493 research outputs found

    Nondeterminism in the Presence of a Diverse or Unknown Future

    Get PDF
    Choices made by nondeterministic word automata depend on both the past (the prefix of the word read so far) and the future (the suffix yet to be read). In several applications, most notably synthesis, the future is diverse or unknown, leading to algorithms that are based on deterministic automata. Hoping to retain some of the advantages of nondeterministic automata, researchers have studied restricted classes of nondeterministic automata. Three such classes are nondeterministic automata that are good for trees (GFT; i.e., ones that can be expanded to tree automata accepting the derived tree languages, thus whose choices should satisfy diverse futures), good for games (GFG; i.e., ones whose choices depend only on the past), and determinizable by pruning (DBP; i.e., ones that embody equivalent deterministic automata). The theoretical properties and relative merits of the different classes are still open, having vagueness on whether they really differ from deterministic automata. In particular, while DBP ⊆ GFG ⊆ GFT, it is not known whether every GFT automaton is GFG and whether every GFG automaton is DBP. Also open is the possible succinctness of GFG and GFT automata compared to deterministic automata. We study these problems for ω-regular automata with all common acceptance conditions. We show that GFT=GFG⊃DBP, and describe a determinization construction for GFG automata

    Stochastic Invariants for Probabilistic Termination

    Full text link
    Termination is one of the basic liveness properties, and we study the termination problem for probabilistic programs with real-valued variables. Previous works focused on the qualitative problem that asks whether an input program terminates with probability~1 (almost-sure termination). A powerful approach for this qualitative problem is the notion of ranking supermartingales with respect to a given set of invariants. The quantitative problem (probabilistic termination) asks for bounds on the termination probability. A fundamental and conceptual drawback of the existing approaches to address probabilistic termination is that even though the supermartingales consider the probabilistic behavior of the programs, the invariants are obtained completely ignoring the probabilistic aspect. In this work we address the probabilistic termination problem for linear-arithmetic probabilistic programs with nondeterminism. We define the notion of {\em stochastic invariants}, which are constraints along with a probability bound that the constraints hold. We introduce a concept of {\em repulsing supermartingales}. First, we show that repulsing supermartingales can be used to obtain bounds on the probability of the stochastic invariants. Second, we show the effectiveness of repulsing supermartingales in the following three ways: (1)~With a combination of ranking and repulsing supermartingales we can compute lower bounds on the probability of termination; (2)~repulsing supermartingales provide witnesses for refutation of almost-sure termination; and (3)~with a combination of ranking and repulsing supermartingales we can establish persistence properties of probabilistic programs. We also present results on related computational problems and an experimental evaluation of our approach on academic examples.Comment: Full version of a paper published at POPL 2017. 20 page

    Logic-Based Specification Languages for Intelligent Software Agents

    Full text link
    The research field of Agent-Oriented Software Engineering (AOSE) aims to find abstractions, languages, methodologies and toolkits for modeling, verifying, validating and prototyping complex applications conceptualized as Multiagent Systems (MASs). A very lively research sub-field studies how formal methods can be used for AOSE. This paper presents a detailed survey of six logic-based executable agent specification languages that have been chosen for their potential to be integrated in our ARPEGGIO project, an open framework for specifying and prototyping a MAS. The six languages are ConGoLog, Agent-0, the IMPACT agent programming language, DyLog, Concurrent METATEM and Ehhf. For each executable language, the logic foundations are described and an example of use is shown. A comparison of the six languages and a survey of similar approaches complete the paper, together with considerations of the advantages of using logic-based languages in MAS modeling and prototyping.Comment: 67 pages, 1 table, 1 figure. Accepted for publication by the Journal "Theory and Practice of Logic Programming", volume 4, Maurice Bruynooghe Editor-in-Chie

    On the Succinctness of Alternating Parity Good-For-Games Automata

    Get PDF
    We study alternating parity good-for-games (GFG) automata, i.e., alternating parity automata where both conjunctive and disjunctive choices can be resolved in an online manner, without knowledge of the suffix of the input word still to be read. We show that they can be exponentially more succinct than both their nondeterministic and universal counterparts. Furthermore, we present a single exponential determinisation procedure and an Exptime upper bound to the problem of recognising whether an alternating automaton is GFG. We also study the complexity of deciding "half-GFGness", a property specific to alternating automata that only requires nondeterministic choices to be resolved in an online manner. We show that this problem is PSpace-hard already for alternating automata on finite words

    Good for Games Automata: From Nondeterminism to Alternation

    Get PDF
    A word automaton recognizing a language LL is good for games (GFG) if its composition with any game with winning condition LL preserves the game's winner. While all deterministic automata are GFG, some nondeterministic automata are not. There are various other properties that are used in the literature for defining that a nondeterministic automaton is GFG, including "history-deterministic", "compliant with some letter game", "good for trees", and "good for composition with other automata". The equivalence of these properties has not been formally shown. We generalize all of these definitions to alternating automata and show their equivalence. We further show that alternating GFG automata are as expressive as deterministic automata with the same acceptance conditions and indices. We then show that alternating GFG automata over finite words, and weak automata over infinite words, are not more succinct than deterministic automata, and that determinizing B\"uchi and co-B\"uchi alternating GFG automata involves a 2Θ(n)2^{\Theta(n)} state blow-up. We leave open the question of whether alternating GFG automata of stronger acceptance conditions allow for doubly-exponential succinctness compared to deterministic automata.Comment: Full version of a paper of the same name accepted fr publication at the 30th International Conference on Concurrency Theor

    History Determinism vs. Good for Gameness in Quantitative Automata

    Get PDF
    Automata models between determinism and nondeterminism/alternations can retain some of the algorithmic properties of deterministic automata while enjoying some of the expressiveness and succinctness of nondeterminism. We study three closely related such models - history determinism, good for gameness and determinisability by pruning - on quantitative automata. While in the Boolean setting, history determinism and good for gameness coincide, we show that this is no longer the case in the quantitative setting: good for gameness is broader than history determinism, and coincides with a relaxed version of it, defined with respect to thresholds. We further identify criteria in which history determinism, which is generally broader than determinisability by pruning, coincides with it, which we then apply to typical quantitative automata types. As a key application of good for games and history deterministic automata is synthesis, we clarify the relationship between the two notions and various quantitative synthesis problems. We show that good-for-games automata are central for "global" (classical) synthesis, while "local" (good-enough) synthesis reduces to deciding whether a nondeterministic automaton is history deterministic
    • 

    corecore