251 research outputs found

    Task Assignment and Path Planning for Multiple Autonomous Underwater Vehicles using 3D Dubins Curves

    Get PDF
    This paper investigates the task assignment and path planning problem for multiple AUVs in three dimensional (3D) underwater wireless sensor networks where nonholonomic motion constraints of underwater AUVs in 3D space are considered. The multi-target task assignment and path planning problem is modeled by the Multiple Traveling Sales Person (MTSP) problem and the Genetic Algorithm (GA) is used to solve the MTSP problem with Euclidean distance as the cost function and the Tour Hop Balance (THB) or Tour Length Balance (TLB) constraints as the stop criterion. The resulting tour sequences are mapped to 2D Dubins curves in the X − Y plane, and then interpolated linearly to obtain the Z coordinates. We demonstrate that the linear interpolation fails to achieve G1 continuity in the 3D Dubins path for multiple targets. Therefore, the interpolated 3D Dubins curves are checked against the AUV dynamics constraint and the ones satisfying the constraint are accepted to finalize the 3D Dubins curve selection. Simulation results demonstrate that the integration of the 3D Dubins curve with the MTSP model is successful and effective for solving the 3D target assignment and path planning problem

    Information-Theoretic Motion Planning for Constrained Sensor Networks

    Get PDF
    This paper considers the problem of online informative motion planning for a network of heterogeneous sensing agents, each subject to dynamic constraints, environmental constraints, and sensor limitations. Prior work has not yielded algorithms that are amenable to such general constraint characterizations. In this paper, we propose the Information-rich Rapidly-exploring Random Tree (IRRT) algorithm as a solution to the constrained informative motion planning problem that embeds metrics on uncertainty reduction at both the tree growth and path selection levels. IRRT possesses a number of beneficial properties, chief among them being the ability to find dynamically feasible, informative paths on short timescales, even subject to the aforementioned constraints. The utility of IRRT in efficiently localizing stationary targets is demonstrated in a progression of simulation results with both single-agent and multiagent networks. These results show that IRRT can be used in real-time to generate and execute information-rich paths in tightly constrained environments.AFOSR and USAF under grant (FA9550-08-1-0086

    Nonholonomic Motion Planning for Automated Vehicles in Dense Scenarios

    Get PDF

    A Hamilton-Jacobi Formulation for Time-Optimal Paths of Rectangular Nonholonomic Vehicles

    Full text link
    We address the problem of optimal path planning for a simple nonholonomic vehicle in the presence of obstacles. Most current approaches are either split hierarchically into global path planning and local collision avoidance, or neglect some of the ambient geometry by assuming the car is a point mass. We present a Hamilton-Jacobi formulation of the problem that resolves time-optimal paths and considers the geometry of the vehicle

    ON-BOARD ARTIFICIAL INTELLIGENCE FOR FAILURE DETECTION AND SAFE TRAJECTORY GENERATION

    Get PDF
    The use of autonomous flight vehicles has recently increased due to their versatility and capability of carrying out different type of missions in a wide range of flight conditions. Adequate commanded trajectory generation and modification, as well as high-performance trajectory tracking control laws have been an essential focus of researchers given that integration into the National Air Space (NAS) is becoming a primary need. However, the operational safety of these systems can be easily affected if abnormal flight conditions are present, thereby compromising the nominal bounds of design of the system\u27s flight envelop and trajectory following. This thesis focuses on investigating methodologies for modeling, prediction, and protection of autonomous vehicle trajectories under normal and abnormal flight conditions. An Artificial Immune System (AIS) framework is implemented for fault detection and identification in combination with the multi-goal Rapidly-Exploring Random Tree (RRT*) path planning algorithm to generate safe trajectories based on a reduced flight envelope. A high-fidelity model of a fixed-wing unmanned aerial vehicle is used to demonstrate the capabilities of the approach by timely generating safe trajectories as an alternative to original paths, while integrating 3D occupancy maps to simulate obstacle avoidance within an urban environment
    • …
    corecore