8 research outputs found

    Small examples of non-constructible simplicial balls and spheres

    Full text link
    We construct non-constructible simplicial dd-spheres with d+10d+10 vertices and non-constructible, non-realizable simplicial dd-balls with d+9d+9 vertices for d≥3d\geq 3.Comment: 9 pages, 3 figure

    Knots in collapsible and non-collapsible balls

    Full text link
    We construct the first explicit example of a simplicial 3-ball B_{15,66} that is not collapsible. It has only 15 vertices. We exhibit a second 3-ball B_{12,38} with 12 vertices that is collapsible and evasive, but not shellable. Finally, we present the first explicit triangulation of a 3-sphere S_{18, 125} (with only 18 vertices) that is not locally constructible. All these examples are based on knotted subcomplexes with only three edges; the knots are the trefoil, the double trefoil, and the triple trefoil, respectively. The more complicated the knot is, the more distant the triangulation is from being polytopal, collapsible, etc. Further consequences of our work are: (1) Unshellable 3-spheres may have vertex-decomposable barycentric subdivisions. (This shows the strictness of an implication proven by Billera and Provan.) (2) For d-balls, vertex-decomposable implies non-evasive implies collapsible, and for d=3 all implications are strict. (This answers a question by Barmak.) (3) Locally constructible 3-balls may contain a double trefoil knot as a 3-edge subcomplex. (This improves a result of Benedetti and Ziegler.) (4) Rudin's ball is non-evasive.Comment: 25 pages, 5 figures, 11 tables, references update

    Saturated simplicial complexes

    Get PDF
    AbstractAmong shellable complexes a certain class has maximal modular homology, and these are the so-called saturated complexes. We extend the notion of saturation to arbitrary pure complexes and give a survey of their properties. It is shown that saturated complexes can be characterized via the p-rank of incidence matrices and via the structure of links. We show that rank-selected subcomplexes of saturated complexes are also saturated, and that order complexes of geometric lattices are saturated

    Angle sums on polytopes and polytopal complexes

    Full text link
    We will study the angle sums of polytopes, listed in the α\alpha-vector, working to exploit the analogy between the f-vector of faces in each dimension and the alpha-vector of angle sums. The Gram and Perles relations on the α\alpha-vector are analogous to the Euler and Dehn-Sommerville relations on the f-vector. First we describe the spaces spanned by the the alpha-vector and the α\alpha-f-vectors of certain classes of polytopes. Families of polytopes are constructed whose angle sums span the spaces of polytopes defined by the Gram and Perles equations. This shows that the dimension of the affine span of the space of angle sums of simplices is floor[(d-1)/2], and that of the combined angle sums and face numbers of simplicial polytopes and general polytopes are d-1 and 2d-3, respectively. Next we consider angle sums of polytopal complexes. We define the angle characteristic on the alpha-vector in analogy to the Euler characteristic. We show that the changes in the two correspond and that, in the case of certain odd-dimensional polytopal complexes, the angle characteristic is half the Euler characteristic. Finally, we consider spherical and hyperbolic polytopes and polytopal complexes. Spherical and hyperbolic analogs of the Gram relation and a spherical analog of the Perles relation are known, and we show the hyperbolic analog of the Perles relations in a number of cases. Proving this relation for simplices of dimension greater than 3 would finish the proof of this result. Also, we show how constructions on spherical and hyperbolic polytopes lead to corresponding changes in the angle characteristic and Euler characteristic.Comment: Ph.D. Dissertatio
    corecore