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Abstract

Among shellable complexes a certain class has maximal modular homology, and these are the so-
calledsaturatedcomplexes. We extend the notion of saturation to arbitrary pure complexes and give
a survey of their properties. It is shown that saturated complexes can be characterized via thep-rank
of incidence matrices and via the structure of links. We show that rank-selected subcomplexes of
saturated complexes are also saturated, and that order complexes of geometric lattices are saturated.
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1. Introduction

Let � be a simplicial complex on the vertex set�. The standard simplicial homology
theory is concerned with theZ-moduleZ� with basis� and the boundary map

� �→ �1− �2+ �3− · · · ± �k,

which assigns to the face� the alternating sum of the co-dimension 1 faces of�. This defines
a homological sequence overZ and hence over any domain with identity.
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In [18] we started to investigate the same module with respect to a different homomor-
phism. This is theinclusion map� : Z�→ Z� given by

� : � �→ �1+ �2+ �3+ · · · + �k.

Then�2 	= 0 unless� is trivial. However, when coefficients are taken modulo an integer
p then a simple calculation shows that in fact�p = 0. One may attempt therefore to build
a generalizedmodular homology theoryof simplicial complexes, in particular whenp is a
prime. This kind of homology appears to be mentioned first in Mayer[15] in 1942; further
historical remarks and references can be found in[1,18]. Among the more recent papers
note also Tikaradze[28] and Berger et al.[2].
The goal of this paper is to investigate complexes which have nice properties in modular

homology. That such complexes exist is not obvious: modular homology is not homotopy
invariant nor is it a topological invariant. Even among shellable complexes there are ex-
amples of complexes with the sameh-vector but with different modular homology. The
behaviour of the modular homology of non-shellable complexes is even more erratic, see
Section 3.3 later.
The key to understanding the topological properties of complexes with good modular

homology is the study of the links in the complex. More precisely, the crucial property
is for links to admit cycles which are null both for standard and modular homology. For
one-dimensional complexes (graphs) these areeven cycles. In arbitrary dimension com-
plexes with this property include Coxeter complexes or more generally, two-colourable
triangulations of spheres, which could be considered as ‘generalized even cycles’.
This observation leads us to conjecture that complexes with enough ‘generalized even

cycles’ will have properties in modular homology that are not dissimilar to standard ho-
mology. In particular, any complex in which links admit Coxeter-type reflection groups as
automorphisms would be a candidate for this class of complexes. In this regard we mention
also Borovik’s recent survey of Coxeter matroids[9]. Coxeter complexes also illustrate the
fact that a topological space, here the sphere, can have a rich structure inmodular homology
depending on such triangulations.
Another approach to complexes with nice modular homological properties is completely

algebraic: It has been shown in[18] that the modular homology of every shellable complex
can be embedded into a well-understoodmodule constructed purely from the shelling of the
complex. It follows in particular that the modular Betti numbers for an arbitrary shellable
complex are bounded by functions of itsh-vector only. More generally, a complex whose
modular Betti numbers attain this bound is calledsaturated, and such complexes are the
principal subject of this article.
It is interesting to look again at the situation in dimension one: a connected graph is

saturated if and only if is bipartite, that is, all its cycles are of even length. This is not
accidental: we shall show that the topological and algebraic approach both lead to the
same class of shellable complexes. Our main results are Theorems 4.4 and 6.3 which
characterize saturated complexes via the structure of links and via thep-rank of incidence
matrices, respectively.
As we show, the modular homology ofsaturatedcomplexes behaves in some respects

quite similarly to standard simplicial homology over fields. In fact, there is a surprising
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analogy between themodular homology of saturated complexes and the standard simplicial
homology of Cohen–Macaulay complexes. For example,

• The standard homology of a Cohen–Macaulay complex over a field is completely de-
termined by the last component of theh-vector of the complex. Similarly, the modular
homology of a saturated complex is completely determined by itsh-vector; however
nowall components of theh-vector are significant.

• The order complex of a geometric lattice is both Cohen–Macaulay and saturated.
• It is well-known that the type-selected subcomplex of a balanced Cohen–Macaulay
complex again is Cohen–Macaulay. We will show that the same holds for saturated
complexes.

• The Steinberg module appears among the top modular homologies of a saturated com-
plex, just as for standard homology, where the Steinberg module is the unique top ho-
mology of a Cohen–Macaulay complex.

For modular homology these properties are proved in Theorems5.1and6.12. The Stein-
berg modules will be treated in a forthcoming paper. Thus, the loss of homotopy invariance
in modular homology is not too unsatisfactory if we are looking at saturated complexes. At
the same time, the fundamental advantage of modular homology over standard simplicial
homology is that theinclusion map commutes with the action of all automorphisms.In
particular, all modular homology modules are modules for the full automorphism group
of the complex. This is far from true for standard homology. Applications of such group
actions can be found in[20,21].
In Section 2, we collect the prerequisites from previous papers as far as they are needed

here. In Section 3, we extend the definition of saturation from shellable complexes to pure
complexes in general. This section also contains many important examples. In Section
4, we prove one of the main results, the Null-Link Theorem which gives a topological
characterization of saturation. In Section 5, it is shown that geometric lattices are saturated
for all primes, and Section 6 gives additional applications, including the fact that the rank
selection of a saturated complex remains saturated.

2. Prerequisites

In this section, we shall introduce the main notation for this paper. It follows closely our
papers[18,19]and it may be useful to consult these papers for further details. However, we
hope that the notes in the following sectionwill render this paper reasonably self-contained.

2.1. Simplicial complexes and modules

Let � be a finite set and let� ⊆ 2� be a simplicial complex on the vertex set�.
Thus whenever� ∈ � and� ⊆ � then� ∈ �. As we consider no other complexes often
the word ‘simplicial’ is omitted. The elements of� are calledsimplices or facesand the
maximal faces are thefacetsof �. If � = 2� then� is thesimplex on�. If 0�k we let
�k := {� ∈ � : |�| = k }. Thedimensionof � ∈ � is dim � := |�|−1 and thedimension
of � is the maximum of dim� for � ∈ �. The complex is calledpureof dimensionk if all
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facets of� have dimensionk. If � ∈ � then thestar is the complex star�(�) whose facets
are those facets of� which contain�, and the link is the subcomplex link�(�) ⊂ star�(�)

of all faces which have empty intersection with�.
Now let F be a field and let 0�k be an integer. Then we denote byM�

k theF-vector
space with basis�k. We putM� := ⊕0�k M�

k so that

M� = {
∑
�∈�

f�� : f� ∈ F }

and in particular� ⊆ M� by identifying� with 1�. Clearly, if�′ ⊆ � is another complex
thenM�′ ⊆ M� and we setM∗ := M2� , the module attached to the complete simplex on
�. If |�| = m we may also writeMm := M∗. Now consider the linear map� : M∗ → M∗
defined on a basis ofM∗ by

� : � ⊇ � �→
∑

�,

where the summation runs over all� ⊂ � with dim � = dim �− 1. This map is called the
inclusion map. Note that it restricts to a map� : M� → M� precisely as� is a complex.
Thus attached to� there is the sequence

M� : 0
�←− M�

0
�←− M�

1
�←− M�

2 · · · �←− M�
k−1

�←− M�
k

�←− · · · �←− 0
and such sequences are the subject of this paper.
Thesupport of the elementf =∑

�⊆� f�� ∈ M∗ is the set

suppf =
⋃
{� : f� 	= 0 }

and itsweight is the number

wt(f ) = |{� : f� 	= 0 }|.
We say that two elementsf, g ∈ M∗ aredisjoint if supp f ∩suppg = ∅. If g =∑

�⊆� g��
then we put

f ∪ g :=
∑

�,�⊆�

f�g�(� ∪ �).

This union product turns(M∗, ∪) into an associative algebra with∅ as identity. The funda-
mental relationship between the union product and the inclusion map is theproduct rule

�(f ∪ g) = f ∪ �(g)+ �(f ) ∪ g,

which holds wheneverf andg are disjoint. It is therefore natural to writef ′ = �(f ) and
f (k) = (f (k−1))′.
For every� ⊆ � there is adecompositionrelative to�: Let f ∈ M∗ and let� be any

subset of�. Then we may decomposef with respect to� uniquely as

f =
∑
�⊆�

f � ∪ �
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in such away that for all� ⊆ �we have thatf � ∈ M∗ is disjoint from�. If � is a complex on
�, if f ∈ M� and if� ⊆ � is arbitrary one may note more precisely that eachf � belongs
toM� ⊆ M� where� = link�(�). In a fashion,f � can be regarded as thelinearized link
of � with respect tof. Applying the product rule it is a simple matter to verify the following
fact which will be needed later:

Lemma 2.1. Let i > 0 be an integer, let f ∈ M∗ and� ⊆ �. Then

f (i) =
∑
�⊆�

 i∑
k=0

k!
(

i

k

) ∑
�⊆�⊆� : |�\�|=k

(f �)(i−k)

 ∪ �.

Proof. Establish this whenf is a set in�. The result then follows by linearity.�

2.2. Shellability

For shellability one is interested in the inductive process of gluing an�n-simplex onto a
given pure(n−1)-dimensional complex�. If this is done in such a way that the intersection
�∩�n is a pure(n−2)-dimensional complex ofk facets then the resulting complex� k∪ �n

is said to be ak-gluingof�n onto�. Thus a pure(n−1)-dimensional complex� isshellable
if its facets can be arranged as ashelling sequence

�1, �2, �3, . . . , �i−1, �i , . . .

in such a way that for alli = 1, . . . the composition

(2�1 ∪ 2�2 ∪ · · · ∪ 2�i−1)
ki∪ 2�i

is aki-gluing for someki . In this case we set

hj := |{ i : ki = j }|
for j = 1, . . . , n and call(h0, h1, . . . , hn) theh-vector of �. If we putfj := |�j | then
(f0, f1, . . . , fn) correspondingly is thef-vector of �. As is well-known, see[4,10], these
two important quantities are related by

fi =
n∑

j=0

(
n− j

i − j

)
hj . (2.1)

By inverting this relation we have equivalently

hj =
n∑

i=0
(−1)j+i

(
n− i

j − i

)
fi. (2.2)
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2.3. The modular homology of complexes

We recall the main definitions from[18,19]on modular homology. Assume that� ⊆ 2�
is a complex of dimensionn−1. Denote by�k the set of faces� ∈ �with |�| = k. Further,
let F be a field of characteristicp > 0. Then it is a simple matter to verify that�p

is the
zero map onM�. For anyj and 0< i < p consider the sequence

· · · �∗←− M�
j−p

�∗←− M�
j−i

�∗←− M�
j

�∗←− M�
j+p−i

�∗←− M�
j+p

�∗←− · · ·

in which �∗ is the appropriate power of�. It is convenient to regard this as an infinite
sequence by settingM�

� = 0 for � < 0 andn < �. This sequence is determined by any
arrowM�

l ← M�
r in it and so is denoted byM�

(l,r). (Of course,(l, r) stands for left-right.)

The unique arrowM�
a ← M�

b for which we have 0�a + b < p is the initial arrow and
M�

b is the 0-positionofM�
(l,r). (For instance, ifp = 5 thenM�

(−2,2) = M�
(2,3) = M�

(3,7)

has initial arrowM�−2← M�
2 .) The position of any other module inM�

(l,r) is counted from

this 0-position and(a, b) is thetypeofM�
(l,r). Further, theweightofM�

(l,r) is the integer
w = w(l,r) with 0< w�p with w ≡ l + r − n (modp).
Since�p = 0we have(�∗)2 = 0 and soM�

(l,r) is a homological sequence. The homology

atM�
j−i ← M�

j ← M�
j+p−i is denoted by

H�
j,i := (Ker�i ∩M�

j )/�p−i
(M�

j+p−i )

and��
j,i := dimH�

j,i is the corresponding Betti number. The rank of�r−l : M�
l ← M�

r is

denoted by rk�p(l, r). The Euler characteristic��
(l,r) ofM�

(l,r) is

± ��
(l,r) := · · · + fj−p − fj−i + fj − fj+p−i + fj+p . . . ,

where the parity can be calibrated on the zero position ofM�
(l,r).

If M�
(l,r) has at most one non-vanishing homology then it is said to bealmost exactand

the only non-trivial homology then is denoted byH�
(l,r). If M�

(l,r) is almost exact for every

choice of l and r thenM� is almost p-exact. In general, when referring to a particular
sequenceM�

(l,r), the homology at positiont is denoted byH
�
t and��

t := dimH�
t is the

Betti number ofM�
(l,r) at positiont. The switching between parameter pairs such as(j, i)

and position is a useful notational tool which we will employ wherever this can be done
without creating a misunderstanding.
Let� be any complex of dimensionn− 1 and suppose thatM�

(l,r) has type(a, b). Then
we put

dn
(l,r) :=

{ ⌊
n−a−b

p

⌋
if n− a − b /≡ 0 (modp),

∞ if n− a − b ≡ 0 (modp).
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2.4. The modular homology of the simplex

At the beginning of the discussion of simplicial modular homology stands the homology
of the simplex. The simplex onn vertices is denoted by�n and the sequences associated to
it are denoted by

Mn :=M�n

and Mn
(l,r) :=M�n

(l,r).

Themain results on the structure of thep-modular homology of�n and on its Betti numbers
can be found in[1,14,16]. Fundamental is a simple branching rule:

Theorem 2.2. Let F have characteristicp�2, let 0 < i < p and letk�n be arbitrary.
ThenHn

k,i
∼= Hn−1

k,i+1⊕Hn−1
k−1,i−1 is an isomorphism ofSymn−1-modules.

From this theorem the following facts, while not immediately obvious, can nevertheless
all be derived without much effort:

Theorem 2.3. Let p be a prime and let0< i < p.Then for eachk�n the following holds:
(i) Middle Term Condition: Hn

k,i = 0 unlessn− p < 2k − i < n. In particular,
(ii) Almost Exactness: The sequenceMn is almost p-exact.
(iii) Irreducibility: Hn

k,i is an irreducibleSymn-module iff2k − i = n− 1.
(iv) Brauer Character: On eachHn

k,i the Brauer character is given by�(g, Hn
k,i) =

±∑+∞
t=−∞ fixk−pt (g)− fixk−i−pt (g)

wherefixk(g) denotes the number of k-sets fixed byg ∈ Symn. (The sign is determined
by�(1, Hn

k,i)�0.)
(v) Betti Number: For all l, r with 0< r − l < p the Betti numbers ofMn

(l,r) are zero in

all positions	= dn
(l,r) while�n

(l,r) = |
∑+∞

t=−∞
(

n
l−pt

)− (
n

r−pt

)| in positiondn
(l,r).

The expression in the last part of the theorem are ordinary binomial coefficients and so
the sum in particular is finite.Aswe have seen, for eachl, r with 0< r− l < p the sequence
Mn

(l,r) is almost exact and its only non-trivial homology is the

Fibonacci module · · · = Hn
(r−p,l) = Hn

(l,r) = Hn
(r,l+p) = · · ·

associated to this(l, r)-sequence. This terminology follows Ryba’s paper[24] which con-
tains a different and very explicit construction of these modules for the particular case
p = 5. The dimension of the Fibonacci module is the Betti number

�n
(l,r) = dimHn

(l,r).

A fundamental property of Fibonacchi modules has been stated in [24,1]: IfHn
j,i is non-zero

then it is generated by classes of the shape[cj,i−1]wherecj,i−1 has the formcj,i−1 = v∪s,
with v = (�1−�1)∪· · ·∪ (�j−i+1−�j−i+1), wheres is an(i−1)-faces = {�1, . . . , �i−1}
and where�i , �i and�i are pairwise distinct vertices. Note that the terms inv represent
the alternately signed faces of an(j − i)-dimensional octahedron. Therefore the terms of
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cj,i correspond to an(i − 1)-fold cone over this octahedron. By a convenient abuse of
terminology we shall therefore callcj,i−1 ageneralized octahedron, or just anoctahedron.

It is easy to check that�i
(cj,i−1) = 0 over every field and so octahedra can be considered

as analogues of ‘constants’ for�. We shall return to this in Section 4.4.
The Fibonacci modules are of key importance for the entire theory of modular simplicial

homology. Evaluating the above formula for the Betti numbers the following emerges. If
p = 2 then�n

(l,r) = 0, as expected, for this is the standard homology of the simplex taken
mod 2; ifp = 3 then�n

(l,r) = 0 or 1. Forp = 5 all Betti numbers are ordinary Fibonacci
numbers. Forp > 5 the expression for�n

(l,r) amounts to linear recurrence relations of
degree(p − 1)/2> 2.
Further examples of branching rules will appear later. Such rules apply for instance

to the suspension and the cone over a complex. Theorem6.6 later in fact generalizes
Theorem2.2.

3. The definition of saturation

Let � be a pure complex over a finite vertex set� and letp�2 be a prime. In[19] we
have introduced the notion of saturation for a shellable complex in relation to the prime
p. There we already showed that saturation for shellable complexes has several equivalent
definitions. The purpose of this section is to expand further on the combinatorial and alge-
braic significance of saturation.We shall then extend the definition of saturation to arbitrary
complexes.

3.1. The embedding property for shellable complexes

Let� be pure and shellable of dimensionn−1 withh-vectorh(�) = (h0, h1, . . . , hn).
Fix two integers(l, r) with 0< r − l < p and as in Section 2 we consider the sequence

M�
(l,r) : · · · �∗←− M�

j−p

�∗←− M�
j−i

�∗←− M�
j

�∗←− M�
j+p−i

�∗←− M�
j+p

�∗←− · · · .

As before we letw(l,r) be the weight ofM�
(l,r) and we letm(l,r) := min{dn

(l,r), dn+1
(l,r)} be

themiddle of the sequence. One of the main results in[18] was the followingembedding
property:

Theorem 3.1(Embedding Theorem). The homology ofM�
(l,r) is zero in the initial posi-

tions, that is

H�
t = 0 f or all t < m := m(l,r), (3.1)

while in all other positions there is a canonical embedding

H�
m+s ↪→

w+sp⊕
j=w+(s−1)p+1

hjH
n−j

(l−j,r−j) f or w := w(l,r) and all s�0. (3.2)

Here of coursehH stands for the direct sumH ⊕ H ⊕ · · · ⊕ H of h summands. From
this theorem the saturation of shellable complexes is defined as follows:
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Definition 3.2. The shellable complex� is (l, r)-saturated relative top if (3.2) is an
isomorphism for alls�0. Further,� is saturated if � is (l, r)-saturated for all(l, r).

We mention that there are shellable complexes which are(l, r)-saturated for certain
parameters(l, r) but not for others, and that there are complexes which are saturated for
p = 2 but for no other primes. Examples of such situations shall appear later.

3.2. Formal Betti numbers and saturation in general

Themodule on the right-hand side of(3.2) depends on theh-vector of� only. If � is a not
necessarily shellable complex wemay still define itsh-vector as a function of itsf-vector by
the use of the relation(2.2) in Section 2.3. Hence themodule on the right-hand side of(3.2)
above can be defined for an arbitrary pure complex, at least if all thehj are non-negative.
This motivates the next definition:

Definition 3.3 (Formal Betti numbers). Let� be an arbitrary pure complex of dimension
n − 1 with h-vectorh(�) = (h0, h1, . . . , hn). For given(l, r) we setm := m(l,r) and
w := w(l,r). Now let theformal Betti numbersofM�

(l,r) be given as

�h(�)
t := 0 for all t < m

and

�h(�)
m+s :=

w+sp∑
j=w+(s−1)p+1

hj�
n−j

(l−j,r−j) for all s�0,

where�n−j

(l−j,r−j) is the appropriate Betti number of the(n − j − 1)-simplex given in
Theorem2.3.

We shall now give a combinatorial interpretation of these formal Betti numbers. The
Euler characteristic of

M�
(l,r) : · · · �∗←− M�

j−p

�∗←− M�
j−i

�∗←− M�
j

�∗←− M�
j+p−i

�∗←− M�
j+p

�∗←− · · ·
satisfies

± ��
(l,r) = · · · +fj−p −fj−i +fj −fj+p−i + · · ·

= · · · +��
j−p −��

j−i +��
j −��

j+p−i + · · ·
(3.3)

by the Euler–Poincaré equation. Using(2.1) we may now formally substitute thefj by
the components of theh-vector and collect terms in ascending order of index. Using the
expressions for Betti numbers of simplices from Theorem2.3and takinghi = 0 if i < 0
or i > n, it turns out that the Euler characteristic takes the shape

±��
(l,r) = · · · + �h(�)

j−p − �h(�)
j−i + �h(�)

j − �h(�)
j+p−i + · · · (3.4)
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(A rigorous proof of this claim involves tedious and trivial calculations which we shall
avoid. An example is given in[19, p. 384].)
Comparing(3.3) and(3.4) one may make the naïve conjecture that eachactualBetti

number��
j in (3.4) is equal to the correspondingformalBetti number�h(�)

j in (3.3). This
is evidently not true in general. (The boundary of a simplex gives the simplest example of
the situation when formal and actual Betti numbers differ.) However, the next result follows
immediately from the Embedding Theorem:

Theorem 3.4. Let� be a shellable complex. Then the following are equivalent:
(i) � is (l, r)-saturated, and
(ii) the corresponding actual and formal Betti numbers inM�

(l,r) coincide.

Recall that (2.2) defines theh-vector formally for an arbitrary complex. This leads us to
the definition of saturation for a general pure simplicial complex:

Definition 3.5 (Saturated complexes). Let � be an arbitrary pure complex and letF be a
field of characteristicp > 0. Then� is (l, r)-saturated(in characteristic p) if and only if all
actual and formal Betti numbers inM�

(l,r) coincide. Further,� issaturated(in characteristic
p) if � is (l, r)-saturatedfor all (l, r).

It follows from Theorem 2.3 that the simplex is saturated for all primes, and this fact is
the basis of induction for all the complexes we examine.

Comments: (1) In this definition we allowF to have characteristic 2, when modular
homology coincideswith standard homology.According to the definition here� is saturated
in characteristic 2 if and only if its homology is concentrated in the top dimension, that is
��

n = hn, �
�
i = 0 for i < n. In particular, complexes which are Cohen–Macaulay over

GF(2) are saturated in characteristic 2.
(2) There are non-shellable complexes which are saturated: These include the order

complex of the posets on pages 599 and 600 of the survey[7]. The first is a triangulation
of the real projective plane withf = (1,13,36,24) andh = (1,10,13,0). It is Cohen–
Macaulay over all fields of characteristic	= 2 but it is not Cohen–Macaulay overZ or
GF(2). It is also saturated forp > 2 and not saturated in characteristic 2.
The second is the triangulation of thedunce hatwith f = (1,17,52,36) andh =

(1,14,21,0). It is acyclic andCohen–MacaulayoverZbutnot (lexicographically) shellable.
It is also saturated in characteristic 3.
Other examples include the well-known non-shellable triangulations of 3-balls such as

the knotted hole balldescribed by Furch in 1924 and the2-roomed houseconstructed
by Bing in 1964. Both are saturated in characteristic 3 and Cohen–Macaulay withf =
(1,380,1929,2722,1172) andf = (1,480,2511,3586,1554) respectively. For this see
[12,13,30]. See the next section for more examples and remarks.

3.3. Remarks and examples

Remark 1. Modular homology, just as standard homology, depends on the topology of
the complex, not only on theh-vector. For example, the natural triangulations of the
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2-dimensional torusT, see Munkres[22, p. 17–18], and of the Klein bottleK share the
samef-vectorf (T ) = f (K) = (1,9,27,18), and so have the sameh-vectorh(T ) =
h(K) = (1,6,12,−1). Nevertheless, the 3-modular homologies ofT andK are different:
T is (1,3)-saturated butK is not(1,3)-saturated. Similar examples are known[18, p. 362]
even for shellable complexes.

Remark 2. The behaviour of the modular homology of non-shellable complexes seems to
be extremely erratic. In particular, theembedding propertymay not hold, and homologies
can be non-trivial even in positionst < m to the left of the middle. An example for this is
the 7-dimensional analogue� of the Möbius band given by

� = {{1,2,3,4,5,6,7,8}, {2,3,4,5,6,7,8,9}, {3,4,5,6,7,8,9,10}, {4,5,6,7,8,9,10,11}, {5,6,7,8,9,10,11,12},
{6,7,8,9,10,11,12,13}, {7,8,9,10,11,12,13,14}, {8,9,10,11,12,13,14,15}, {9,10,11,12,13,14,15,16},
{10,11,12,13,14,15,16,17}, {11,12,13,14,15,16,17,18}, {12,13,14,15,16,17,18,19}, {13,14,15,16,17,18,19,20},
{14,15,16,17,18,19,20,21}, {15,16,17,18,19,20,21,22}, {16,17,18,19,20,21,22,23}, {17,18,19,20,21,22,23,24},
{7,18,19,20,21,22,23,24}, {6,7,19,20,21,22,23,24}, {5,6,7,20,21,22,23,24}, {4,5,6,7,21,22,23,24},
{3,4,5,6,7,22,23,24}, {2,3,4,5,6,7,23,24}, {1,2,3,4,5,6,7,24} }

with f (�) = (1,24,168,504,840,840,504,168,24). For p = 3 the sequenceM�
(1,2)

is exact whileM�
(1,3) andM�

(2,3) have non-zero Betti numbers�3,2 = 1, �4,1 = 24 and

�3,1 = 1,�5,2 = 24, respectively. Themiddle position of the sequenceM�
(1,3) ism(1,3) = 2.

However,�3,2 = 1 occurs in position 1.

Example 3. It is instructive to work out the formal Betti numbers in terms of theh-vector
for some low-dimensional complexes. Here we do this for a complex of dimension 7. So
let � haveh-vector(h0, h1, . . . , h8). In the following table the formal Betti numbers for
p = 3 are given (We suppress superscripts and write�i,j instead of�

h(�)
i,j .)

(l,r) w
(1,2) 1
(1,3) 2
(2,3) 3

 4,2 = h0 ;�

 4,1 = h0 + h1 ;�

 5,2 = h1 + h2 ;�

 5,1 = h2 + h3 ;�

 6,2 = h3 + h4 ;�

 6,1 = h4 + h5 ;�

 7,2 = h5 + h6 ;�  8,1 = h8�

 7,1 = h6 + h7�

 8,2 = h7 + h8�

Similarly, forp = 5 the formal Betti numbers are the following:

( l , r ) w

(1 ,2)
(1 ,3)
(1 ,4)
(1 ,5)
(2 ,3)
(2 ,4)
(2 ,5)
(3 ,4)
(3 ,5)
(4 ,5)

5
1
2
3
2
3
4
4
5
1

�6,3 = 8h2 + 8h3 + 5h4 + 2h5 ;
�6,4 = 8h1 + 8h2 + 5h3 + 2h4 ;
�3,2 = 21h0 ;
�4,3 = 34h0 + 13h1 ;
�5,4 = 21h0 + 13h1 + 5h2 ;
�3,1 = 21h0 + 8h1 ;
�4,2 = 34h0 + 21h1 + 8h2 ;
�5,3 = 21h0 + 21h1 + 13h2 + 5h3 ;
�4,1 = 13h0 + 13h1 + 8h2 + 3h3 ;
�5,2 = 13h1 + 13h2 + 8h3 + 3h4 ;
�4,4 = 13h0 ;

�7,4 = 3h3 + 3h4 + 2h5 + h6 ; �8,1 = h8

�7,1 = h6 + h7
�8,2 = h7 + h8

�6,2 = 5h3 + 5h4 + 3h5 + h6
�6,1 = 2h4 + 2h5 + h6

�7,3 = 3h4 + 3h5 + 2h6 + h7
�7,2 = 2h5 + 2h6 + h7

�8,4 = h5 + h6 + h7 + h8
�8,3 = h6 + h7 + h8

�5,1 = 5h2 + 5h3 + 3h4 + h5
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Several observations can bemade. For instance, the coefficients of thehi always belong to
the set of values taken by the dimension of the Fibonacci module in the corresponding char-
acteristic. Thus they belong to{0, 1} for characteristicp = 3 and to{0, 1,2, 3, 5, 8, . . . }
for characteristicp = 5. Similarly, the ‘highest’ Betti number�8,1 is the same in both
characteristics, with obvious patterns for�8,2,…,�8,p−1. To some of these observations we
shall return later.

Example 4. Let� be a graph withn vertices andmedges. As a one-dimensional complex
� is shellable if and only if it is connected, in which casem�n− 1. It is easy to note that
� is saturated in characteristicp if and only if its incidence matrix hasp-rankn − 1. It is
also easy to check then that even cycles are saturated for everypwhile odd cycles are not
saturated forp > 2. In fact, we shall see later that a graph is saturated forp > 2 if and only
if it is bipartite.

Example 5. Finite Coxeter complexes and spherical buildings are saturated for every
prime p, see[19]. It is easy to check that the sporadicC3-geometry forA7 with f =
(1,57,315,315) andh = (1,54,204,56), constructed by Neumaier (see[23, p. 50]), is
saturated in characteristic 3.

4. The topological condition for saturation

In this section, we shall be interested in the geometric and topological aspects of satura-
tion. In particular,

if � is a saturated(n − 1)-dimensional complex and if� := �
k∪ �n is a k-gluing,

under what conditions on the gluing is it true that also� is saturated?

A comprehensive answer to this question would in particular classify all shellable sat-
urated complexes. Forp = 2 the modular homology coincides with standard simplicial
homology. Thus, the homology of� and� is the same fork < n and fork = n all but the
top homology is the same, with the top homology increased by 1. However, forp > 2 the
situation is rather more complicated. First, we shall pose the problem above in a slightly
more general form, when� itself may not be saturated.

4.1. Gluing sequences

Let nowp be a prime>2. We assume that� is an arbitrary pure complex of dimension

n − 1 and we suppose that� = �
k∪ �n is a k-gluing for somek�n. As in Section 3

we fix two integers(l, r) with 0 < r − l < p. To compare the homologies ofM�
(l,r) and

M�
(l,r) we setd := dn

(l,r) andu := dn+k
(l,r) . In Theorems 4.1 and 4.2 of[18] we have shown

the following.

Theorem 4.1.Good cases: If u = d, ∞ or if H�
u−1 = 0 thenM�

(l,r) andM�
(l,r) have the

same homology in all positions except possibly in position u in which case

H�
u  H�

u ⊕Hn−k
(l−k,r−k).
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Bad cases: If d 	= u < ∞ andH�
u−1 	= 0 thenM�

(l,r) andM�
(l,r) have the same homology

in all positions except possibly in positions u andu− 1 in which case the homologies are
related via the5-term exact gluing sequence

GS : 0←− H�
u−1←− H�

u−1⊕Hn
u−1←− Hn

u−1⊕Hn−k
(l−k, r−k)

	̄←−H�
u ←− H�

u ←− 0.

The map	̄ here is crucial. In[19] we showed that in either case	̄ has the property
	̄(H�

u ) ⊆ Hn−k
(l−k,r−k). From exactness atH

�
u we obtain the embedding

H�
u ↪→ H�

u ⊕Hn−k
(l−k,r−k)

which occurred in Theorem3.1.

Definition 4.2. The gluing� := �
k∪ �n is (l, r)-saturated over� if the conclusion of the

first part of Theorem4.1holds, that is, if

H�
t  H�

t for t 	= u and H�
u  H�

u ⊕Hn−k
(l−k,r−k).

Further,� is saturated over� if � := �
k∪ �n is (l, r)-saturated for all(l, r).

We have therefore a first answer to the question at the beginning of this section:

Proposition 4.3. (i) The gluing� = �
k∪ �n is (l, r)-saturated over� unless we are in

one of the bad cases of Theorem4.1. If the latter happens then the gluing is(l, r)-saturated
if and only if 	̄(H�

u ) = Hn−k
(l−k,r−k).

(ii) Assume that� is shellable and that� = �
k∪ �n is (l, r)-saturated over�. Then�

is (l, r)-saturated iff� is (l, r)-saturated.

4.2. The topological characterization

To formulate one of the main results of this paper we need additional topological back-
ground material, see Björner[3,4] or Stanley[27].

Let � be a pure complex of dimensionn − 1, let � = �
k∪ �n be ak-gluing and

let � denote the vertex set of�n. Then therestriction" of � is the set of all vertices
� ∈ � such that� \ {�} is contained in�. So" is a (k − 1)-dimensional face of�n

and one should regard it as theouter face in the gluing. Its complement� := � \ " then
is the inner face in the gluing. The subcomplexes star�(�) and link�(�) are as defined
earlier. In particular, the dimension of link�(�) is n− |�| −1. The definitions are illustrated
in Fig. 1.
In Fig. 1 the restriction of the gluing is" = {�1, �2} and the inner face is� = {�3, �4}. It

is useful to regard 2� and� as subcomplexes of�. So we could also say that" = {
1, 
2}
and� = {
3, 
4}. Also, link�(�) is the cyclic graph on the vertices(
1, 
2, 
5, 
6).
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∆Γσ

Fig. 1. Gluing�4 onto�.

The main theorem now follows.When saying that" is a1-cycle of� relative to link�(�)
we mean that there is somef ∈ M� ⊆ M� with �("+ f ) = 0 where� := link�(�).

Theorem 4.4(Null-Link Theorem). Let � be a complex and let� = �
k∪ �n be a gluing

with restriction" and inner face�. Suppose thatp > 2.Then� is saturated over� if and
only if" is a1-cycle of� relative tolink�(�).

In one direction this result is Theorem4.1 in[19]. The converse is rather involved andwill
be proved in the next section. First we shall concentrate on the topological significance of
the theorem and its combinatorial interpretations. We begin with a further definition which
explains the name of the theorem:

Definition 4.5. Let � be a pure complex with facets�1, . . . , �m. Then� is null with
respect to� over F, or justnull , if there are non-zeroc1, . . . , cm ∈ F such that�(c1�1 +
· · · + cm�m) = 0.

Let � be a pure complex and let�∗ be a subcomplex of�. Then�∗ is apart of � if
all facets of�∗ are also facets of�. We can now give an equivalent formulation of
Theorem4.4:

Corollary 4.6. Let� be a complex and let� = �
k∪ �n be a gluing with restriction" and

inner face�. Suppose thatp > 2.Then� is saturated over� if and only if" belongs to a
part �∗ of link�(�) such that�∗ is null.

Proof. Let f be as in Theorem4.4 and let" + f = " + c1�1 + · · · + cm�m. Now let�
∗

be the complex with facets", �1, . . . , �m. The rest is evident.�

We will call a null-part of� = link�(�) coming through" anull-continuation(or null-
extension) of " in � and denote it by". Thus,� is saturated over� if and only if" has a
null-extension.
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Nullness is amost fundamental concept for modular homology. It forms the link between
the algebraic and the topological theory in modular simplicial geometry. Note first that
nullness with respect to the inclusion map is in no obvious relationship to nullness with
respect to the boundary map. However, whenever we deal withcomplexes whose links are
null in both sensesthen deep connections between algebraic and topological properties
can be made. Let us say here that a complex isuniform null if it is null with regard
to the inclusion map and the simplicial boundary map. Note that this property depends
on the characteristic ofF. For one-dimensional complexes for instance, an even cycle is
uniform null over every field, while an odd cycle is null in either sense only over fields of
characteristic 2.
An important class of uniform null complexes aren-dimensional octahedra, also known

as cross polytopes or as duals ofn-dimensional cubes, see Section 4.4 later. As we have
noted in Section 2.4, these play a crucial role as generators of the homology of the simplex,
see also Theorem 5.2 in[1].
A wider class of uniform null complexes, comprising octahedra and Coxeter complexes,

arebi-colourable pseudo-manifolds without boundary. These are pure complexes in which
each facet can be given one of two colours such that every co-dimension 1 face is contained
in exactly two facets and where these facets have different colours. Here it is clear that the
coefficients in Definition4.5can be taken asci = ±1 according to the bi-colouring. It may
be interesting tonote that anyunionof atmost(p−1)/2suchbi-colourablepseudomanifolds
remains uniform null, by adjusting the coefficientsci in the obvious way.
In [19] we have shown that Coxeter complexes and buildings are saturated; this depended

crucially on the nullness of links. The same property will appear later on in this paper in
applications of theNull-LinkTheorem.Tomention are also theCoxetermatroids considered
in Borovik’s article[9].Also there we expect to reveal the same deeper relationship between
modular and standard homology.We summarize the comments from above in the following
corollary, already noted in[18]:

Corollary 4.7. Let � = �
k∪ [�] with inner face� and suppose thatp > 2. Suppose

that link�(�) is a2-colourable pseudomanifold without boundary. (In particular, suppose
that link�(�) is a 2-colourable triangulation of a sphere.) Then� is saturated relative
to �.

4.2.1. Some examples: graphs and 1-shellable complexes
Zero-dimensional complexes are collections of some isolatedv vertices, withh-vector

(v, 0). These are always saturated. Pure 1-dimensional complexes are graphs without iso-
lated vertices. As a complex, a graph is shellable if and only if it is connected.We illustrate
the Null-Link Theorem by the following simple examples.

Example 1. Let � be the pentagon, i.e. the graph of five vertices and five edges, and let
� be one of its diagonals. Then for the gluing� = � ∪ [�] we havek = 2, � = ∅ and
link�(�) = �. There are a three-cycle and a four-cycle through� in � ∪ [�]. Choose� to
be the four-cycle. Then� is null and so� = �∪ [�] is saturated over� (but not saturated,
as� is not saturated). In general, the following result may be checked, see also Proposition
6.5 later:
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Corollary 4.8. A connected graph(as a one-dimensional complex) is saturated in charac-
teristicp > 2 if and only if it is bipartite.

Example 2. The case ofk-gluing with k = 1 is also easy. Indeed, here|"| = k = 1 and
so� = link�(�) is just a collection of vertices. Take�∗ to be a pair of vertices. Evidently
�∗ is null, and so� = �

1∪ [�] is always saturated over�.

Example 3.We call a shellable complex� with m facets 1-shellableif h(�) = (1, m −
1, 0, . . . ,0). Herek = 1 for every gluing and so one may consider such complexes as
generalized trees. The next result follows from the previous example and from the definition
of saturated complexes:

Corollary 4.9. Every1-shellable complex� is saturated for everyp > 2.Moreover, every
sequenceM�

(l,r) is almost p-exact with homology

H�
(l,r)  Hn

(l,r) ⊕ (m− 1)Hn−1
(l−1,r−1)

in the middle.

4.3. The Proof of the Null-Link Theorem

In this sectionwe shall prove theNull-LinkTheorem. In the first part we give a condensed
version of the proof for sufficiency as presented in[19]. This lets us introduce all the
techniques needed to complete the proof of necessity in the second part.

4.3.1. Sufficiency of nullness

As we noticed previously, the property of� = �
k∪ [�] being saturated is completely

determined by the map̄	 in the exact gluing sequenceGS. We shall recall briefly the
definition of this map.

1. The definition of the map̄	: For� = �
k∪ [�] let A := � ∩ [�] be the part of the

boundary of[�] generated of thek faces of dimension(n− 2). Associated to� k∪ [�] is the
Mayer–Vietoris sequence

0←− D �←− C ⊕ B 
←− A ←− 0
whereA, B, C andD denote the modular homological sequencesMA

(l,r), Mn
(l,r), M�

(l,r)

andM�
(l,r), respectively.

To define the maps
 and� note that there are natural embeddingsB ← A → C and
B → D ← C and fora ∈ A we indicate its images inB andC by aB andaC respectively.
The same convention applies tob ∈ B andc ∈ C. The homomorphisms
 and� are now
given by
(a) := (−aC, aB) and�(c, b) := cD + bD, see also[22, p. 143].
Now the gluing sequenceGS is just an interval of the long homological sequence

· · · ←− H�
u−1←− H�

u−1⊕Hn
u−1←− HA

u−1
	̄←− H�

u ←− H�
u ⊕Hn

u ←− · · ·
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betweenHA
u−2 = 0 andHA

u = 0, see Theorem 3.1 of[18]. Here	̄ is the usual connecting
map. Its definition is standard and may be found in any textbook of homological algebra
or algebraic topology, see for example[22] or [19, p. 389]. For short one can say that	̄ is
induced by	 = 
−1�∗�−1 where�−1(d) is anypre-image ofd and where�∗, as before,
stands for whatever power of� is needed in the context.
Thus	̄mapsH�

u intoHA
u−1.Tounderstand thismapbetterweneed to explain the structure

of the moduleHA
u−1.

2. The structure ofHA
u−1: For this we need some notation. As above, let" be the

restriction of the gluing� = �
k∪ [�] and let� = � \ " be the inner face. Let T=

[�]  �n−k. Suppose thatH�
u corresponds toH�

j,i when switching from positions to the
two-parameter notation of modular homology, see Section 2.3.
As was mentioned in Section 2.4, Fibonacci modules are generated by octahedra. This

means that any element inHT
j,i 	= 0 arises as a linear combination of classes[e] of the

following shape: The elemente ∈ MT
j is of the forme = v∪ s wherev = (�1−�1)∪· · ·∪

(�j−i+1 − �j−i+1), wheres is an(i − 1)-face of the forms = {�1, . . . , �i−1} and where
the�i , �i and�i are pairwise distinct. Note that�

i
(v ∪ s) = 0 = �i

(s) and�(v) = 0. The
next result has been proved in[18,19]:

Lemma 4.10. The moduleHA
u−1 is isomorphic toHn

u−1 ⊕ HT
(l−k,r−k). Moreover, the iso-

morphismHA
u−1/Hn

u−1  HT
(l−k,r−k) is of the form[�i

(" ∪ e)] ↔ [e] ∈ HT
j−k,i where

e ∈ MT
j−k is an octahedron with�i

(e) = 0.

3. Completing the proof of sufficiency:As we noticed before in Proposition 4.3,� is
saturated over� if and only if 	̄ has the maximal possible image	̄(H�

u )  HT
(l−k,r−k)  

Hn−k
(l−k,r−k). Thus, to show that� is saturated over� it is enough to prove that for every

octahedrone = s ∪ v ∈ MT
j−k with �i

(e) = 0 one can find some[h] ∈ H�
u such that

	(h) = �i
(" ∪ e). Suppose that there isf ∈ M

link��
k ⊂ M� such that�(" + f ) = 0.

Now takeh := (" + f )D ∪ eD ∈ M�. Since�i
(e) = 0, andeD and (" + f )D have

non-intersecting supports, also�i
(h) = 0 and so the corresponding class[h] is inH�

u . Then

	(h) = 
−1�i�−1 [("+ f ) ∪ e]D
= 
−1�i

([" ∪ s ∪ v]B, [f ∪ s ∪ v]C)

= 
−1(�i
(" ∪ s) ∪ vB, �i

(f ∪ s) ∪ vC)

= 
−1(�i
(" ∪ s) ∪ vB, −�i

(" ∪ s) ∪ vC)

= �i
(" ∪ s) ∪ vA

= �i
(" ∪ s ∪ v)

= �i
(" ∪ e).

The equality�i
(f ∪ s) = −�i

(" ∪ s) follows from the fact that�i
s = 0 and so�i

((" +
f ) ∪ s) = ("+ f ) ∪ �i

s = 0. This completes one direction of the proof.
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4.3.2. Necessity of nullness
We keep the notation of the previous section. Suppose that� is saturated over� and let

� = link�� where� is the inner face of the gluing. To establish necessity we need to show
that if 	̄(H�

u )  HT
(l−k,r−k) 	= 0 then there exists somef ∈ M�

k such that�(" + f ) = 0.
As we have noticed above, when� is saturated,̄	(H�

u ) is spanned by elements of the form

[�i
("∪e)]wheree ∈ MT

j−k is an octahedron with�
i
(e) = 0. That is, for every suche there

exists an element[h] ∈ H�
u such that̄	[h] = [�i

(" ∪ e)]. We shall look first at the more
general situation when onlysomeoctahedra are images under	̄:

Lemma 4.11. Let � = �
k∪ [�] be an arbitrary k-gluing. Let e ∈ MT be an octahedron

with support� = supp(e) ∈ T ⊆ �. Suppose that[�i
(" ∪ e)] ∈ 	̄(H�

u ). Then there exists

an elementf ∈ M
link�(�)

k such that�("+ f ) = 0.

In other words,if an octahedron e is in the image of the gluing map	̄, then there is a part
of link�(supp(e)) that is null and comes through the restriction". To proof the lemma we
need a new tool. This is the idea of ‘division by octahedra’ developed in a section below
which will be entirely independent of this material.

Proof. Let [h] ∈ H�
u be such that̄	[h] = [�i

("∪e)]. As	 = 
−1�i�−1, it is easy to check
that there isg ∈ M�

j such that�i
g = �i

(e ∪ "). Note that this statement is non-trivial:

while �i
("∪ e) ∈M� we havee ∪" /∈M�. Now setf := −g/e as will be explained in

the next section. It follows then from Theorem4.15thatf ∈ M link�(�) and"′ = −f ′. The
result follows. �

For the remainder of the necessity proof we shall need octahedrae ∈ MT with the
maximal supportsupp(e) = T. The existence of such octahedra follows from the next fact
which is a simple exercise in the ‘middle-term condition’ of Theorem2.3:

Lemma 4.12. For every simplex�n and everyp > 2, the Fibonacci moduleHn
(l,r) is 	= 0 if

Mn
(l,r) has weightp−1. In this caseHn

(l,r) is generated by octahedra e of maximal support,
that issupp(e) is equal to the vertex set of�n. In particular, Hn

(l,r) = Hn
m,1 for n = 2m

andHn
(l,r) = Hn

m,2 for n = 2m− 1.

To finish theproof, note that the saturationof�over�means that� is(l, r)-saturatedover
� for every(l, r). Using Lemma4.12choose(l, r) such that the homologyHT

(l−k,r−k)  
	̄(H�

u ) should be generated by octahedrae of the maximal support�. Now choose any
such octahedroneand use Lemma4.11above. This completes the proof of the Null-Link
Theorem. �

4.3.3. Some corollaries
We continue to keep the notation of the previous section. The proof of the Null-Link

Theorem implies two important corollaries. The first states that if a gluing is saturated in



V.B. Mnukhin, J. Siemons / Journal of Combinatorial Theory, Series A 109 (2005) 149–179167

some special sequence then it is saturated globally:

Corollary 4.13. Let � = �
k∪ �n be a k-gluing. Let M�

(l,r) be any sequence of weight
w ≡ k − 1 (mod p). Then� is saturated over� if and only if it is(l, r)-saturated over
�.

Proof. The sequenceMT
(l−k,r−k) has weightp − 1 and so is generated by octahedra of

maximal support. Hence" can be null-extended and so, by the Null-Link Theorem,� is
saturated over�. �

Now let � be saturated over�. We shall describe the ‘new’ elements that arise in the
homology of� under the gluing. Recall that a null-part of� = link�(�) that comes through
the restriction" was denoted by" and called anull-continuationof " in �.

Theorem 4.14(Structure of generators). Let� be saturated over� so that in particular

H�
u  H�

u ⊕Hn−k
(l−k,r−k), where u := dn+k

(l,r),

for any(l, r). Then the vector spaceH�
u /H�

u is spanned by elements of the form[" ∪ e],
where[e] runs over all generators ofHT

(l−k,r−k). (In particular, e could be taken as an
octahedron).

Proof.Note that" andeare disjoint and that["∪e] ∈ H�
u . Then compare dimensions.�

Note: This corollary gives us the precise structure of the generators of the homology of
buildings and geometric lattices among others. This is an important part of the theory of
modular homology, in particular when group actions on complexes are considered. This
will be discussed in a forthcoming paper[21].

4.4. Division by octahedra

In this section, we shall take the analogy between the inclusion map and differentiation
a little further. In one respect this material is technical and is needed only to complete the
proof in the previous section. On the other hand, the division considered here has some
interesting algebraic properties which may make it worth investigation in its own right.
When differentiating functions,f ′ = 0 means thatf = c is constant. Ifc′ = 0 with

c 	= 0, and iff, h satisfyf ′ = (ch)′ thenh′ = (f/c)′. Are there similar relations for
the inclusion map? To answer this question we have to consider the structure of the kernel
of �. This depends on the characteristic of the fieldF. For instance, if charF = 0 then
Ker �m ∩M∗

k is spanned by elements of the form

ck,m = (�1− �1) ∪ (�2− �2) ∪ · · · ∪ (�t − �t ) ∪ {�1, �2, . . . , �m},
wherek = t + m, see[16,1,25]. (Note, we suppress set brackets, and write�i , �i instead
of {�i}, {�i} more properly.) As we pointed out in Section 2.4, fort = k the terms inck,0
represent the alternately signed faces of ak-dimensional octahedron and fort < k they
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represent a cone over such an octahedron. For this reason we calledck,m a generalized

octahedron, or just an octahedron. It is easy to check that�m+1
(ck,m) = 0 over every field

and so octahedra could be considered as analogues of ‘constants’ for�. However, for this
to work we need to define ‘division by constants’.
This can be done under the following restricted circumstances. Let� be an arbitrary

complex with vertex set⊆ �. Suppose thatF has characteristicp > 2 and let

c =
∑
�⊆�

c� � ∈ M�, c� ∈ F,

be such thatc(p−1) = 0. Set� := suppc and let f be an arbitrary element inM�.
Decomposef with respect to� as in Section 2.1,

f =
∑
�⊆�

f � ∪ �

and set

[f, c] :=
∑
�⊆�

c�f
�.

Note that[f, c] ∈ M� as eachf � belongs toM�. If wt(c) 	= 0 ∈ F we can define, writing
againc′ for �(c) andc(j) for �j

(c),

f/c := 1

wt(c)

(
[f, c] + 1

1!2! [f, c′]′ + 1

2!3! [f, c′′]′′

+ · · · + 1

(p − 2)!(p − 1)! [f, c(p−2)](p−2)
)

.

In particular, ifc is an octahedron then its weight is a power of 2 and sof/c exists by
the assumptions on the characteristic ofF. The quotient has interesting properties such as
(c ∪ f )/c = f and(f1+ f2)/c = f1/c + f2/c. Furthermore,

Theorem 4.15.Let F be a field of characteristicp > 2 and let0 < i < p be an integer.
Let � be a complex with vertex set⊆ � and suppose thatc ∈ M� is an octahedron with
c(i) = 0. Let f, h ∈ M� be such that h is disjoint from c andf (i) = (c ∪ h)(i). Thenf/c

belongs toM� andh′ = (f/c)′.Moreover, if � := suppc is a face of� thenf/c ∈ M link��.

Proof. The proof is straightforward. Any octahedronc ∈ M� such thatc(i) = 0 has the
form

c = (�1− �1) ∪ (�2− �2) ∪ · · · ∪ (�t − �t ) ∪ �,

where� = ∅ if i = 1 and� := {�1, �2, . . . , �i−1} for i�2. Note that�(i−1) = (i − 1)! and
�(i) = 0. Then(c ∪ h)(i) = (�1− �1) ∪ . . . ∪ (�t − �t ) ∪ (� ∪ h)(i) where

(� ∪ h)(i) =
i∑

k=0

(
i

k

)
�(i−k) ∪ h(k) = i!h′ + g1h

′′ + g2h
′′′ + · · · , (gk ∈ M�).
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On the other hand, according to Lemma2.1,

(c ∪ h)(i) = f (i) =
∑
�⊆�

 i∑
k=0

k!
(

i

k

) ∑
�⊆�⊆� : |�\�|=k

(f �)(i−k)

 ∪ �.

Let � be any of the wt(c) = 2t many faces which appear in the decomposition of(�1 −
�1) ∪ · · · ∪ (�t − �t ). Let sign(�) = ±1 be the coefficient of�. Comparing the previous
relations, we have

sign(�)h′ =
i∑

k=0

1

(i − k)!

 ∑
�⊆�⊆� : |�\�|=k

f �

(i−k)

=
i∑

k=0

1

k!

 ∑
�⊆�⊆� : |�|=t+i−k

f �

(k)

.

Now take the alternating sum of these relations:

2t h′ =
∑
�

sign(�)
i∑

k=0

1

k!

 ∑
�⊆�⊆� : |�|=t+i−k

f �

(k)

.

The result follows after collecting terms. Also the last assertion is easily verified.�

Example 1. Letp > 2 andc = ({�}− {�})∪{�}. Then� = {�, �, �}. Sincec′ = {�}− {�}
andc′′ = 0 we have

f/c = f {��} − f {��}

2
+ (f {�} − f {�})′

4
.

Example 2. Let p > 3 andc = ({�} − {�}) ∪ {��}. Then� = {�, �, �, �} and c′ =
({�} − {�}) ∪ ({�} + {�}) = {�, �} − {�, �} + {�, �} − {�, �}, c′′ = 2({�} − {�}), c′′′ = 0.
Thus we have

f/c = f {���} − f {���}

2
+ (f {��} − f {��} + f {��} − f {��})′

4
+ (f {�} − f {�})′′

12
.

5. Geometric lattices are saturated

It is well known that the order complex of the proper part of a geometric lattice is Cohen–
Macaulay. Here we shall use the Null-Link Theorem to prove a somehow similar result
about saturation. If(L, <) is a partially ordered set then the faces of theorder complex
�(L) are the linearly ordered subsets�1 < �2 < · · · < �t , with �i ∈ L.

Theorem 5.1. LetL = L̂∪ 0̂∪ 1̂ be a finite geometric lattice with proper partL̂.Then the
order complex�(L̂) of L̂ is saturated for everyp > 2.
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Evidently,�(L) is the bi-cone over�(L̂) and hence�(L) is also saturated, as will be
shown in Theorem6.6. Note the contrast to the case of standard simplicial homology where
�(L) is always acyclic in view of its contractibility. The following proof is based on ideas
from [5].

Proof. Let �1, . . . , �r be the atoms ofL and for�, 
 ∈ L let � ≺ 
 denote that� is covered
by 
. To each such pair we associate the label

�(� ≺ 
) := min{i : �i ∨ � = 
}.
To every unrefinable chain� : �0 ≺ �1 ≺ · · · ≺ �k now associate the sequence

�(�) =
(
�(�0 ≺ �1), �(�1 ≺ �2), . . . , �(�n−1 ≺ �k)

)
∈ Zk.

There are no repetitions in�(�) and the maximal chains�0 ≺ �1 ≺ · · · ≺ �n are the facets
of �(L). If we arrange these in lexicographical order�1, �2, . . . , �m, . . . then this is a
shelling of�(L) sinceL is a geometric lattice, see[5].

Thus let�m := �1 ∪ · · · ∪ �m and� := �
k∪ �m+1. We need to show that� is saturated

over�. Just as in Theorem4.4 let" be the restriction of the gluing� k∪ �m+1 and let� =
�m+1\" be the inner face of the gluing. It follows from[5] that" is completely determined
by thedescent setof � := �(�m+1). To be more precise, let us say that� = (�1, . . . , �n)

has adescentat positioni, where 0< i < n, if �i > �i+1. The sequence� then is said
to havedescent setD(�) = {i : �i > �i+1,0 < i < n}. Let k = |D(�)|. The restriction
" = "(�m+1) ∈ �(L) is thek-chain of elements

�i :=
i∨

j=1
��j

∈ L for i ∈ D(�)

or, in other words, the face" = {�i : i ∈ D(�)}.
Let us decompose� = (�1, . . . , �n) into parts according to the rule:

• every group of neighbouring descents elements, together with the immediately subse-
quent element, form a part, and

• any element not in some part of the previous type forms a one-element part.

We shall denote this partition by�(�) = {�i : ⋃
�i = �}. For example, the sequence

14̄3̄25 produces the partition{{1}, {2,3,4}, {5}}, while 2̄13̄54 gives{{1,2}, {3}, {4,5}}.
(Here bars mark descents.)
The Young subgroup ofSn associated with�(�) will be denoted byG(�) = S(�1) ×

S(�2)× · · · × S(�t ). For i ∈ D(�) andg ∈ G(�) let now�g be the simplex

�g =


i∨
j=1

�g(�j ) : i ∈ D(�)


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and set

h :=
∑

g∈G(�)

sign(g) �g,

f :=
∑

1	=g∈G(�)

sign(g) �g = h−".

Let � ⊆ �(L) be the(k − 1)-dimensional complex generated by the faces which ap-
pear inh, � := 〈

�g : g ∈ G(�)
〉
and let�∗ := 〈

�g : 1 	= g ∈ G(�)
〉
be the subcomplex

corresponding tof. Note the following:
• In viewof the lexicographical ordering of chainswehave� ⊆ � and�∗ ⊆ �. Moreover,
it is easy to note that actually� ⊆ link�(�) and�∗ ⊆ link�(�).

• AsG(�) = S(�1)×S(�2)×· · ·×S(�t ), the complex� is the direct product of Coxeter
complexes of non-trivial symmetric groupsS(�i ). Therefore� is 2-colourable and so
�h = 0 for any field of characteristicp > 0, see[19, p. 391].
Thus" is a 1-cycle of� relative to link�(�) and by Theorem4.4 we know that� is

saturated over�. The result follows by induction.�

Example. In Fig. 2 the initial part of the shelling of the 2-dimensional Coxeter complex
A3 = �(B̂4) is presented. The sequences� are precisely the permutations of the symmetric
groupS4:

1234< 124̄3< 13̄24< 134̄2< 14̄23< 14̄3̄2< 2̄134< 2̄14̄3< · · · .

The first non-trivial casek = 2 occurs for� = 14̄3̄2 when�(�) = {{1}, {2,3,4}} and
G(�) = S(1)×S({2,3,4})  S3. Here� is the Coxeter complex ofS3, i.e. just a hexagon.
We may see from figure that in our case� = {1} and� = link�(�). Note that this always
holds whenL is a Boolean algebra but that this may fail in general.
The second case ofk = 2 occurs for� = 2̄14̄3 when�(�) = {{1,2}, {3,4}} and

G(�) = S({1,2}) × S({3,4})  S2 × S2. Here� = {1,2} and� = link�(�) is the direct
square of the Coxeter complex ofS2, i.e. just a square.

1432

1432

1243

1243

1324

1324 2134

2134

134

13 123

12
2

12414

Fig. 2. An initial part of the lexicographic shelling ofA3.
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6. Other applications

In this section, we shall discuss some application of the results in Section 4. Obviously, if
the modular Betti numbers are known then we can determine the rank of the inclusion maps
� : M�

k → M�
k−1 and this is the first area of applications. Secondly we shall look at standard

constructions such as forming cones and suspensions where it is possible to compute the
modular homology directly. In the last section we deal with rank selected order complexes.

6.1. On the p-rank of incidence matrices

Let again� be a complex of dimensionn− 1 and lets� t �n be integers. Then we may
define a{0, 1}-incidencematrixI = I�(s, t) of sizefs×ft which records the containment
relation between the elements of�s and�t . Thus

I�� =
{
1 if � ⊆ �,
0 if � � �.

When� = �n is the simplex of dimensionn − 1 we denote the corresponding matrix by
In(s, t). As theI�(s, t) are representations of the complex their algebraic properties are
of importance. InWilson[29] for instance, the invariant factors (or Smith form) ofIn(s, t)

has been determined. To obtain results of this kind for other important complexes is of very
considerable interest.
A partial answer in this direction are formulae for the rank ofI�(s, t) when considered

as amatrix overGF(p). This quantity we shall denote by rk�
p(s, t). (Of course, ift− s < p

then rk�p(s, t) is the rank of the map�t−s : M�
t → M�

s .) For the simplex�
n there is the

well-established result

rkn
p(s, t) =

∣∣∣∣∣
∞∑

k=0

(
n

s − pk

)
−

(
n

t − p − pk

) ∣∣∣∣∣
for all s, t with s + t < n, see[11,16,29]. As has been noticed in[8, p. 152] “it is an
interesting problem whether the general form of Wilson’s results has any extension...”.
Here we shall find a (partial) solution to this problem.
An expression similar to the above can be formed for arbitrary shellable complexes and

these can in fact be used as further algebraic characterizations of saturation, as we shall see
now.
In the spirit of Section 3.2 we establish a formal expression for thep-rank of complexes

associated to a givenh-vector:

Definition 6.1 (Formal p-Rank). Let h(�) = (h0, h1, . . . , hn) be theh-vector of a com-
plex of dimensionn− 1. Then

rkh(�)
p (s, t) :=

n∑
i=0

hi · rkn−i
p (s − i, t − i) (6.1)

is theformal p-rankassociated toh(�) .
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Now the following two closely connected observations can be made:

Theorem 6.2. Let � be a shellable(n − 1)-dimensional complex with h-vectorh(�). Let
p > 2 be a prime and suppose thats < t �n are non-negative integers witht − s < p.
Then

rk�p(s, t) = rkh(�)
p (s, t) if s + t < n. (6.2)

Theorem 6.3. Let � be a(n − 1)-dimensional complex(possibly non-shellable), and let
p > 2 be a prime. Then� is saturated in characteristic p if and only if

rk�p(s, t) = rkh(�)
p (s, t) f or all s < t �n such that t − s < p. (6.3)

We shall prove both theorems simultaneously:
Proof. First, let� be an arbitrary shellable complex withf-vector (f0, f1, . . . , fn). In
view of the condition 0< t − s < p we may look at rk�p(s, t) as thep-rank of the map

�t−s
: M�

t → M�
s . According to Theorem3.1, in the sequenceM�

(s,t) all homologies to the
left from the middle are trivial. Equivalently, see[18, Corollary 5.6], for s+ t < n, we have

rk�p(s, t) = fs − ft−p + fs−p − ft−2p + fs−2p − ft−3p + · · · . (6.4)

The result follows now from the formula

hk =
n∑

i=0
(−1)i+kfi

(
n− i

k − i

)
(6.5)

after substituting it into (6.1) above. This proves Theorem6.2.
Now let� be saturated. Hence its Betti numbers are

��
m+s :=

w+sp∑
j=w+(s−1)p+1

hj�
n−j

(l−j,r−j) for all s�0.

For s + t �n we need to take these into account when evaluating the rank:

rk�p(s, t) =
∑
k=0

(fs−kp − ft−p−kp)− (��
s−kp,p−t+s − ��

t−p−kp,t−s). (6.6)

Also

rkn
p(s, t) =

∑
k=0

(
n

s − pk

)
−

(
n

t − p − pk

)
± �n

(s,t), (6.7)

where the sign of the Betti number is determined by its position in the sequenceMn
(s,t).

Now put (6.5) and (6.7) into the right-hand side of (6.3).After transforming dimensions into
positions we obtain (6.6). Thus, for saturated� the relation (6.3) holds also fors + t �n.
Finally, since Betti numbers are completely determined by ranks, (6.3) implies saturation
of �. �
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If p�n then Theorem2.3(v) implies that rknp(s, t) = min{(n
s

)
,
(
n
t

)}. Therefore ifp, q >

n are primes then rknp(s, t) = rkn
q(s, t) and we may derive the following:

Corollary 6.4. Let� be an(n−1)-dimensional complex. If � is saturated for somep > n

then� is saturated for everyq > n.

An interesting special case illustrating this corollary arises forn = 2 when the complex
is a graph. As we have seen previously,

• a connected graph� is saturated in characteristicp if and only if its incidence matrix
hasp-rank one less than the number of vertices of�;

• a connected graph� is saturated for allp > 2 if and only if it is bipartite.

From these we derive immediately the well-known fact which follows also from results
of [8].

Proposition 6.5. Let � be a connected graph on v vertices with vertex-edge incidence
matrixI�(1,2).Then� is bipartite if and only if for any0�p 	= 2we haverankp I�(1,2) =
v − 1.

In fact, the Theorem6.3above could be considered as amulti-dimensional generalization
of this fact!

6.2. Cones and suspensions

For some classes of simplicial complexes the modular homology can be computed by
general constructions.These includeconesandsuspensions. Let�bean(n−1)-dimensional
simplicial complex on the vertex set� and let�, � /∈ � be new vertices. Then theconeover
� is then-dimensional complex

C� = � ∪ {� ∪ � : � ∈ �}
and thesuspensionover� is then-dimensional complex

S� = � ∪ {� ∪ � : � ∈ �} ∪ {� ∪ � : � ∈ �}.
It is well-known that cones are acyclic in standard homology, see[22]. The modular ho-
mology of cones is more complicated:

Theorem 6.6. Let� be a pure complex. Then for every0�k�n and0< i < p we have

HC�
k,i  H�

k,i+1⊕H�
k−1,i−1.

(We putH�
k,0 = H�

k,p = 0.)

If p = 2 then we haveHC�
k,1 = 0 for all k. Also the case 3 is special. Here we have

HC�
k,1 = H�

k,2 andH
C�
k−1,2 = H�

k−2,1. Thus, in a sense, the 3-modular homology is preserved
but shifted:
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Corollary 6.7. Let p = 3.Then the modular homology in the sequenceMC�
(l,r) coincides

with the homology inM�
(l+1,r+1).

Clearly, Theorem6.6generalizes Theorem2.3. As we have seen already, the 3-modular
Betti numbers of�n are either 0 or 1. Similarly, all eight non-zero 5-modular Betti numbers
of �n are among�(n − 1), �(n) or �(n + 1), where�(n) are elements of the sequence
1, 1, 2, 3, 5, 8, 13, 21, . . . of Fibonacci numbers (so that, for example,�(8) = 21). Now
we look at suspensions. Here theh-vector ofS� satisfieshS�

k = h�
k−1+ h�

k for all k�n. It

is well-known thatHS�
k = H�

k−1 in standard homology. Again, the modular case is more
complicated.

Theorem 6.8. Let� be a pure complex. Then for every0�k�n and0< i < p we have

HS�
k,i  HC�

k,i ⊕H�
k−1,i  H�

k,i+1⊕H�
k−1,i ⊕H�

k−1,i−1.

Note that forp = 2 we haveHS�
k,1 = H�

k−1,1, just as for the standard homology. Also the
casep = 3 is special. Here we haveHS�

k,1 = H�
k,2⊕H�

k−1,1 andH
S�
k,2 = H�

k−1,2⊕H�
k−1,1.

Proof. The proofs of the theorems are very similar, the first essentially being identical to
the proof of Theorem 5.2 in[1]. So we will give the details only for the slightly more
complicated case of suspension.
Let f be any element ofMS�

k and let� 	= � be the new vertices ofS�.When applying the
decompositions of Section 2.1 we suppress unnecessary brackets and writef � instead of
f {�}, etc. Now suppose that�i

(f ) = 0. Thenf can be written uniquely asf = �∪f �+�∪
f �+gwheref �, f � ∈ M�

k−1 andg ∈ M�
k . In fact, since�

i
(f ) = �∪�i

(f �)+�∪�i
(f �)+

i�i−1
(f � + f �) + �i

(g) = 0, we have�i
(f �) = �i

(f �) = 0, �i−1
(if � + if � + g′) = 0

and so�i+1
(g) = 0. Now define the map� : HS�

k,i �→ H�
k,i+1 ⊕ H�

k−1,i ⊕ H�
k−1,i−1 by

putting

� : [f ] �→ ([g], [if �], [if � + if � + g′]).

We need to show that this map is well-defined, and that it is surjective and injective. To
show that it is well-defined suppose that[f ] = [h] with h = �∪h�+�∪h�+m. So there
existsF = � ∪ F � + � ∪ F � +G ∈ MS�

k+p−i such that

�p−i
F = f − h

= � ∪ (f � − h�)+ � ∪ (f � − h�)+ (g −m)

= � ∪ �p−i
(F �)+ � ∪ �p−i

(F �)− i�p−i−1
(F � + F �)+ �p−i

(G),

implying thatf � − h� = �p−i
(F �), f � − h� = �p−i

(F �) and so[if �] = [ih�]. Further,
g −m = �p−i−1

(G′ − iF � − iF �), so that[g] = [m]. Finally, applying� to the equation
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above gives

(f − h)′ = � ∪ (f � − h�)′ + (f � − h�)+ � ∪ (f � − h�)′
+(f � − h�)+ (g −m)′

= �p−i+1
F

= � ∪ �p−i+1
(F �)+ � ∪ �p−i+1

(F �)

−(i − 1)�p−i
(F � + F �)+ �p−i+1

(G)

implying that

f � − h� + f � − h� + (g −m)′ = �p−i+1
(G)− (i − 1)�p−i

(F � + F �)

= �p−i+1
(G)− (i − 1)(f � − h� + f � − h�).

Henceif � + if � + g′ = �p−i+1
(G) + (ih� + ih� + m′) and so[if � + if � + g′] =

[ih� + ih� +m′]. Therefore� is well-defined.
To show that� is injective, suppose that�[f ] = ([0], [0], [0])]. Then there exists

G ∈ M�
k+p−i−1 such that�

p−i−1
G = g, there existsF ∈ M�

k+p−i−1 such that�
p−i

F =
if � and there existsE ∈ M�

k+p−i such that�
p−i+1

E = if � + if � + g′. Now takeJ =
� ∪ (E′ −G)+ iE + (�− �) ∪ F ∈ MS�

k+p−i and check�
p−i

J = if , so that[f ] = [0].
Finally, to show that� is surjective, suppose that([g], [h], [e]) ∈ H�

k,i+1 ⊕ H�
k−1,i ⊕

H�
k−1,i−1. Takef = i−1{�e + (� − �)h + ig − �g′} ∈ MS�

k and check that�i
f = 0 and

�[f ] = ([g], [h], [e]). This completes the proof in the case of suspension.
For the proof of Theorem6.6 let f be inMC�

k with �i
(f ) = 0. If � is the new vertex we

write f = � ∪ f � + g so that�i−1
(if � + g′) = 0 and�i+1

(g) = 0. Now define the map
� : HC�

k,i → H�
k,i+1⊕H�

k−1,i−1 by putting

� : [f ] �→ ([g], [if � + g′]).
Repeating the arguments above (or looking at[1]), show that this map is well-defined,
surjective and injective. �

Theorem 6.9. Let� be an arbitrary complex.

(a) � is shellable if and only ifC� is shellable, andC� is shellable if and only ifS� is
shellable.

(b) If � is saturated thenC� andS� are saturated.
(c) If � is shellable and if eitherC� or S� are saturated then� is saturated.

Proof. The first part is well-known. Part (b) is simple: Ifh(�) = (h0, h1, . . . , hn) then
h(C�) = (h0, h1, . . . , hn,0) andh(S�) = (h0, h0 + h1, h1 + h2, . . . , hn−1 + hn, hn).
Now evaluate the formal Betti numbers forC� or S� according to Definition3.3 and
compare these to the actual Betti numbers obtained from Theorems6.6and6.8.
For part (c) note that if�1, …,�m is a shelling sequence for� then�∪�1, …,�∪�m is a

shelling sequence forC� and�∪�1, �∪�1, . . . , �∪�m, �∪�m is a shelling sequence for
S�. For the cone note that the links of the inner faces of consecutive gluings are the same in
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the two shelling sequences. The result thus follows from Theorem4.4. For the suspension
S� take its shelling sequence� ∪ �1, � ∪ �1, …, � ∪ �m, � ∪ �m and note that at each odd
gluing, say 2i − 1, the link of the inner face is exactly the same as the link of the inner face
in the i-th gluing for�. �

As an immediate corollary we have the result mentioned previously:

Corollary 6.10. Cross-polytopes are saturated in every characteristic.

6.3. Rank-selection

Let S = {0, . . . , n − 1} be ann-element set. Then abalancedcomplex on the vertex
set� is a pure(n − 1)-dimensional complex� with a partition� = ⋃

s∈S �s such that
|� ∩ �s | = 1 for every facet� of � and everys ∈ S. It is convenient to think ofSas a set
of colours, the condition being that every facet has exactly one vertex of each colour. For
instance, ifP is a ranked partially ordered set then the order complex�(P) formed by all
linearly ordered subsets ofP is balanced. (Note, balanced complexes are callednumbered
by Bourbaki andcompletely balancedby Stanley.)
Let � be such a balanced complex. For a face� of � let its typebe t (�) := {s ∈ S :

�∩�s 	= ∅} ⊆ S. For every subsetJofSwemaydefine the complex�J := {� ∈ � : t (�) ⊆
J } and this is a pure(|J | − 1)-dimensional complex, called atype-selected subcomplexof
�.
For the order complex�(P) of a ranked posetP the�s can be taken to be the elements

of ranks inP. Here it is common to call�J rank-selectedandwe shall use this term also for
general balanced complexes. For instance, buildings with non-linear diagram are examples
of balanced complexes that are not order complexes.
Let�J :=⋃

s∈J �s and for� ∈ � let �J := �∩�J . Note that the facets of�J are of the
form�J where� is a facet of�. (It is possible, of course, that different facets of� produce
the same facet of�J .) The correspondence� → �J can be extended naturally to a linear
map
J : M� → M�J defined on the faces of� by setting


J (�) =
{

�J if �J 	= ∅ and
0 if �J = ∅.

Theorem 6.11.Suppose that the(n− 1)-dimensional balanced complex� = �
k∪ �n has

saturated homology relative to�. Let J ⊆ S such that�J 	= �J . Then�J has saturated
homology relative to�J .

Proof. It is sufficient to prove the theorem when|J | = n − 1. Let x ∈ �n be the vertex
not in �n

J , let r := res(�n) be the restriction and lett := �n \ r be the complement of
the gluing. Since�J 	= �J we havex ∈ t . Hencer is also the restriction of the gluing
�J = �J ∪ �n−1 and its inner face istJ = t \ {x}.
It follows from the Null-Link Theorem that there exists somef ∈ M�

k ⊂ M� such that

r + f ∈ M link�t and�(r + f ) = 0. Sincer + f ∈ M
link�J

tJ the result follows from
Null-Link Theorem. �
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Theorem 6.12.Every non-trivial rank-selected subcomplex of a shellable saturated com-
plex is shellable and saturated.

Proof. Indeed, if�1, . . . , �m is a shelling for� then the distinct elements in the sequence
�1∩J�, . . . , �m∩J� form a shelling for�J . Therefore the result follows from the previous
theorem. �
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