-fitting. The test set is only used to report the results. We
evaluated the model performance using the specificity, sensitiv-
ity/recall, precision, accuracy, AUROC (area under the receiver
operating characteristic curve) and AUPRC (area under the
precision-recall curve). We regard AUPRC more valuable than
AUROC in our case since it is more sensitive towards imbalanced
data. We further ran the model for 10 random repetitions and
took the mean and standard deviation of the above assessment
measures.

The DCA-Net was implemented using PyTorch [35] version
1.11.0 with CUDA version 11.7. The loss function is binary cross
entropy. We further experimented with adding loss weights to
adjust the class imbalance. The model was optimised by Adam
optimiser with the default hyper-parameter setting and trained
using a batch size of 64. We applied a step-wise learning rate
scheduler to reduce the learning rate to 0.1 times every 10
epochs. Early-stopping was also applied — if the validation loss
does not reduce compared with the current lowest loss for 5
consecutive epochs, the training terminates. We always save
the model with the lowest loss and apply it to the test set for
assessment.

C. Computation Complexity

The number of trainable parameters in our proposed DCA-Net
is 7.23 millions, which is the same with its backbone 1D ResNet-
34 and the state-of-the-art model ECA-Net. However, ResNet-
34 does not contain any attention mechanism and ECA-Net in
1D setting only attends one dimension of the time-series (rather
than both temporal and spatial dimensions). The convolutional

attention block does not add any number of trainable parameters
to its backbone model, therefore, achieves higher computational
efficiency compared with the MLP attention mechanism such as
employed by CBAM and SENet. The number of trainable pa-
rameters with MLP attention block in an equivalent architecture
would be 7.39 millions.

D. Baseline Models

To set the baseline performance level, we considered a set
of non-neural network models including Logistic Regression
(LR), Random Forest Classifier (RFC), Support Vector Classifier
(SMV) and XGBoost Classifier (XGB). To choose the backbone
model, we evaluated ResNet-18, ResNet-34 and ResNet-50,
among which ResNet-34 gave the best performance and there-
fore, was selected as the backbone model for DCA-Net. To
further compare the performance of our proposed DCA-Net,
we implemented the current state-of-the-art model ECA-Net
which was shown to have outperformed other related CNN
with attentions. We adapted ECA-Net to 1D space and use
the same backbone model with our proposed DCA-Net. The
non-neural network model was implemented using scikit-learn
version 1.0.2 [36] with a training ratio of 80% and test ratio of
20%. We applied class weights to adjust to the balanced classes.
For the neural network baselines, they were trained exactly the
same with DCA-Net as stated in Section IV-B. Notably, the test
sets remain the same for all models implemented.

V. EVALUATION ON PHYSIONET 2015 CHALLENGE DATASET

There are very limited public waveform datasets that have
paired ECG and PPG signals. The 2015 PhysioNet Challenge [8]
provided one such dataset for the task of Reducing False Ar-
rhythmia Alarms in the ICU, where the ECG signals were la-
belled. The PhysioNet dataset consists of 750 waveform records
for training and each recording contains PPG and two ECG leads.
All ECG in the dataset triggered bedside alarms in ICUs and
they were taken from roughly 5 minutes before the onset of
the alarm to the onset of the alarm. Therefore, all records meet
the 2 minutes long requirement applied in the training dataset.
These recordings were further examined by a team of expert
annotators to identify the false alarms. We regarded the false
alarms as normal signals and true alarms as abnormal ones.

The PPG signals went through the same processing pipeline
as the training dataset. However, these signals were resampled
to 250 Hz, rather than 125 Hz which was used in the MIMIC-IIT
WDB. We added a resampling step to the pre-processing after
the signal cleaning and before quality control (between Steps 3)
and 4) in the PPG pre-processing pipeline). We applied the same
quality assessment to remove the ECG with poor qualities and
maximise the pre-processing consistency with MIMIC WDB.
This left us with 108 signals for validation. Table I summarises
the datasets used in this study.

VI. RESULTS
A. PPG Classification Using MIMIC

The best benchmark AUROC we obtained from the non-
neural network baseline models is around 0.88 and AUPRC
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TABLE |
DATASET OVERVIEW
Dataset Sample size | Sampling frequency Signals Train/Validation/Test | Positive labels
MIMIC-IIT WDB 38320 125 Hz PPG and ECG leads II, V and AVR 64% /1 16% | 20% 17.66%
PhysioNet 2015 108 250 Hz PPG and ECG leads I and V 0/07/100% 38.89%
TABLE Il
NON-NEURAL NETWORK BASELINE MODELS
Model | Specificity (%)  Sensitivity/Recall (%)  Precision (%) | Accuracy (%) | AUROC (%) AUPRC (%)
LR 80.40 2291 20.03 70.25 51.56 28.28
RFEC 97.99 27.72 74.70 85.58 88.40 58.50
SvC 87.75 70.43 55.21 84.69 87.52 65.43
XGB 95.23 45.08 66.96 86.38 88.07 60.87

The numbers under each column are percentages. The highest Accuracy, AUROC and AUPRC are highlighted by bold font. All assessments are
point estimations.

TABLE IlI
RESULTS OF THE NEURAL NETWORK MODELS

Model Specificity (%)  Sensitivity/Recall (%)  Precision (%) | Accuracy (%) | AUROC (%) AUPRC (%)
ResNet-18 93.74 (0.34) 64.23 (2.73) 68.77 (0.81) 88.53 (0.34) 91.47 (0.46)  67.78 (1.44)
ResNet-34 93.17 (0.39) 67.12 (1.78) 67.85 (0.77) 88.57 (0.15) 91.59 (0.16)  67.89 (0.88)
ResNet-50 93.42 (0.35) 62.21 (2.03) 66.97 (0.73) 87.91 (0.20) 90.55 (0.26)  65.95 (1.04)
ECA-Net 92.38 (1.97) 71.09 (4.91) 67.10 (3.26) 88.62 (0.81) 91.85 (1.71)  69.04 (1.14)
DCA-Net (ours) 93.34 (0.46) 67.92 (1.45) 68.67 (1.10) 88.86 (0.20) 91.88 (0.24)  70.12 (0.78)

The numbers shown are the average score in percentage for 10 random repetitions with their standard deviation shown in brackets. The best average accuracy,
AUROC and AUPRC are highlighted with bold font. DCA-Net is significantly better than the second best model based on AUPRC (p-value = 0.001).

(a) A true normal case

Fig. 5.
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(b) A true abnormal case

Examples of normal (a) and abnormal (b) PPG segments correctly classified by DCA-Net and their temporal attention weights in layers

1-4 (heat maps from the bottom up). The brighter colours indicate heavier weights.

is around 0.65 (Table II). The highest AUPRC, AUROC and
accuracy scores are all from different models. None of the tra-
ditional machine learning models in Table II offered consistent
performance across the assessment measures we considered. Al-
though SVC has the highest AUPRC, it took over 10 times longer
than the second-best (regarding the AUPRC score) model XGB.
Apart from SVC, all non-neural network models performed
poorly on the abnormal class with low sensitivity/recall. In
particular, the worse performance is from the logistic regression
classifier (LR) which may suggest the data contain non-linear
relationships with the label.

For the backbone neural network models we tested (ResNet-
18,34 and 50), there is a clear performance drop from ResNet-34
to ResNet-50 (Table IIT). This may be a sign of the model being
over-parameterised. Although there is no significant improve-
ment from ResNet-18 to 34, due to the better performance of
ResNet-34 on the abnormal class which can be seen from the
sensitivity/recall scores in Table III, we selected ResNet-34 as
our backbone model to add attention modules. The ECA-Net
and our proposed DCA-Net were all based on the ResNet-34
backbone.

Comparing the bottom block with the top block in Table III,
we observed significant improvement by adding the attention
modules to the backbone model. Since AUROC is less sensitive
to imbalanced datasets, we only provided it for reference and
measured the performance mainly based on AUPRC.

Our proposed DCA-Net has the best average accuracy, AU-
ROC and AUPRC scores. The AUPRC of DCA-Net is signifi-
cantly better than the ECA-Net with a p-value=0.01 in a one-side
T-test. Moreover, DCA-Net performs more stably than ECA-Net
due to the smaller standard deviations across all assessment
measures.

All results shown in Tables II and III are from the test set of
MIMIC-II WDB which consists of 7664 segments, 20% of the
whole dataset.

1) Temporal Attention Interpretation: We extracted the tem-
poral attention from each layer in the DCA-Net. Fig. 5 shows
an example of correctly classified normal and abnormal PPG
segments and their temporal attention weights in each ResNet
layer. It appears that the first layer focuses on the peaks of the
waveform — the normal case Fig. 5(a) has its attention evenly
distributed on the peaks while the attention for the abnormal
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TABLE IV
DCA-NET PERFORMANCE ON THE PHYSIONET 2015 CHALLENGE DATASET
Model Specificity (%)  Sensitivity/Recall (%)  Precision (%) | Accuracy (%) | AUROC (%) AUPRC (%)
DCA-Net w/ c/w 56.97 (2.46) 77.86 (3.70) 53.53 (1.37) 65.09 (1.55) 71.31 (1.83) 57.16 (3.10)
w/o c/w 78.64 (4.03) 46.67 (3.72) 58.47 (4.00) 66.20 (2.20) 71.72 (1.65)  60.13 (3.46)

‘w/ ¢/w’ and ‘w/o ¢/w’ indicate during training, the loss function was with and without class weights adjustment, respectively. The numbers shown are the average
score in percentage for 10 random repetitions with their standard deviation shown in brackets.

case (Fig. 5(b)) highlights the three larger peaks located in the
beginning, the middle and the end of the signal. Layers 2 and 3
are attending the non-peak areas or smaller peaks. The deepest
layer, layer 4 appears to be always focusing on the beginning
and the end of the signals.

For the normal signal, the attention heat maps present more
regular patterns than the abnormal heat maps, and the attention
values are more evenly distributed, having smaller variances
— the abnormal heat maps have brighter colour patches. This
indicates the model pays more attention to certain areas in the
abnormal case than in the normal case.

B. PhysioNet 2015

Finally, we tested the DCA-Net on an external dataset, Phys-
ioNet 2015 challenge dataset. Due to the small sample size, the
model is not re-trained or fine-tuned. It is a direct application of
the model that was trained on MIMIC-III WDB. The results are
shown in Table IV.

Although the performance level dropped on this external
dataset which is not surprising due to their differences in data
acquisition, sampling frequency, labelling mechanisms and class
ratios, we still observed fair performance of the model, espe-
cially for the class weight adjusted setting — the recall on the
minority class is 77.86. It suggests the model is still able to
identify most of the abnormal signals.

VIl. DISCUSSIONS AND CONCLUSIONS

In this article, we proposed a novel task — intelligent ECG
acquisition via monitoring the PPG signals. This is the first at-
tempt in applying ECG labels to guide the training of PPG where
the alarms raised by PPG can be used to alert abnormal ECG so
that informative signals can be collected at more ‘favourable’
times (when a cardiovascular abnormality happens). We used
the large-scale public dataset MIMIC-III WDB which has rich
paired ECG and PPG data to experiment with this proof-of-
concept.

We further proposed a PPG classification model, dual-
convolutional-attention network (DCA-Net), with a novel atten-
tion module added to the backbone model ResNet and compared
it with several traditional non-neural network machine learning
models and neural network models. DCA-Net achieved the
highest AUPRC score among all models considered. Due to
the employment of dual convolutional attention, not only we
increased the performance level, but also reduced the number of
parameters overhead compared with the previous state-of-the-art
models.

From the analysis results, we can see a clear improvement path
from the non-neural network models to neural network models
and to neural network models with attention, which indicates the

merit of deep neural network models and attention mechanisms.
Moreover, with the help of attention, we are able to visualise the
learning of deep neural networks. This application offers another
step away from the conventional ‘black-box’ impression of the
neural network models.

Although the AUROC of our models reached over 90%, the
AUPRC is less competitive. The AUPRC is pulled down by
the performance of the abnormal class which is a substantially
smaller class compared with the normal class. We can rationalise
this performance reduction by several factors. First of all, the
dataset is very imbalanced. We applied class weights adjustment
to the loss function which in turn boosted the recall level of
the abnormal class. However, this sacrificed the precision level
and overall AUPRC. The second reason which also affects the
overall performance is the noise in the ECG labels. Ideally, we
would have ECG labelled by cardiac experts. Given this is not
the case in MIMIC WDB, we labelled ECG with a published
model that has high accuracy and trained on millions of labelled
ECG data. However, this would still introduce label biases due
to the differences between the dataset used to train the ECG
model and MIMIC WDB. Thirdly, PPG data are highly noisy.
Compared with ECG, the waveform structure of PPG is much
simpler and prone to noise. Although we spent a considerable
amount of effort in designing the PPG pre-processing pipeline,
we still noticed some noisy signals slipped through. Adopting
more sophisticated PPG processing can be a valuable future step.

In this study, we used signals each was 10 seconds long to suit
easier real-world applications. Moreover, since we are using the
actual waveform rather than derived features as model input, our
model should be able to capture the information well within 10
seconds long signals. Classification using longer signals might
be easier, but it imposes fewer constraints to signal acquisition.
Depending on the actual use case, tailoring the signal length can
be beneficial and is worth exploring in future work.

We attempted the classification of PPG using the 2D power
spectrum as model input and received poor performance. By eye-
balling the spectrum, we observed more noises than distinctive
patterns which might also be caused by the short length of signal
adapted in this study.

Another main challenge in this task is model validation. One
challenge lies in the dataset. It is difficult to find PPG with
abnormality labels obtained from ECG or PPG with paired ECG
that has labels. The dataset provided by the PhysioNet 2015
Challenge is the most similar to our training dataset which
also has labels. The DCA-Net showed fair performance on
this dataset, however, there is still a significant performance
drop. The disparities between the two datasets including the
sampling frequency, class ratio and the available ECG leads can
be accounted for this performance drop. Most importantly, the
labels provided by Physionet 2015 do not align perfectly with
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our task as they are true or false ICU alarms for arrhythmia. We
considered the false alarm as normal in ECG for our model
validation despite that might not be the case. Moreover, the
data were collected at different geospatial locations and by
different machines which could lead to inherent differences in
data distributions and noise levels.

We tried several transfer learning techniques on the PhysioNet
dataset including fine-tuning the whole model and fine-tuning
the classification layer only, but we did not achieve improvement
due to the small sample size. One effective way to strengthen
the model power is to have a larger and more reliable validation
dataset with matched characteristics to the training data. Having
some clinical experts-labelled data although would be labour-
consuming, would benefit greatly from the model training which
can be part of future work. Furthermore, applying data augmen-
tation techniques to reliably labelled data to enlarge the data size
can be an efficient way to improve the statistical power of the
model.

Last but not least, this work is a proof-of-concept exploration
of a novel application of PPG, using it to alarm abnormal ECG.
We do not specify the type of cardiac abnormality. The goal is to
utilize passively-measured PPG to initiate an ECG acquisition
during periods of elevated cardiac risk. A valuable next step
would be extending this application to specific cardiac diseases.
Nevertheless, this task is expected to be more demanding due to
the even greater imbalance in class ratios.

VII. DATASETS

The two datasets used in this work are both publicly available
datasets. They can be downloaded with the following links
(under authorised access):

1. MIMIC-III Waveform Database [32]:

https://physionet.org/content/mimic3wdb-matched/1.0/

2. PhysioNet 2015 Challenge dataset [8]:

https://physionet.org/content/challenge-2015/1.0.0/
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