283 research outputs found

    On Low-Resolution ADCs in Practical 5G Millimeter-Wave Massive MIMO Systems

    Full text link
    Nowadays, millimeter-wave (mmWave) massive multiple-input multiple-output (MIMO) systems is a favorable candidate for the fifth generation (5G) cellular systems. However, a key challenge is the high power consumption imposed by its numerous radio frequency (RF) chains, which may be mitigated by opting for low-resolution analog-to-digital converters (ADCs), whilst tolerating a moderate performance loss. In this article, we discuss several important issues based on the most recent research on mmWave massive MIMO systems relying on low-resolution ADCs. We discuss the key transceiver design challenges including channel estimation, signal detector, channel information feedback and transmit precoding. Furthermore, we introduce a mixed-ADC architecture as an alternative technique of improving the overall system performance. Finally, the associated challenges and potential implementations of the practical 5G mmWave massive MIMO system {with ADC quantizers} are discussed.Comment: to appear in IEEE Communications Magazin

    Comparison between Coherent and Noncoherent Receivers for UWB Communications

    Get PDF
    We present a comparison between coherent and noncoherent UWB receivers, under a realistic propagation environment, that takes into account also the effect of path-dependent pulse distortion. As far as coherent receivers are concerned, both maximal ratio combining (MRC) and equal gain combining (EGC) techniques are analyzed, considering a limited number of estimated paths. Furthermore, two classical noncoherent schemes, a differential detector, and a transmitted-reference receiver, together with two iterative solutions, recently proposed in the literature, are considered. Finally, we extend the multisymbol approach to the UWB case and we propose a decision-feedback receiver that reduces the complexity of the previous strategy, thus still maintaining good performance. While traditional noncoherent receivers exhibit performance loss, if compared to coherent detectors, the iterative and the decision-feedback ones are able to guarantee error probability close to the one obtained employing an ideal RAKE, without requiring channel estimation, in the presence of static indoor channel and limited multiuser interference

    Coded DS-CDMA Systems with Iterative Channel Estimation and no Pilot Symbols

    Full text link
    In this paper, we describe direct-sequence code-division multiple-access (DS-CDMA) systems with quadriphase-shift keying in which channel estimation, coherent demodulation, and decoding are iteratively performed without the use of any training or pilot symbols. An expectation-maximization channel-estimation algorithm for the fading amplitude, phase, and the interference power spectral density (PSD) due to the combined interference and thermal noise is proposed for DS-CDMA systems with irregular repeat-accumulate codes. After initial estimates of the fading amplitude, phase, and interference PSD are obtained from the received symbols, subsequent values of these parameters are iteratively updated by using the soft feedback from the channel decoder. The updated estimates are combined with the received symbols and iteratively passed to the decoder. The elimination of pilot symbols simplifies the system design and allows either an enhanced information throughput, an improved bit error rate, or greater spectral efficiency. The interference-PSD estimation enables DS-CDMA systems to significantly suppress interference.Comment: To appear, IEEE Transactions on Wireless Communication

    Interference estimation with applications to blind multiple-access communication over fading channels

    Get PDF
    Includes bibliographical references.We consider the detection of nonorthogonal multipulse signals on multiple-access fading channels. The generalized maximum-likelihood rule is employed to decode users whose complex fading gains are unknown. We develop geometrical interpretations for the resulting detectors and their corresponding asymptotic efficiencies. The generalized maximum-likelihood detection rule is then applied to find a matched subspace detector for the frequency-selective fading channel, under the assumption of a short coherence time (or long coherence time without the computational power to track the fading parameters). We propose blind implementations of these detectors for nonorthogonal multipulse signaling on both frequency-nonselective and frequency-selective multiple-access fading channels. These blind detectors extend the results of Wang and Poor to multipulse modulation and fast frequency selective fading. For comparison, the minimum mean-squared error decision rules for these channels are derived and blind implementations of their corresponding detectors are developed.This work was supported by the National Science Foundation under Contract ECS 9979400 and by the Office of Naval Research under Contracts N00014-89-J-1070 and N0014-00-1-0033

    Iterative Decoding and Soft Interference Cancellation in Fast Frequency Hopping Multiuser System Using Clipped Combining

    Get PDF
    Iterative decoding (ID) aided fast frequency hopping (FFH), M-ary frequency shift keying (MFSK) using clipped combining in multiple access (MA) channels is investigated. All users’ data are convolutionally encoded and the encoded bits are interleaved and converted to M-ary symbols, which are transmitted using FFH-MFSK modulation. The soft metrics to be passed from the demodulator to the decoder are derived assuming a Rayleigh fading channel. We also propose a novel multiuser detection (MUD) scheme which employs joint soft decoding as well as successive interference cancellation (SIC), the receiver exploiting the soft information fed back by the decoder to the demodulator in order to cancel the interference imposed by reliable symbols. Our simulation results show that the proposed scheme is capable of combatting multiuser interference and outperforms the conventional ID by about 3dB

    Fixed-rank Rayleigh Quotient Maximization by an MMPSK Sequence

    Full text link
    Certain optimization problems in communication systems, such as limited-feedback constant-envelope beamforming or noncoherent MM-ary phase-shift keying (MMPSK) sequence detection, result in the maximization of a fixed-rank positive semidefinite quadratic form over the MMPSK alphabet. This form is a special case of the Rayleigh quotient of a matrix and, in general, its maximization by an MMPSK sequence is NP\mathcal{NP}-hard. However, if the rank of the matrix is not a function of its size, then the optimal solution can be computed with polynomial complexity in the matrix size. In this work, we develop a new technique to efficiently solve this problem by utilizing auxiliary continuous-valued angles and partitioning the resulting continuous space of solutions into a polynomial-size set of regions, each of which corresponds to a distinct MMPSK sequence. The sequence that maximizes the Rayleigh quotient is shown to belong to this polynomial-size set of sequences, thus efficiently reducing the size of the feasible set from exponential to polynomial. Based on this analysis, we also develop an algorithm that constructs this set in polynomial time and show that it is fully parallelizable, memory efficient, and rank scalable. The proposed algorithm compares favorably with other solvers for this problem that have appeared recently in the literature.Comment: 15 pages, 12 figures, To appear in IEEE Transactions on Communication

    Ultra-Reliable Short-Packet Communications: Fundamental Limits and Enabling Technologies

    Get PDF
    The paradigm shift from 4G to 5G communications, anticipated to enable ultra-reliable low-latency communications (URLLC), will enforce a radical change in the design of wireless communication systems. Unlike in 4G systems, where the main objective is to provide a large transmission rate, in URLLC, as implied by its name, the objective is to enable transmissions with low latency and, simultaneously, very high reliability. Since low latency implies the use of short data packets, the tension between blocklength and reliability is studied in URLLC.Several key enablers for URLLC communications have been designated in the literature. Of special importance are diversity-enabling technologies such as multiantenna systems and feedback protocols. Furthermore, it is not only important to introduce additional diversity by means of the above examples, one must also guarantee that thescarce number of channel uses are used in an optimal way. Therefore, it is imperative to develop design guidelines for how to enable reliable detection of incoming data, how to acquire channel-state information, and how to construct efficient short-packet channel codes. The development of such guidelines is at the heart of this thesis. This thesis focuses on the fundamental performance of URLLC-enabling technologies. Specifically, we provide converse (upper) bounds and achievability (lower) bounds on the maximum coding rate, based on finite-blocklength information theory, for systems that employ the key enablers outlined above. With focus on the wireless channel, modeled via a block-fading assumption, we are able to provide answers to questions like: howto optimally utilize spatial and frequency diversity, how far from optimal short-packet channel codes perform, how multiantenna systems should be designed to serve a given number of users, and how to design feedback schemes when the feedback link is noisy. In particular, this thesis is comprised out of four papers. In Paper A, we study the short-packet performance over the Rician block-fading channel. In particular, we present achievability bounds for pilot-assisted transmission with several different decoders that allow us to quantify the impact, on the achievable performance, of imposed pilots and mismatched decoding. Furthermore, we design short-packet channel codes that perform within 1 dB of our achievability bounds. Paper B studies multiuser massive multiple-input multiple-output systems with short packets. We provide an achievability bound on the average error probability over quasistatic spatially correlated Rayleigh-fading channels. The bound applies to arbitrary multiuser settings, pilot-assisted transmission, and mismatched decoding. This makes it suitable to assess the performance in the uplink/downlink for arbitrary linear signal processing. We show that several lessons learned from infinite-blocklength analyses carry over to the finite-blocklength regime. Furthermore, for the multicell setting with randomly placed users, pilot contamination should be avoided at all cost and minimum mean-squared error signal processing should be used to comply with the stringent requirements of URLLC.In Paper C, we consider sporadic transmissions where the task of the receiver is to both detect and decode an incoming packet. Two novel achievability bounds, and a novel converse bound are presented for joint detection-decoding strategies. It is shown that errors associated with detection deteriorates performance significantly for very short packet sizes. Numerical results also indicate that separate detection-decoding strategies are strictly suboptimal over block-fading channels.Finally, in Paper D, variable-length codes with noisy stop-feedback are studied via a novel achievability bound on the average service time and the average error probability. We use the bound to shed light on the resource allocation problem between the forward and the feedback channel. For URLLC applications, it is shown that enough resources must be assigned to the feedback link such that a NACK-to-ACK error becomes rarer than the target error probability. Furthermore, we illustrate that the variable-length stop-feedback scheme outperforms state-of-the-art fixed-length no-feedback bounds even when the stop-feedback bit is noisy
    • …
    corecore