
Doctoral Dissertations and Master's Theses

Fall 12-15-2022

ON-BOARD ARTIFICIAL INTELLIGENCE FOR FAILURE DETECTION ON-BOARD ARTIFICIAL INTELLIGENCE FOR FAILURE DETECTION

AND SAFE TRAJECTORY GENERATION AND SAFE TRAJECTORY GENERATION

Eduardo Morillo
Embry-Riddle Aeronautical University, morilloe@my.erau.edu

Follow this and additional works at: https://commons.erau.edu/edt

 Part of the Aeronautical Vehicles Commons, Controls and Control Theory Commons, Navigation,

Guidance, Control and Dynamics Commons, Navigation, Guidance, Control, and Dynamics Commons, and

the Systems Engineering and Multidisciplinary Design Optimization Commons

Scholarly Commons Citation Scholarly Commons Citation
Morillo, Eduardo, "ON-BOARD ARTIFICIAL INTELLIGENCE FOR FAILURE DETECTION AND SAFE
TRAJECTORY GENERATION" (2022). Doctoral Dissertations and Master's Theses. 714.
https://commons.erau.edu/edt/714

This Thesis - Open Access is brought to you for free and open access by Scholarly Commons. It has been accepted
for inclusion in Doctoral Dissertations and Master's Theses by an authorized administrator of Scholarly Commons.
For more information, please contact commons@erau.edu.

http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/edt
https://commons.erau.edu/edt?utm_source=commons.erau.edu%2Fedt%2F714&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/219?utm_source=commons.erau.edu%2Fedt%2F714&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/269?utm_source=commons.erau.edu%2Fedt%2F714&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/226?utm_source=commons.erau.edu%2Fedt%2F714&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/226?utm_source=commons.erau.edu%2Fedt%2F714&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1409?utm_source=commons.erau.edu%2Fedt%2F714&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/221?utm_source=commons.erau.edu%2Fedt%2F714&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/edt/714?utm_source=commons.erau.edu%2Fedt%2F714&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu

ON-BOARD ARTIFICIAL INTELLIGENCE FOR FAILURE DETECTION AND SAFE

TRAJECTORY GENERATION

By

Eduardo Xavier Morillo Guerra

A Thesis Submitted to the Faculty of Embry-Riddle Aeronautical University

In Partial Fulfillment of the Requirements for the Degree of

Master of Science in Aerospace Engineering

November 2022

Embry-Riddle Aeronautical University

Daytona Beach, Florida

ON-BOARD ARTIFICIAL INTELLIGENCE FOR FAILURE DETECTION AND SAFE

TRAJECTORY GENERATION

By

Eduardo Xavier Morillo Guerra

This Thesis was prepared under the direction of the candidate’s Thesis Committee
Chair, Dr. Hever Moncayo, Department of Aerospace Engineering, and has been approved
by the members of the Thesis Committee. It was submitted to the Office of the Senior Vice
President for Academic Affairs and Provost, and was accepted in the partial fulfillment of

the requirements for the Degree of Master of Science in Aerospace Engineering.

[30pt]

THESIS COMMITTEE

Graduate Program Coordinator & Chairman, Date

Dr. Hever Moncayo

Member, Date

Dr. Richard Prazenica

Member, Date

Dr. Maj Mirmirani

Dean of the College of Engineering, Date

Dr. James W. Gregory

Associate Provost of Academic Support, Date

Dr. Christopher Grant

This work is dedicated to my parents Edgar and Paulina, my sister Michelle, my

grandparents Edgar, Anita, Rosita and Guillermo, and my aunts and uncles. Your pure and

unconditional love has made this possible. Thank you from all my heart.

ACKNOWLEDGMENTS

First of all, I want to thank God for giving me a shower of blessings throughout my

professional and personal life which has lead me to have the necessary strength and wisdom

to complete this work. He has put on my path people among family, friends, and colleagues

whose heart truly express the significance of love and friendship.

I am extremely grateful to my parents, Edgar Morillo and Paulina Guerra, for their love,

sacrifice, and caring to educate and prepare me for my future endeavors. I am thankful to my

sister, Michelle Morillo, my aunts Grace Morillo, Doris Morillo, Maritza Guerra, and Alina

Ruiz for their unconditional support, as well as my uncle, Mauricio Guerra, who has given

me courage in hard times. Also, I am utterly grateful to my grandparents whose sacrifices

and hard work throughout the years have lead to the creation of our beautiful family.

This study would not have been possible without the guidance and support of Dr. Hever

Moncayo, for which I am eternally grateful for giving me the opportunity to be part of

the Advanced Dynamics and Control Laboratory at ERAU. I could not have asked for a

better advisor. In addition, I want to thank Dr. Richard Prazenica for playing a key role

in my formation as an Aerospace Engineer, as his wisdom during the lectures and great

human qualities were the main source of inspiration for choosing the Dynamics and Control

concentration track. I also want to express my gratitude to Dr. Maj Mirmirani, Dr. Pam

Daniels, and the Aerospace Department Faculty for their help throughout the years.

I want to thank my chosen family: Andrei Cuenca; Juan A. Leon; Dennis Moreno; Silvana

Ureña; Patricia Velasco; Juan F. Granizo; Lorraine Acevedo; Santiago Restrepo; Juan Pava;

Derek and Abbigail Espinosa; Yogesh Pai; Yash Meta; Anish Prasad; Roćıo Jado; Gabriela

and Gustavo Gavilánez; Christoph Aoun; Ayush Raminedi; Maŕıa José Jacome; Pedro Reina;

Sebastián Espinosa; Alexander Cisneros; Yaser Ronquillo; David Cando; Pedro Sandoval; and

all of my friends who have been there for me. There are no words to describe how grateful I

am of having you in my life. I am thankful for your love, care, and support in the hard times

and the good times. This work is also dedicated to you.

i

ABSTRACT

The use of autonomous flight vehicles has recently increased due to their versatility and

capability of carrying out different type of missions in a wide range of flight conditions.

Adequate commanded trajectory generation and modification, as well as high-performance

trajectory tracking control laws have been an essential focus of researchers given that

integration into the National Air Space (NAS) is becoming a primary need. However, the

operational safety of these systems can be easily affected if abnormal flight conditions are

present, thereby compromising the nominal bounds of design of the system’s flight envelop

and trajectory following. This thesis focuses on investigating methodologies for modeling,

prediction, and protection of autonomous vehicle trajectories under normal and abnormal

flight conditions. An Artificial Immune System (AIS) framework is implemented for fault

detection and identification in combination with the multi-goal Rapidly-Exploring Random

Tree (RRT*) path planning algorithm to generate safe trajectories based on a reduced flight

envelope. A high-fidelity model of a fixed-wing unmanned aerial vehicle is used to demonstrate

the capabilities of the approach by timely generating safe trajectories as an alternative to

original paths, while integrating 3D occupancy maps to simulate obstacle avoidance within

an urban environment.

ii

TABLE OF CONTENTS

ACKNOWLEDGMENTS i

ABSTRACT ii

LIST OF FIGURES viii

LIST OF TABLES ix

NOMENCLATURE x

1 Introduction 1

1.1 Literature Review 2

1.1.1 Occupancy Maps for Obstacle Avoidance 2

1.1.2 Path Planning Algorithms for Autonomous Vehicles 5

1.1.3 Holonomic and nonholonomic systems 10

1.1.4 Choosing RRT* as a path planner: 11

1.1.5 The Artificial Immune System Paradigm 14

1.2 Thesis Objectives 19

1.3 Thesis Outline 19

2 Occupancy Maps 20

2.1 Theoretical Background 20

2.2 Obstacle Avoidance 21

3 Trajectory Generation for Autonomous Navigation 24

3.1 Requirements for Autonomous Navigation 24

3.1.1 Differential Constraints for State Propagation 24

3.1.2 Probabilistic Completeness 25

3.1.3 Asymptotic Optimality 26

iii

3.2 Rapidly-Exploring Random Trees (RRTs) 27

3.2.1 Rapidly-Exploring Random Graph (RRG) 30

3.2.2 Rapidly-Exploring Random Tree* (RRT*) 31

3.3 Dubins Paths for Smoothing 33

3.3.1 Dubins Car Paths 33

3.3.2 Dubins Airplane Paths 35

3.3.3 Decision making in 2D & 3D 36

3.3.3.1 The 2D Problem 37

3.3.3.2 The 3D Problem 38

4 Artificial Immune System Paradigm 44

4.1 Post-Failure Flight Envelope Prediction 44

4.2 Flight Envelope Reduction for Safe Trajectory Generation 46

4.2.1 Roll Angle Constraints 47

4.2.1.1 Left Aileron Failure 47

4.2.1.2 Right Aileron Failure 50

4.3 Antibody Generation Algorithm 51

4.3.1 Single-Data File Generation 53

4.3.2 Data Preprocessing and Clustering 53

4.3.3 AIS Detection Metrics 55

4.3.4 Detection and Identification Scheme 55

5 Simulation Environment 58

5.1 Rascal 110: Physical and Dynamical Parameters 58

5.2 Equations of Motion 60

5.3 Tracking the Safe Trajectory 65

5.3.1 Formation Flight Control: Virtual Trajectory Tracking 65

5.3.2 Nonlinear Dynamic Inversion Controller 67

iv

5.3.2.1 Outer-Loop Controller 68

5.3.2.2 Inner-Loop Controller 70

5.4 Architectures for Simulation Environment 73

6 Numerical Simulations & Performance Analysis 77

6.1 Nominal Trajectory Generation 77

6.2 Replanning Missions due to Aileron Failure 78

6.2.1 Right Aileron Failure (High Magnitude) 78

6.2.2 Right Aileron Failure (Low Magnitude) 80

6.2.3 Left Aileron Failure (High Magnitude) 82

6.2.4 Left Aileron Failure (Low Magnitude) 83

6.3 Performance Analysis of Generated Safe Trajectories 84

6.3.1 Path Planner Costs 84

6.3.2 Performance Metrics for Evaluating Trajectory Feasibility 85

6.4 HMS-AIS Detection and False Alarms 88

6.4.1 Generated Selves for Detection and Identification 90

6.4.2 Detection: Activated Detectors 94

7 Conclusions & Future Work 97

REFERENCES 99

v

LIST OF FIGURES

Figure Page

1.1 Comparison between Point Cloud Map (top left), Elevation Map(top right),

Multi-level Surface Map(bottom left), and OctoMap technique (bottom right). 6

1.2 3D Path Planning Taxonomy. 7

1.3 Sampling Based Path Planners. 8

1.4 Node Based Path Planners. 9

1.5 Innate vs. Adaptive Immunity. 15

1.6 Humoral and Cellular Immunity. 16

1.7 Negative Selection (NS) Concept. 17

1.8 Nominal (left) vs. Abnormal (right) Dynamic Fingerprint. 18

2.1 Octree Structure with Free (shaded white) and Occupied (black) cells repre-

sented as a Volume (left) and as Tree-Structure (right). 21

2.2 Generated 3D Occupancy Map for Urban Environment Simulations. 22

2.3 3D State-Space Definition for Obstacle Avoidance. 23

3.1 Original RRT Algorithm with Collision Checking. 27

3.2 Selected Poses for the Example of the Original RRT Path Generation. 29

3.3 Example of Original RRT Path Generation. 29

3.4 RRG Algorithm with Collision Checking. 30

3.5 RRT* Algorithm with Collision Checking. 32

3.6 Example of RRT* Path Generation based on Table 3.1. 32

3.7 Four possible Paths connecting an Initial Pose zs = (zns, zes, ψs) and Final

Pose ze = (zne, zee, ψe) given a minimum turning Radius Rmin. 34

3.8 Basic Kinematic model of a generalized fixed-wing UAV. 35

3.9 2D Dubins Path Decision-Making Capabilities. 37

3.10 Dubins Airplane Path for Low-Altitude case. 39

vi

3.11 Dubins Airplane Path Parameters for Medium-Altitude case. 40

3.12 Dubins Path for medium altitude case. 41

3.13 Dubins Path for high-altitude case. 42

3.14 High-Altitude Decision-making logic. 43

4.1 Aircraft Rear View: Left Aileron Stuck. 47

4.2 Aircraft Rear View: Right Aileron Stuck. 50

4.3 Antibody Generation Process based on RSDUM. 52

4.4 HMS(AIS) Simulink block. 56

4.5 Detection and Identification Subsystems. 56

4.6 Selves S-Functions. 57

5.1 Rascal 110 Mesh Model and Original Model (left) vs. Assembled Balsa Wood

Model (right). 58

5.2 ABC (left) and NED (right) Reference Frames. 61

5.3 Level Plane Formation Geometry. 66

5.4 NLDI Architecture. 68

5.5 Slow and Fast modes for NLDI. 70

5.6 General Simulation Architecture. 74

5.7 Simulink Model with FlightGear. 74

5.8 On-board Decision-making Capabilities Architecture. 75

5.9 Example of Trajectory Tracking: Generated RRT* Trajectory (top left), Rascal

110 Simulink Model (top right), FlightGear Simulator (bottom left), and UAV

Animation (bottom right). 76

6.1 Nominal Trajectory Generation. 77

6.2 Rascal 110 Crash for δailRstuck
= 15◦. 79

6.3 Rascal 110 Replanning Mission for δailRstuck
= 15◦. 79

vii

6.4 Smoothed Nominal Trajectory vs. Replanned Safe Trajectory for Right Aileron

Failure (High Magnitude). 80

6.5 Rascal 110 Replanning Mission for δailRstuck
= −10◦. 81

6.6 Smoothed Nominal Trajectory vs. Replanned Safe Trajectory for Right Aileron

Failure (Low Magnitude). 81

6.7 Rascal 110 Replanning Mission for δailLstuck
= 17◦. 82

6.8 Smoothed Nominal Trajectory vs. Replanned Safe Trajectory for Left Aileron

Failure (High Magnitude). 83

6.9 Rascal 110 Replanning Mission for δailLstuck
= −8◦. 83

6.10 Smoothed Nominal Trajectory vs. Replanned Safe Trajectory for Left Aileron

Failure (Low Magnitude). 84

6.11 DRs and FAs for all Simulation Cases. 89

6.12 Example of Selves for Failure Case 1: Right Aileron Stuck (High Magnitude). 90

6.13 Example of Selves for Failure Case 2: Right Aileron Stuck (Low Magnitude). 91

6.14 Example of Selves for Failure Case 3: Left Aileron Stuck (High Magnitude). 92

6.15 Example of Selves for Failure Case 4: Left Aileron Stuck (Low Magnitude). 93

6.16 Example of Activated Detectors for Self 5. 94

6.17 Example of Activated Detectors for Self 1. 95

6.18 Failure Detection and Identification with Online HMS. 96

viii

LIST OF TABLES

Table Page

1.1 Heuristic functions for path planning optimization. 7

1.2 Properties of path planning algorithms. 11

1.3 Ideal characteristics of the path planner. 12

1.4 Main characteristics of sample based path planners. 13

3.1 Predefined coordinates for the example of the original RRT path generation. 28

4.1 AC Evaluation Analysis 46

4.2 Selected features for AIS Application for Aileron failure cases. 52

4.3 Selected Projections for Detection and Identification Scheme. 53

4.4 Criteria for Designing Hyper-Spheres. 54

5.1 Rascal 110 Physical Parameters. 59

5.2 Input Parameters for Datcom analysis. 59

5.3 Rascal 110 Stability Derivatives. 60

5.4 Allowable Control Surface Deflections. 60

6.1 Nominal trajectory coordinates. 77

6.2 Roll Angle Restrictions. 78

6.3 Path Planner Costs and Iterations 84

6.4 Performance Metrics for Simulations. 87

6.5 DR and FA for Right Aileron Failure Cases. 88

6.6 DR and FA for Left Aileron Failure Cases. 88

ix

NOMENCLATURE

ABBREVIATIONS

ABC Aircraft-Body-Centered Reference Frame

AC Abnormal Condition

ADCL Advanced Dynamics and Control Lab

ADIS Adaptive Immune System

AIS Artificial Immune System

BIS Biological Immune System

CFD Computational Fluid Dynamics

DCM Direction Cosine Matrix

DR Detection Rate

EOMs Equations of Motion

ERAU Embry-Riddle Aeronautical University

FA False Alarm

FFC Formation Flight Control

FGC Formation Geometry Calculation

HMS Health Monitoring System

INIS Innate Immune System

NAD Number of Activated Detectors

NAS National Air Space

x

NED North-East-Down Reference Frame

NLDI Nonlinear Dynamic Inversion

NS Negative Selection

OBC On-board computer

PI Performance Index

PS Positive Selection

RRG Rapidly-Exploring Random Graphs

RRT Rapidly-Exploring Random Tree

RRT* Rapidly-Exploring Random Tree-Optimized

RSDUM Raw Data Set Union Method

SLAM Simultaneous Location and Mapping

sUAS Small Unmanned Aircraft Systems

SVM Support Vector Machine

UAS Unmanned Aircraft Systems

UAV Unmanned Aerial Vehicle

VTOLs Vertical Take-off and Landing Vehicles

xi

SYMBOLS

α Angle of Attack (AoA)

γ̄ Limit of the Flight Path Angle

c̄ Mean Aerodynamic Chord

β Side-Slip angle

ze Final Pose

zs Initial Pose

χfree Obstacle-Free Space

χobs Obstacle Space

∆δail Relative Deflection of the Ailerons

δT Desired Thrust

δailL Left Aileron Deflection

δailR Right Aileron Deflection

δrudL Left Rudder Deflection

δrudR Right Rudder Deflection

ψ̇ Rate of Change of Heading

ṙe East Velocity

ṙn North Velocity

ϵ Voxel Size

γ∗ Optimal Flight Path Angle

xii

γc Commanded Flight Path Angle

Γi Constraints of the System

γnominal Nominal conditions of Flight Path Angle

E Envelope Relevant Variables

F Set of Features

µ(χfree) Volume of Obstacle-Free Space

ϕ Roll Angle

ϕc Commanded Roll angle

ϕnominal Nominal conditions of Roll Angle

ψ Heading angle

σ Feasible Path

θ Pitch Angle

C̃ Accumulated Actuation Energy

Ẽ Accumulated Error of Attitude Tracking

T̃ Accumulated Error of Translational Displacement Tracking

ζd Volume of the Unit Ball

b Wing Span

c Wing Chord

d Dimension of the State Space

E Set of Edges

xiii

f Position Forward Error

Ixx Moment of Inertia along X-axis

Iyy Moment of Inertia along Y-axis

Izz Moment of Inertia along Z-axis

k Number of Turns of Each Helix

l Position Lateral Error

m Aircraft Mass

memgrid Memory Size in Bytes of 3D Grid

n Number of Nodes or Samples

Nfeatail Number of Features for aileron failure cases

Nprojail Number of Projections for aileron failure cases

p Roll Rate

Pb/2V Helix Angle or Normalized Roll Rate

PIglobal Global Performance Index

r Yaw Rate

RE
B DCM for Body-to-Earth Coordinate Transformation

Rmin Minimum Turning Radius

rres Map Resolution in Meter/Cell

S Wing Planform Area

V True Airspeed

xiv

vδ Directly Involved Variables

vϵ Equivalent Directly Involved Variables

Vn Vertex Set

W Aircraft Weight

x, y, z Inertial Reference Frame Positions

xgoal Goal Region

xinit Initial Condition

xnearest Nearest Node

Y Set of Features at Post-failure Condition

zde Down-Component of the Final Pose in the NED Frame

zds Down-Component of the Start Pose in the NED Frame

xv

1 Introduction

The use of unmanned aerial systems (UASs) has been exponentially growing during

the past decade, especially due to their versatility, relatively low-cost manufacturing and

operational flexibility. These vehicles are capable of carrying out different type of missions that

range from different applications including recovery operations, disaster reliefs, construction

inspection and law enforcement applications among others. Consequently, increased levels of

autonomy are becoming a main focus of researchers since potential failures in the systems

and/or subsystems of the UAS can represent serious harm to civilians and high risk of damage

to private and public property.

Trends in the increase of registration of recreational sUAS and commercial UAS have

been exponentially growing in the last decades, and it continues to grow as more commercial

and recreational applications are developed for these type of vehicles. Currently, the FAA

[1] forecasts that the recreational UAS fleet will increase from 1.32 million units to around

1.48 million units by 2024, while the commercial UAS are expected to grow to approximately

828,000 aircraft for the same year. The fact that UAS are becoming more popular demands

that their integration to the National Air Space (NAS) has to be safe as well, meaning that an

increase in autonomy capabilities is required. Nevertheless, abnormal flight conditions due to

mechanical, electrical, and software failures have been imposing a great barrier in several UAS

applications, especially where the flight environment is challenging. Loss of power, control

surfaces lock, battery explosions or even malfunction of the on-board computers can cause a

UAV to easily injure a person or cause damage in property which can lead to expensive costs

and law penalties [2].

As a result, researchers have been focused on improving control law algorithms by using

methods such as artificial neural networks for enhancing the stability of the vehicle among

others [3],[4]. Some studies even propose the use of other UAS such as air blimps in order to

reduce the risk of collision that a malfunction might cause [5]. However, this still does not

present a viable solution towards the original problem.

1

Improved system autonomy requires accurate strategies to detect and predict abnormal

flight conditions as well as innovative fault-tolerant control strategies to mitigate the risk

of flying in challenging environments [6],[7]. Researchers have tackled this problem by

implementing algorithms related to the on-line health monitoring of the system, which is

dedicated to the identification of the abnormal flight condition once the vehicle is subjected

to a failure [8]. On the other hand, some efforts focus on improving path planning algorithms

such that collision avoidance can be achieved with maximum efficiency while taking into

account the vehicle’s original mission goals. Despite these improvements, there has been a

lack of research in terms of safe trajectory generation based on a reduced flight envelope.

1.1 Literature Review

This section presents the preliminary knowledge that has been compiled using available

literature that will serve as a basis for presenting the decision-making architecture of this

thesis. The main focus relies on providing essential information about three areas of knowledge

that reside inside the autonomous guidance and navigation area: Occupancy maps for obstacle

avoidance, path planning algorithms, and the AIS paradigm for failure detection, identification,

and evaluation.

1.1.1 Occupancy Maps for Obstacle Avoidance

For autonomous navigation in any robotics application, the knowledge of occupied and

free space on a 3D environment is essential for collision-free path planning. There are

many methods available in the literature to model 3D maps. Ranging from point clouds

and elevation maps to multi-level surface maps, each method presents its own advantages

depending on the desired application.

The study performed by Newman et al. [9] uses a mapping method based on constructing

point clouds for a SLAM (Simultaneous Localization and Mapping) application for modeling

a urban environment. Point clouds are usually obtained from laser sensor data and are set of

coordinates in the Cartesian plane that are classified according to their elevation and intensity.

For this case, the authors used a laser in combination with a vision system to sample the

2

local geometry of the environment to incrementally build the 3D map. Though this process

is implemented in an on-line configuration, it highlights some general characteristics of point

cloud maps. As being a method that demands a high detection rate of points in the space, high

precision sensors are often used to capture in detail the geometrical shapes of the environment.

Though obstacle avoidance improves greatly, memory and computational consumption are a

major drawback of this method, therefore leaving it unfeasible for implementation with path

planning algorithms.

Furthermore, improvements to these type of classical mapping techniques have been imple-

mented for reducing size memory and allowing path planner algorithms to be simultaneously

implemented. The work done by Douillard et al. [10] shows the combination of the points

cloud method with the partition of the mapped world into a set of voxels, also known as

single-cubic units of volume, such that 2D grids can be extended into 3D objects without a

substantial use of memory. Additionally, they build specific hybrid maps where they combine

multi-surface elevation maps with voxel creations such that detailed physical characteristics

of the terrain can be represented, therefore providing an enhanced model of the environment.

This is also closely related to the previous work done with elevation maps, also known as

21
2
maps, where each cell on a two-dimensional grid contain the information of the height

of the obstacles [11]. According to the authors, these types of renderings are feasible to be

implemented with path planning algorithms. However, the main drawback of this study relies

on the pre-processing time that is needed to obtain the final map.

Ryde and Hu [12] have presented a novel multi-resolution algorithm that allows to arrange

2D data stored in voxel lists to produce 3D maps. They formally present the volumetric

space occupied by the voxels, and they use a 3D probability function of position p(x, y, z) to

describe the probability density of the occupancy at a particular position in the state-space.

Equation 1.1 shows this, where ϵ is the voxel size, and the indices are defined by Equation

1.2.

3

Pi,j,k =

∫ z+ϵ

z

∫ y+ϵ

y

∫ x+ϵ

x

p(x, y, z)dx dy dz (1.1)

i = [
x

ϵ
], j = [

y

ϵ
], k = [

z

ϵ
] (1.2)

The drawback for this implementation is that the authors do not consider the difference

between free and unknown volumes, which can affect the performance of the path planner

when trying to establish boundaries on which the state-space can be searched for generating

alternative paths once the flight envelope is altered due to an abnormal condition.

From these studies, it can be noticed that several implementations and constructions of

3D mapping are limited by their own properties. For instance, the need for a 3D map that

contains the following properties is required:

• Compact enough to be memory efficient and computationally inexpensive.

• Capability of differentiating occupied space, free space, and unknown space.

• Detailed enough to accurately represent volumetric obstacles.

• Capability of having multi-resolution properties for high-level path planners used for

navigation.

The 3D mapping framework that meets these requirements is based on the OctoMap, a

relatively new architecture that relies on structures called octrees for memory saving and

volumetric representation. This framework was firstly proposed by Wurm et al.[13] and

has continuously being improved by several researchers [14],[12]. The authors explicitly

demonstrate the advantages of their proposed method over the previous mentioned mapping

methods in terms of compactness, flexibility, and updateability. Figure 1.1 [13] shows a

comparison between point cloud maps, elevation maps, multi-level surface maps and the

proposed OctoMap technique as shown by the authors. Notice that the OctoMap structure

4

provides an improved map of the same volumetric object with higher accuracy that has even

a reduced memory size. The memory size in bytes of the 3D grid that stores the information

about the occupancy level of the voxels can be calculated using Equation 1.3, where rres is

the map resolution measured in meter/cell and x, y, z are the bounding coordinates in each

dimension.This 3D map presents a viable solution for autonomous navigation.

memgrid =
x× y × z

r3res
4B (1.3)

Another advantage of this framework is that it has been released under the BSD-license

which allows any user to access freely to the source code. In addition, the libraries are made

to support Windows, Linux, and Mac OS X with their respective compilers, plus compatibility

with Robot Operation System (ROS) is also available for Linux Ubuntu distribution. The

authors have well documented the support for these platforms, and these can be find in

https://github.com/OctoMap/octomap or https://octomap.github.io/ along with the

code repositories. Chapter 2 presents the theoretical details of the OctoMap method and

the application that it has for the present work in terms of modeling and simulating fixed

obstacle avoidance.

1.1.2 Path Planning Algorithms for Autonomous Vehicles

Nowadays, several type of robots are able to perform autonomous navigation tasks due to

the extensive amount of research and studies that engineers and scientist have conducted

in the last three decades about path planning algorithms. Ranging from UAVs, UASs,

underwater autonomous vehicles, ground vehicles, even to common vacuum cleaners such as

the iRobot, this technology has had a great impact on the goal of increasing autonomy for

artificial intelligence applications. It would be an exuberant task to address all the current

existing path planning algorithms, their details, and their enhanced versions in a single study.

However, the most important ones will be mentioned as choosing the optimal algorithm for

the present application is extremely important as this framework will have to interact with

5

https://github.com/OctoMap/octomap
https://octomap.github.io/

Figure 1.1 Comparison between Point Cloud Map (top left), Elevation Map(top right),
Multi-level Surface Map(bottom left), and OctoMap technique (bottom right).

the AIS paradigm.

Path planning is an essential tool that allows almost any type of robotic intelligence to

identify safe, efficient, collision-free paths from a start position to a destination [15]. The

vast majority of these algorithms have been enhanced mainly to improve computational

efficiency, re-planning tasks, and memory saving. Path planners can generally be classified

differently according to their characteristics, but an efficient way to differentiate them is

according to their own way of generating feasible paths for the vehicle. The work performed

by Yang et al.[16] provides a survey of the main categories in which the most popular path

planners can be classified. Though most of the literature focuses on 2D algorithms due to

their simplified complexity, one the purpose of this thesis is to provide a real-world solution

to the safe trajectory generation. Therefore, 3D mission planners will be addressed. These

can be classified in five main categories according to the methodology they use to create the

trajectories. Figure 1.2 [16] shows the main classification and their most important details

are highlighted.

6

Figure 1.2 3D Path Planning Taxonomy.

Sampling based algorithms: These type of planners require preknown information

about the environment (mainly for obstacle avoidance and limit bounds), though they can

still sample the nodes or cells in spaces. They can be subdivided into two further categories:

active and passive, as shown in Figure 1.3 [16]. The main difference is that the active planners

can find an optimal solution based on the definition of an heuristic cost function, while the

passive planners do not guarantee an optimal solution even if this one exists. Table 1.1 [15]

describes the most common heuristic functions that researchers use to optimize the path

planners, with the Euclidean distance being the most popular one. Here, x and y represent

Cartesian coordinates.

Table 1.1 Heuristic functions for path planning optimization.

Function Equation

Euclidean distance
√
(x1 − x2)2 + (y1 − y2)2

Manhattan distance |x1 − x2|+ |y1 − y2|
Octile distance max|x1 − x2|+ |y1 − y2|

These planners sample the path as a set of nodes or cells, similar to a Monte Carlo sampling

method. In this category, Rapidly-Exploring Random Tree (RRT) [17] is included along

with its optimized version (RRT*), which uses the Euclidean heuristic cost function. Active

planners also include another variant of the RRTs known as Dynamic Domain RRT (DDRRT),

7

and the well known Artificial Potential Fields. On the other hand, passive path planners

include 3D Voronoi diagrams, Rapidly-Exploring Random Graphs (RRG), and Probabilistic

Road Maps (PRMs) along with its variants. More information on these algorithms can be

found on References [6],[15],[18].

Figure 1.3 Sampling Based Path Planners.

Node based optimal algorithms: These type of algorithms are similar to the sampling

based algorithms in that some previous information about the space is known, such as a 3D

map once obstacles are previously defined or detected by sensors. The difference relies in

that they use a graph decomposition method to plan the path, which usually can also be

optimized. Well known algorithms in this category include the Dijkstra’s algorithms (A* and

D*), Theta*, and Lifelong Planning A* (LPA*) as shown in Figure 1.4 [16]. Dijkstra’s [19]

algorithms and its variants can also be classified as search algorithms, and they usually deal

with static environments. LPA* [20] are more robust as they are able to handle dynamic

environments as well as D*-Lite [21]. Regardless of their search method, all these algorithms

deal with discrete optimization based on graph decomposition.

Mathematic model based algorithms: These type of algorithms include also sub-

categories which include linear algorithms and optimal control. Some of them deal with

kinematic constraints that have to do with the environment modeling, and the dynamic

8

Figure 1.4 Node Based Path Planners.

constraints of the vehicle. In fact, these algorithms contain almost all the information about

the kinodynamic constraints present, but at the same time this causes them to require high

time complexity and increased computational effort. More on these type of algorithms can

be found on References [22],[23],[24].

Bioinspired and multifusion based algorithms: Bioinspired algorithms try to mimic

the nature of mainly animals to find feasible paths for the autonomous vehicles. They are

subdivided into Neural Network (NN) and Evolutionary algorithms, with the latter ones being

widely used to replicate the behaviour of insect colonies [16],[15]. For example, the behaviour

of ants, bees, and even bat colonies have been studied which has lead to the creation of

the Ant Colony Optimization algorithm (ACO) [25], the Bat Planning (BA) algorithm [26],

and the Artificial Bee Colony algorithm (ABC), respectively. Additionally, the concept of

nature evolution has been replicated in planners such as the Genetic Algorithm (GA)[27]

which has allowed to solve complex problems involving multiobjectives. However, problems

in convergence and also high time complexity are the main disadvantages of these planners.

Often, Bioinspired planners are combined with the sampling based algorithms which has

lead to multifusion based algorithms. The objective of making a fusion of both types of path

planners is primarily to counteract disadvantages that each one presents. A clear example

of a multifusion algorithm is presented in the work done by Lin et al. [28] where the BA

algorithm is used to counteract the problem of local minima that Artificial Potential Fields

present [18].

9

Given that there is a numerous combination of path planner algorithms and enhancements

of each one of them that has been carried out over the years as computational capabilities

have improved, is extremely important to choose a convenient path planner for the present

application. In fact, the path planner will also have to take into account the physical and

dynamical constraints of the vehicle in order to produce a feasible path. Due to this, it is

important to define the basic concepts of holonomic and nonholonomic systems.

1.1.3 Holonomic and nonholonomic systems

In the local approach, nonholonomic systems are defined as those mechanical/robotic

systems in which velocity constraints are not originating from positional constraints [29]. This

means that velocity is not integrable into a positional constraint, from which it is impossible

that the system returns to its original position due to its prior states (i.e. path taken). On

the other hand, holonomic systems are those characterized of having integrable constraints

into positional constraints. Intuitively, this means that nonholonomic systems cannot move

in all directions locally in the configuration space while holonomic systems are able to move

freely in all directions [30].

A clear example of a nonholonomic system is a fixed-wing UAV, where the system cannot

move freely as its dynamics are constrained by the path it has already taken. Clearly the

fixed-wing depends on the previous discrete position that it held so that based on that

position, the actuators can be able to make it reach just certain future positions in the

next time step due to the geometrical and physical constraints of the system (i.e maximum

aileron/elevator/rudder deflections). For instance, the path that this UAV followed puts a

constraint into its future discrete positions at every time step.

In contrast, a quad-copter UAV can easily return to a specific position and orientation

regardless of its previous states and path taken. Intuitively this is obvious, since the position

and orientation are not constraints due to surface actuation. Therefore, the quad-copter is

characterized as an holonomic system. Further details are provided in chapter 3.

10

1.1.4 Choosing RRT* as a path planner:

The on-board capabilities for the architecture that is presented in this work requires

real time on-line path planning, for which the selected planner will need a feasible time

complexity and computational efficiency. Additionally, a planner that takes into consideration

the kinematic constraints (related to the modeled environment), and dynamic constraints

of the vehicle will be of primary need (kinodynamic constraints), especially if an abnormal

condition is present since this directly affects the dynamical behaviour of the vehicle, for

which safe trajectories would be able to be generated under a restricted flight envelop.

Under the time complexity consideration, the on-line real time requirement, and whether

the environment is static or dynamic (S/D) in terms of the obstacle avoidance, Table 1.2

[16] presents a classification of the previously mentioned algorithm categories. Here, n is the

number of nodes/samples of the algorithm and the “Big O” notation is used to represent the

growth function that characterizes the time complexity. Typically, this way of representing

algorithms according to their run time and space requirements is used in the computer science

field to have an idea of the algorithm’s performance.

Table 1.2 Properties of path planning algorithms.

Algorithm category Time Complexity S/D Environment Real Time

Sampling based O(n log n) ≤ T ≤ O(n2) S and (some) D On-line

Node based O(n log n) ≤ T ≤ O(n2) S and (some) D On-line

Mathematic model based Depends S and D Off-line

Bioinspired O(n2) ≤ T S and (some) D Off-line

Multifusion O(n log n) ≤ T Depends Off-line

Notice that sampling and node based algorithms are similar in computation, and they are

on-line methods. For instance, the search is reduced to these two categories. If kinodynamic

properties are considered, the feasible algorithms for the present study suggest that sampling

based methods must be used. This is essentially due to the fact that node based algorithms

are not suited for nonholonomic systems, but rather just for holonomic systems.

11

Further research suggests that in addition to time complexity and kinodynamics being

essential requirements, the most efficient path planner will have to present additional charac-

teristics to ensure the creation of feasible safe trajectories. These entire set of characteristics

is presented in Table 1.3 and briefly described below.

Table 1.3 Ideal characteristics of the path planner.

Characteristics of the Path Planner

Kinodynamic properties

Probabilistic completeness

Asymptotic optimality

Monotone convergence

Acceptable time and space complexity

Probabilistic completeness has to do with the probability of the path planner to be able

to find a solution as the number of samples approaches infinity, while asymptotic optimality

is defined as the probability of converging asymptotically to the optimal solution with infinite

number of samples [31],[32]. A path planner is probabilistic complete and asymptotically

optimal when both probabilities are 1. Moreover, monotone convergence has to do with

the ability of the solution to converge towards a certain bound, and space complexity has

to do with the amount of memory used by the algorithm to compute the samples. Formal

mathematical definitions of these concepts are further presented in chapter 3.

The study conducted by Karaman and Frazzoli [31] presents a complete analysis of some

active and passive sample based algorithms based on the properties described above, and

it proposes new improved versions of the algorithms that meet such properties. Table 1.4

shows the result of their work and provides expressions for time and space complexity for

comparison purposes. Recall that these parameters are expressed in terms of nodes or samples

n, and the Big O notation as described previously.

Based on this description, it can be noticed that the least efficient algorithm in time

and space complexity is the Simplified Probabilistic Road map (sPRM) as its function

12

Table 1.4 Main characteristics of sample based path planners.

Algorithm
Probabilistic
Completeness

Asymptotic
Optimality

Monotone
Convergence

Time
Complexity

Space
Complexity

PRM Yes No Yes O(n log n) O(n)

sPRM Yes Yes Yes O(n2) O(n2)

k -sPRM Conditional No No O(n log n) O(n)

Original/Existing
Algorithms

RRT Yes No Yes O(n log n) O(n)

PRM*

k -PRM*

Yes Yes No O(n log n) O(n log n)

RRG

k -RRG

Yes Yes Yes O(n log n) O(n log n)

Improved
Algorithms
by Karaman

and Frazzoli [31]

RRT* Yes Yes Yes O(n log n) O(n)

presents a quadratic growth. Consequently, this path planner is discarded as well as all the

PRMs and RRGs variations since they are passive planners. Now, only RRT and RRT*

seem to be feasible candidates to be taken into consideration. However, notice that RRT

is not asymptotically optimal which is a limitation for on-line path planning. Nevertheless,

RRT* does have all the necessary characteristics while maintaining the same time and space

complexity with kinodynamic considerations. This is of special importance since usually the

modified/improved versions of the original methods tend to come in hand with increased

time or space requirements. For instance, the most feasible trajectory planner to be chosen

for this application is the RRT* algorithm.

Dubins Paths: Despite RRT* is suitable for the present nonholonomic application, it

cannot act alone since the branches of the tree impose sharp turns that in most cases makes

the trajectory unfeasible to be followed, as will be shown. Within this line of thought, it is

convenient to smooth the path generated by the path planner such that a feasible path can be

created at all time steps. To achieve this, the Dubins paths are considered as firstly proposed

in 1957 by L.E. Dubins[33]. Ones the RRT* finds the optimal path between the initial and

13

final pose, then the Dubins Path is applied into each segment of the trajectory with the main

goal of transforming sharp-edge turns into smooth arcs, enabling the fixed-wing to be able to

follow the 3D trajectory.

Chapter 3 will present the theoretical definitions of the path planner algorithm and

details about the Dubins Path implementation that will also have embedded decision-making

capabilities to find the best cost-optimum 3D trajectory.

1.1.5 The Artificial Immune System Paradigm

In recent years, there has been an increased interest in mimicking biological systems

through the use of immunological computation techniques to solve a wide variety of problems

that include optimization, classification, clustering, anomaly detection, machine learning,

adaptive control, and associative memories [34]. Under these categories, artificial immune

systems have been developed and continuously enhanced to act similarly to the Biological

Immune System (BIS) as a mechanism to recognize and remember specific pathogens within

a host organism. Under this idea, Takahashi and Yamada [35] have originally proposed a

mathematical representation of the artificial immune system commonly subscribed under

what is known as the Artificial Immune System paradigm.

Furthermore, the presented idea has been adapted and improved to be used as a detection,

identification, and evaluation mechanism for abnormal flight conditions in complex systems

such as aircraft and spacecraft, where failures have been studied at the software and hardware

level [36],[37]. In order to understand how the AIS paradigm works, it is necessary to have a

basic knowledge of how the BIS operates in the human body.

Biological Immune System: The human body has mainly two subsystems that compose

the entire BIS: The Innate Immune System (INIS) and the Adaptive Immune System (ADIS).

These are shown in Figure 1.5 [38], and are explained as follows.

Innate Immune System: The INIS is formed by the natural killers of the host organism

and present the first line of defense against intruders (antigens). The INIS is formed mainly by

white blood cells such as macrophages, dendric cells, neutrophils, eosinophils, and basophils

14

Figure 1.5 Innate vs. Adaptive Immunity.

which act as “killers” and communication agents. A complement system is also involved in

this process, where a group of proteins flow freely into the bloodstream to recognise foreign

entities before reacting to them. These proteins can also bind together to form a stronger

cell-membrane in order to attack the intruder.

Adaptive Immune System: Similarly, the ADIS provides the host organism with

defender cells by producing antibodies. Although this one is a more complex system, it is of

special interest since this is where the AIS paradigm concept relies. The ADIS is composed

by two subsystems: a Humoral response and a Cellular response. The white blood cells

in the Humoral response are known as T-helper cells (or T-cells), and their objective is to

bind with a particular antigen and then activate another type of white blood cells known

as B-cells (or B lymphocytes). B-cells, in turn, produce antibodies that react towards the

antigen trough a Negative Selection (NS) process. Lastly, the Cellular response focuses on

binding the T-cells to antigens, and also releasing cytokines, which activate macrophages for

intruder destruction. Both subsystems are shown in Figure 1.6 [39].

Negative Selection: An important characteristic of the ADIS is that it has the capability

of detecting antigens while not reacting towards the self cells, leading to a discrimination-type

process. This process is known as Negative Selection, although Positive Selection (PS) is also

used for achieving the same purposes [40],[41]. However, PS is usually more computational

15

Figure 1.6 Humoral and Cellular Immunity.

expensive since the whole set of antibodies must be tested before declaring an external agent

to be abnormal, therefore NS is the selected scheme by default [36]. Here, phagocytes (an

immunological type of cells) are in charge of marking external intruders whose biochemical

markers differ from the host’s organism. In this way, the discrimination process can be carried

out which will mark the difference between the self cells and non-self cells. For the purposes of

this thesis, the terms “non-self”, “detectors”, and “antibodies” will be used interchangeably

as will be explained further. The concept of NS is illustrated in Figure 1.7 [41], where all the

process is biologically developed inside the thymus.

AIS for UAV Health Monitoring: Under the mentioned concepts, the BIS can be

translated into the AIS paradigm by considering that the entire system (UAV in this case)

can be represented by a set of features F = {ϕi|i = 1, 2, ...N} that capture the dynamics

of the system at nominal operating conditions over a range of certain flight conditions [41].

These features will contain the nominal dynamic fingerprint of the UAV, and they will be

used to build the self and non-self hyperspaces of the aircraft by a process of clustering

16

Figure 1.7 Negative Selection (NS) Concept.

and optimization of the acquired flight data. The hyperspace can be N-dimensional, but

usually it is represented as a two or three dimensional space for visualization purposes and as

such, these representations are known as projections. Furthermore, it is recommended that a

maximum of 10 features must be selected so dimensional problems can be avoided. The set

of feature can include dynamical sates of the aircraft or other type of variables related to it

according to the analysis.

For clarification into the presented insight of the AIS, a study conducted by M.G. Perhinschi

et al.[42] shows how the paradigm can be used to evaluate the flight envelope of the vehicle

after some abnormal conditions (failures) are detected and identified for a NASA’s Generalized

Transport Model Aircraft. First, the authors define the flight envelope as the hyperspace of all

achievable or desired variables, and they select a set of features that include roll acceleration

error and roll rate commanded. Then, they use these variables to present an example of a

2D projection where they have built the self and non-self hyperspaces. After this, they have

17

conducted one flight at nominal conditions and then one flight with some type of failure,

and then they have plotted the test data within the projections, as shown in Figure 1.8 [42].

Notice that the data has been normalized mainly for reducing computational effort.

Figure 1.8 Nominal (left) vs. Abnormal (right) Dynamic Fingerprint.

For visualization purposes, the authors have used spheres to represent the hyperspaces

of the self and the non-self, though this is not the only method available to be used. It is

interesting to notice that when the aircraft is flying at nominal conditions, all the test data

points fall within the self which means no abnormal flight conditions are present as there

is lack of “intruders” within the non-self. In contrast, when the failure is introduced, the

dynamic fingerprint of the aircraft stays unaltered, but the test data points fall within the

non-self, meaning that there are intruders inside the antibodies area and these are being

detected by the algorithm, as expected. For instance, the AIS paradigm has allowed the

detection of an abnormal condition, and then an identification and evaluation process is

carried out in order to characterize exactly which system or subsystem of the aircraft has

failed.

18

The AIS paradigm is a tremendously helpful tool that is being constantly improved and

adapted to new studies involving artificial intelligence and machine learning. Not only it

offers advantages of computational efficiency, but it allows the system to be fully represented

by its unique dynamical characteristics which further allows the detection, identification, and

evaluation phases to describe a failure. More studies have implemented this technique such

as the one done by Garcia[43], where a similar analysis is implemented into a quad-rotor

UAV. The mathematical background and details of this theory is presented in chapter in 4.

1.2 Thesis Objectives

This thesis aims to present a novel mission planning architecture based on the combination

of a Health Monitoring System (HMS) strategy that relies on the AIS framework for failure

detection and identification, and an optimal path planning algorithm based on the optimized

version of the Rapidly-Exploring Random Tree (RRT*) algorithm, such that safe trajectories

can be generated considering that the fixed-wing UAV is experiencing a reduced flight envelope.

The ultimate goal is to present an architecture that allows an increase in the autonomy of the

vehicle under abnormal flight conditions, reducing the risk of potential collision and damage

while flying in a modeled urban environment that uses 3D occupancy maps to simulate fixed

obstacle avoidance. A simulation environment that uses Matlab/Simulink software is used

along with a 6-DOF model of a fixed-wing called Rascal 110 commanded by a Nonlinear

Dynamic Inversion Controller (NLDI) for tracking the safe generated trajectories.

1.3 Thesis Outline

First, theoretical background of occupancy maps is presented in Chapter 2 for modeling a

3D urban environment. Then, the RRT* path planner algorithm is presented in Chapter 3.

The HMS is shown in Chapter 4 for failure detection and identification. Chapter 5 describes

the simulation environment and the aircraft dynamics used for the simulation. Chapter

6 presents the results of successful replanning missions and a performance analysis of the

generated safe trajectories. Finally, Chapter 7 lists conclusions and scope of future work.

19

2 Occupancy Maps

2.1 Theoretical Background

The simulation environment for this study is created using Matlab/Simulink software

with the main objective of facilitating the interaction between the UAV dynamics and the

environment around it. This will also be useful to pass the necessary information to the path

planner for searching the free-state space where no obstacles are present and once the flight

envelop is reduced due to an abnormal flight condition. The concept of 3D occupancy maps

is used following the work presented by Wurm et al.[13] and Hornung et al. [14] as mentioned

previously in subsection 1.1.1.

The main idea of occupancy maps is to provide an efficient-memory saving- 3D map of

the flying area that can be easily uploaded to the on-board computer or microcontroller,

and that contains enough details that can model static obstacles. The main advantage of

building these type of maps is that they are based on a probabilistic 3D mapping framework

which rely on structures called octrees, defined as hierarchical data structures for spatial

subdivision in 3D which greatly saves computational memory and power[14].

A group of octrees leads to the development of an OctoMap mapping framework, in which

a structure, similar to the branches of a tree, is subdivided into nodes such that each node

represents the space contained in a cubic volume on a free three-dimensional space. In the

literature, this volume is often called a voxel, and its size is used to determine the resolution

of the map. The idea is illustrated in Figure 2.1 [14].

Furthermore, this voxel unit is subdivided into eight sub-volumes until a certain threshold

is achieved which is usually the resolution that is desired. An important detail to consider

is that the voxels not only consider the occupied space, but they also contain information

about the free space and the unknown space which provides additional information to the

UAV navigation and path planning algorithm. This allows the map to provide a more robust

characterization of the position and space of the obstacles, therefore providing to the path

planner bounds in which feasible trajectories can be created.

20

Figure 2.1 Octree Structure with Free (shaded white) and Occupied (black) cells represented
as a Volume (left) and as Tree-Structure (right).

Based on this idea, a 700m×700m×700m 3D occupancy map is created with a resolution

of 0.1m/cell. The idea is to create a representation of an urban environment that can be

commonly found in populated areas that contain buildings and streets of different sizes. The

map is designed in a way that non-holonomic systems and holonomic systems are able to

navigate the entire state-space, although only a fixed-wing UAV will be used for the purposes

of this study. The generated map that will be used throughout this work is shown in Figure

2.2. Notice that the color of the voxels is strictly height-based, and it has nothing to do with

the volumetric space occupied. For this case, the resultant memory occupied by the entire

map is 8.232 MB which does not represent a memory size restriction to the OBC.

2.2 Obstacle Avoidance

Usually, 3D occupancy maps are based on probabilistic modeling of the map, meaning

that known obstacles do not necessarily present a 100 % of probable collision with the vehicle.

Especially when dynamic obstacles are being considered in representation of other terrestrial

and airborne objects/animals typically present on these scenarios such as cars or birds, models

of probabilistic functions will be needed to account for these effects. In fact, a dynamic

environment will require a discrete occupancy probabilistic model to account for the changes

in every time step of the simulation which will increase computational effort.

However, since only static obstacles will be considered to model the environment, a much

simpler method for determining occupied volumes in the state-space is used. This method is

21

Figure 2.2 Generated 3D Occupancy Map for Urban Environment Simulations.

uses the Boolean property, where a 3D occupancy grid is created and assigned a true value

(1) for the occupied spaces, a false value for free spaces (0), and a negative value for unknown

spaces (-1). This allows to simplify greatly the construction of the map since the path planner

will receive information about which volume is totally occupied, representing a 100% of

probable collision, and a 0% of probable collision for the free spaces. Another advantage of

using the Boolean property is that it allows similar voxels to be pruned from the state space,

which results in a reduction of nodes needed in the octree structure. For implementation

purposes, pruning methods greatly reduce the memory needed to store the map information,

especially when the map is pre-uploaded in the vehicle instead of using some sensor such as

LIDAR to create an on-line map of the obstacles. By these means, Figure 2.3 represents the

complete obstacle avoidance map as seen by the vehicle. The red dots represent the unknown

state-space of the map and their purpose is to provide a physical boundary limitation that

would be needed by the path planner. Lastly, the red zones represent the flyable zone in

which the numerical simulations are performed. This area includes all the state-space above

22

the defined obstacles.

Figure 2.3 3D State-Space Definition for Obstacle Avoidance.

23

3 Trajectory Generation for Autonomous Navigation

This chapter presents the background theory of the selected RRT* path planner as

mentioned in the Introduction. The most important concepts for kinodynamic planning will

be presented as well as the necessary algorithms to plan and optimize the path based on

some flight envelope considerations that will allow the generation of safe trajectories due to

specific failures inserted in the system.

3.1 Requirements for Autonomous Navigation

Before jumping to the description of the path planner algorithms, it is necessary to

formally define the properties that the planner must have for achieving the generation of safe

paths during an on-line process. The most important properties were mentioned in Table

1.3, however, formal definitions of kinodynamic planning, probabilistic completeness, and

asymptotic optimality are required in order to fully understand why the RRT* algorithm is

the best choice for the present application.

3.1.1 Differential Constraints for State Propagation

Let χ = (0, 1)d define the state space or configuration space where d ∈ N is the dimension

of the state space (i.e. d = 3 for this case). In addition, let the obstacle space χobs be defined

as an open set such that χ \ χobs, and the obstacle-free space χfree as the closure of the

set χfree = cl(χ \ χobs). Then, a feasible path σ is found if it is a collision-free path with

σ(0) = xinit, and σ(1) ∈ cl(χgoal), where xinit is the initial condition inside the obstacle-free

space and χgoal is the goal region.

With this in mind, recall that the fixed-wing UAV is a nonlinear system of differential

equations (as further described in Chapter 5) that can generally be described by Equation

3.1, where x ∈ χ are the states of the system, and u ∈ U are the set of allowable controls or

inputs.

ẋ = f(x, u) (3.1)

24

This equation imposes restrictions on the behaviour of the system which relies on its natural

physical nature. For instance, the kynodynamic problem relies on being able to integrate the

aforementioned equation over a time interval [t, t+∆t) in order to obtain x(t+∆t) after a

certain control input is applied [u(t′)|t ≤ t′ ≤ t+∆t]. This can be achieved over continuous

or discrete time intervals by using integration techniques such as the Runge-Kutta method.

However, finding the appropriate feasible path depends entirely whether the integration can

be performed or not, which implies that the non-holonomic constraints of the fixed-wing must

be satisfied for obtaining a solution to the problem. This concept is of special importance, as

it narrows the general path planning problem into a specific non-holonomic planning problem

that allows the use of a more efficient trajectory generator for the fixed-wing.

3.1.2 Probabilistic Completeness

For assuring that the path planner arrives at a solution, it must be probabilistic complete.

Especially if there are failures that reduce the flight capabilities, it is of extreme importance

to try to guarantee that the flight can be still carried by generating another trajectory that

connects the same waypoints. As mentioned before, probabilistic completeness is defined as

the probability of finding a solution when the number of node samples goes to infinity [32].

Let (χfree, xinit, χgoal) define any robustly feasible path encountered by the planner. Then

the limit in Equation 3.2 must exist and must be equal to 1.

limn→∞P({∃xgoal ∈ Vn
⋂

χgoal such that xinit is connected to xgoal in Gn}) = 1 (3.2)

where: Gn = (V,E) is the set of the entire vertex Vn (nodes) and edges E (straight lines

connecting the nodes) returned by the planner.

If the planner finds more than one feasible solution, then this definition can be slightly

modified as below.

limn→∞P

(∑
n

σ ̸= ∅

)
= 1 (3.3)

where:
∑

n σ are all the feasible obstacle-free paths encountered.

25

3.1.3 Asymptotic Optimality

Within the same line of thought, a path planner is considered to be asymptotic optimal

if, for any feasible path encountered (χfree, xinit, χgoal), and cost function c :
∑

→ R≥0 , the

limit in Equation 3.4 exists and is equal to the optimal (less) cost c∗, and the probability of

converging into it is equal to 1.

P
(
limn→∞sup minσ∈

∑
σ {c(σ)} = c∗

)
= 1 (3.4)

Notice that the expression above implies implicitly that the algorithm must have first

probability completeness before being asymptotic optimal. Moreover, it is emphasized that

given a certain trajectory, the algorithm will absolutely converge or not converge at all into

the optimal solution, meaning that the probability of Equation 3.4 is always zero or one, and

there is no mid-point in the calculation.

Gammell and Strub [32] also introduce an additional backup definition of asymptotic

optimality in probability. They state that as the number of samples goes to infinity, the

probability of finding a solution being worse than the optimal solution goes to zero. This is

in accordance with the first definition presented. Let ϵ represent any positive constant ϵ > 0.

Then, according to the authors, the following limit exists and the probability is equal to zero.

∀ϵ > 0, limn→∞ supP
[(
minσ∈∑σ{c(σ)} − c∗

)
> ϵ
]
= 0 (3.5)

Equation 3.5 is an equivalent definition of Equation 3.4. Demonstrations of probability

completeness and asymptotic optimality specifically for the Rapidly-Exploring Random Tree

algorithms is an extensive procedure and out of the scope of this study. However, their basic

definitions are presented here in order to have a formal insight of the nature of the following

algorithms shown in the next section.

26

3.2 Rapidly-Exploring Random Trees (RRTs)

A question arises about if there is a possibility of generating a trajectory based on the

restricted state propagation of the vehicle such that a feasible and save path is explored. The

existence of this unique path will guarantee that the vehicle can still complete the mission,

thereby reducing the risks of potential harm to civilians and damage to property.

Following this idea, the concept used by the Rapidly-Exploring Random Tree (RRT) path

planning algorithm is used as a basis. First developed by La Valle [44] and further improved

by Karaman and Frazzoli [31], this algorithm allows the exploration of the entire state space

between two states x1, x2 in the three-dimensional space, therefore allowing the choice of a

single path out from multiple possible paths that connect the initial position of the UAV and

the final position desired. The selection of the best path, in this case, is based entirely on a

cost function related to the Euclidean distance between the randomly generated nodes shown

in Table 1.1. The Euclidean distance is defined to be 5m over all the results presented in this

thesis. This algorithm is based on single-query applications, and its pseudo-code is presented

in Figure 3.1 [44],[31].

Figure 3.1 Original RRT Algorithm with Collision Checking.

When initialized, the initial state previously defined as xinit contains a single initial vertex

with no edges. Then, at each iteration, new randomly nodes are generated in the free space,

χfree. Once a nearest node xnearest is found based on the Euclidean distance to the parent

node, an attempt to connect both nodes is made. The connection is successful if, and only if,

there is an obstacle-free edge E between xnearest and xrandom. Assuming the connection is

27

successful, then the nodes are added to the vertex set xrandom ∈ V with their own edge set E.

The process is repeated until the initial pose and final pose are connected after n iterations.

Finally, the algorithm returns the desired tree as a graph represented by the entire set of

vertex and edges G = (V,E).

As an example, consider the selected poses in Table 3.1 with their respective altitudes and

desired headings, which are drawn on the urban 3D map (defined in Chapter 2) in Figure

3.2. Here, the red node is the start position, and pose #3 is the final desired goal. Taking

into account that nominal conditions of roll angle ϕnominal = ±50 deg, and flight path angle

γnominal = ±45 deg with a maximum of 2000 iterations is desired, the tree is generated with

275 nodes, n = 476 iterations at an elapsed time of t = 9.16s.

Table 3.1 Predefined coordinates for the example of the original RRT path generation.

Cartesian Coordinates
Pose X (m) Y(m) Z (m) Heading (deg)
Start 600 620 60 20
#1 470 430 80 -180
#2 170 450 60 -180
#3 100 200 50 0

Figure 3.3 shows the result of the path planning, where the tree’s node and edges

(highlighted in yellow) attempt to connect the desired initial position with all the poses to

form a trajectory (highlighted in green). Notice that, in general, the path is not suitable to

be followed by a fixed-wing or any non-holonomic system due to its sharp turns and clear

formation of “cycles”. For instance, improvements need to be added considering that not

even the most cost-efficient path is selected.

28

Figure 3.2 Selected Poses for the Example of the Original RRT Path Generation.

Figure 3.3 Example of Original RRT Path Generation.

29

3.2.1 Rapidly-Exploring Random Graph (RRG)

The RRG path planner introduces a modification into the original RRT algorithm that

has to do with an improvement of the wiring of the nodes inside the tree. Figure 3.4 [31],[44]

shows the pseudo code of the RRG. Similarly as the RRT, the algorithm starts searching

the state space and adding new nodes into the vertex set if the connection is successful,

and collision checking is also performed at every iteration. However, in line 7, a function is

introduced that forces a new way of connecting the nodes: every time a new point xnew is

added to the vertex set in the previous step, new connections are attempted from all the

other nodes in V that are within a certain ball radius.

For defining this ball radius, let card(V) ≤ n+1 and γRRG = 2(1+ 1
d
)
1
d

(
µ(χfree)

ζd

) 1
d
, where

µ(χfree) denotes the volume of the obstacle-free space, and ζd denotes the volume of the unit

ball in the d = 3 Euclidean dimensional space. Then, the radius is defined as a minimum

value in Equation 3.6.

r(card(V)) = min

{(
γRRG(log(card(V))

card(V)

) 1
d

, η

}
(3.6)

where: the constant η is defined as η ≥ ∥z − x∥ which comes from the steering function

of the vehicle (though it is a parameter that will not be tuned in this study).

Figure 3.4 RRG Algorithm with Collision Checking.

30

Although this modification does not solve the problem of the formation of cycles, it is

necessary in order to understand the optimization introduced by the RRT* algorithm.

3.2.2 Rapidly-Exploring Random Tree* (RRT*)

Formally speaking, the RRT* algorithm is an extended version of the RRG algorithm

which, at the same time, is an extension of the RRT algorithm. Again, the RRT* algorithm

searches the nodes and adds them into the vertex set in the same way as the RRT and RRG,

and it also uses the ball radius to make new connections. However, the novelty of RRT* is

the introduction of two cost-optimization parameters that limit the feasible connections that

the planner can make in each iteration:

• An edge connecting Xnear to xnew will be added to the edge set if, and only if, it follows

a minimum cost path.

• If several edges are connected from xnew to Xnear, then the algorithm calculates the

cost of all the connected edges, and then picks up the one with less cost and maintains

it while it deletes the rest of the edges.

By doing these modifications, a rewiring of the tree is made such that the formation of

cycles is avoided, and the amount of required processing power is reduced as cost-efficient

trajectories are generated. This allows the online implementation of the planner to be feasible

in a real-world application. Figure 3.5 [31] shows the entire RRT* algorithm, which is the

main path planner used in this thesis to generate feasible safe trajectories under a restricted

flight envelope of the fixed-wing Rascal 110. Notice that until line 8, the algorithm is similar

to the RRG. Lines 9, 11-12, and 15-16 introduce the cost functions for the optimization.

These functions are defined as follows: let Line(x1, x2) be the straight line connection between

points x1, x2 ∈ R3, and c(Line(x1, x2) the cost of the connection path; then, the algorithm will

connect the nodes along minimum-cost paths and then rewire the tree by using cost-additive

functions of the form cmin = Cost(x1,2) + c(Line(x1,2, x1,2)). Figure 3.6 clearly shows the

improvement of the path in contrast with Figure 3.3, and the cost-optimum path is shown.

31

Figure 3.5 RRT* Algorithm with Collision Checking.

Figure 3.6 Example of RRT* Path Generation based on Table 3.1.

32

3.3 Dubins Paths for Smoothing

In the previous examples, notice that the green trajectory generated has always been

smooth in the sense that the yellow branches of the generated tree have not been directly

used to highlight the valid trajectory. This is because the RRT and RRT* algorithms have

been merged with what is known as the Dubins Airplane Path generation, firstly proposed in

1957 by L.E. Dubins [33]. If the path planner would not consider the kynodynamic problem

described in subsection 3.1.1, then there would not be a need of merging the Dubins Paths

with the planner. However, since the purpose is to provide the best trajectory possible in

terms of non-holonomic constraints, then the Dubins Airplane Paths concept is applied into

each segment of the generated tree with the main goal of transforming sharp-edge connections

and turns into smooth arcs, as previously shown on Figures 3.3 and 3.6.

Within this line of thought, this section briefly describes the equations that the Dubins

Path uses to smooth the trajectory. First, an insight to the Dubins Car Paths is explained

as this is needed for understanding the Dubins Airplanes Paths. Lastly, decision making

capabilities of this algorithm is explained within the 2D and 3D dimensions.

3.3.1 Dubins Car Paths

The Dubins car model has been widely use in robotics path planning due to its relatively

simple methodology. Beard and McLain [7] have adapted the concept using modern notation,

and they propose a new set of EOMs that describe the Dubins car model given by the set of

Equations 3.7.

ṙn = V cos(ψ)

ṙe = V sin(ψ)

ψ̇ = u

(3.7)

where: ṙn and ṙe are the North and East velocities, and ψ̇ is the rate of change of the heading.

In this case, the minimum turning radius of the car is given by Rmin = V
ū
, where |u| ≤ ū.

33

The algorithm consists of switching between orbit following and straight-line following.

The basic concept of this method is shown in Figure 3.7 [6]. Here, the initial configuration

defined by zs = (zns, zes, ψs) is connected by a straight line and an arc to a final configuration

defined by ze = (zne, zee, ψe) in four different possible ways. The arcs are formed once two

tangent circles are located between two defined centers cl or cr around the pose. Notice that

since there are four possible ways of connections between these configurations, the Dubins

path must introduce also the Euclidean minimum cost function in order to select the best

path between the two poses. In this case, the “Right-Straight-Right”(RSR) scenario would

be the selected path. On the other hand, the “Left-Straight-Left”(LSL) scenario would be

the least feasible path by simple inspection.

Figure 3.7 Four possible Paths connecting an Initial Pose zs = (zns, zes, ψs) and Final Pose
ze = (zne, zee, ψe) given a minimum turning Radius Rmin.

34

3.3.2 Dubins Airplane Paths

Taking the concept of the Dubins Car Paths, then a third dimension can be added, and

by redefining the minimum turning radius with modifications to the EOMs, the same concept

can be applied to a fixed-wing UAV. Chitsaz and Lavalle [45] provide an extensive explanation

of how the addition of the third dimension is added, and just the most important elements

are presented here.

Consider Figure 3.8 [6] where the NED reference frame is used for deriving the kinematic

model of a general fixed-wing UAV. For simplicity, wing effects (i.e. side-slip angle β = 0),

aerodynamics, and engine thrust limits are neglected. Furthermore, assume the aircraft

performs a coordinate turn condition as described by Equation 3.8.

ψ̇ =
g

V
tan(ϕ) (3.8)

Figure 3.8 Basic Kinematic model of a generalized fixed-wing UAV.

35

Then, the kinematic model is

ṙn = V cos(ψ)cos(γc)

ṙe = V sin(ψ)cos(γc)

ṙd = −V sin(γc)

ψ̇ =
g

V
tan(ϕc)

(3.9)

where: γc and ϕc are the the commanded flight path angle and roll angle, respectively.

The advantage of this model is that the commanded bank and flight path angle depend

entirely on the physical capabilities of the aircraft. As such, these limits are represented

by the constraints on Equation 3.10 which pertain specifically for the Rascal 110 UAV at

nominal flight conditions.

|ϕc| ≤ ±50deg

|γc| ≤ ±45deg

(3.10)

Moreover, the commanded angles can be sent by whichever controller or autopilot is

used. For this case, a NLDI controller (described in Chapter 5 section 5.3.2) is in charge of

performing this task. According to the authors, this model is suitable for high-level path-

planning and path-following control design (i.e. the virtual controller that is implemented

and explained on Chapter 5 section 5.3.1).

3.3.3 Decision making in 2D & 3D

One question remains in terms of which path is the best option to choose besides its cost.

This is because the heading of the aircraft, or even an obstacle can prevent the planner to

generate a feasible trajectory into a specific waypoint whether the UAV is flying at nominal

or under failure conditions. It would not be logical for the planner to choose the path with

minimum cost if this one is not feasible to be followed. Therefore, decision making capabilities

are needed in 2D and 3D for guaranteeing the generation of a feasible safe trajectory in the

36

presence of obstacles and taking into account the initial and desired headings of the aircraft

within each pose.

3.3.3.1 The 2D Problem

First, consider a trajectory in 2D similarly to the Dubins Car Paths, as shown in Figure 3.9

[6],[7]. Here, the vehicle is initially commanded to follow the orbit with center cs at the start

configuration. The orbit can have two directions: clockwise λs,e = 1 or counter-clockwise

λs,e = −1. Based on the desired heading ψs,e the planner chooses the direction of the orbit,

and then the vehicle follows the orbit until it encounters the half-plane defined as H(ws, qs),

where ws is just a position on the half-plane and qs is a unit vector orthogonal to the

half-plane. Furthermore, the vehicle follows the straight path defined by (ws, qs) until it

reaches the other half-plane H(wl, ql) which is located opposite to the end half-plane of the

end position H(we, qe). Once the vehicle touches H(wl, ql), it is commanded to enter the

orbit with center ce. Again, the direction of the orbit depends on the heading and finally,

the algorithm stops when the H(we, qe) plane is crossed.

Figure 3.9 2D Dubins Path Decision-Making Capabilities.

It is important to highlight that not only 2D decision-making capabilities are provided

using this algorithm, but the desired smoothness of the path is achieved due to the formed

arcs.

37

3.3.3.2 The 3D Problem

For adding the altitude dimension, more parameters must be defined due to climb limits.

Let Lcar(Rmin) represent the length of the Dubins Car Path which depends on the minimum

turning radius Rmin defined in Equation 3.11 for the Dubins Airplane.

Rmin =
V 2

g
tan(ϕ̄) (3.11)

where: ϕ̄ is the nominal or restricted roll angle limit.

Then, Owens et. al [46] classify the generation of the 3D trajectories in three categories,

which strictly depend on the magnitude of the desired altitude and achievable flight path

angle: low-altitude, medium-altitude, and high- altitude. For the purpose of this study, helices

will be used to generate a feasible path for the UAV to reach certain altitudes, and the

decision-making conditions are defined for each category as described below.

Low-Altitude 3D Dubins Path

A Dubins path is low-altitude if the condition of Equation 3.12 is satisfied.

|zde − zds| ≤ Lcar(Rmin)tan(γ̄) (3.12)

where: zds and zde represent the down-component of the position in the NED frame of the

start pose and final pose, respectively, and γ̄ represents the limit of the flight path angle.

Notice that the right term of this equation is the maximum altitude gain that can be achieved

given a certain flight path angle ±γ̄. Then, the optimal flight path angle γ∗ can be defined as

γ∗ = tan−1

(
|zde − zds|
Lcar(Rmin)

)
(3.13)

while the length of the Dubins Airplane can be computed by

Lairplane(Rmin, γ
∗) =

Lcar(Rmin)

cos(γ∗)
(3.14)

38

Following the previous restrictions with the computation of Equations 3.13 and 3.14,

feasible low altitude trajectories can be generated. An example is shown in Figure 3.10 [6],[7]

for a “Right-Straight-Left”(RSL) scenario. It is important to mention that definitions for the

initial and final headings ψs,e are required such that the helices can be generated based on

the most convenient orbit direction.

Figure 3.10 Dubins Airplane Path for Low-Altitude case.

Medium-Altitude 3D Dubins Path

Similarly as before, the restriction of Equation 3.15 must be true to categorize the path

as a medium-altitude trajectory.

Lcar(Rmin)tan(γ̄) < |zde − zds| ≤ [Lcar(Rmin) + 2πRmin]tan(γ̄) (3.15)

Once this condition is true, an additional arc is inserted by reconsidering the 2D problem

in Figure 3.9 [6],[7]. The reason for inserting this new arc is to allow for the UAV to arrive at

the desired altitude by not extending too much the length of the path and considering the

maximum climb limit of the vehicle in terms of its flight path angle defined by its nominal or

restricted flight envelope, as will be discussed later.

39

Figure 3.11 shows the new trajectory with the new arc with center ci that can be

parameterized by an angle φ following Equation 3.16.

zi = cs +R(φ)(zs − cs) (3.16)

Figure 3.11 Dubins Airplane Path Parameters for Medium-Altitude case.

Using a bisection algorithm, the optimal parameter φ∗ can be find by setting the condition

of Equation 3.17.

L(φ∗)tan(γ̄) = |zde − zds| (3.17)

This allows the computation of the length of the Dubins Airplane by Equation 3.18,

similarly as for the low altitude case.

Lairplane =
L(φ∗)

cos(γ̄)
(3.18)

40

Figure 3.12 [6],[7] shows an example of the medium altitude case where the end pose is at a

higher altitude than the initial pose. Note that the introduction of the new arc imposes a new

turning capability, and now the path can be defined as “Right-Left-Straight-Right”(RLSR)

for this example. A great advantage of this method is that the smoothness of the path is

hold despite the change of altitude and taking into account the climbing limits of the vehicle.

Figure 3.12 Dubins Path for medium altitude case.

High-Altitude 3D Dubins Path

The third and last case obeys the restriction shown in Equation 3.19.

|zde − zds| > [Lcar(Rmin) + 2πRmin]tan(γ̄) (3.19)

Here, it is assumed that the desired climbing is not achievable within the normal flight

path angle limits. Due to this, more helices will be used to achieve the desired altitude.

Specifically, if the initial pose has a lower altitude that the final pose, the path will be

extended such that climbing helices at the beginning of the trajectory will be generated. On

the other hand, if the final pose has a lower altitude than the initial pose, descending helices

41

will be generated at the end of the trajectory. An example of this method is shown in Figure

3.13 [6],[7], where the starting pose has a lower altitude than the initial pose.

Figure 3.13 Dubins Path for high-altitude case.

For these type of cases, the number of turns of each helix k needed to completely achieve

the desired altitude is defined by the following equation.

k =

[
1

2πRmin

(
|zde − zds|
tan(γ̄)

− Lcar(Rmin)

)]
(3.20)

Once again, an additional constraint is defined such that the best turning radius R∗ can

be found. This can be achieved using, for example, a bisection algorithm that solves the

following condition.

(Lcar(R
∗) + 2πkR∗)tan(γ̄) = |zde − zds| (3.21)

Lastly, the high-altitude path length can be computed by Equation 3.22.

Lairplane(R
∗, γ̄) =

Lcar(R
∗)

cos(γ̄)
(3.22)

42

Now, the 3D trajectory is feasible to be followed by the non-holonomic system after the

algorithm classifies the additional third dimension of the poses in one of the categories

described above. Consequently, a path can be generated by iterating multiple times the

RRT* algorithm so multiple segments of trajectory can allow the fixed-wing to visit multiple

waypoints or poses, and the Dubins path smoothness algorithm can then be applied to

each segment of the trajectory to obtain a final safe trajectory. Figure 3.14 [46] shows the

algorithm flow that is used to implement the high-altitude Dubins Airplane Paths. This logic

is based on the half-planes previously defined in Figure 3.9.

Figure 3.14 High-Altitude Decision-making logic.

43

4 Artificial Immune System Paradigm

This chapter briefly describes the use of the AIS paradigm for failure identification,

detection, and evaluation of certain type of failures in the context of the safe trajectory

generation for the fixed-wing Rascal 110. First, mathematical definitions of the features

and the flight envelope at post-failure conditions are given as previously mentioned in the

Introduction 1. Then, equations for estimating the flight envelope reduction in terms of

restrictions in the roll angle is presented. Finally, a description of how the antibodies are

generated within the AIS along with the failure detection, identification, and evaluation

scheme is shown.

4.1 Post-Failure Flight Envelope Prediction

Let the set of feature variables F a set of variables ϕi that completely capture and define

the dynamical characteristics of the system (in this case the UAV):

F = {ϕi|i = 1, 2, ...N} (4.1)

Then, a subset of variables E called envelope relevant variables (ERV) vE can be defined

which describes the flight envelope as the hyperspace of all the desired or achievable values

[41], expressed as:

E = {vEi|i = 1, 2, ...NE},E ⊂ F (4.2)

Notice that, in general, the selection of the feature variables will depend on which Abnormal

Condition (AC) is being analyzed as will be further described. Furthermore, assume that each

variable in the flight envelope has restricted nominal limits [vEimin
, vEimax]. Then, intuitively,

the set of ranges of all ERVs at post-failure conditions can be described as [vEiminF
, vEimaxF

].

From here, a new type of variables is introduced, namely the directly involved variables

(DIV) vδ which are those variables whose alteration is directly the result of a certain type of

AC. Generally, these variables also are part of the feature set, but if not, a relationship must

be established between the variables of the feature set and these new variables. These new

44

variables lead to the definition of the equivalent directly involved variables (EDIV) vϵ. For

simplification, in this study just DIV-type set of variables will be considered for analyzing

the ACs. These definitions can be expressed as:

vδ = {vδ1 vδ2 ... vδNδ
}

vϵ = {vϵ1 vϵ2 ... vϵNϵ}, vϵ ⊂ F

vE = {vE1 vE2 ... vENE
}, vE ⊂ FE ⊂ F

(4.3)

For predicting the post-failure flight envelope, it is necessary to have a concept of the self

as described by Perhinschi et al. [42]. The self can simply be viewed as the nominal flight

envelope that comes from the normal behaviour of the feature variables. However, if there is

any failure or failures fi ⊂ F, i = 1, 2, 3 ... NF , there are going to be a set of NΓi constraints

Γi on a set of known variables Xi. These can be expressed mathematically as:

Γi = {γi1 γi2 ... γiNΓi
} (4.4)

where:

γij = γij(Xi) = 0, i = 1, 2, ... NF , j = 1, 2, ... NΓi (4.5)

Now, assume that the flight envelope alteration can be assessed in terms of a set of Y variables

that are also part of the feature set:

Y = {y1 y2 ... yNY
} ⊂ F (4.6)

Then, based on these variables, the prediction of the flight envelope at post-failure conditions

would be equivalent to generating a new self based on the set of features Y . The advantage of

this is that the NY -dimensional projection can always be obtained and the self-projections of

the variables can help to asses the impact of the AC on the nominal flight envelope. Similar

as before, the post-failure range of each yi would be yi ∈ [min(yi),max(yi)], i = 1, 2, ... yNy .

45

4.2 Flight Envelope Reduction for Safe Trajectory Generation

The merging between the RRT* path planner and the Dubins Airplane Paths presented in

Chapter 3 requires strictly definitions of the maximum flight path angle limits and roll/bank

angle limits to generate smooth and feasible trajectories. These angles are closely related to

the aileron and elevator actuator deflections, for which any failure in these control surfaces

could be detected, identified, and evaluated within the AIS paradigm. Specifically, this thesis

will be focusing on the failure cases related to the fixed jamming of both ailerons with positive

and negative fixed deflections. However, note that the concepts presented in the previous

sections are applicable, in general, to any type of failures and in other subsystems such as

the propulsion plant on the UAV or other control surfaces.

The main goal of this section is to provide a methodology to estimate how the roll

capability can be constrained whenever there is some jamming on one of the ailerons. The

assumption here is that the flight path angle remains at nominal conditions while maintaining

the same coordinate turn conditions. Table 4.1 shows the type of AC evaluation that will

be the main focus of the analysis. The DIVs and ERVs variables are shown along with the

specific jamming failure cases at certain flight times.

Table 4.1 AC Evaluation Analysis

Type of Failure Deflection Degree of Blockage DIV ERV

1
Jammed Right Aileron

(High Magnitude)
15◦ at t = 18s

δailR
δailL

p, r, pb/2V, ϕ
δrudL , δrudR

2
Jammed Right Aileron

(Low Magnitude)
−10◦ at t = 18s

3
Jammed Left Aileron
(High Magnitude)

17◦ at t = 30s

4
Jammed Left Aileron
(Low Magnitude)

−8◦ at t = 33s

The magnitude of the failure has been classified as a high/low magnitude failure. This

will be useful for the AIS identification part to identify more accurately the level of blockage

of the aileron such that the multi-goal RRT* can re-plan the path accordingly. With this,

the ambiguity that can exist of the aileron failing at low or high magnitudes can be solved.

46

4.2.1 Roll Angle Constraints

When one of the ailerons is stuck in flight, the lateral flight performance of the aircraft

is affected, and can be quantified by two criteria: the post-failure maximum achievable roll

angle ϕmax, and the time τroll the aircraft needs to achieve that roll angle. For simplicity, the

time variable will be neglected as it is assumed that the size of the ailerons is large enough to

have the necessary control authority to achieve the needed roll angle even if one of them is at

failure conditions (this would make τroll negligible small).

4.2.1.1 Left Aileron Failure

Based on the mentioned idea, Ducard et al. [47] propose the reduction of the lateral flight

envelope by considering the roll mode approximation as follows. Let the relative deflection of

the ailerons be defined by Equation 4.7.

∆δail = δa1 − δa2 (4.7)

where: δa1 and δa2 are the left and right aileron deflections, respectively. During straight-

level flight, if one aileron fails, then the controller would have to deflect the other aileron

such that ∆δail = 0. First, consider the scenario in which the left aileron is stuck, as depicted

in Figure 4.1, where it can also be seen that the right aileron tries to compensate for the

jammed deflection.

Figure 4.1 Aircraft Rear View: Left Aileron Stuck.

47

Here, the maximum deflections are shown with the upward deflections being negative,

and downward deflections being positive as previously mentioned. This configuration allows

to define the maximum relative deflection for the right and left bank as follows:

(∆δailright bank
)max = δa1stuck − δa2max

(∆δailleft bank
)max = δa1stuck − δa2min

(4.8)

After a time interval ∆t, the maximum achievable bank angles in terms of the roll rate p

in both directions would be:

ϕleft = −|pleftmax |∆t

ϕright = −|prightmax |∆t
(4.9)

Since the general stability of the aircraft must be preserved, then it would be required

that the left bank angle has a smaller value so that it takes the same time for the aircraft

to come back from ϕleftmax as from ϕrightmax to maintain ϕ = 0°. These can be translated

mathematically:

ϕleftmax

|prightmax|
= −ϕrightmax

|pleftmax |
(4.10)

Now, recall from the general dynamics of an aircraft that the equation for the angular

rates (further used in Chapter 5 for the derivations of the equations of motion) can be

expressed in terms of the moments around each axis as:

ω̇ = I−1([L,M,N]′ − ω × Iω) (4.11)

where: ω = [p, q, r]′ and I is the inertia matrix of the vehicle as further defined in Equation

5.7. For the reminder of this study, it is assumed that the total roll, pitch, and yaw moments

are the sum of the moments produced by the aerodynamic effects and the control surface

actuators at the same time, that is:

[L,M,N]′ = [L,M,N]′aero + [L,M,N]′surf (4.12)

48

Recall also that the rolling moment L can be expressed in the form of Taylor series as:

L = q̄Sb(Clδa∆δail + Clpp+ Clδr r + Clββ) (4.13)

where the lateral derivatives Clδa , Clp , Clδr , Clβ are defined in Table 5.3 for the Rascal 110.

Then, a roll mode approximation can be obtained of the form of Equation 4.14 where the air

density ρ is assumed to be constant at sea level:

ṗ =
ρV IzzSb

2Clp
4(IxxIzz − I2xz)

p+
ρV 2IzzSbClδα
2(IxxIzz − I2xz)

∆δail (4.14)

where: V is the aircraft true airspeed. For simplification, define two positive constants θp

and θail as:

θp = −
ρIzzSb

2Clp
4(IxxIzz − I2xz)

θail =
ρIzzSbClδα

2(IxxIzz − I2xz)

(4.15)

Then, Equation 4.14 becomes:

ṗ = −V θpp+ V 2θail∆δail (4.16)

This differential equation can be integrated with the assumption that the velocity is

almost constant or that it is changing slowly. The result is the known roll rate time response:

p = V
θail
θp

∆δail(1− e−V θpt) (4.17)

Equation 4.17 implies that the ratio between the left and right roll rates is proportional to

the maximum relative deflections of the ailerons in each direction. Equation 4.18 shows this:

|pleftmax|
|prightmax|

=
(∆δailleft bank

)max

(∆δailright bank
)max

= Rpmax (4.18)

49

Finally, the maximum left bank angle at post-failure can be computed by assuming that

the aircraft can still bank nominally to the right, as shown in Equations 4.19:

ϕrightmax = ϕmax,nominal = +50◦

ϕleftmax =
−ϕrightmax

Rpmax

(4.19)

4.2.1.2 Right Aileron Failure

Similar as for the left aileron, expressions for the stuck right aileron can also be derived.

Consider Figure 4.2 which is the right aileron stuck at a positive deflection.

Figure 4.2 Aircraft Rear View: Right Aileron Stuck.

Then, the maximum relative deflection angles for both directions can be derived to be:

(∆δailright bank
)max = δa1min

− δa2stuck

(∆δailleft bank
)max = δa1max − δa2stuck

(4.20)

Following the same procedure as before, and assuming a relatively constant-slow changing

velocity, then Equations 4.21 can be obtained:

ϕleftmax = ϕmax,nominal = −50◦

ϕrightmax = −ϕleftmax
Rpmax

(4.21)

50

Notice that these derivations can be classified just as approximations since Equation 4.17

strictly shows a first-order exponential solution. However, for the purposes of this study,

these approximations have proven to be satisfactory enough to demonstrate how the roll

angle is restricted, thereby affecting the entire flight envelope at post-failure conditions.

4.3 Antibody Generation Algorithm

The AIS paradigm requires the generation of the self and the creation of antibodies in

order to be able to detect and potentially identify certain types of failures. For doing this,

the very first step of the process is to select adequate feature variables that will depend on

the type of failure in analysis and on the system/subsystem where the abnormal condition

occurs.

Once the set of features is selected, then several flight tests in simulation or real-world must

be conducted to record data of these features. These data will then go to a normalization and

clustering process for creating the hyperspace of the self through an off-line training process

that will result in the creation of N-dimensional projections. Based on the dimensionality of

this hyperspace, then a set of detectors will be created in order to fill the rest of the empty

hyperspace based on a number of requirements (further described in subsection 4.3.2) such

that, through the use of a NS algorithm, abnormal flight data points can be detected whenever

they fall into the detectors zone. Figure 4.3 highlights the main steps of the mentioned

process as described by Perhinschi and Moncayo [48], also known as the Raw Data set Union

Method (RSDUM). Here, after the flight is conducted and data has been recorded, a single

raw data file is obtained where it is further processed to generate the desired projections.

Due to the computational requirements and for visualization purposes, the selected pro-

jections are N = 2 - dimensional as stated in subsection 1.1.5. The generated projections

will be based on the features described by Table 4.2 for the aileron failure cases. As can be

seen, the features for the ailerons analysis are mainly focused on the lateral dynamics of the

aircraft as this type of motion is putting constraints on the overall flight envelope.

51

Figure 4.3 Antibody Generation Process based on RSDUM.

Table 4.2 Selected features for AIS Application for Aileron failure cases.

Selected Features for Lateral Dynamics
1 p Roll Rate
2 r Yaw Rate
3 pb/2V Helix Angle or Normalized Roll Rate
4 ϕ Roll Angle
5 δailL Left Aileron Deflection
6 δailR Right Aileron Deflection
7 δrudL Left Rudder Deflection
8 δrudR Right Rudder Deflection

Theoretically, there are a certain number of possible two-dimensional combinations Nproj

that the projections could have. This number can be calculated using the binomial coefficient

in Equation 4.22 for each failure case. The number of features Nfeatail = 8 is used.

Nprojail = C
Nfeatail
N =

Nfeatail !

N !(Nfeatail −N)!
=

8!

2!(8− 2)!
= 28 (4.22)

52

Notice, however, that not all the projections will show selves that are useful to detect

and identify the failure since some of them will not provide enough information due to its

similarity to the nominal selves obtained when no AC is present. Therefore, just sets of

Nprojail = 10 projections were selected as a subset of all the available projections. These

combination of features for producing the desired selves are shown in Table 4.3.

Table 4.3 Selected Projections for Detection and Identification Scheme.

#Self Projections for Aileron Failure
1 p, δailL
2 p, δailR
3 pb/2V, δailL
4 pb/2V, δailR
5 r, δailL
6 r, δailR
7 δailL , ϕ
8 δailR , ϕ
9 δrudL , δailR
10 δrudR , δailL

The results of the application of this methodology are further shown in Chapter 6 along

with the application of some performance metrics that are useful to evaluate the feasibility of

the new generated trajectories.

4.3.1 Single-Data File Generation

The flight simulation tests for this thesis record data of about 42 state variables at a

rate of 50 Hz that are rearranged into a matrix of 42 columns. In a real-world application,

normally these data would be saved on the SD card of a microcontroller or autopilot hardware.

First, data from the nominal flight following a specific trajectory is saved for obtaining the

nominal self trough a supervised learning approach. Then, new flight data with failures can

be recorded for further analysis.

4.3.2 Data Preprocessing and Clustering

Once the single-data file is obtained, then the data processing phase begins. Naturally,

this file contains features whose magnitudes change dramatically in comparison with each

53

other, and it would be larger in size even if a higher recording frequency is desired. Due to

this, and for the purpose of reducing the file size, a normalization procedure is applied which

makes all the variables stand between 0 and 1. Additionally, duplicate points are deleted to

obtain a more compact file and save processing time.

After normalization, an algorithm based on the “k-means” is used to cluster the data

points of each feature. Perhinschi and Moncayo [48] use this as a method for grouping data to

be used in the projections. Notice that for this thesis, the clusters are represented as circles,

though they can be N-dimensional and not necessarily suitable to be visualized. These circles

are often referred to as hyper-bodies or hyper-spheres that are used to fill the hyperspace.

The hyper-spheres need to comply with certain characteristics in order to be suited well into

the hyperspace. Garcia [43] describes these design characteristics, as shown in Table 4.4.

Table 4.4 Criteria for Designing Hyper-Spheres.

Characteristics of hyper-bodies

Minimum overlapping in-between the self clusters

Minimum overlapping in-between the antibodies

No overlapping between the self and the antibodies

Minimum uncovered areas in the antibodies (non-self)

Minimum number of detectors

Minimum empty space in the self clusters

Finally, the NS algorithm needs additional parameters that the user must specify such as

the number of initial detectors, the maximum number of allowed iterations, the minimum

radius permitted for a hyper-body, and the number of clusters to be used. The generation

of the hyper-bodies will stop as soon as the maximum number of iterations is reached, or

as the hyper-space is completely explored. These parameters can be tuned according to the

application, and they are further shown in Chapter 6.

54

4.3.3 AIS Detection Metrics

Due to the nature of the AIS algorithm, there exists the possibility that false detection

comes into play due to sensor noise or other factors that can trigger false alarms of failure

detection. There also exists the possibility that no detection is performed even if a failure is

actually compromising the system. Therefore, a performance evaluation of the entire HMS

is needed, and this is based on the Detection Rate (DR) and False Alarms (FA) calculated

through Equation 4.23 and Equation 4.24, respectively.

DR =
TP

TP + FN
× 100 (4.23)

FA =
FP

TN + FP
× 100 (4.24)

where: True Positive (TP) refers when a failure is detected and declared as failure, True

Negative (TN) refers when nominal conditions are declared as nominal, False Positive (FP)

refers when nominal conditions are declared as failure, and False Negative (FN) refers when

the failure is not detected at all. Of course, the performances pointed out by these metrics

highly depend on the features selected to analyze each specific failure case. The main goal is

to diminish the false alarms while improving the detection rate for all cases.

4.3.4 Detection and Identification Scheme

The Detection and Identification algorithms are embedded into the entire HMS block in

Simulink shown in Figure 4.4. The input needed for this block is the discrete signal that

contains the simulated sensor readings and parameters of the 42 variables that are being

recorded during the entire flight. In order to detect any type of failure first, a window of

w = 10 samples is selected and two thresholds are defined in terms of the number of activated

detectors (NAD), such that if those samples instantaneously surpass the first threshold, a

warning of a failure will be displayed, and if they surpass the second threshold, a definite

failure detection will appear which will activate the replanning logic of the RRT* multi-goal

path planner. The type of failure will appear on the display according to its magnitude.

55

Figure 4.4 HMS(AIS) Simulink block.

The NAD and the type of failure come from the Detection and Identification subsystems

shown in Figure 4.5, respectively. Notice that a conditional is set after the detection display

block which basically makes a signal to be triggered once threshold 2 (Thr2) is exceeded to

activate the replanning mission. A data type conversion block is used to change the variable

to be a double instead of a Boolean.

Figure 4.5 Detection and Identification Subsystems.

56

Now, the NAD are calculated and buffered in the ten selves which are defined as S-

functions inside the “HMS Aileron cases” block. As an example, Figure 4.6 shows this only

for selves 5, 6, 7. These selves represent the UAV dynamic fingerprint within its nominal flight

condition. In this way, while the fixed-wing is on flight, the nominal selves are instantaneously

compared with the data received, and if the data points falls into the detectors zone due to a

failure, then the number of the activated detectors is recorded. At the end, every NAD of

every self is added for activating the overall detection logic.

Finally, the selves S-Functions also implement a logic whose main task is to identify

which specific detectors are being activated within each type of failure so the failures can

be further classified according to their type and magnitude level. For achieving this, each

failure is inserted separately and then the user can manually record the detectors that are

mostly being activated during the post-failure condition. The main advantage of doing this

training procedure is that the HMS becomes robust enough to detect and identify the failure.

However, its main disadvantage is that it is still a supervised training process.

Figure 4.6 Selves S-Functions.

57

5 Simulation Environment

5.1 Rascal 110: Physical and Dynamical Parameters

The fixed-wing UAV model used in this study is based on a well know aircraft called

Rascal 110. Previous studies have been conducted at the Advanced Dynamics and Control

Lab at ERAU that have completely quantified the physical, dynamical, and geometrical

parameters of this model.

First, to obtain the stability derivatives, a mesh model of the aircraft was generated in

order to perform a Computational Fluid Dynamics (CFD) analysis through the use of Digital

Datcom. This program was developed by NASA and the USA Air Force, and it provides a

cost-effective approach to estimate the longitudinal and lateral derivatives of conventional

aircraft through the subsonic regime.

The initial study was performed by Lyons [49], and has been recurrently used for performing

other types of analyses such as system identification and development of non-linear adaptive

controls laws [4],[50]. Figure 5.1 [49],[4] shows a comparison between the generated 3D mesh

model and the original model of the aircraft, and it also shows the real balsa wood model

assembled at the Advanced Dynamics and Control Lab at ERAU.

Figure 5.1 Rascal 110 Mesh Model and Original Model (left) vs. Assembled Balsa Wood
Model (right).

58

The most important physical parameters of the model are shown in Table 5.1. Additionally,

Table 5.2 [49] shows the input parameters that were introduced into Digital Datcom to perform

the analysis. Table 5.3 shows the results of the study, where the longitudinal and lateral

derivatives of the UAV are shown. The quantification of all these variables is essential as they

mark the dynamical fingerprint of the vehicle and are needed for the equations of motion

described in the next section.

Table 5.1 Rascal 110 Physical Parameters.

Physical Parameter Symbol Value Units
Wingspan b 2.80 m

Wing Planform Area S 0.98 m
Mean Aerodynamic Chord c̄ 0.35 m

Mass m 7 kg
Inertia about X-axis Ixx 2.64 kg ·m2

Inertia about Y-axis Iyy 2.10 kg ·m2

Inertia about Z-axis Izz 2.59 kg ·m2

Table 5.2 Input Parameters for Datcom analysis.

Parameter Symbol Value Units
Speed V 68.10 ft/s

Altitude h 0 ft
Chord c 1.25 ft

Wing Area S 10.57 ft2

Span b 9.17 ft
Weight W 15.74 lb

Lastly, Table 5.4 describes the maximum deflections that the main control surfaces of the

aircraft are allowed to have during the course of the commanded trajectory. The actuator

models are based on a first order transfer function as described by Equation 5.1, which

represents a delay of 0.1s.[50]

G(s) =
20

s+ 30
e−0.1s (5.1)

59

Table 5.3 Rascal 110 Stability Derivatives.

Longitudinal Derivatives Units Lateral Derivatives Units
CL0 0.4940

per rad

Clβ -0.1002

per rad

CLα 5.973 Clp -0.5087
CLq 4.885 Clδa 0.4698
CLδe

0.200 Clδr 0.0103
CD0 0.031 Cnβ

0.01274
CDα 0.527 Cnp -0.03802
CDδe

0.000 Cnr -0.03777
CM0 0.0323 Cnδa

-0.00190
CLα -0.3217 Cnδr

-0.12200
CMq -11.000 CYβ -0.3198
CMδe

-0.5517 CYp -0.1138

Table 5.4 Allowable Control Surface Deflections.

Control Surface Max. and Min. Deflection
Aileron δamax,min

= ±27 deg
Elevator δemax,min

= ±27 deg
Rudder δrmax,min

= ±35 deg

5.2 Equations of Motion

In order to build the simulation, a six-degree-of-freedom (6-DoF) model of the UAV must

be integrated to Simulink. This is done by considering the 12 non-linear equations of motions

(EOMs) that describe, in general, the motion of any conventional aircraft. These EOMs fall

under four categories as follows:

1. Force Equations for deriving linear accelerations (i.e [u̇, v̇, ẇ]).

2. Moment Equations for deriving the rate of change of angular rates (i.e [ṗ, q̇, ṙ]).

3. Kinematic Equations for deriving Euler Rates (i.e [ϕ̇, θ̇, ψ̇]).

4. Navigation Equations for deriving velocities in the Earth Reference Frame (i.e [Ẋ, Ẏ , Ż]).

Nelson [51] shows a complete derivation of these equations. However, for the purposes of

this work, just the most important expressions are shown.

60

Assuming that the Earth Reference Frame or North-East-Down (NED) Reference Frame

is an inertial frame relative to the Aircraft-Body-Centered (ABC) Reference Frame, the first

task is to obtain a Rotation Matrix that allows an easy conversion between both frames. This

matrix is well known as the Direction Cosine Matrix (DCM), following a 3-2-1 sequence or a

“yaw-pitch-roll” sequence. The main goal for this is to express the velocity of the aircraft in

the NED frame in terms of the Euler angles [ϕ, θ, ψ] and body velocities components [u, v, w].

Particularly, this will be useful to derive the Navigation Equations. Equation 5.2 shows the

DCM which is the result of the multiplication between the rotation around each 3D axis.

RE
B =

cos(θ)cos(ψ) −cos(ϕ)sin(ψ) + sin(ϕ)sin(θ)cos(ψ) sin(ϕ)sin(ψ) + cos(ϕ)sin(θ)cos(ψ)

cos(θ)sin(ψ) cos(ϕ)cos(ψ) + sin(ϕ)sin(θ)sin(ψ) −sin(ϕ)cos(ψ) + cos(ϕ)sin(θ)sin(ϕ)

−sin(θ) sin(ϕ)cos(θ) cos(ϕ)cos(θ)

 (5.2)

Where RE
B means a transformation from ABC to NED.

Figure 5.2 shows the mentioned reference frames and the convention of signs that will

be used to derive the equations. Though not shown on this Figure, the convention that is

adopted for the control surfaces deflection will consider that a positive aileron deflection +δa

and a positive elevator deflection +δe move the control surfaces downwards, and vice versa.

Figure 5.2 ABC (left) and NED (right) Reference Frames.

61

Force Equations

By applying Newton’s Second Law shown in Equation 5.3, and assuming a constant mass,

the set of equations in 5.4 are obtained.

∑
F⃗ext = m

dv⃗

dt

∣∣∣∣
I

(5.3)

where:
∑
F⃗ext is the sum of all the external forces of the aircraft acting on each axis, m

is the mass, and dv⃗
dt

∣∣
I
is the rate of change of the velocity in the inertial frame.

∑
F⃗ext
m

=

u̇+ qw − rv

v̇ + ru− pw

ẇ + pv − qu

 (5.4)

Now, the linear accelerations can be solved in the ABC reference frame as shown in

Equations 5.5. These are the first three Equations needed.

u̇

v̇

ẇ

 =

Fx

m
− qw + rv

Fy

m
− ru+ pw

Fz

m
− pv + qu

 (5.5)

Moment Equations

For the Moment Equations, Newton’s Second Law is applied to describe the rotational motion

of the body (also known as angular momentum). For this, the momentum of momentum is

used along with the Coriolis term, described in Equation 5.6.

∑
M⃗ext = m

dH⃗B

dt
+ (ω⃗ × H⃗B) (5.6)

where: H⃗B = ω⃗ × I is the momentum of momentum, ω⃗ is the vector of angular velocities,

and I is the vehicle’s mass moment of inertia.

62

Since the vehicle is symmetric about the XZ plane, then Ixy = Iyz = 0, and the matrix of

the inertia gets simplified as follows.

I =

Ixx −Ixy −Ixz

−Ixy Iyy −Iyz

−Ixz −Iyz Izz

 =

Ixx 0 −Ixz

0 Iyy 0

−Ixz 0 Izz

 (5.7)

Expanding the terms in Equation 5.6 yields the Moments in terms of inertias and angular

rates.

L

M

N

 =

ṗIxx + qr(Izz − Iyy − (ṙ + pq)Ixz

q̇Iyy − pr(Izz − Ixx) + (p2 − r2)Ixz

ṙIzz + pq(Iyy − Ixx + (qr − ṗIxz

 (5.8)

where: [L,M,N]′ is the vector of moments around the X, Y, Z axes respectively.

Given the Equations in 5.8, the next three expressions needed for the rate of change in the

angular rates can be obtained:

ṗ

q̇

ṙ

 = −

qr(Izz−Iyy)

Ixx

pr(Ixx−Izz)
Iyy

pq(Iyy−Ixx)
Izz

+

1
Ixx

0 0

0 1
Iyy

0

0 0 1
Izz

L

M

N

 (5.9)

Kinematic Equations

By performing transformations using the Euler angles and the angular rates, the Kinematic

Equations are derived, which represent the rate of change in the Euler angles. Notice that, in

general, [p, q, r]′ ̸= [ϕ, θ, ψ]′. The final expression are shown in Equations 5.10.

ϕ̇

θ̇

ψ̇

 =

1 sin(ϕ)tan(θ) cos(ϕ)tan(θ)

0 cos(ϕ) −sin(ϕ)

0 sin(ϕ)sec(θ) cos(ϕ)sec(θ)

p

q

r

 (5.10)

63

Navigation Equations

Finally, the Navigation Equations are obtained by using the DCM mentioned before to

transform the body linear velocities into the NED frame. As such, Equation 5.12 is applied.

Ẋ

Ẏ

Ż

 = RE
B

u

v

w

 (5.11)

Expanding this expression yields to the last three EOMs:

Ẋ

Ẏ

Ż

 = RE
B =

cos(θ)cos(ψ) −cos(ϕ)sin(ψ) + sin(ϕ)sin(θ)cos(ψ) sin(ϕ)sin(ψ) + cos(ϕ)sin(θ)cos(ψ)

cos(θ)sin(ψ) cos(ϕ)cos(ψ) + sin(ϕ)sin(θ)sin(ψ) −sin(ϕ)cos(ψ) + cos(ϕ)sin(θ)sin(ϕ)

−sin(θ) sin(ϕ)cos(θ) cos(ϕ)cos(θ)

u

v

w

 (5.12)

For completing all the necessary variables, the true airspeed VTAS, angle of attack α, and

sideslip angle β are computed as follows:

VTAS =
√
u2r + v2r + w2

r (5.13)

α = tan−1

(
wr
ur

)
(5.14)

β = sin−1

(
vr√

u2r + v2r + w2
r

)
(5.15)

where the velocity of the wind is taken into account in the following expressions:

ur = u+ uwind

vr = v + vwind

wr = w + wwind

(5.16)

In summary, the set of Equations in 5.5,5.9,5.10,5.12, along with Equations 5.13,5.14, and

64

5.16 describe the full motion and orientation of the vehicle, and they are integrated into the

Simulink environment for the simulation cases.

5.3 Tracking the Safe Trajectory

In order to make it possible for the UAV to track the generated trajectory by the RRT*

path planner, a modified version of a Formation Geometry Calculation (FGC) is implemented

in junction with a Nonlinear Dynamic Inversion (NLDI) Controller. The following subsections

explain these two approaches in detail, which together compose the entire Formation Flight

Control (FFC).

5.3.1 Formation Flight Control: Virtual Trajectory Tracking

Campa et al.[52] provide a detail description of Formation Control Laws. The concept

relies on having a leader aircraft being followed autonomously by a follower aircraft (often

called the wingman), while the former is being commanded manually (i.e. by an RC control).

However, this concept can be slightly modified by replacing the leader aircraft with the

desired trajectory to be tracked. In this way, the “virtual trajectory tracking” term acquires

its name and the leader aircraft becomes a virtual leader.

Consider Figure 5.3 [52] which shows the formation geometry in analysis on the NED

frame. According to the authors, the problem can be subdivided into a horizontal and a

vertical tracking problem. Here, f and l represent the forward and lateral errors respectively,

while fc and lc represent the forward and lateral clearance to maintain a safe distance from

the other aircraft. Since the main focus is only to command the wingman to follow the

desired trajectory without any other aircraft present, then the fc and lc terms are neglected.

Additionally, ΩL represents the induced angular velocity of the virtual leader.

Based on this, Equation 5.17 and Equation 5.18 can be derived where VVy and VVx are the

the velocity of the virtual leader in each axis, xv and yv describe the position of the virtual

leader, xw and yw is the position of the wingman aircraft (which in this study would be the

Rascal 110), and VVxy is the projection of the leader’s velocity onto the x-y plane defined as

VVxy =
√
V 2
Vx

+ V 2
Vy
.

65

Figure 5.3 Level Plane Formation Geometry.

l =
VVy(xv − xw)− VVx(yv − yw)

VVxy
(5.17)

f =
VVy(yv − yw)− VVy(xv − xw)

VVxy
(5.18)

For the vertical error h, just the z coordinate of each aircraft is used.

h = zv − zw (5.19)

By introducing the following terms shown in Equations 5.20, the three previous equations

can be expressed on a matrix form as shown in the set of Equations 5.21.

cos(χv) =
VV x√

V 2
Vx

+ V 2
Vy

sin(χv) =
VV y√

V 2
Vx

+ V 2
Vy

(5.20)

66

l

f

h

 =

sin(χv) −cos(χv) 0

cos(χv) sin(χv) 0

0 0 1

xv − xw

yv − yw

zv − zw

 (5.21)

For computing the velocities, the time derivative is taken from Equations 5.21. An

important consideration is that the induced angular velocity of the virtual leader ΩV is

considered to be zero, as the main goal is to track the generated trajectory with no errors.

The final result is as follows.

l̇

ḟ

ḣ

 =

Vwxysin(χw − χV)

VVxy − Vwxycos(χw − χV)

VVz − Vwz

+ ΩV

f

−l

0

 (5.22)

The above equations are useful to apply the NLDI controller presented in the next subsection,

as they represent the first stage of the FFC.

5.3.2 Nonlinear Dynamic Inversion Controller

NLDI controller architecture is used in this thesis due to its ability to counteract the

nonlinearities of the system. Given the common equation to represent a nonlinear system

given in 5.23, where f(x) are the nonlinear states and g(x) are the control functions, the

inversion is only possible if g−1(x) exists. By replacing the derivatives of the states with the

desired states, ẋdes = x, then the controller has the ability to provide direct inputs into the

system as shown in Equation 5.24. This is the goal of the NLDI, as direct input commands

will be provided into the control surfaces and the propulsion system.

ẋ = f(x) + g(x)u (5.23)

u = g−1(x)[ẋdes − g(x)] (5.24)

67

Figure 5.4 highlights the controller architecture that is implemented for the simulation. The

FFC controller is composed by three sub-controllers, starting from the computation of the

lateral, forward and vertical distances, and their respective velocities that where described

in the previous subsection. Now, the NLDI controller will serve to build the outer-loop and

inner-loop, such that the commanded path can be transformed into actuator and throttle

commands. For convenience, just the most important derivations will be shown. More on

this topic can be found on References [49],[52],[50], and [53].

Figure 5.4 NLDI Architecture.

5.3.2.1 Outer-Loop Controller

The inversion of this controller is performed only on the forward and lateral equations.

This is because the vertical tracking problem is solved by a linear expression shown in 5.25,

where δZ and δŻ are the vertical distance and velocity errors, respectively, and KZ with KŻ

are their respective gains.

θd = KŻ δ̇Z +Kzδz (5.25)

Assuming that the wingman has a coordinate turn condition, Equation 5.26 must be true.

Also, assuming steady wings-level flight for the virtual trajectory, Equation 5.27 must also be

true.

Ωw = χ̇ ∼=
g

V
tan(ϕ) (5.26)

Ω̇L = 0 (5.27)

68

Now, by taking the derivative of the lateral and forward parts of Equation 5.22, Equation

5.28 is obtained.

 l̈
f̈

=
 sin(χw − χV)

−cos(χw − χV)

wxy +

cos(χw − χV)

sin(χw − χV)

Vwxy(Ωw − ΩV) +

 f
−l

 Ω̇V +

 ḟ
−l̇

ΩV (5.28)

By using an expression related to the forward translation acceleration shown in Equation

5.29 where CD is the drag coefficient, CY is the side-force coefficient, g is the acceleration

due to gravity, T is the Thrust and γ is the flight path angle, an expression 5.30 for the term

V̇wxy can be obtained assuming a linear variation of the thrust with the throttle [53].

V̇ =

(
cos(α)cos(β)

m

)
T −

(¯qS(CDcos(β)− CY sin(β)

m
+ gsin(γ)

)
≡ ω1T − ω2 (5.29)

V̇wxy = V̇ cos(γ) =
Vwxy

V
ω1(T0 +KT δT)−

Vwxy

V
ω2 (5.30)

In Equation 5.30, the constants T0 and KT are inherited by the propulsion model of the

aircraft. Further substitutions allow the inversion of the equation, and consequently the

needed output commands for the bank angle 5.31 and desired thrust 5.32 can be obtained as

follows.

ϕd = arctan

(
1

gcos(γ)

[
l̈dcos(χw − χV) + f̈dsin(χw − χV)

]
+
V

g
ΩV +

[
l̇sin(χw − χV)− ḟ cos(χw − χV)

ΩV

gcos(γ)

]) (5.31)

δT =
m

KT cos(γ)

[
l̈dsin(χw − χV)− f̈ cos(χw − χV)

]
+

1

KT

[
1

2
ρV 2S(CD0 + CDαα0) +mgsin(γ)− T0

]
− m

KT cos(γ)
ΩV

[
l̇cos(χw − χV) + ḟ cos(χw − χV)

] (5.32)

69

Equations 5.25,5.31 and 5.32 provide the necessary outputs once the Formation Geometry

Calculation is computed. These outputs will then be the inputs for the inner-loop controller

as described below.

5.3.2.2 Inner-Loop Controller

The inner-loop controller is characterized by being a two-time scale inversion system

consisting of a “slow mode” and a “fast mode” system. The slow mode system takes the error

between the desired Euler angles [ϕd, θd, ψd]
′ and the actual Euler angles [ϕ, θ, ψ]′ from the

state of the aircraft, and outputs a vector of desired angular rates [pd, qd, rd]
′. Moreover, the

fast mode system takes the error between the desired angular rates and the actual angular

rates [p, q, r]′ from the plant, and then applies an inversion that results in commands for

the aileron δa, elevator δe, and rudder δr. Figure 5.5 [53],[49] shows the inner-loop inversion

system, which has also been widely use in more studies that have been conducted at the

Advanced Dynamics and Control Lab from ERAU.

Figure 5.5 Slow and Fast modes for NLDI.

Slow Mode System

By considering the Kinematic EOMs in 5.10, the vector of angular rates [p, q, r]′ can be

replaced by the vector of desired angular rates, and the vector of Euler rates [ϕ̇, θ̇, ψ̇]′ can

be replaced with a vector of pseudo controllers [Uϕ, Uθ, Uψ]
′. Solving for the desired angular

rates, Equation 5.33 is obtained.

70

pd

qd

rd

 =

1 sin(ϕ)tan(θ) cos(ϕ)tan(θ)

0 cos(ϕ) −sin(ϕ)

0 sin(ϕ)sec(θ)cos(ϕ)sec(θ)

−1

Uϕ

Uθ

Uψ

 (5.33)

The pseudo controllers are defined in Equation 5.34 as proportional controllers, where the

constant gains Kϕ, Kθ, and Kψ are tunable parameters.

Uϕ

Uθ

Uψ

 =

Kϕ(ϕd − ϕ)

Kθ(θd − θ)

Kψ(ψd − ψ)

 (5.34)

Notice that the yaw angle ψ does not appear in the outer-loop of Figure 5.5, for which the

third term of Equation 5.34 cannot be calculated . However, as mentioned before, a coordinate

turn condition can be assumed, meaning that ψ̇ = g
V
tan(ϕ). Based on this assumption, the

this third term can be easily calculated as follows.

Uψ = ψ̇ =
g

V
tan(ϕ)d (5.35)

Now, the next step pertains to the fast mode system.

Fast Mode System

Recall the set of the aerodynamic moment equations in 5.8. Similar as for the slow

mode system, the vector of moments [L,M,N]′ is replaced by a vector of desired moments

[Ld,Md, Nd]
′. The rate of change of the angular rates [ṗ, q̇, ṙ]′ is replaced by the vector of

pseudo controllers [Up, Uq, Ur]
′ shown in Equation 5.37, where the constant gains Kp,Kq,

and Kr are tunable parameters. Notice that these pseudo controllers follow the format of a

proportional control, similar as before.

71

By rearranging the terms of the moment EOMs, Equation 5.36 is obtained.

Ld

Md

Nd

 =

−Ixzpq + (Izz − Iyy)qr

Ixz(p
2 − r2) + (Ixx − Izz)pr

Ixzqr + (Iyy − Ixxpq)

+

Ixx 0 −Ixz

0 Iyy 0

−Ixz 0 Izz

Up

Uq

Ur

 (5.36)

Up

Uq

Ur

 =

Kp(pd − p)

Kq(qd − q)

Kr(rd − r)

 (5.37)

In order to obtain relationship for the control surfaces deflections, recall that the aero-

dynamic rolling, pitching, and yawing moment coefficients can be approximately by Taylor

series functions as depicted by Equation 5.38.

Cl =Cl0 + C lββ +
b

2V
(Clpp+ Clrr) + Clδaδa + Clδr δr

Cm =Cm0 + Cmαα +
c̄

2V
Cmqq + Cmδe

δe

Cn =Cn0 + Cnβ
β +

b

2V
(Cnpp+ Cnrr) + Cnδa

δa + Cnδr
δr

(5.38)

Recall also that the aerodynamic moments can also be expressed as a function of their

respective coefficients as in Equation 5.39.

Ld

Md

Nd

 = q̄S

bCl

c̄Cm

bCn

 (5.39)

For instance, by replacing Equation 5.38 in Equation 5.39, expressions for the control

surface deflections in terms of the known moments and geometrical variables can be obtained.

Therefore, the equation for the elevator deflection is as follows.

δe =

Md

q̄Sc̄
− Cm0 − Cmαα− c̄

2V
Cmqq

Cmδe

(5.40)

72

Notice, however, that due to the rolling moment being coupled with the yawing moment,

a system of two equations must be solved in order to obtain the aileron and rudder deflections.

For simplification, let:

b1 =Clδaδa + Clδr δr

b2 =Cnδa
δa + Cnδr

δr

(5.41)

By solving the mentioned two-system of equations, the final expression for the aileron and

rudder deflections are presented in Equation 5.42.

δa =
Clδr b2 − Cnδr

b1

ClδrCnδa
− Cnδr

Cnδa

δr =
Cnδa

b1 − Clδa b2

ClδrCnδa
− Cnδr

Cnδa

(5.42)

With these equations, the fast mode system is completed, leading to the completion of

the inner-loop controller. By taking the inputs of the outer-loop controller, which at the

same time takes the inputs of the Formation Geometry Calculation, now the controller is

able to command the control surfaces of the Rascal 110 as expected, based on a trajectory

commanded by the RRT* planner.

5.4 Architectures for Simulation Environment

Interactions between Matlab/Simulink environments are used to simulate the results of

this study. Figure 5.6 shows a scheme of how the HMS is interconnected with RRT* path

planning algorithm and the generation of safe trajectories. The goal is to provide the system

an efficient and safe trajectory that can be automatically generated when the AIS paradigm

detects and identifies a low or high magnitude failure.

For this thesis, the RRT* path planner is build in Matlab while the dynamics of the UAV,

the replanning logic, and the HMS are build in Simulink. Figure 5.7 provides the general

architecture of the Rascal Simulink model, which also includes an animation block and an

interface to FlightGear Version 2020.3.9 for visualization purposes.

73

Figure 5.6 General Simulation Architecture.

Figure 5.7 Simulink Model with FlightGear.

74

The algorithm flow shown in Figure 5.8 presents the proposed architecture logic for the

on-board decision-making capabilities of the fixed-wing. The algorithm starts by uploading

the 3D Occupancy map into the OBC, and then the user selects n poses to be visited during

the initial mission planning phase. After this, the RRT* Multi-goal planner plans a path

towards each pose until the final pose is reached. The UAV starts its flight, and through the

HMS, a constant check for failures is performed. If a failure is detected, the AIS paradigm

enters into action by identifying the type of failure and applying metrics to evaluate the flight

envelope. This information is passed towards the RRT* Multi-goal planner containing the

same initial poses, and the new safe trajectory is generated such that the fixed-wing is able

to accomplish the initial mission with an active failure.

Figure 5.8 On-board Decision-making Capabilities Architecture.

75

Finally, Figure 5.9 shows an example of the visual simulation that is product of the

planning and replanning missions mentioned above. For best computational performance, the

PC used to carry all the simulations and algorithms of this study had an Intel(R) Core(TM)

i7-10510U CPU @ 1.80GHz 2.30 GHz processor with 16.0 GB RAM memory, and Windows

10 Pro.

Figure 5.9 Example of Trajectory Tracking: Generated RRT* Trajectory (top left), Rascal
110 Simulink Model (top right), FlightGear Simulator (bottom left), and UAV Animation

(bottom right).

76

6 Numerical Simulations & Performance Analysis

6.1 Nominal Trajectory Generation

A simple mission with nominal waypoints at different altitudes has been created on the

3D map described before to test the proposed architecture. Table 6.1 shows the coordinates

of the poses to visit, including the desired headings. Furthermore, Figure 6.1 shows the

generated trajectory before and after the application of the Dubins Paths for smoothing.

Table 6.1 Nominal trajectory coordinates.

Cartesian Coordinates
Pose X (m) Y(m) Z (m) Heading (deg)
Start 0 0 60 45
#1 126 420 65 45
#2 420 317 80 0
#3 440 650 60 90

(a) Initial Defined Poses. (b) Original Path without smoothing.

(c) Path with Dubins smoothing. (d) Rascal Actual Trajectory Following.

Figure 6.1 Nominal Trajectory Generation.

77

Additionally, Figure 6.1d plots the simulated trajectory followed by the Rascal 110. It

can be seen that the NLDI controller is robustly enough such that the actual simulated

trajectory is almost indifferent to the reference trajectory at nominal conditions. Using the

data recorded from this flight, the nominal selves are generated and the described failures

are introduced as a part of the supervised learning process of the HMS.

6.2 Replanning Missions due to Aileron Failure

Each of the failures described by Table 4.1 restricts the flight envelop in terms of the

maximum roll angle that can be achieved on each direction. After applying the equations

shown in subsection 4.2.1, new limits on the roll angle are obtained according to each specific

failure type. Table 6.2 shows these new limits, where the direction of the limitation is also

specified.

Table 6.2 Roll Angle Restrictions.

Aileron Failure Case Nominal Max. Roll (deg) Restricted Roll Angle (deg)
δailRstuck

= 15◦

50

14.2857 (max.right)

δailRstuck
= −10◦ 27.0270 (max.left)

δailLstuck
= 17◦ 11.3636 (max.left)

δailLstuck
= −8◦ 22.8571 (max.right)

This information is given manually to the planner at the time of failure when the supervised

training process is done. However, when the HMS is activated with the AIS paradigm, the

information is passed automatically to the planner when the detection and identification

algorithms are activated such that a closed-loop between the planner and the HMS is achieved.

6.2.1 Right Aileron Failure (High Magnitude)

Consider the first case of failure described by Table 4.1, where the right aileron is stuck

at δailRstuck
= 15◦ at t = 18s. For this case, the controller is able to counteract the failure but

just to a certain point. Figure 6.2 shows the simulation where the vehicle is not able to follow

the nominal trajectory once it reaches the first turn to the right due to the reduced maximum

achievable roll angle in this direction. Since the right aileron is inducing the aircraft roll to

the left constantly, a new trajectory must be generated for saving the aircraft from collision.

78

(a) Rascal Simulated Trajectory. (b) Rascal 110 Crash Animation.

Figure 6.2 Rascal 110 Crash for δailRstuck
= 15◦.

Figure 6.3a shows the new replanning mission generated by the decision-making architec-

ture of the path planner. Notice that the trajectory has been modified by inserting higher

turning radii in the turns. Figure 6.3b demonstrates that the aircraft is now able to follow

the new path with approximately the same flight time. The NLDI controller does its job and

the original waypoints of the mission are visited, which guarantees the safety not only for the

vehicle, but for the completion of the mission while preventing collision or damage risks.

(a) Generated Safe Trajectory. (b) Rascal 110 Trajectory Simulation.

Figure 6.3 Rascal 110 Replanning Mission for δailRstuck
= 15◦.

79

Figure 6.4 shows a clear difference between the replanned and the original smoothed

trajectory from the top view of the map. Though both trajectories seem to be similar, they

cause completely different responses from the aircraft once the AC is detected.

Figure 6.4 Smoothed Nominal Trajectory vs. Replanned Safe Trajectory for Right Aileron
Failure (High Magnitude).

6.2.2 Right Aileron Failure (Low Magnitude)

Within the same line of thought, now a lower magnitude failure deflection δailRstuck
= −10◦

is inserted at the same flight time as before. This failure will restrict the capability of the

aircraft to roll to the left by pushing the aircraft to roll right. Figure 6.5 shows the replanning

mission for this case. An interesting thing to notice is that the NLDI controller is able to

compensate for this failure, and the aircraft is able to complete the mission. However, the

replanning algorithm still generates a new different path. This path is in accordance with

the flight envelope restriction, and as will be shown in Section 6.3, it improves the overall

performance of the UAV at post-failure conditions in comparison with the case when the

replanning is deactivated.

80

(a) Generated Safe Trajectory. (b) Rascal 110 Trajectory Simulation.

Figure 6.5 Rascal 110 Replanning Mission for δailRstuck
= −10◦.

Figure 6.6 shows the comparison between the nominal and the safe trajectory, respectively.

Notice that the turning radii are constrained differently and the generated tree presents

slightly variations in comparison with the tree from Figure 6.4.

Figure 6.6 Smoothed Nominal Trajectory vs. Replanned Safe Trajectory for Right Aileron
Failure (Low Magnitude).

81

6.2.3 Left Aileron Failure (High Magnitude)

Now, for the third case, consider the high magnitude failure of the left aileron stuck

at δailLstuck
= 17◦ at t = 30s. Figure 6.7 shows the generated safe trajectory. Similar to

the previous case, the aircraft is able to follow the trajectory due to the robustness of the

controller. However, notice that the replanned mission increments again the turning radii

due to the aircraft tendency to roll to the right at post-failure condition. Notice that the

planner modifies also the straight path to be followed after the remaining turn to the left.

(a) Generated Safe Trajectory. (b) Rascal 110 Trajectory Simulation.

Figure 6.7 Rascal 110 Replanning Mission for δailLstuck
= 17◦.

An interesting highlight for this case is that the new safe trajectory does not completely

pass through pose #1, as can be seen in the comparison of the trajectories presented on

Figure 6.8. Due to the high magnitude failure, the decision-making algorithm of the planner

skips this waypoint and continuous to replan the mission for guaranteeing the safety of the

vehicle. The left aileron lock downwards pushes the system to try to roll right, for which the

needed left turns will require more time to be completed, thereby justifying increase in left

turning radius.

Despite this, the question of whether the replanning mission is needed or not still remains

as the mission without replanning is still being completed. Again, the answer relies on the

overall performance of the aircraft that will be further presented in the next section.

82

Figure 6.8 Smoothed Nominal Trajectory vs. Replanned Safe Trajectory for Left Aileron
Failure (High Magnitude).

6.2.4 Left Aileron Failure (Low Magnitude)

The left aileron has been stuck at δailLstuck
= −8◦ at t = 33s. Figure 6.9 shows the result

of the replanning mission. Once again, the aircraft does not crash with this AC, but the

replanning mission leads to the creation of a new trajectory that avoids visiting pose #1.

(a) Generated Safe Trajectory. (b) Rascal 110 Trajectory Simulation.

Figure 6.9 Rascal 110 Replanning Mission for δailLstuck
= −8◦.

83

Figure 6.10 shows how the nominal trajectory is modified. The aircraft is able to make

the designated original turn to the left according to the planner, but still pose #1 is being

avoided to ensure a safe trajectory.

Figure 6.10 Smoothed Nominal Trajectory vs. Replanned Safe Trajectory for Left Aileron
Failure (Low Magnitude).

6.3 Performance Analysis of Generated Safe Trajectories

6.3.1 Path Planner Costs

The evaluation of the performance of the path planner is addressed by the total length of

the generated safe trajectories as well as the iterations and number of nodes used to reach the

goal position. Table 6.3 shows these calculations for the failure cases and the nominal path.

Table 6.3 Path Planner Costs and Iterations

Failure
Case #

Nominal
Path
Cost

Nominal
of Total
Iterations

Nominal
of Total

Nodes

Replanned
Path
Cost

Replanned
of Total
Iterations

Replanned
of Total

Nodes
1

1283.1 468 184

968.92 157 117
2 1024.5 171 111
3 1155.5 188 138
4 1126.5 218 139

84

It can be seen that the lengths of the path for the failures that are detected at approximately

the same time are close to each other. Additionally, all the replanned paths have lesser path

costs, iterations, and number of generated nodes than the nominal path. This is of essential

importance since the flight envelop restriction would tend to force the path planner to create

more complicated trajectories that might end up having higher costs. In fact, this is one

more reason that justifies the usage of the RRT* planner instead of other path planners.

6.3.2 Performance Metrics for Evaluating Trajectory Feasibility

When the failure is counteracted by the NLDI controller (as happened for cases 2-4), a

question arises that proposes whether the replanning mission is worth to be done or not.

For evaluating the value of the replanning architecture demonstrated in this study, new

metrics are defined in terms of how well the vehicle tracks the reference trajectory in terms

of Cartesian coordinates, Euler angles, and the energy used for the control surfaces actuation

[54]. For this, let PIglobal be a global Performance Index defined by Equation 6.1:

PIglobal = 1− [w1T̃ + w2Ẽ + w3C̃] (6.1)

where: T̃ and Ẽ are the accumulated errors of translational displacement and attitude

error tracking, respectively, and C̃ is the accumulated energy spent by the ailerons, elevators,

and rudder during the entire length of the trajectory. The coefficients w1, w2, and w3 are

simply weighting factors that are chosen to give different level of importance to each metric.

Equation 6.2 defines the coordinate tracking metric, where the error integrals Tx, Ty, and

Tz are defined in Equation 6.3 based on the flight time Tf . The coefficients Cx, Cy, and

Cz are normalization factors that are obtained from the worst case performance of all the

simulations.

T̃ =
1

3
[Tx Ty Tz]

1/Cx

1/Cy

1/Cz

 (6.2)

85

Tx =

√
1

Tf

∫ Tf

0

e2x dt Ty =

√
1

Tf

∫ Tf

0

e2y dt Tz =

√
1

Tf

∫ Tf

0

e2z dt (6.3)

Equation 6.4 defines the attitude error tracking based only on the pitch and roll angles,

which are the most affected ones by the aileron failures. Same as before, the error integrals

are defined in Equation 6.5 and the C-coefficients also come from the worst case performance.

Ẽ =
1

2
[Eθ Eϕ]

1/Cθ
1/Cϕ

 (6.4)

Eθ =

√
1

Tf

∫ Tf

0

e2θ dt Eϕ =

√
1

Tf

∫ Tf

0

e2ϕ dt (6.5)

Finally, Equation 6.6 accounts for the energy spent on the actuation. The integrals shown

in Equation 6.7, for this case, are composed by the absolute value of the rate of change of

each control surface, which is then integrated over the entire flight time. The C-coefficients

are then used again for normalization purposes.

C̃ =
1

3
[Cail Cele Crud]

1/Cδail

1/Cδele

1/Cδrud

 (6.6)

Cδail =

√
1

Tf

∫ Tf

0
| ˙δail(t)| dt Cδele =

√
1

Tf

∫ Tf

0
| ˙δe(t)| dt Cδrud =

√
1

Tf

∫ Tf

0
| ˙δrud(t)| dt (6.7)

It is considered that the tracking of Euler angles and the energy of the actuation has

more weight in the general performance of the new trajectories rather than the trajectory

tracking per se. For instance, the first weighting factor is assigned to be w1 = 5%, while

86

w2 = 60% and w3 = 35%. Table 6.4 presents the results that have been obtained by enabling

and disabling the online HMS with the replanning algorithm for all the cases.

Table 6.4 Performance Metrics for Simulations.

Simulation Case T̃ Ẽ C̃ PIglobal
Nominal Trajectory 0.8262 0.0463 0.2920 0.8287

1
Right Aileron Stuck at 15°

NO Replanning
Crash

Right Aileron Stuck at 15°
with Replanning

0.6149 0.0692 0.4100 0.7842

2
Right Aileron Stuck at -10°

NO Replanning
0.8105 0.1071 0.5252 0.7114

Right Aileron Stuck at -10°
with Replanning

0.6015 0.0657 0.3699 0.8010

3
Left Aileron Stuck at 17°

NO Replanning
0.8146 0.0783 0.4439 0.7569

Left Aileron Stuck at 17°
with Replanning

0.8218 0.0644 0.3308 0.8045

4
Left Aileron Stuck at -8°

NO Replanning
0.7999 0.0623 0.3526 0.7992

Left Aileron Stuck at -8°
with Replanning

0.6633 0.0626 0.3333 0.8126

Notice that for all the cases, the global PI improves if the replanning mission is activated.

For the first case, the replanning algorithm saves the mission, and the new safe trajectory

has even a high global PI close to the nominal value. For the second case, less actuation

energy is spent and the Euler tracking is better, which improves significantly the global PI.

The third case is similar to the second case, although the trajectory tracking has greater cost

with the replanned mission. For the last case, the Euler tracking is approximately the same,

but the cost of the actuation energy and trajectory tracking is less for the replanned mission,

consequently increasing the global PI almost to the nominal value.

These results demonstrate that the consideration of the kinodynamic properties of the

fixed-wing has a great effect in path planning missions, especially when the flight envelop is

reduced. In general, less actuation energy is spent while a better tracking of the attitude is

achieved, which makes the trajectory safer to be followed.

87

6.4 HMS-AIS Detection and False Alarms

The antibodies have been generated using 2000 clusters with a minimum size of 0.005. A

maximum number of 500 detectors are inserted within a limit of 400 iterations, all with a

tolerance of 0.0001 for every generated cluster.

With this, in order to evaluate the performance of the AIS, recall Equation 4.23 and

Equation 4.24 which describe the Detection Rates and the False Alarms. Table 6.5 and Table

6.6 present the calculations for the right and left aileron failure cases, respectively.

Table 6.5 DR and FA for Right Aileron Failure Cases.

Right Aileron
Stuck at 15°, t=18s

Right Aileron
Stuck at -10°, t=18s

#Self Features DR (%) FA (%) DR (%) FA (%)
1 p,δAilL 72.82 11.01 77.90 4.12
2 p,δAilR 98.30 0.00 99.93 0.00
3 pb/2V ,δAilL 33.75 44.49 82.41 11.46
4 pb/2V ,δAilR 99.75 10.12 99.80 7.56
5 r,δAilL 70.90 20.13 81.66 4.89
6 r,δAilR 99.10 9.01 98.90 28.70
7 δAilL ,ϕ 46.02 52.28 94.23 27.25
8 δAilR ,ϕ 98.80 55.28 98.83 9.23
9 δRudL ,δAilR 99.83 0.00 99.93 0.00
10 δRudR ,δAilL 51.06 3.89 83.31 2.22

Table 6.6 DR and FA for Left Aileron Failure Cases.

Left Aileron
Stuck at 17°, t=30s

Left Aileron
Stuck at -8°, t=33s

#Self Features DR (%) FA (%) DR (%) FA (%)
1 p,δAilL 89.43 0.00 41.59 0.00
2 p,δAilR 87.93 0.00 13.59 7.87
3 pb/2V ,δAilL 72.27 9.27 27.25 1.60
4 pb/2V ,δAilR 94.58 10.87 16.31 7.54
5 r,δAilL 63.10 0.00 37.62 6.34
6 r,δAilR 91.43 0.00 26.48 15.74
7 δAilL ,ϕ 93.83 0.00 91.26 0.00
8 δAilR ,ϕ 93.55 0.00 33.95 64.38
9 δRudL ,δAilR 93.40 0.00 17.46 8.41
10 δRudR ,δAilL 98.85 0.00 71.67 0.00

88

From these calculations, it can be seen that the FAs are much more lower than the DRs,

which indicates an acceptable performance of the AIS. The relationship between DRs and FAs

depends on the type failure inserted and the detection time. Despite the fact that in some

cases the FAs are higher than the DRs for certain selves, still the detection and identification

algorithms work as expected. Figure 6.11 confirms this comparison within all the cases.

(a) DRs and FAs for Case 1. (b) DRs and FAs for Case 2.

(c) DRs and FAs for Case 3. (d) DRs and FAs for Case 4.

Figure 6.11 DRs and FAs for all Simulation Cases.

The worst performance can be seen to be case 4, which is the low magnitude failure

for the left aileron. This could be improved by generating more self clusters at the cost of

requiring more computational effort.

89

6.4.1 Generated Selves for Detection and Identification

After the offline training process has been finalized, the projections can be visualized.

Figure 6.12 shows some selves out of the 10 selves, and the failure data plotted for case 1.

The failure of the right aileron is evident especially in Figure 6.12a and Figure 6.12d where

constant “lines” of data points can be seen at normalized high magnitudes. Notice, however,

that Figure 6.12b and Figure 6.12c present the same constant lines, but they are shorter and

not so well defined because this is the left aileron trying to compensate for the failure.

(a) Self 2 for Case 1. (b) Self 3 for Case 1.

(c) Self 5 for Case 1. (d) Self 8 for Case 1.

Figure 6.12 Example of Selves for Failure Case 1: Right Aileron Stuck (High Magnitude).

90

Figure 6.13 below shows the same number of selves but for case 2. Notice that the constant

lines in Figure 6.13a and Figure 6.13d have changed positions since the aileron is stuck in

the upright position. Also, Self 3 in Figure 6.13b and Self 5 in Figure 6.13c show that the

left aileron is not doing too much effort to counteract the failure in comparison with case 1.

Notice also that the data points in these two selves have shifted position since the left aileron

is being deflected in the opposite direction than before.

(a) Self 2 for Case 2. (b) Self 3 for Case 2.

(c) Self 5 for Case 2. (d) Self 8 for Case 2.

Figure 6.13 Example of Selves for Failure Case 2: Right Aileron Stuck (Low Magnitude).

91

Figure 6.14 shows selves 2, 3, 5, and 8 for case 3. This case has increased DRs than the

other cases and it is evident why: Self 2 in Figure 6.14a and Self 8 in Figure 6.14d show a

great effort of the right aileron to try to compensate for the failure. Self 3 in Figure 6.14b

and Self 5 in Figure 6.14c show again the constant line due to the left aileron locked at the

fixed position. These selves are different from the previous cases, and this characteristic is

exploited to identify the failure.

(a) Self 2 for Case 3. (b) Self 3 for Case 3.

(c) Self 5 for Case 3. (d) Self 8 for Case 3.

Figure 6.14 Example of Selves for Failure Case 3: Left Aileron Stuck (High Magnitude).

92

Finally, Figure 6.15 shows the same selected selves for case 4. The shape of the graphs is

similar to the previous case, however the low magnitude failure makes the right aileron to

make less effort. An important point to consider here is that there exists the possibility that

some selves do not make any identification possible, but are only useful for detection. This is

the case for self 8 in Figure 6.15d, where no clear conclusion can be made of whether the

failure is on the left or right aileron. This is the reason why generating more selves will make

the detection/identification phase more robust.

(a) Self 2 for Case 4. (b) Self 3 for Case 4.

(c) Self 5 for Case 4. (d) Self 8 for Case 4.

Figure 6.15 Example of Selves for Failure Case 4: Left Aileron Stuck (Low Magnitude).

93

6.4.2 Detection: Activated Detectors

The identification part is based on the specific activated detectors that range from 1 to

500. Depending on which detector is activated most of the time, a logic is developed such

that a classification is done where a buffer of samples of the flight data is being recorded and

compared online as described in section 4.3.4. Figure 6.16 shows an example of the time

history of the NAD for self 5 in every failure case. Due to the effects of the AC, different

antibodies are activated which allows the identification to take place correctly.

(a) Activated Detectors for Self 5 and Case 1. (b) Activated Detectors for Self 5 and Case 2.

(c) Activated Detectors for Self 5 and Case 3. (d) Activated Detectors for Self 5 and Case 4.

Figure 6.16 Example of Activated Detectors for Self 5.

94

Similarly, Figure 6.17 highlights another example of NAD. This case is for self 1 that

shows the projection for the roll rate and the left aileron deflection. Notice that Figure 6.17c

and Figure 6.17d show more the activation of a specific detector in contrast with Figure 6.17a

and Figure 6.17b since failure cases 3 and 4 are the ones that fail the left aileron.

(a) Activated Detectors for Self 1 and Case 1. (b) Activated Detectors for Self 1 and Case 2.

(c) Activated Detectors for Self 1 and Case 3. (d) Activated Detectors for Self 1 and Case 4.

Figure 6.17 Example of Activated Detectors for Self 1.

After plotting the time history of all the NADs and for all the failure cases, the identification

phase is complete and the closed-loop system containing the trained HMS-AIS can be

integrated into the simulation. Figure 6.18 shows the complete simulation architecture in

95

action, where the failure from case 1 was inserted and detected. As pictured, the right aileron

is stuck downwards and the left aileron is trying to compensate the failure after the replanning

mission has been activated. The alarm message is constantly showing that a failure has been

detected until the vehicle reaches its goal position.

Figure 6.18 Failure Detection and Identification with Online HMS.

A final point that has to be addressed is the fact that the detection of the HMS can

present some lag that depends on the window of samples selected. If a window of a high

number of samples is chosen, the detection is delayed for more than 5 seconds, though the

identification part becomes must robust. However, in order to maintain a balance between

detection and identification, just a window of 10 samples was selected in such a way that

the detection has a negligible delay of 0.2s and the identification phase still remains robust

enough to activate the correct replanning mission.

96

7 Conclusions & Future Work

A HMS based on the AIS paradigm has been successfully implemented in junction with a

multi-goal RRT* path planner in order to generate safe trajectories for a fixed-wing UAV

under reduced flight envelope conditions due to aileron failures. The concept contributes to

the idea of having on-board artificial intelligence based on an autonomous decision-making

architecture to prevent the UAV to present potential risks of damage, collision or harm

to private/public property and people in case of an AC during flight. Additionally, this

contribution helps to advance one step further the safely integration of these type of unmanned

vehicles to the NAS.

The use of 3D occupancy maps, optimized to be memory-efficient, is used to build the 3D

environment that simulates a typical urban area. The map is made up by using unit voxels

that determine whether the free space is occupied or not. Furthermore, it is assumed that

the map is already known, although the approach is still valid in case other types of obstacle

detection methods, such as vision system-based approaches, are implemented.

An analysis of the efficiency in terms of cost functions, computational effort, and trajectory

smoothness has been carried out in order to choose the RRT* as the main path planner for

this approach. The original RRT* planner is combined with the Dubins Airplane Paths to

take into account the kinodynamic properties of the vehicle within the 3D map, and at the

same time to smooth the trajectory according to restrictions in roll capabilities of the aircraft.

Additionally, decision-making properties have been integrated into the planner to generate

feasible trajectories within the vehicle’s physical limitations.

The HMS has been developed under the AIS paradigm with the goal of detecting and

identifying specific type of failures related to the jammed ailerons at fixed positions. A

closed-loop architecture is then proposed to merge the path planner and then HMS to increase

the autonomy of the replanned missions. With this, a simulation environment containing the

dynamic model of the Rascal 110 has been interfaced with FlightGear and Simulink to test

the generation and feasibility of the new save trajectories.

97

Further improvements can enhance several aspects of the algorithms used in this study.

First, notice that the HMS still must undergo a supervised learning process to capture the

dynamic fingerprint of the aircraft, and the selves must be manually trained to accurately

identify the detected failures. Ideally, the HMS should be able to “adapt” to different flight

conditions and the detection/identification phases would be able to trigger alarms with

different types of subsystem failures, and not only for control surface failures. This adaptation

can be implemented and improved by using other methodologies such as Support Vector

Machine (SVM).

For a real-world application, the 3D occupancy maps can be built based on vision system

algorithms such that a preloaded map would not be needed to implement the architecture.

This approach is feasible to work online and on an on-board computer due to the memory-

efficient property of these types of maps.

At last, the Airplane Dubins Paths could be further improved to integrate more restrictions

in the flight envelope that could come from failures in other subsystems, such as the propulsion

and electrical segments of the aircraft.

These implementations and further improvements can make the entire architecture feasible

to be applied not only for fixed-wings, but for any type of aerial vehicle such as quadcopters,

octocopters, and VTOLs.

98

REFERENCES

[1] Federal Aviation Administration, United Sates Of America, “FAA Aerospace Forecast

Fiscal Years 2020-2040.” , 2020. https://www.faa.gov/data_research/aviation/

aerospace_forecasts/media/FY2020-40_FAA_Aerospace_Forecast.pdf, Last ac-

cessed on May 10, 2022.

[2] Namian, M., Khalid, M., Wang, G., and Turkan, Y., “Revealing Safety Risks of Un-

manned Aerial Vehicles in Construction,” Journal of the Transportation Research Board,

Vol. 2675, 2021, pp. 334 – 347. https://doi.org/10.1177/03611981211017134.

[3] Jeong, S., You, K., and Seok, D., “Hazardous flight region prediction for a small

UAV operated in an urban area using a deep neural network,” Aerospace Science and

Technology, Vol. 118, 2021, p. 107060. https://doi.org/10.1016/j.ast.2021.107060.

[4] Bakori, M., “UAS Model Identification and Simulation to Support In-Flight Testing

of Discrete Adaptive Fault-Tolerant Control Laws,” Master’s thesis, Embry-Riddle

Aeronautical University, 2020.

[5] Asadi, K., Kalkunte Suresh, A., Ender, S., Gotad, S., Maniyar, S., Noghabaei, K.,

Lobaton, E., and Wu, T., “An Integrated UGV-UAV System for Construction Site Data

Collection.” Automation in Construction, Vol. 112, 2020, p. 103068. https://doi.org/https:

//doi.org/10.1016/j.autcon.2019.103068.

[6] Valavanis, K. P., and Vachtsevanos, G. J. (eds.), Handbook of Unmanned Aerial Vehicles,

Springer Dordrecht, 2015. https://doi.org/10.1007/978-90-481-9707-1.

[7] Beard, W. R., and McLain, E. T., Small Unmanned Aircraft: Theory and Practice,

Princeton University Press, 2012.

[8] Moncayo, H., Perhinschi, M. G., and David, J., “Aircraft Failure Detection and Identifi-

cation Using an Immunological Hierarchical Multiself Strategy,” Journal of Guidance,

Control, and Dynamics, Vol. 33, 2010, pp. 1105 – 1114. https://doi.org/10.2514/1.47445.

99

https://www.faa.gov/data_research/aviation/aerospace_forecasts/media/FY2020-40_FAA_Aerospace_Forecast.pdf
https://www.faa.gov/data_research/aviation/aerospace_forecasts/media/FY2020-40_FAA_Aerospace_Forecast.pdf
https://doi.org/10.1177/03611981211017134
https://doi.org/10.1016/j.ast.2021.107060
https://doi.org/https://doi.org/10.1016/j.autcon.2019.103068
https://doi.org/https://doi.org/10.1016/j.autcon.2019.103068
https://doi.org/10.1007/978-90-481-9707-1
https://doi.org/10.2514/1.47445

[9] Newman, P., Cole, D., and Ho, K., “Outdoor SLAM using visual appearance and laser

ranging,” Proceedings 2006 IEEE International Conference on Robotics and Automation,

2006. ICRA 2006., 2006, pp. 1180–1187. https://doi.org/10.1109/ROBOT.2006.1641869.

[10] Douillard, B., Underwood, J., Melkumyan, N., Singh, S., Vasudevan, S., Brunner,

C., and Quadros, A., “Hybrid elevation maps: 3D surface models for segmentation,”

2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2010, pp.

1532–1538. https://doi.org/10.1109/IROS.2010.5650541.

[11] Triebel, R., Pfaff, P., and Burgard, W., “Multi-Level Surface Maps for Outdoor Terrain

Mapping and Loop Closing,” 2006 IEEE/RSJ International Conference on Intelligent

Robots and Systems, 2006, pp. 2276–2282. https://doi.org/10.1109/IROS.2006.282632.

[12] Ryde, J., and Hu, H., “3D mapping with multi-resolution occupied voxel lists,”

Autonomous Robots, Vol. 28, No. 2, 2009, p. 169–185. https://doi.org/10.1007/

s10514-009-9158-3.

[13] Wurm, K. M., Hornung, A., Bennewitz, M., Stachniss, C., and Burgard, W., “OctoMap:

A probabilistic, flexible, and compact 3D map representation for robotic systems,” In

Proc. of the ICRA 2010 workshop, 2010.

[14] Hornung, A., Wurm, M. K., Bennewitz, M., Stachniss, C., and Burgard, W., “OctoMap:

an efficient probabilistic 3D mapping framework based on octrees,” Auton Robot, Vol. 34,

2013, pp. 190 – 206. https://doi.org/10.1007/S10514-012-9321-0.

[15] Karur, K., Sharma, N., Dharmatti, C., and Siegel, J. E., “A survey of path planning

algorithms for Mobile Robots,” Vehicles, Vol. 3, No. 3, 2021, p. 448–468. https://doi.

org/10.3390/vehicles3030027.

[16] Yang, L., Qi, J., Song, D., Xiao, J., Han, J., and Xia, Y., “Survey of robot 3D path

planning algorithms,” Journal of Control Science and Engineering, Vol. 2016, 2016, p.

1–22. https://doi.org/10.1155/2016/7426913.

100

https://doi.org/10.1109/ROBOT.2006.1641869
https://doi.org/10.1109/IROS.2010.5650541
https://doi.org/10.1109/IROS.2006.282632
https://doi.org/10.1007/s10514-009-9158-3
https://doi.org/10.1007/s10514-009-9158-3
https://doi.org/10.1007/S10514-012-9321-0
https://doi.org/10.3390/vehicles3030027
https://doi.org/10.3390/vehicles3030027
https://doi.org/10.1155/2016/7426913

[17] LaValle, S. M., “Rapidly-exploring random trees : a new tool for path planning,” The

annual research report, 1998.

[18] Wilburn, J. N., “Development of an Integrated Intelligent Multi -Objective Framework

for UAV Trajectory Generation,” Ph.D. thesis, West Virginia University, 2013.

[19] Dijkstra, E. W., “A note on two problems in connection with graphs,” Numerische

Mathematik, Vol. 1, No. 1, 1959, p. 269–271. https://doi.org/10.1007/bf01386390.

[20] Koenig, S., and Likhachev, M., “Improved fast replanning for robot navigation in

unknown terrain,” Proceedings 2002 IEEE International Conference on Robotics and

Automation (Cat. No.02CH37292), Vol. 1, 2002, pp. 968–975 vol.1. https://doi.org/10.

1109/ROBOT.2002.1013481.

[21] Koenig, S., and Likhachev, M., “Fast replanning for navigation in unknown terrain,”

Robotics, IEEE Transactions on, Vol. 21, 2005, pp. 354 – 363. https://doi.org/10.1109/

TRO.2004.838026.

[22] Yue, R., Xiao, J., Wang, S., and Joseph, S. L., “Modeling and Path Planning of the City-

Climber Robot Part II: 3D Path Planning Using Mixed Integer Linear Programming,”

IEEE Press, 2009, p. 2391–2396.

[23] Masehian, E., and Habibi, G., “Robot Path Planning in 3D Space Using Binary Integer

Programming,” Vol. 1, 2007.

[24] Chamseddine, A., Zhang, Y., Rabbath, C. A., Join, C., and Theilliol, D., “Flatness-

Based Trajectory Planning/Replanning for a Quadrotor Unmanned Aerial Vehicle,”

IEEE Transactions on Aerospace and Electronic Systems, Vol. 48, No. 4, 2012, pp.

2832–2848. https://doi.org/10.1109/TAES.2012.6324664.

[25] Dorigo, M., Maniezzo, V., and Colorni, A., “Ant system: optimization by a colony of

101

https://doi.org/10.1007/bf01386390
https://doi.org/10.1109/ROBOT.2002.1013481
https://doi.org/10.1109/ROBOT.2002.1013481
https://doi.org/10.1109/TRO.2004.838026
https://doi.org/10.1109/TRO.2004.838026
https://doi.org/10.1109/TAES.2012.6324664

cooperating agents,” IEEE Transactions on Systems, Man, and Cybernetics, Part B

(Cybernetics), Vol. 26, No. 1, 1996, pp. 29–41. https://doi.org/10.1109/3477.484436.

[26] Yang, X.-S., A New Metaheuristic Bat-Inspired Algorithm, chapter and pages, pp.

65–74. https://doi.org/10.1007/978-3-642-12538-6 6, URL https://doi.org/10.1007/

978-3-642-12538-6 6.

[27] Holland, J. H., Adaptation in natural and artificial systems: An introductory analysis

with applications to biology, control, and Artificial Intelligence, MIT Press, 2010.

[28] Lin, N., Tang, J., Li, X., and Zhao, L., “A novel improved bat algorithm in UAV

path planning,” Computers, Materials amp; Continua, Vol. 61, No. 1, 2019, p. 323–344.

https://doi.org/10.32604/cmc.2019.05674.

[29] Modin, K., and Verdier, O., “What makes nonholonomic integrators work?” Nu-

merische Mathematik, Vol. 145, No. 2, 2020, p. 405–435. https://doi.org/10.1007/

s00211-020-01126-y.

[30] Divelbiss, A., Seereeram, S., and Wen, J. T., Kinematic Path Planning for Robots with

Holonomic and Nonholonomic Constraints, chapter and pages, pp. 127–150. https://doi.

org/10.1007/978-1-4612-1710-7 5, URL https://doi.org/10.1007/978-1-4612-1710-7 5.

[31] Karaman, S., and Frazzoli, E., “Sampling-based Algorithms for Optimal Motion Plan-

ning,” Auton Robot, 2011, pp. 1 – 76. https://doi.org/10.48550/arXiv.1105.1186.

[32] Gammell, J. D., and Strub, M. P., “Asymptotically Optimal Sampling-Based Motion

Planning Methods,” Annual Review of Control, Robotics, and Autonomous Systems,

Vol. 4, No. 1, 2021, pp. 295–318. https://doi.org/10.1146/annurev-control-061920-093753,

URL https://doi.org/10.1146%2Fannurev-control-061920-093753.

[33] Dubins, L., “On Curves of Minimal Length with a Constraint on Average Curvature,

102

https://doi.org/10.1109/3477.484436
https://doi.org/10.1007/978-3-642-12538-6_6
https://doi.org/10.1007/978-3-642-12538-6_6
https://doi.org/10.1007/978-3-642-12538-6_6
https://doi.org/10.32604/cmc.2019.05674
https://doi.org/10.1007/s00211-020-01126-y
https://doi.org/10.1007/s00211-020-01126-y
https://doi.org/10.1007/978-1-4612-1710-7_5
https://doi.org/10.1007/978-1-4612-1710-7_5
https://doi.org/10.1007/978-1-4612-1710-7_5
https://doi.org/10.48550/arXiv.1105.1186
https://doi.org/10.1146/annurev-control-061920-093753
https://doi.org/10.1146%2Fannurev-control-061920-093753

and with Prescribed Initial and Terminal Positions and Tangents,” The Johns Hopkins

University Press, Vol. 79, 1957, pp. 497–516.

[34] Dasgupta, D., and Nino, F., Immunological Computation: Theory and Applications,

Taylor & Francis, 2008. URL https://doi.org/10.1201/9781420065466.

[35] Takahashi, K., and Yamada, T., “Application of an immune feedback mechanism to

control systems.” JSME International Journal Series C, Vol. 41, No. 2, 1998, p. 184–191.

https://doi.org/10.1299/jsmec.41.184.

[36] Moncayo, H., Perhinschi, M. G., and Davis, J., “Artificial-Immune-System-Based Aircraft

Failure Evaluation over Extended Flight Envelope,” Journal of Guidance, Control, and

Dynamics, Vol. 34, 2022, pp. 989 – 1001. https://doi.org/10.2514/1.52748.

[37] Kaneshige, J., and Krishnakumar, K., “Artificial immune system approach for air combat

maneuvering,” Intelligent Computing: Theory and Applications V, 2007, pp. 989 – 1001.

https://doi.org/10.1117/12.718892.

[38] “The role of B cells and T cells in COVID-19 immune response &; T cell immu-

nity in COVID-19 patients,” , May 2022. URL https://www.akadeum.com/blog/

an-inside-look-at-the-role-of-t-cells-and-b-cells-in-immune-response-to-covid-19/.

[39] Sansonetti, P., and Zychlinsky, A., Molecular Cellular Microbiology, Methods in microbi-

ology, Vol. 31, Academic Press, 2002.

[40] Janeway, C. A., Travers, P., Walport, M., and Capra, D. J., Immunobiology, Taylor &

Francis Group UK: Garland Science, 2001.

[41] Perhinschi, M. G., Al Azzawi, D., Moncayo, H., Perez, A., and Togayev, A., “Immunity-

based aircraft actuator failure evaluation,” Aircraft Engineering and Aerospace Technol-

ogy, Vol. 88, 2016, pp. 729 – 739. https://doi.org/10.1108/AEAT-07-2014-0117.

103

https://doi.org/10.1201/9781420065466
https://doi.org/10.1299/jsmec.41.184
https://doi.org/10.2514/1.52748
https://doi.org/10.1117/12.718892
https://www.akadeum.com/blog/an-inside-look-at-the-role-of-t-cells-and-b-cells-in-immune-response-to-covid-19/
https://www.akadeum.com/blog/an-inside-look-at-the-role-of-t-cells-and-b-cells-in-immune-response-to-covid-19/
https://doi.org/10.1108/AEAT-07-2014-0117

[42] Perhinschi, M. G., Al Azzawi, D., Moncayo, H., Perez, A., and Togayev, A., “Immunity-

based flight envelope prediction at post-failure conditions,” Aircraft Engineering and

Aerospace Technology, Vol. 46, 2015, pp. 264 – 272. https://doi.org/10.1016/j.ast.2015.

07.014.

[43] Garcia, D., “Design, Development and Implementation of Intelligent Algorithms to

Increase Autonomy of Quadrotor Unmanned Missions,” Master’s thesis, Embry-Riddle

Aeronautical University, 2017.

[44] La Valle, S. M., Planning Algorithms, Cambridge University Press, 2006.

[45] Chitsaz, H., and LaValle, S. M., “Time-optimal paths for a Dubins airplane,” 2007 46th

IEEE Conference on Decision and Control, 2007, pp. 2379–2384. https://doi.org/10.

1109/CDC.2007.4434966.

[46] Owen, M., Beard, R. W., and McLain, T. W., “Implementing Dubins Airplane Paths on

Fixed-Wing UAVs,” Handbook of Unmanned Aerial Vehicles, edited by K. P. Valavanis

and G. J. Vachtsevanos, Springer Dordrecht, 2015, Chap. 68, p. 1691–1697.

[47] Ducard, G., Kulling, K. C., and Geering, H. P., “Evaluation of reduction in the perfor-

mance of a small UAV after an aileron failure for an adaptive guidance system,” 2007

American Control Conference, 2007. https://doi.org/10.1109/acc.2007.4282845.

[48] Perhinschi, M. G., and Moncayo, H., Artificial Immune System for Comprehensive and

Integrated Aircraft Abnormal Conditions Management, American Institute of Aeronautics

and Astronautics Inc., 2018.

[49] Lyons, B., “Performance Analysis Of Non-Linear Adaptive Control Laws Using Hardware

in the Loop of an Unmanned Aerial System,” Master’s thesis, Embry-Riddle Aeronautical

University, 2013.

104

https://doi.org/10.1016/j.ast.2015.07.014
https://doi.org/10.1016/j.ast.2015.07.014
https://doi.org/10.1109/CDC.2007.4434966
https://doi.org/10.1109/CDC.2007.4434966
https://doi.org/10.1109/acc.2007.4282845

[50] O’Toole, S., “Development of a Remotely-Piloted Vehicle Platform to Support Im-

plementation, Verification, and Validation of Pilot Control Systems,” Master’s thesis,

Embry-Riddle Aeronautical University, 2017.

[51] Nelson, R., Flight Stability and Automatic Control, Aerospace Science & Tech-

nology, WCB/McGraw Hill, 1998. URL https://books.google.com.ec/books?id=

Uzs8PgAACAAJ.

[52] Campa, G., Napolitano, M., Seanor, B., and Perhinschi, M., “Design of control laws for

maneuvered formation flight,” Proceedings of the 2004 American Control Conference,

Vol. 3, 2004, pp. 2344–2349 vol.3. https://doi.org/10.23919/ACC.2004.1383814.

[53] Moncayo, H., Perhinschi, M., Wilburn, B., Wilburn, J., and Karas, O., “Extended

nonlinear dynamic inversion control laws for unmanned Air Vehicles,” AIAA Guidance,

Navigation, and Control Conference, 2012. https://doi.org/10.2514/6.2012-4675.

[54] Verberne, J., and Moncayo, H., “Comparison of Adaptive Control Laws for Wind

Rejection in Quadrotor UAVs,” 2019. https://doi.org/10.1115/DSCC2019-8957, URL

https://doi.org/10.1115/DSCC2019-8957.

105

https://books.google.com.ec/books?id=Uzs8PgAACAAJ
https://books.google.com.ec/books?id=Uzs8PgAACAAJ
https://doi.org/10.23919/ACC.2004.1383814
https://doi.org/10.2514/6.2012-4675
https://doi.org/10.1115/DSCC2019-8957
https://doi.org/10.1115/DSCC2019-8957

	ON-BOARD ARTIFICIAL INTELLIGENCE FOR FAILURE DETECTION AND SAFE TRAJECTORY GENERATION
	Scholarly Commons Citation

	ACKNOWLEDGMENTS
	ABSTRACT
	LIST OF FIGURES
	LIST OF TABLES
	NOMENCLATURE
	Introduction
	Literature Review
	Occupancy Maps for Obstacle Avoidance
	Path Planning Algorithms for Autonomous Vehicles
	Holonomic and nonholonomic systems
	Choosing RRT* as a path planner:
	The Artificial Immune System Paradigm

	Thesis Objectives
	Thesis Outline

	Occupancy Maps
	Theoretical Background
	Obstacle Avoidance

	Trajectory Generation for Autonomous Navigation
	Requirements for Autonomous Navigation
	Differential Constraints for State Propagation
	Probabilistic Completeness
	Asymptotic Optimality

	Rapidly-Exploring Random Trees (RRTs)
	Rapidly-Exploring Random Graph (RRG)
	Rapidly-Exploring Random Tree* (RRT*)

	Dubins Paths for Smoothing
	Dubins Car Paths
	Dubins Airplane Paths
	Decision making in 2D & 3D
	 The 2D Problem
	 The 3D Problem

	Artificial Immune System Paradigm
	Post-Failure Flight Envelope Prediction
	Flight Envelope Reduction for Safe Trajectory Generation
	Roll Angle Constraints
	 Left Aileron Failure
	 Right Aileron Failure

	Antibody Generation Algorithm
	Single-Data File Generation
	Data Preprocessing and Clustering
	AIS Detection Metrics
	Detection and Identification Scheme

	Simulation Environment
	Rascal 110: Physical and Dynamical Parameters
	Equations of Motion
	Tracking the Safe Trajectory
	Formation Flight Control: Virtual Trajectory Tracking
	Nonlinear Dynamic Inversion Controller
	 Outer-Loop Controller
	 Inner-Loop Controller

	Architectures for Simulation Environment

	Numerical Simulations & Performance Analysis
	Nominal Trajectory Generation
	Replanning Missions due to Aileron Failure
	Right Aileron Failure (High Magnitude)
	Right Aileron Failure (Low Magnitude)
	Left Aileron Failure (High Magnitude)
	Left Aileron Failure (Low Magnitude)

	Performance Analysis of Generated Safe Trajectories
	Path Planner Costs
	Performance Metrics for Evaluating Trajectory Feasibility

	HMS-AIS Detection and False Alarms
	Generated Selves for Detection and Identification
	Detection: Activated Detectors

	Conclusions & Future Work
	REFERENCES

