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Abstract

Among shellable complexes a certain class has maximal modular homology, and these are the so-
calledsaturatedcomplexes. We extend the notion of saturation to arbitrary pure complexes and give
a survey of their properties. It is shown that saturated complexes can be characterizeghrianthe
of incidence matrices and via the structure of links. We show that rank-selected subcomplexes of
saturated complexes are also saturated, and that order complexes of geometric lattices are saturated.
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1. Introduction

Let A be a simplicial complex on the vertex €t The standard simplicial homology
theory is concerned with th&-moduleZA with basisA and the boundary map

T+ 01— 02+ 03— -+ =% 0g,

which assigns to the faaghe alternating sum of the co-dimension 1 faces dhis defines
a homological sequence ovZrand hence over any domain with identity.
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In [18] we started to investigate the same module with respect to a different homomor-
phism. This is thénclusion map : ZA — ZA given by

0: T~ o01+02+ 03+ -+ o%.

Thend? # 0 unlessA is trivial. However, when coefficients are taken modulo an integer
p then a simple calculation shows that in faét= 0. One may attempt therefore to build
a generalizednodular homology theorgf simplicial complexes, in particular whenis a
prime. This kind of homology appears to be mentioned firstin M§dgkin 1942; further
historical remarks and references can be founfl jh8]. Among the more recent papers
note also Tikaradzg28] and Berger et a[2].

The goal of this paper is to investigate complexes which have nice properties in modular
homology. That such complexes exist is not obvious: modular homology is not homotopy
invariant nor is it a topological invariant. Even among shellable complexes there are ex-
amples of complexes with the sarhevector but with different modular homology. The
behaviour of the modular homology of non-shellable complexes is even more erratic, see
Section 3.3 later.

The key to understanding the topological properties of complexes with good modular
homology is the study of the links in the complex. More precisely, the crucial property
is for links to admit cycles which are null both for standard and modular homology. For
one-dimensional complexes (graphs) theseezen cycles In arbitrary dimension com-
plexes with this property include Coxeter complexes or more generally, two-colourable
triangulations of spheres, which could be considered as ‘generalized even cycles’.

This observation leads us to conjecture that complexes with enough ‘generalized even
cycles’ will have properties in modular homology that are not dissimilar to standard ho-
mology. In particular, any complex in which links admit Coxeter-type reflection groups as
automorphisms would be a candidate for this class of complexes. In this regard we mention
also Borovik’s recent survey of Coxeter matrojs Coxeter complexes also illustrate the
fact that a topological space, here the sphere, can have a rich structure in modular homology
depending on such triangulations.

Another approach to complexes with nice modular homological properties is completely
algebraic: It has been shown][it8] that the modular homology of every shellable complex
can be embedded into a well-understood module constructed purely from the shelling of the
complex. It follows in particular that the modular Betti numbers for an arbitrary shellable
complex are bounded by functions of fisrector only. More generally, a complex whose
modular Betti numbers attain this bound is caltedurated and such complexes are the
principal subject of this article.

It is interesting to look again at the situation in dimension one: a connected graph is
saturated if and only if is bipartite, that is, all its cycles are of even length. This is not
accidental: we shall show that the topological and algebraic approach both lead to the
same class of shellable complexes. Our main results are Theorems 4.4 and 6.3 which
characterize saturated complexes via the structure of links and vjartirk of incidence
matrices, respectively.

As we show, the modular homology séturatedcomplexes behaves in some respects
quite similarly to standard simplicial homology over fields. In fact, there is a surprising
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analogy between the modular homology of saturated complexes and the standard simplicial
homology of Cohen—Macaulay complexes. For example,

e The standard homology of a Cohen—Macaulay complex over a field is completely de-
termined by the last component of thesector of the complex. Similarly, the modular
homology of a saturated complex is completely determined big-itsctor; however
nowall components of the-vector are significant.

e The order complex of a geometric lattice is both Cohen—Macaulay and saturated.

e It is well-known that the type-selected subcomplex of a balanced Cohen—Macaulay
complex again is Cohen—Macaulay. We will show that the same holds for saturated
complexes.

e The Steinberg module appears among the top modular homologies of a saturated com-
plex, just as for standard homology, where the Steinberg module is the unique top ho-
mology of a Cohen—Macaulay complex.

For modular homology these properties are proved in Theobeb@nd6.12 The Stein-
berg modules will be treated in a forthcoming paper. Thus, the loss of homotopy invariance
in modular homology is not too unsatisfactory if we are looking at saturated complexes. At
the same time, the fundamental advantage of modular homology over standard simplicial
homology is that thénclusion map commutes with the action of all automorphidms.
particular, all modular homology modules are modules for the full automorphism group
of the complex. This is far from true for standard homology. Applications of such group
actions can be found if20,21]

In Section 2, we collect the prerequisites from previous papers as far as they are needed
here. In Section 3, we extend the definition of saturation from shellable complexes to pure
complexes in general. This section also contains many important examples. In Section
4, we prove one of the main results, the Null-Link Theorem which gives a topological
characterization of saturation. In Section 5, it is shown that geometric lattices are saturated
for all primes, and Section 6 gives additional applications, including the fact that the rank
selection of a saturated complex remains saturated.

2. Prerequisites

In this section, we shall introduce the main notation for this paper. It follows closely our
paperd18,19]and it may be useful to consult these papers for further details. However, we
hope that the notes in the following section will render this paper reasonably self-contained.

2.1. Simplicial complexes and modules

Let Q be a finite set and leA < 22 be a simplicial complex on the vertex s@t
Thus whenevet € A andt C ¢ thent € A. As we consider no other complexes often
the word ‘simplicial’ is omitted. The elements df are calledsimplices or facesand the
maximal faces are thiacetsof A. If A = 22 thenA is thesimplex on Q. If 0 <k we let
Ay :={0 € A : |o| =k}.Thedimensiorofo € Aisdim ¢ := |g| — 1 and thedimension
of A is the maximum of dinv for ¢ € A. The complex is callegdure of dimensiork if all
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facets ofA have dimensiolk. If ¢ € A then thestaris the complex stan(o) whose facets
are those facets df which containg, and the link is the subcomplex link(o) C stan (o)
of all faces which have empty intersection with

Now let F be a field and let & k be an integer. Then we denote M/kA the F-vector

space with basid,. We putM® := @o<x M}* so that

MA={()" fs0 : fo€F)

geA

and in particulan € M2 by identifyingo with 1a. Clearly, if A" € A is another complex

thenM? < M2 and we set/* := Mzg, the module attached to the complete simplex on
Q. If |Q| = m we may also write™ := M*. Now consider the linear map: M* — M*
defined on a basis dif* by

0: QQJI—)Z‘C,

where the summation runs over alt ¢ with dim ¢ = dim ¢ — 1. This map is called the
inclusion map Note that it restricts to a map: M2 — M2 precisely as\ is a complex.
Thus attached ta there is the sequence

0 0 0 0 0 0 0
MEL 0 M S s S S o

and such sequences are the subject of this paper.
Thesupport of the elementf = > o f-0 € M* is the set
suppf = Jto : fo#£0)
and itsweight is the number

wit(f) ={o : fo #0}I.
We say that two elemenfs g € M* aredisjointif supp fNsuppg = ¥.1f g = 3 g &:T
then we put
fUug:= )" fsgeloUD).
0,7CQ

This union product turneM*, U) into an associative algebra withas identity. The funda-
mental relationship between the union product and the inclusion map psdtiact rule

o(fug =fUdl@+d(f)Ug,

which holds whenevefrandg are disjoint. It is therefore natural to writ¢ = d(f) and

FO =ty
For everys C Q there is adecompositionrelative too: Let f € M* and lets be any
subset of2. Then we may decompo$evith respect tar uniquely as

f=) ffur

1Co
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in such away thatfor al C o we have thayf® € M* is disjoint fromz. If Aisacomplexon
Q,if f € M2 andife C Qis arbitrary one may note more precisely that eétbelongs
to MN € M2 whereA = link A (7). In a fashion,f* can be regarded as thirearized link
of T with respect td. Applying the product rule it is a simple matter to verify the following
fact which will be needed later:

Lemma 2.1. Leti > O be an integerlet f € M* ando C Q. Then
L i
) — py(i—k)
fO=> Zk!<k> Yoo U 1.
Co k=0 1CpCo:|p\t|=k

Proof. Establish this whefiis a set inQ. The result then follows by linearity. (]

2.2. Shellability

For shellability one is interested in the inductive process of gluing"asimplex onto a
given purg(n — 1)-dimensional complek'. If this is done in such a way that the intersection

k
I'nX"is apuren — 2)-dimensional complex dffacets then the resulting complexu X"
is said to be &-gluing of 2" ontoI". Thus a purér —1)-dimensional comple is shellable
if its facets can be arranged aslzelling sequence

01, 02, 03,..., 0i—-1, Oj, ...

in such a way that for all = 1, ... the composition

ki
(2°tU2%2yU...U2%-) U 2%
is ak;-gluing for some;. In this case we set
hj =i : ki=j}l

for j =1,..., nandcall(ho, h1, ..., h,) theh-vector of A. If we put f; := |A;]| then
(fo, f1, ..., fn) correspondingly is thevector of A. As is well-known, se§4,10], these
two important quantities are related by

fi=Y ("_j)h./- (2.1)

j=0 M

By inverting this relation we have equivalently

hj=) (/" ('; - i)f (2.2)

i=0
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2.3. The modular homology of complexes

We recall the main definitions frofi8,19]on modular homology. Assume thAtc 29
is a complex of dimensiom— 1. Denote by\; the set of faces € A with |¢| = k. Further,
let F be a field of characteristip > 0. Then it is a simple matter to verify thaf is the
zero map onv2. For anyj and O< i < p consider the sequence

"
0

<—MA «— -

o o o
o, o, St oy 8,

Jj—i JjH+p—i

in which 0" is the appropriate power df. It is convenient to regard this as an infinite
sequence by settimj;[l,éA = 0for¢ < 0 andn < £. This sequence is determined by any

arrowM;* < M2 initand sois denoted hyt/) . (Of course(/, r) stands for left-right.)
The unique arrow} < M} for which we have &a + b < p is theinitial arrow and
MA is the Opositionof M(, »- (Forinstance, ifp = 5 then/\/l(A 22 = M(A2’3) = M(A3’7)

has initial arrOV\MA <« M2 .) The position of any other module M(z r) is counted from

this 0-position anda, b) is thetypeof M Further thaveightof M(, " is the integer
w = w([r)WIthO< w < p with w —l+r—n (modp).

Sinced” = 0we haved™)? = 0and sof\/lﬁ " is ahomological sequence. The homology
athA ; < MY <~ M2, is denoted by

(Kera’mMA)/ap fmA MY, )

and/ﬁﬁi :=dim Hﬁi is the corresponding Betti number. The rankoof’ : MlA « MA7is
denoted by r§(/, r). The Euler characteristig)) ,, of M§ . is

14, =+ fimp = fimi ¥ fi = fip-i e s

where the parity can be calibrated on the zero posﬂmM:?[

If M(z " has at most one non-vanishing homology then it is said talin@st exacénd
the only non-trivial homology then is denoted Hyir). If M(m is almost exact for every
choice ofl andr then M2 is almost pexact In general, when referring to a particular
sequence\/l(, ! the homology at positiohis denoted byHtA and/?,A = dim HA is the
Betti number of./\/lA - at positiont. The switching between parameter pairs suchjad)
and position is a useful notational tool which we will employ wherever this can be done
without creating a misunderstanding.

Let A be any complex of dimension— 1 and suppose that(4
we put

@) has type(a, b). Then

p

o L"—“—bJ if n —a — b % 0 (modp),
@ o0 if n —a —b=0(modp).
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2.4. The modular homology of the simplex

At the beginning of the discussion of simplicial modular homology stands the homology
of the simplex. The simplex omvertices is denoted h¥" and the sequences associated to
it are denoted by

. Z‘) Z‘”
Mn = M and ([ i’) == M(Z r)”

The main results on the structure of firenodular homology of™ and on its Betti numbers
can be found irf1,14,16] Fundamental is a simple branching rule:

Theorem 2.2. Let F have characteristi@>2 let0 < i < p and letk <n be arbitrary.
ThenH;!; = H",+1 ® H'} 11 is anisomorphism dbym, _,-modules

From this theorem the following facts, while not immediately obvious, can nevertheless
all be derived without much effort:

Theorem 2.3. Letp be aprime and Iél < i < p. Then for eaclt < n the following holds
(i) Middle Term ConditionH;'; = Ounless: — p < 2k —i < n. In particular,
(i) Almost Exactnes3he sequencM” is almost pexact
(iii) Irreducibility: H;'; is an irreducibleSym,,-module iff2k —i =n — 1.
(iv) Brauer Character On eachH}; the Brauer character is given by(g, H}';,) =
£ 370 fixe—pe(g) — flx/pr, (g)
wherefix; (g) denotes the number ofdets fixed by € Sym,. (The sign is determined
by z(1, H}'}) >0.)
(v) Betti NumberFor all I, r with0 < r — [ < p the Betti numbers OM(Z ) are zero in

all positions# dj; ) while ff; ,, = | Y (] pt) (," pt)| in positiond .

The expression in the last part of the theorem are ordinary binomial coefficients and so
the sum in particular is finite. As we have seen, for daetwith 0 < r —1 < p the sequence
(1 " is almost exact and its only non-trivial homology is the

Hn

n
=H (rl+p) =

Fibonacci module --- = H]! I =

(r=p,) —
associated to thid, r)-sequence. This terminology follows Ryba’s pafit] which con-

tains a different and very explicit construction of these modules for the particular case
p = 5. The dimension of the Fibonacci module is the Betti number

By =dimH] .

Afundamental property of Fibonacchi modules has been stated in [24/4]; lis non-zero
thenitis generated by classes of the sHapg 1] wherec; ; _1 hasthe forme; ;1 = vUs,

withv = (a1 — ) U---U(ojjt1— ﬁj,lﬂ) wheresis an(i — 1)-faces = {y1, ..., 7;,_1}
and wherey;, ff; andy; are pairwise distinct vertices. Note that the terms impresent
the alternately signed faces of ah— i)-dimensional octahedron. Therefore the terms of
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cj,; correspond to arii — 1)-fold cone over this octahedron. By a convenient abuse of
terminology we shall therefore cal} ; _1 ageneralized octahedrgwor just anoctahedron

It is easy to check that (cji—1) = 0 over every field and so octahedra can be considered
as analogues of ‘constants’ forWe shall return to this in Section 4.4.

The Fibonacci modules are of key importance for the entire theory of modular simplicial
homology. Evaluating the above formula for the Betti numbers the following emerges. If
p=2 thenﬁ?,’” = 0, as expected, for this is the standard homology of the simplex taken
mod 2; ifp =3 thenﬁ(, » = 0or 1. Forp =5 all Betti numbers are ordinary Fibonacci
numbers. Forp > 5 the expression foﬁ(l,,) amounts to linear recurrence relations of
degreg(p — 1)/2 > 2.

Further examples of branching rules will appear later. Such rules apply for instance
to the suspension and the cone over a complex. The@.énater in fact generalizes
Theorem2.2

3. The definition of saturation

Let A be a pure complex over a finite vertex §eaind letp >2 be a prime. I1{19] we
have introduced the notion of saturation for a shellable complex in relation to the prime
p. There we already showed that saturation for shellable complexes has several equivalent
definitions. The purpose of this section is to expand further on the combinatorial and alge-
braic significance of saturation. We shall then extend the definition of saturation to arbitrary
complexes.

3.1. The embedding property for shellable complexes

Let A be pure and shellable of dimensien- 1 with h-vectori(A) = (ho, ha, ..., hy).
Fix two integergl, r) withO < r — [ < pand asin Section 2 we consider the sequence
& A Y S YY. A A0
M(,r) Ce— MY — M — M <—M]+pi<—Mj+p<—-~-

As before we letw( ) be the weight oﬂ/l and we letm ) := min{d ., d"+1} be
themiddle of the sequence. One of the mam resultflid] was the foIIowmgembeddlng

property:

Theorem 3.1(Embedding Theorem The homology of\4 . is zero in the initial posi-

()

tions that is
H,A =0 forallt <m:=mgq,), (3.2)
while in all other positions there is a canonical embedding
w+sp
Hrﬁﬂ > @ hj Hn ;r 5y forw:=wqr and all s >0. (3.2)

Jj=w+(s—-1)p+1

Here of coursé: H stands for the direct suld @& H & --- @& H of h summands. From
this theorem the saturation of shellable complexes is defined as follows:
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Definition 3.2. The shellable compleX is (I, r)-saturated relative top if (3.2) is an
isomorphism for alk > 0. FurtherA is saturatedif A is (I, r)-saturated for al/, r).

We mention that there are shellable complexes which(are-saturated for certain
parameters!, r) but not for others, and that there are complexes which are saturated for
p = 2 but for no other primes. Examples of such situations shall appear later.

3.2. Formal Betti numbers and saturation in general

The module on the right-hand side(@f2) depends on thie-vector ofA only. If A is a not
necessarily shellable complex we may still defindviteector as a function of itsvector by
the use of the relatio(®2.2) in Section 2.3. Hence the module on the right-hand sid8.8j
above can be defined for an arbitrary pure complex, at least if all flege non-negative.
This motivates the next definition:

Definition 3.3 (Formal Betti numbers Let A be an arbitrary pure complex of dimension
n — 1 with h-vectorh(A) = (ho, h1, ..., hy). For given(l, r) we setm := mg ) and

w = wg,). Now let theformal Betti numbersof MY | be given as

A .—0 forallt <m
and

w-sp
h(A) . 1—j
pad) = Z iy, ;, foralls>0,
j=w+(s=1p+1

Whereﬁ?[:"/. r—i) is the appropriate Betti number of the — j — 1)-simplex given in
Theoren2.3.

We shall now give a combinatorial interpretation of these formal Betti numbers. The
Euler characteristic of

A . Y T A N N Y oA 7
M(l’r). ---<—Mj_p<—Mj_I- Mj <—Mj+p_i<—Mj+p<—~-~
satisfies
£, = A fimp —fici +fi —firp-i+--

(3.3)
= ... +ﬂ,A-_p _5]4_i +5}4 _BJA—i-p—i 4.

by the Euler—Poincaré equation. Usit@1) we may now formally substitute thg; by

the components of thie-vector and collect terms in ascending order of index. Using the
expressions for Betti numbers of simplices from Theo&8and taking:; = 0ifi < 0

ori > n, it turns out that the Euler characteristic takes the shape

A h(A h(A h(A h(A
£y, = D) Y 4 g gDy (3.4)
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(A rigorous proof of this claim involves tedious and trivial calculations which we shall
avoid. An example is given if19, p. 384])

Comparing(3 3) and (3.4) one may make the naive conjecture that eactual Betti
numberg% in (3.4) is equal to the correspondifigrmal Betti number$® in (3.3). This
is ewdently not true in general. (The boundary of a simplex gives the simplest example of
the situation when formal and actual Betti numbers differ.) However, the next result follows
immediately from the Embedding Theorem:

Theorem 3.4. Let A be a shellable compleXhen the following are equivalent
() Ais(l,r)-saturatedand
(i) the corresponding actual and formal Betti numbers\j/rﬁ’r) coincide

Recall that (2.2) defines thevector formally for an arbitrary complex. This leads us to
the definition of saturation for a general pure simplicial complex:

Definition 3.5 (Saturated complexgsLet A be an arbitrary pure complex and ete a
field of characteristip > 0. ThenA is (1, r)-saturatedin characteristic p if and only if all
actual and formal Betti numbersml ) coincide. FurtherA is saturatedin characteristic
p) if Ais (I, r)-saturatedfor all (I, r)

It follows from Theorem 2.3 that the simplex is saturated for all primes, and this fact is
the basis of induction for all the complexes we examine.

Comments(1) In this definition we allowf to have characteristic 2, when modular
homology coincides with standard homology. According to the definitionhé&saturated
in characteristic 2 if and only if its homology is concentrated in the top dimension, that is
ﬁA = hy, ﬁiA = 0 fori < n. In particular, complexes which are Cohen—Macaulay over
GF(2) are saturated in characteristic 2.

(2) There are non-shellable complexes which are saturated: These include the order
complex of the posets on pages 599 and 600 of the syileyhe first is a triangulation
of the real projective plane witlf = (1, 13, 36, 24) andz = (1, 10, 13, 0). It is Cohen—
Macaulay over all fields of characteristi¢ 2 but it is not Cohen—Macaulay ové&r or
GF(2). Itis also saturated fgv > 2 and not saturated in characteristic 2.

The second is the triangulation of tldeince hatwith f = (1,17,52,36) andh =
(1, 14, 21, 0). ltis acyclicand Cohen—Macaulay ow&but not (lexicographically) shellable.
Itis also saturated in characteristic 3.

Other examples include the well-known non-shellable triangulations of 3-balls such as
the knotted hole balldescribed by Furch in 1924 and tReroomed house&onstructed
by Bing in 1964. Both are saturated in characteristic 3 and Cohen—Macaulayfwith
(1,380 1929 2722 1172 and f = (1, 480 2511, 3586 1554 respectively. For this see
[12,13,30] See the next section for more examples and remarks.

3.3. Remarks and examples

Remark 1. Modular homology, just as standard homology, depends on the topology of
the complex, not only on thé-vector. For example, the natural triangulations of the
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2-dimensional torug, see Munkreg22, p. 17-18] and of the Klein bottlK share the
samef-vectorf (T) = f(K) = (1,9, 27,18), and so have the santevector h(T) =
h(K) = (1, 6,12, —1). Nevertheless, the 3-modular homologieSafndK are different:
Tis (1, 3)-saturated buK is not (1, 3)-saturated. Similar examples are knojA8, p. 362]
even for shellable complexes.

Remark 2. The behaviour of the modular homology of non-shellable complexes seems to
be extremely erratic. In particular, tleenbedding propertynay not hold, and homologies
can be non-trivial even in positions< m to the left of the middle. An example for this is
the 7-dimensional analogueof the Mdbius band given by

A=1{1,2345678),(234567809) (345678910, (4,5,6,7,8,9, 10,11}, {5,6,7,8,9, 10, 11, 12},
{6,7,8,9,10,11, 12, 13}, {7.8,9, 10,11, 12,13, 14}, (8,9, 10, 11, 12, 13, 14, 15}, {9, 10, 11, 12, 13, 14, 15, 16},
(10,1112 13, 14, 15, 16, 17}, (11, 12, 13, 14, 15, 16, 17, 18}, (12 13, 14, 15, 16, 17, 18, 19}, {13, 14, 15, 16, 17, 18, 19, 20},
{14, 15,16, 17, 18, 19, 20, 21}, {15, 16,17, 18, 19, 20, 21, 22}, {16, 17, 18, 19, 20, 21, 22, 23}, {17, 18, 19, 20, 21, 22, 23, 24},
(7.18.19, 20, 21, 22, 23, 24}, {6, 7. 19, 20, 21, 22, 23, 24}, (5, 6, 7, 20, 21, 22, 23, 24}, {4, 5,6, 7, 21, 22, 23, 24},
(3.4,5,6,7,22,23,24), {2.3,4,5,6,7, 23,24}, (1, 2,3,4,5,6,7, 24} }

with f(A) = (1,24, 168 504 840, 840,504, 168 24). For p = 3 the sequenceM(Al’z)
is exact Whl|e./\/l(1 3 andM(AZ’B) have non-zero Betti numbef , = 1, 8, = 24 and

B31 = 1,P5, = 24, respectively. The middle position of the sequemgﬁ) ism,3 = 2.
However,f; , = 1 occurs in position 1. '

Example 3. It is instructive to work out the formal Betti numbers in terms of theector
for some low-dimensional complexes. Here we do this for a complex of dimension 7. So
let A haveh-vector(hg, h1, ..., hg). In the following table the formal Betti numbers for

= 3 are given (We suppress superscripts and vftiteinstead ofﬁh(A) )

() | w

(1,2)| 1| paz = ho; Bs1 = ha + hg; B7,2 = hs + hg; Ps.1 = hg
(1,3)| 2 |[far = ho+ ha; Be,2 = ha+ hy; B71=he+ h7
(2,3)| 3 ||Bs2 = hy + hy; Be,1 = ha + hs; fs,2 = h7+ hg

Similarly, for p = 5 the formal Betti numbers are the following:

(r)| w

1,2)| 5 Be.a = 8h1 + 8hy + 5Sha + 2hy; p71=he+ hy
(1,3)| 1 |[f3, = 2lhg; P6,3 = 8ha + 8hz + 5hy+ 2hs;  fg2= h7+ hg
(1,4)| 2 ||y = 34no + 13ny; Be.2 = 5ha + 5hy + 3hs + hg
1,5 3 ﬁ5’4 = 21hg + 13h7 + 5hy; f6,1 = 2ha + 2hs + hg
(2,3)| 2 ||B3 1 = 21ho + 8hy; f7.4 = 3hz + 3hs + 2hs + hg; fg,1 = hg
2,4 3 ﬂ4’2 = 34hg + 21h;1 + 8hy; f7,3 = 3ha + 3hs + 2hg + hy
2,5 4 ,3513 = 21hg + 21h; + 13hy + 5hg; f7.2 = 2hs + 2he + hy
(3,4 4 ﬁ4’1 = 13hg + 13h; + 8hy + 3h3; fg,a = hs+ hg+ hy+ hg
(3,5 5 [3512 = 13hy + 13hy + 8h3 + 3hgy; fs3 = he+ h7+ hg
4,51 ﬁ4y4 = 13hg; fs5,1 = 5ho + Bha + 3ha + hs
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Several observations can be made. For instance, the coefficient&péiivays belong to
the set of values taken by the dimension of the Fibonacci module in the corresponding char-
acteristic. Thus they belong {0, 1} for characteristip = 3andto{0, 1,2, 3,5, 8, ...}
for characteristico = 5. Similarly, the ‘highest’ Betti numbefg ; is the same in both
characteristics, with obvious patterns fi», .., fg ,_1. To some of these observations we
shall return later.

Example 4. LetI" be a graph withn vertices andn edges. As a one-dimensional complex
I" is shellable if and only if it is connected, in which casexn — 1. It is easy to note that
I' is saturated in characteristicif and only if its incidence matrix hag-rankn — 1. It is
also easy to check then that even cycles are saturated forgweérje odd cycles are not
saturated fop > 2. In fact, we shall see later that a graph is saturateg for2 if and only

if it is bipartite.

Example 5. Finite Coxeter complexes and spherical buildings are saturated for every
prime p, see[19]. It is easy to check that the sporadiz-geometry forA7 with f =
(1,57, 315 315 andi = (1, 54, 204, 56), constructed by Neumaier (s¢23, p. 50), is
saturated in characteristic 3.

4. The topological condition for saturation

In this section, we shall be interested in the geometric and topological aspects of satura-
tion. In particular,

k
if I' is a saturatedn — 1)-dimensional complex and &£ := I" U 2" is a kgluing,
under what conditions on the gluing is it true that alAds saturated?

A comprehensive answer to this question would in particular classify all shellable sat-
urated complexes. Fgr = 2 the modular homology coincides with standard simplicial
homology. Thus, the homology @f andI is the same fok < n and fork = n all but the
top homology is the same, with the top homology increased by 1. However, foP the
situation is rather more complicated. First, we shall pose the problem above in a slightly
more general form, wheh itself may not be saturated.

4.1. Gluing sequences

Let nowp be a prime>2. We assume thdt is an arbitrary pure complex of dimension

k
n — 1 and we suppose th&t = I" U 2" is ak-gluing for somek <n. As in Section 3

we fix two integerg!/, r) with 0 < r — [ < p. To compare the homologies ﬂﬂg_r) and

MU we setd := df} | andu := dj;*. In Theorems 4.1 and 4.2 {£8] we have shown
the following.

Theorem 4.1. Good casesf u = d, co orif H | = Othen/\/l(rl " and/\/lﬁ,r) have the

same homology in all positions except possibly in position u in which case

A gl —k
Hu — Hu @ H(’Il—k,r—k)'
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Bad caseslf d # u < coandH,_, # OthenM(, ., and M} =~ have the same homology
in all positions except pOSSIbly in positions u aneL lin WhICh case the homologies are
related via theb-term exact gluing sequence

) A —k 0 A r
gS'O<_HL¢— H 1EB (_HLrtlfl@H(I} k,r— k)<_Hu <_Hu «— 0.

The map0 here is crucial. If19] we showed that in either cagehas the property

O(H) < Hj~y ,_,,- From exactness df* we obtain the embedding

A r
H — H, @H(I kr 3

which occurred in Theorer®.1

k
Definition 4.2. The gluingA :=T" U 2" is (I, r)-saturated ovel if the conclusion of the
first part of Theorend.1holds, that is, if

HA~H fort #u and H) ~HI ® H[Z} .

k
Further,A is saturated ovel if A:=T1 U 2" is (I, r)-saturated for all/, r).

We have therefore a first answer to the question at the beginning of this section:

k
Proposition 4.3. (i) The gluingA = T" U 2" is (I, r)-saturated ovel” unless we are in
one of the bad cases of Theordm. If the latter happens then the gluing(s r)-saturated
if and only ifO(H2) = HZ} .

k
(i) Assume thal" is shellable and that = T" U 2" is (/, r)-saturated ovel". ThenA
is (I, r)-saturated iffl" is (/, r)-saturated

4.2. The topological characterization

To formulate one of the main results of this paper we need additional topological back-
ground material, see Bjorng3,4] or Stanley{27].

Let I be a pure complex of dimension— 1, letA = I 6 2" be ak-gluing and
let ¢ denote the vertex set df”. Then therestriction i of ¢ is the set of all vertices
p € o such thato \ {f} is contained inl". So% is a (k — 1)-dimensional face o&”
and one should regard it as tbater facein the gluing. Its complement := ¢ \ R then
is theinner facein the gluing. The subcomplexes star) and linky(z) are as defined
earlier. In particular, the dimension of ligkr) isn — |7| — 1. The definitions are illustrated
in Fig. 1.

In Fig. 1 the restriction of the gluing 18 = {f;, fi5} and the inner face is= {f3, fi4}. It
is useful to regard2andI” as subcomplexes d. So we could also say thaét = {01, 02}
andt = {03, d4}. Also, linka (1) is the cyclic graph on the vertic€8;, 2, s, Jg).
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Fig. 1. Gluing=* ontoT.

The main theorem now follows. When saying thiais al-cycle ofA relative to link-(7)
we mean that there is somfee M2 € M2 with 6% + f) = 0 whereA := linkp (7).

k
Theorem 4.4(Null-Link Theorem LetI be a complex and lek = IT" U 2" be a gluing
with restrictiondt and inner facer. Suppose thap > 2. ThenA is saturated ovef if and
only if it is a 1-cycle ofA relative tolink (t).

In one direction this resultis Theorem 4.11®]. The converse is rather involved and will
be proved in the next section. First we shall concentrate on the topological significance of
the theorem and its combinatorial interpretations. We begin with a further definition which
explains the name of the theorem:

Definition 4.5. Let A be a pure complex with facets, ..., t,,. ThenA is null with
respect tad over F, or justnull , if there are non-zeroy, ..., ¢, € F such thato(city +
cooteptm) = 0.

Let A be a pure complex and I#t" be a subcomplex af. ThenA™ is apart of A if
all facets of A* are also facets of\. We can now give an equivalent formulation of
Theoremd.4:

k
Corollary 4.6. LetI be acomplex andleX = I' U 2" be a gluing with restrictiomt and
inner facer. Suppose thap > 2. ThenA is saturated ovef if and only if )t belongs to a
part A* of link 5 (1) such thatA™ is null.

Proof. Letf be as in Theorem.4 and leth + f = R + c1dy + - -+ + cAm. Now let A*
be the complex with facets, A1, ..., 4,,. The restis evident. (I

We will call a null-part of A = linka (t) coming throughit anull-continuation(or null-
extensiohof N in A and denote it byi. Thus,A is saturated over if and only if ® has a
null-extension.
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Nullness is a most fundamental concept for modular homology. It forms the link between
the algebraic and the topological theory in modular simplicial geometry. Note first that
nullness with respect to the inclusion map is in no obvious relationship to nullness with
respect to the boundary map. However, whenever we dealoeaitiplexes whose links are
null in both sensesthen deep connections between algebraic and topological properties
can be made. Let us say here that a complednigorm null if it is null with regard
to the inclusion map and the simplicial boundary map. Note that this property depends
on the characteristic df. For one-dimensional complexes for instance, an even cycle is
uniform null over every field, while an odd cycle is null in either sense only over fields of
characteristic 2.

An important class of uniform null complexes ar@limensional octahedra, also known
as cross polytopes or as dualsmeflimensional cubes, see Section 4.4 later. As we have
noted in Section 2.4, these play a crucial role as generators of the homology of the simplex,
see also Theorem 5.2 ji].

A wider class of uniform null complexes, comprising octahedra and Coxeter complexes,
arebi-colourable pseudo-manifolds without boundaFese are pure complexes in which
each facet can be given one of two colours such that every co-dimension 1 face is contained
in exactly two facets and where these facets have different colours. Here it is clear that the
coefficients in Definitiort.5can be taken as = £1 according to the bi-colouring. It may
be interesting to note that any union of at mgst-1) /2 such bi-colourable pseudomanifolds
remains uniform null, by adjusting the coefficieatsn the obvious way.

In[19] we have shown that Coxeter complexes and buildings are saturated; this depended
crucially on the nullness of links. The same property will appear later on in this paper in
applications of the Null-Link Theorem. To mention are also the Coxeter matroids considered
in Borovik’s article[9]. Also there we expect to reveal the same deeper relationship between
modular and standard homology. We summarize the comments from above in the following
corollary, already noted if18]:

k
Corollary 4.7. Let A = T" U [o] with inner facer and suppose thap > 2. Suppose
thatlink o (7) is a 2-colourable pseudomanifold without boundagin particular, suppose
that link s (t) is a 2-colourable triangulation of a sphefeThenA is saturated relative
toT.

4.2.1. Some examples: graphs and 1-shellable complexes

Zero-dimensional complexes are collections of some isolategttices, withh-vector
(v, 0). These are always saturated. Pure 1-dimensional complexes are graphs without iso-
lated vertices. As a complex, a graph is shellable if and only if it is connected. We illustrate
the Null-Link Theorem by the following simple examples.

Example 1. Let I be the pentagon, i.e. the graph of five vertices and five edges, and let
¢ be one of its diagonals. Then for the gluing= I' U [¢] we havek = 2,7t = ¢ and
linkp(t) = I'. There are a three-cycle and a four-cycle throagh I' U [¢]. ChooseA to

be the four-cycle. TheA is null and soA = I" U [¢] is saturated ovelr (but not saturated,

asI’ is not saturated). In general, the following result may be checked, see also Proposition
6.5later:
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Corollary 4.8. A connected grapltas a one-dimensional comp)eg saturated in charac-
teristic p > 2if and only if it is bipartite

Example 2. The case ok-gluing withk = 1 is also easy. Indeed, helfe| = k = 1 and
soA = link(7) is just a collection of vertices. Takk™ to be a pair of vertices. Evidently

1
A*isnull, and scA = I' U [o] is always saturated over.

Example 3. We call a shellable compleXx with m facets 1shellableif Z(A) = (1, m —

1, 0,...,0). Herek = 1 for every gluing and so one may consider such complexes as
generalized treeg he next result follows from the previous example and from the definition
of saturated complexes:

Corollary 4.9. Everyl-shellable compleA is saturated for every > 2. Moreover every

sequence!\/lﬁ " is almost pexact with homology

A -1
Hi,>~Hj,) ® m—DH;"7, 4

in the middle
4.3. The Proof of the Null-Link Theorem

In this section we shall prove the Null-Link Theorem. In the first part we give a condensed
version of the proof for sufficiency as presented[19]. This lets us introduce all the
techniques needed to complete the proof of necessity in the second patrt.

4.3.1. Sufficiency of nullness

k

As we noticed previously, the property Af = I U [¢] being saturated is completely
determined by the mafl in the exact gluing sequencgS. We shall recall briefly the
definition of this map.

_ k
1. The definition of the ma@: ForA = T" U [o] let A := ' N [¢] be the part of the

k
boundary of g] generated of thk faces of dimensio — 2). Associated td” U [o] is the
Mayer—Vietoris sequence

0—pLcoB a—o0

Mr

Mﬂ (l’r)

whereA, B, C andD denote the modular homological sequenﬁd%, 1)

and/\/lﬁ_r), respectively.

To define the map& andy note that there are natural embeddifys— A — C and
B — D <« C and fora € A we indicate its images if# andC by ag andac respectively.
The same convention appliesios B andc € C. The homomorphismé andy are now
given by¢(a) := (—ac, ap) andy(c, b) := cp + bp, see als¢22, p. 143]

Now the gluing sequendgs is just an interval of the long homological sequence

r)’

0
'<_H,4A—1<_Hur—1@ ;71<_HL}A—1<_HMA<_H{@H£<_'”
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betweenHLj‘_2 = 0andH! = 0, see Theorem 3.1 §18]. Here0 is the usual connecting
map. Its definition is standard and may be found in any textbook of homological algebra
or algebraic topology, see for examp2] or [19, p. 389] For short one can say théis
induced byd = ¢ 1%y~ wherey~1(d) is anypre-image ofi and where?*, as before,
stands for whatever power 6fis needed in the context.

Thus0 mapsHA into HA ' 1. Tounderstand this map better we need to explain the structure

of the moduleH” |
2. The structure ofHLf_l: For this we need some notation. As above,diebe the

restriction of the gluingA = I LkJ [0] and lett = ¢ \ M be the inner face. Let &
[1] ~ 2", Suppose thaH corresponds tcHA when switching from positions to the
two-parameter notation of modular homology, see Section 2.3.

As was mentioned in Section 2.4, Fibonacci modules are generated by octahedra. This
means that any element Hfl. # 0 arises as a linear combination of clasggsof the

following shape: The elemeante MI.T is of the forme = vUs wherev = (a1 — ) U---U

(#j—i+1 — Bj_i41), Wheresis an (i — 1)-face of the forms = {y,,...,7,_,} and where
thew;, f; andy; are pairwise distinct. Note théf(v Us)=0= Fid (s) andd(v) = 0. The
next result has been proved[iB,19}

Lemma 4.10. The module” , is isomorphic toH" | & H(l r.r—k)- Moreover the iso-

morphismH” | /H" | ~ H(z - is of the form[&’ MUe) < [e] € HT , . where

Jj—k,i
ec MT _ Is an octahedron with' (e) = 0.

3. Completing the proof of sufficiencyAs we noticed before in Proposition 4.8,is
saturated ovel if and only if 0 has the maximal possible imaQeHuA) ~ HJ_k’r_k) ~

H(’} 1’§r oy Thus, to show thaA is saturated over it is enough to prove that for every

octahedrore = s Uv € MT _x With & (e) = 0 one can find somgr] € HuA such that
0(h) = &' (M U e). Suppose that there i ¢ M,f”k” c M2 such thatd(h + f) = 0.
Now takeh := (R + f)p Uep € MA. Sinced (e) = 0, andep and (% + f)p have
non-intersecting supports, aIé’dh) = 0 and so the corresponding cl@s$is in HMA. Then

0(h) = ¢y O+ ) Uelp
=¢4ﬁqmuSuMB[fusuM@
= ¢ ((3 MUs)Uuvg, 0 (st)ch)
= qS (8 MRUs)Uvg, =0 (M Us)Uue)
=0 MUs)Uuvy
= MUsU)
= MUe).

The equality&i (fUs) = iy (M U s) follows from the fact that's = 0 and soai((i)’i +
f)Us) =M+ f)ud's = 0. This completes one direction of the proof.
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4.3.2. Necessity of nullness
We keep the notation of the previous section. Supposettissaturated over and let
A = linkrt wherert is the inner face of the gluing. To establish necessity we need to show
thatif H(HA) ~ H, krk) 0 then there exists somge e M such thatd(\ + f) = 0.
As we have noticed above, whdns saturatedQ(HMA) is spanned by elements of the form

[5i (MUe)] wheree € MjT,k is an octahedron with' (e) = 0. Thatis, for every suchthere

exists an element:] € HuA such thati[h] = [a" MUel. We_ shall look first at the more
general situation when ongomeoctahedra are images undger

k
Lemma 4.11. LetA = I' U [g] be an arbitrary kgluing. Lete MT be an octahedron
with supporty = suppe) € T < A. Suppose thatd' (R U e)] € H(HMA). Then there exists
an elementf € M,"""” such tha¥( + f) = 0.

In other wordsif an octahedron e is in the image of the gluing ntaghen there is a part
of linka (supp(e)) that is null and comes through the restriction To proof the lemma we
need a new tool. This is the idea of ‘division by octahedra’ developed in a section below
which will be entirely independent of this material.

Proof. Let[1] € H2 be such tha@[h] [6 (RUe).AsO = ¢~ 20"y 1, itis easy to check
thatthere isg € /\/lr such thatd'g = ' (e U 0). Note that this statement is non-trivial:

while &' MNRUe) € Mr we haver U%t ¢ M!. Now setf := —g/e as will be explained in
the next section. It follows then from Theorefri5that f € M'"krD and9’ = — /. The
result follows. O

For the remainder of the necessity proof we shall need octahkedraM ™ with the
maximal supportupp(e) = T. The existence of such octahedra follows from the next fact
which is a simple exercise in the ‘middle-term condition’ of Theozf

Lemma 4.12. For every simplex” and everyp > 2,the Fibonacci modulé]" is £ Oif
(, " has weighfp — 1. In this caseH(’} " is generated by octahedra e of maX|maI support
that issupp(e) is equal to the vertex set af". In particular, H, ) = = H, ,forn = 2m

andHj , = H, ,forn=2m—1.

(Ir

Tofinish the proof, note that the saturatiom\adverl” means thad is (I, r)-saturated over
I" for every(l, r). Using Lemma4.12choose(l, r) such that the homologylg_k,r_k) o~

(_9(HMA) should be generated by octahedraf the maximal support. Now choose any
such octahedroa and use Lemmad.11above. This completes the proof of the Null-Link
Theorem. O

4.3.3. Some corollaries
We continue to keep the notation of the previous section. The proof of the Null-Link
Theorem implies two important corollaries. The first states that if a gluing is saturated in
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some special sequence then it is saturated globally:

Corollary 4.13. LetA =T U 2" be a kgluing. LetM , be any sequence of weight
w=k—1 (mod p). ThenA is saturated ovel if and onIy if itis(/, r)-saturated over
I.

Proof. The sequence\/l(Tlfk’rfk) has weightp — 1 and so is generated by octahedra of
maximal support. Henc& can be null-extended and so, by the Null-Link Theorénis
saturated ovef’. [

Now let A be saturated over. We shall describe the ‘new’ elements that arise in the
homology ofA under the gluing. Recall that a null-partdf= link s () that comes through
the restrictiorit was denoted b$i and called anull-continuationof % in A.

Theorem 4.14(Structure of generatojs Let A be saturated oveF so that in particular

A T —k o k
H, ~H, EBH('; kot Whereu = d?ﬁ),

for any (I, ). Then the vector spacﬁf/H{ is spanned by elements of the fof#hu e],

where[e] runs over all generators oHJ_k,r_k). (In particular, e could be taken as an

octahedro.

Proof. Note thatit andeare disjoint and thgbi Ue] € HuA. Then compare dimensions[]

Note This corollary gives us the precise structure of the generators of the homology of
buildings and geometric lattices among others. This is an important part of the theory of
modular homology, in particular when group actions on complexes are considered. This
will be discussed in a forthcoming pagded].

4.4. Division by octahedra

In this section, we shall take the analogy between the inclusion map and differentiation
a little further. In one respect this material is technical and is needed only to complete the
proof in the previous section. On the other hand, the division considered here has some
interesting algebraic properties which may make it worth investigation in its own right.
When differentiating functionsf’ = 0 means thaff = c is constant. Ifc¢’ = 0 with
¢ # 0, and if f, h satisfy f/ = (ch)’ thenh’ = (f/c)’. Are there similar relations for
the inclusion map? To answer this question we have to consider the structure of the kernel
of 0. This depends on the characteristic of the fiEld~or instance, if chaF = 0 then
Ker 8" N M is spanned by elements of the form

ckm = (01— P U (a2 =P U---Ulor = B U {1,720 - s Vs

wherek = r + m, see[16,1,25] (Note, we suppress set brackets, and wijtes; instead
of {0}, {B;} more properly.) As we pointed out in Section 2.4, foe k the terms incy o
represent the alternately signed faces éfdimensional octahedron and for< k they
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represent a cone over such an octahedron. For this reason we @alleal generalized

octahedron, or just an octahedron. It is easy to checl@fﬁﬁjt(ck,m) = 0 over every field
and so octahedra could be considered as analogues of ‘constaritsHowever, for this
to work we need to define ‘division by constants’.

This can be done under the following restricted circumstancesAlls an arbitrary
complex with vertex set Q. Suppose th&t has characteristip > 2 and let

CZZCT‘CEMA, creF,

CQ

be such that»~Y = 0. Seto := suppc and letf be an arbitrary element in/2.
Decomposé with respect tar as in Section 2.1,

= fut

1Co

and set

[f,c]:= Z cof”.
1Co
Note that[ f, c] € M as eachy™ belongs tav2. If wt(c) # 0 € F we can define, writing
againc’ for d(c) andc/) for ¢’ (¢),

— 1 [ ] 1 [ /]/ 1 [ //]//
f/C.—Wt(C)<f,C +ﬁf,C +ﬁf,c

1
+ -4 —[ } C(P—Z)](P—2)> .
(r—24p—-D! /
In particular, ifc is an octahedron then its weight is a power of 2 andfgo exists by
the assumptions on the characteristi¢-ofThe quotient has interesting properties such as
(cU f)/c= fand(f1+ f2)/c = fi/c + f2/c. Furthermore,

Theorem 4.15. Let F be a field of characteristip > 2 and letO < i < p be an integer
Let A be a complex with vertex set Q and suppose that € M2 is an octahedron with
¢® = 0.Let f, h € M2 be such that h is disjoint from ¢ ant®) = (c U h)®. Then f/c
belongs tav2 andh’ = (f/c)’. Moreovet if o := suppc is aface ofA thenf/c € M'"kac,

Proof. The proof is straightforward. Any octahedrene M2 such thai®> = 0 has the
form

c= (1= U(2—P)U---Ula —p)Uy,
wherey = @ if i = 1 andy := {y1, 75, ...,7;_1) fori >2. Note thaty~V = (; — 1)! and
7@ =0.Then(c Un)® = (a3 — 1) U...U (& — B,) U (y Un)D where

i .
(yUR)® = Z (;) YO UK = 0 4 g1h” + goh” + -+, (gx € MP).
k=0
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On the other hand, according to Lem@4,

U =f"=3 (g’“(;ﬁ) 2 (f")(""‘)) U

1Cao TCpCo:|p\t|=k

Let 7 be any of the wic) = 2" many faces which appear in the decompositioroaf —
p) U---U(a — f,). Let signz) = £1 be the coefficient of. Comparing the previous
relations, we have

. (i—k)
. w1
signmh’ = o ( 3 fp)

k=0 1CpCo:|p\t|=k

; 1 (k)
— - P
_Z k! ( Z f ) :
k=0 TCpCo:|p|=t+i—k

Now take the alternating sum of these relations:

. (k)
2'h' =) sign() Z% ( > fp) .
T k=0 : k

TCplo:|p|=t+i—

The result follows after collecting terms. Also the last assertion is easily verified.

Example 1. Let p > 2 andc = ({a} — {f}) U{y}. Theno = {«, f3, y}. Sincec’ = {a} — {f}
andc¢” = 0 we have

f{uv} _ f{/f“/} N (f{a} _ f{/f})/

fle= 2 4

Example 2. Let p > 3 andc = ({o} — {f}) U {ye}. Theno = {o, fB,7,¢} andc’ =
(fo} = (BH U ({y} + {e) = {o, v} = {B, v} +{o &} — {B, &}, " = 2({e} — {B}), " = 0.
Thus we have
f{wz} _ f{ﬁVS} N (f{fxv} _ f{ﬁ“/} + f{ow} _ f{ﬁ&})/ N (f{a} _ f{/)’})”

2 4 12 '

fle=

5. Geometric lattices are saturated

Itis well known that the order complex of the proper part of a geometric lattice is Cohen—
Macaulay. Here we shall use the Null-Link Theorem to prove a somehow similar result
about saturation. IfL, <) is a partially ordered set then the faces of tlider complex
A(L) are the linearly ordered subsets < oy < --- < o, With o; € L.

Theorem 5.1. LetL = Aﬁ U 0U 1 be a finite geometric lattice with proper pafnt Then the
order compleXA(L) of L is saturated for every > 2.
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Evidently, A(L) is the bi-cone oveA(L) and henceA(L) is also saturated, as will be
shown in TheorerB.6. Note the contrast to the case of standard simplicial homology where
A(L) is always acyclic in view of its contractibility. The following proof is based on ideas
from [5].

Proof. Letay, ..., o be the atoms of and fory, 6 € L lety < ¢ denote thap is covered
by §. To each such pair we associate the label

Ay <) :=min{i : o; vV y=0}.

To every unrefinable chaim : yg < 71 < - -+ < 7, NOw associate the sequence

o) = (A0 < 7). A0 <72 oo Mg <70) € 25

There are no repetitions if{o) and the maximal chaing, < y; < --- < 7, are the facets
of A(L). If we arrange these in lexicographical orden, 62, ..., 0, ... thenthisis a
shelling of A(L) sinceL is a geometric lattice, s¢B].

k
Thusletl', ;= 01U ---Uay,, andA :=T" U o,,41. We need to show tha is saturated

overI'. Just as in Theorem.4 let % be the restriction of the gluing 6 om+1 and lett =
am+1 \ N be the inner face of the gluing. It follows frofs] that) is completely determined
by thedescent setf 4 := A(g,,41). TO be more precise, let us say that (41, ..., 4,)
has adescentt positioni, where O< i < n, if 4; > 4;4+1. The sequence then is said
to havedescentseD()) = {i : 4 > 4i+1,0 < i < n}. Letk = |D(4)|. The restriction
R = R(oma1) € A(L) is thek-chain of elements

l
o=\ ay €L for ieD()
j=1

or, in other words, the fac® = {y; : i € D(1)}.
Let us decomposé = (41, ..., 4,) into parts according to the rule:

e every group of neighbouring descents elements, together with the immediately subse-
quent element, form a part, and
e any element not in some part of the previous type forms a one-element part.

We shall denote this partition bif (1) = {m; : |Um = A}. For example, the sequence
14325 produces the partitiof{1}, {2, 3, 4}, {5}}, while 21354 gives{{1, 2}, {3}, {4, 5}}.
(Here bars mark descents.)

The Young subgroup af,, associated witH1 (1) will be denoted byG (1) = S(m1) x
S(mp) x -+~ x S(my). Fori € D(Z) andg € G(/) let nowp, be the simplex

i
pg = \/ O(g(,lj) S D(i)
j=1
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and set
hi= )" signg) p,.
geG(4)
fi= > signg)p, =h— 9%
1#£geG(2)

Let A € A(L) be the(k — 1)-dimensional complex generated by the faces which ap-
pear inh, A := (p, : ¢ € G()) and letA" := (p, : 1 # ¢ € G(1)) be the subcomplex
corresponding té. Note the following:

o Inview of the lexicographical ordering of chains we have AandA* C I'. Moreover,
it is easy to note that actually C linkx (t) andA* C linkp (7).

e AsG(4) = S(m1) x S(m2) x --- x S(m;), the complexA is the direct product of Coxeter
complexes of non-trivial symmetric grougsr;). ThereforeA is 2-colourable and so
oh = 0 for any field of characteristip > 0, seg/19, p. 391]

Thus is a 1-cycle ofA relative to link-(t) and by Theoren#.4 we know thatA is

saturated ovel'. The result follows by induction. (I

Example. In Fig. 2 the initial part of the shelling of the 2-dimensional Coxeter complex
Az = A(By) is presented. The sequendeare precisely the permutations of the symmetric
groupSa:

1234 < 1243 < 1324 < 1342 < 1423 < 1432 < 2134< 2143 < - - - .

The first non-trivial casé = 2 occurs for/. = 1432 whenII(}) = {{1}, {2, 3, 4}} and
G(A) =S x S({2, 3,4}) ~ S3. HereA is the Coxeter complex dfs, i.e. just a hexagon.
We may see from figure that in our case- {1} andA = links (). Note that this always
holds wherL is a Boolean algebra but that this may fail in general.

The second case @&f = 2 occurs forl = 2143 whenII(1) = {{1, 2}, {3, 4}} and
G(A) = S({1,2}) x S{3,4}) >~ S» x S2. Heret = {1, 2} andA = linkx(7) is the direct
square of the Coxeter complex 8f, i.e. just a square.

14 124

13 123

Fig. 2. An initial part of the lexicographic shelling @fs.
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6. Other applications

In this section, we shall discuss some application of the results in Section 4. Obviously, if
the modular Betti numbers are known then we can determine the rank of the inclusion maps
0: MkA — Mk{1 and this is the first area of applications. Secondly we shall look at standard
constructions such as forming cones and suspensions where it is possible to compute the
modular homology directly. In the last section we deal with rank selected order complexes.

6.1. On the p-rank of incidence matrices

Let againA be a complex of dimension— 1 and lets <z <n be integers. Then we may
define &0, 1}-incidence matrix = 72(s, 1) of size f; x f; which records the containment
relation between the elementsAf andA,. Thus

I 1 ifoCr,
7 0 ifofr.

WhenA = 2" is the simplex of dimension — 1 we denote the corresponding matrix by
I"(s, 1). As the I (s, t) are representations of the complex their algebraic properties are
of importance. In Wilsorf29] for instance, the invariant factors (or Smith form)I61s, ¢)
has been determined. To obtain results of this kind for other important complexes is of very
considerable interest.

A partial answer in this direction are formulae for the rank 6fs, 1) when considered
as a matrix oveG F (p). This quantity we shall denote byﬁky, t). (Of course, it —s < p

then rk) (s, 1) is the rank of the map’ ™" : M2 — M2.) For the simplext™ there is the
well-established result

,é <s —npk> - <t - pn— pk> ’

for all s, ¢+ with s + r < n, see[11,16,29] As has been noticed if8, p. 152]“it is an
interesting problem whether the general form of Wilson’s results has any extension...”.
Here we shall find a (partial) solution to this problem.

An expression similar to the above can be formed for arbitrary shellable complexes and
these can in fact be used as further algebraic characterizations of saturation, as we shall see
now.

In the spirit of Section 3.2 we establish a formal expression foptrenk of complexes
associated to a givamvector:

rk’[’,(s, 1) =

Definition 6.1 (Formal p-Rank Leth(A) = (ho, hi, ..., h,) be theh-vector of a com-
plex of dimensiom — 1. Then

n

B (s, 0) := Y " hy 1k (s — iyt =) 6.1)
i=0

is theformal p-rankassociated ta(A) .
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Now the following two closely connected observations can be made:

Theorem 6.2. Let A be a shellablgn — 1)-dimensional complex with-hectori(A). Let
p > 2 be a prime and suppose that< ¢ <n are non-negative integers with— s < p.
Then

rkA(s, 1) = rkh(A)(s, t) ifs+t<n. (6.2)
P P

Theorem 6.3. Let A be a(n — 1)-dimensional complegpossibly non-shellabjeand let
p > 2be a primeThenA is saturated in characteristic p if and only if

rkﬁ(s, 1) = rkﬁ(A)(s, t) foralls <t<nsuchthatt—s < p. (6.3)

We shall prove both theorems simultaneously:
Proof. First, let A be an arbitrary shellable complex withvector (fo, f1,..., fu). In
view of the condition O< t — s < p we may look at r%(s, t) as thep-rank of the map

o' M® — MA. According to Theorer8.1, in the sequencﬁ/lé’,) all homologies to the
left from the middle are trivial. Equivalently, s€E8, Corollary 5.6]for s +¢ < n, we have

I’k%(s, ) = fs - ft—p + fs—p - ft—2p + fs—2p - ft—3p +e (6-4)

The result follows now from the formula

he=) (=D (Z - j) (6.5)

i=0
after substituting it into (6.1) above. This proves Theotg
Now let A be saturated. Hence its Betti numbers are
w+sp
A .
By = > hiBy;,_;, foralls>0.
j=w+(s—-1)p+1

Fors 4+t >n we need to take these into account when evaluating the rank:

rkﬁ(sa [) = Z(fs—kp - .fl—p—kp) - (ﬁ_yA—kp,p—r—‘,-s - ﬂtA—p—kp,r—s)' (66)
k=0

Also

n n n n
ki (s.0) =) (S B pk> - < ) £ Bl (6.7)

k=0 t—p—pk

where the sign of the Betti number is determined by its position in the sequetjcs.
Now put (6.5) and (6.7) into the right-hand side 813). After transforming dimensions into
positions we obtain (6.6). Thus, for saturatkedhe relation 6.3) holds also fox + ¢ >n.
Finally, since Betti numbers are completely determined by rark8) (mplies saturation
of A. O
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If p>nthen Theoren2.3(v) implies that rk (s, 1) = min{(}), (})}. Thereforeifp, ¢ >
n are primes then g(s, 1) = rkg(s, t) and we may derive the following:

Corollary 6.4. LetA be an(n — 1)-dimensional compleXf A is saturated for somg > n
thenA is saturated for every > n.

An interesting special case illustrating this corollary arisesifer 2 when the complex
is a graph. As we have seen previously,

e a connected graph is saturated in characteristicif and only if its incidence matrix
hasp-rank one less than the number of verticed of
e aconnected graph is saturated for alp > 2 if and only if it is bipartite.

From these we derive immediately the well-known fact which follows also from results
of [8].

Proposition 6.5. Let A be a connected graph on v vertices with vertex-edge incidence
matrix/ (1, 2). ThenAis bipartite ifand only if foran < p # 2we haveank, 14(1, 2) =
v—1.

In fact, the Theorerf.3above could be considered as a multi-dimensional generalization
of this fact!

6.2. Cones and suspensions

For some classes of simplicial complexes the modular homology can be computed by
general constructions. These include cones and suspensioAdd ah(n —1)-dimensional
simplicial complex on the vertex s&and letx, 5 ¢ Q be new vertices. Then ttowneover
A is then-dimensional complex

CA=AU{aUg : g€ A}
and thesuspensiowver A is then-dimensional complex
SA=AU{aUoc : 0 e AJU{fUc : 0 € A}.

It is well-known that cones are acyclic in standard homology,[28k The modular ho-
mology of cones is more complicated:

Theorem 6.6. Let A be a pure complexthen for ever <k <n and0 < i < p we have
CA . A A
Hii = Hii1 ® Hiog g
(We putHy = H,fp =0)

If p = 2 then we havehlkc’lA = 0 for all k. Also the case 3 is special. Here we have

tI;IkclA h:'ftHéA’z andHC4 , = HY ,,. Thus, in a sense, the 3-modular homology is preserved
ut shifted:
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Corollary 6.7. Let p = 3. Then the modular homology in the sequemd\% ’) coincides
with the homology |m/l(l+l7,.+1).

Clearly, Theorent.6 generalizes Theore3. As we have seen already, the 3-modular
Betti numbers o™ are either O or 1. Similarly, all eight non-zero 5-modular Betti numbers
of 2" are amongp(n — 1), ¢(n) or ¢(n + 1), wherep(n) are elements of the sequence
1,1,2,3,5,8, 13, 21.. of Fibonacci numbers (so that, for exampjg8) = 21). Now
we look at suspensions. Here theector of SA satisfiesif® = h2 | + h for all k<n. It
is well-known thatd* = H{ , in standard homology. Again, the modular case is more
complicated.

Theorem 6.8. Let A be a pure complexthen for ever<k<n and0 < i < p we have

SA  1CA A o A A A
Hy ~H i OH_y; =~ Hi (1 @ H_ ;@ H 1.

Note that forp = 2 we haverSf = HkA 1.1- Just as for the standard homology. Also the

casep = 3is special. Here we havé,’ Y=Hr o HE 11 andHS2 = HA 129 H, Ao

Proof. The proofs of the theorems are very similar, the first essentially being |dent|cal to
the proof of Theorem 5.2 ifil]. So we will give the details only for the slightly more
complicated case of suspension.

Letfbe any element o?t/l,fA and letx # f be the new vertices &fA. When applying the
decompositions of Section 2.1 we suppress unnecessary brackets and*wristead of
f, etc. Now suppose that( f) = 0. Thenf can be written uniquely ag = «U f*+ fU
fﬂ+gwheref“ /P e M2 andg € M2, Infact, since?’ (f) = aua (fH+pud (fP+

e LM+ &'(g) =0, we haved (%) = &' (/) = 0,0 if* +iff +¢) =0
and sod' " (g) = 0. Now define the mag : HSA > HkAlJrl ®HE @ HE by
putting

@:[f1— (gl UfPL lif*+irf+¢

We need to show that this map is well-defined, and that it is surjective and injective. To
show that it is well-defined suppose tmaﬂ = [h]withh = Uh*+ U hP +m. Sothere

existsF =« U F*+ U FF + G e M% . such that

TF=f—h
=oaU(f*=h)+BU(fF —hP)+(g—m)
— U (FY) + pUPTI(FBy —id" YR 4 FPy + 0PN G),

implying that f* — h* = oP T (F™y, P — nP = 0"~ (FPy and sofi f#] = [ihP]. Further,
g—m= a”*’*l(c;/ —iF* — i FF), sothatig] = [m]. Finally, applyingd to the equation
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above gives
(f —h) = aU(f*=h* + (f*—h*) + BU (fF —nby
+(fF = nPy 4 (g —my
_ 6p_i+1F
.y apfiJrl(Fa) + U ap7i+l(Fﬁ)
—(i — D" F+ FP 4+ 077G
implying that

Frnt 4 fP—hP g —my = & TNG) — i = 1" (P + FP)
= "G — (= DT —h* + P -0,
Henceif* + iff + g = 0" THG) + h* + ihP + m') and solif* + iff + g'] =
[ih* + ihP + m']. Therefored is well-defined.
To show that® is injective, suppose thab[ f] = ([0], [0], [O])]. Then there' exists

G e My, ; ;such that” ' ~'G = g, there exists” ¢ Mp, ,_;_; suchthat’™' F =
if# and there exist& € M2 . suchtha®” " ™E = if* +iff + ¢'. Now takeJ =

k+p—i

@U(E'—G)+iE+(f—0)UF e M52 _ and check” ' J = if, so thaf f] = [O].

Finally, to show thatD is surjective, suppose thdtg], [4], [e]) € H/<A,i+1 @ H,{A_l’i ®
HY |,y Takef =i Yoe + (B— o)h +ig — ag'} € MF® and check thad' f = 0 and
@O[f] = ([g], [k], [e]). This completes the proofin 1he case of suspension.

For the proof of Theorerf.6letf be ianCA with &' (f) = 0. If o is the new vertex we
write f = a U f* + g so thatd' “(if* + ¢') = 0 andd' " (g) = 0. Now define the map
®: HEA > HY . @ HY |, by putting

O:[f1 (g, lif*+&'D.

Repeating the arguments above (or lookind13), show that this map is well-defined,
surjective and injective. [

Theorem 6.9. Let A be an arbitrary complex

(@) A is shellable if and only i A is shellable and CA is shellable if and only ifA is
shellable

(b) If A'is saturated therC A and SA are saturated

(c) If Ais shellable and if eithe€ A or SA are saturated ther is saturated

Proof. The first part is well-known. Part (b) is simple: i{A) = (ho, h1, ..., h,) then
h(CA) = (ho, h1, ..., h,,0) andh(SA) = (ho, ho + h1, h1 + ho, ..., hy_1 + hy, hy).
Now evaluate the formal Betti numbers f6A or SA according to Definitior3.3 and
compare these to the actual Betti numbers obtained from Thed@&aad6.8.

For part (c) note that i1, ..., o, is a shelling sequence farthenaU gy, ...,aUad, isa
shelling sequence farA andaU g1, fU a1, ..., aUa,, fU gy, is a shelling sequence for
SA. For the cone note that the links of the inner faces of consecutive gluings are the same in
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the two shelling sequences. The result thus follows from Thedrdntor the suspension
SA take its shelling sequenegJ o1, f U o1, ..., « U a,,, f U g, and note that at each odd
gluing, say 2 — 1, the link of the inner face is exactly the same as the link of the inner face
in thei-th gluing forA. O

As an immediate corollary we have the result mentioned previously:
Corollary 6.10. Cross-polytopes are saturated in every characteristic

6.3. Rank-selection

LetS = {0,...,n — 1} be ann-element set. Then khalancedcomplex on the vertex
setQ is a pure(n — 1)-dimensional complex with a partitionQ = | J, . Q, such that
o N Q| = 1 for every facet of A and every € S. Itis convenient to think oSas a set
of colours, the condition being that every facet has exactly one vertex of each colour. For
instance, ifP is a ranked partially ordered set then the order complgR) formed by all
linearly ordered subsets @f is balanced. (Note, balanced complexes are calledbered
by Bourbaki anccompletely balanceby Stanley.)

Let A be such a balanced complex. For a facaf A let itstypeber(r) :={s € S :
TN # B} C S. For every subsetof Swe may define the complek; :={t € A : (1) C
J} and thisis a pur€|J| — 1)-dimensional complex, calledtgpe-selected subcomplek
A.

For the order compleA(P) of a ranked poseP the ), can be taken to be the elements
of ranksin P. Here itis common to calA ; rank-selecte@nd we shall use this term also for
general balanced complexes. For instance, buildings with non-linear diagram are examples
of balanced complexes that are not order complexes.

LetQ; := J,; Qs andfort € Alett; := tNQ,. Note that the facets & are of the
form o; wheregs is a facet ofA. (Itis possible, of course, that different facets\oproduce
the same facet oA ;.) The correspondence— t,; can be extended naturally to a linear
map¢, : M2 — M2’ defined on the faces df by setting

R ifrJ;é@and
4’1(1)—{ 0 ifr, =0

k
Theorem 6.11. Suppose that thé: — 1)-dimensional balanced compléx=I" U X" has
saturated homology relative . Let J € S such thatA; # I';. ThenA; has saturated
homology relative td .

Proof. It is sufficient to prove the theorem whés| = n — 1. Letx € X" be the vertex
not in X7, letr := reg2") be the restriction and let:= X" \ r be the complement of
the gluing. SinceA; # I'; we havex € r. Hencer is also the restriction of the gluing
Ay =T, U 2" tanditsinner face is; =1 \ {x}.

It follows from the Null-Link Theorem that there exists sorfies M{ c M2 such that

r+ f e plinkar andd(r + f) = 0. Sincer + f € M”nkﬂf"’ the result follows from
Null-Link Theorem. [
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Theorem 6.12. Every non-trivial rank-selected subcomplex of a shellable saturated com-
plex is shellable and saturated

Proof. Indeed, ifay, ..., g,, is a shelling forA then the distinct elements in the sequence
01N J4, ..., o, NJx formashelling forA ;. Therefore the result follows from the previous
theorem. [
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