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We consider noncoherent multiuser-detection techniques for a system employing nonlinear modulation of nonorthogonal signals.
Our aim is to investigate near-optimumnoncoherentmultiuser-detection techniques that utilize the received signal structure while
retaining reasonable complexity. Near-optimum approximations of the maximum-likelihood detector are investigated where the
signal structure is reflected in the approximation techniques explored. Several implementations of noncoherent soft-interference
cancellers are proposed and investigated, each of which exploits the signal structure in a specific way. We propose a class of
detectors that employ selective filtering, a technique that exploits the a priori information that each user selects one of M signals
for transmission. We show that selective filtering offers improved performance over the noncoherent counterparts of the existing
near-optimum multiuser detectors. Both deterministic and blind adaptive implementations of selective filtering are considered.
Numerical comparisons are provided to demonstrate the near-optimum performance of the proposed detectors.
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1. INTRODUCTION

Nonlinear M-ary modulation with noncoherent detection
is often necessary when phase estimation is difficult due to
rapid changes in the channel conditions [1]. In a multiuser
setting, the correlated waveforms that are used to transmit
the users’ messages give rise to interference issues since the
receiver observes the superposition of all users’ transmis-
sions. Similar to its coherent, linear modulation counterpart
[2], the maximum-likelihood (ML) detector for multiuser
noncoherent communications with nonlinear modulation
that estimates all users’ messages jointly, has prohibitive com-
plexity. ML multiuser detection, for both linear and nonlin-
earmodulation, is NP-hard in the number of users, therefore,
no efficient solution methodology is known [3].

For noncoherent systems, the complexity of optimal de-
tection has directed attention toward suboptimal interfer-
ence suppression techniques [4, 5, 6, 7, 8]. The pioneering
work [4] introduced a pseudo-linear representation in which

the signal space is spanned by MK signals corresponding to
the M possible messages for each of the K users. This ap-
proach led naturally to two-step detectors in which decorrel-
ative [4, 7] or MMSE [6] linear filtering for user separation is
followed by noncoherent single-user detection. Alternatively,
[5, 8] employed decision-directed methods that use prior de-
cisions to suppress the interference. The approach of [5] is to
decorrelate against all possible interfering signals. Prior deci-
sions reduce the space of possible interfering signals in that
if a decision is made that user k transmitted signal m, then
there is no need to decorrelate against the otherM− 1 possi-
ble transmissions of user k. In [8], the approach is to decor-
relate against the known interfering signals identified by pre-
vious decisions. The resulting output is then passed to a bank
of single-user matched filters followed by a maximum mag-
nitude detector to determine the symbol.

In this paper, we follow the general spirit of [5, 8] and
examine approaches that combine filtering with decision-
directed methods. We propose low-complexity, suboptimal
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noncoherent detectors that take advantage of certain a pri-
ori information available regarding the multiuser signaling.
We incorporate this structure into the algorithms of three
detector classes: constrained detectors, soft interference can-
cellers, and selective filtering detectors [9]. The constrained
detectors embed maximum amplitude information for the
received signal components as constraints for nonlinear pro-
gramming relaxations of the ML multiuser detector. In the
class of interference cancellers, we explore three variations
that arise due to the noncoherent nature of the detection
scheme: the serial, clipped, and parallel soft-IC (Interference
Canceller). These soft-IC detectors employ the same funda-
mental multistage detection approach as their linearmodula-
tion and coherent detection counterparts, for example, [10].
Each of these cancellers embeds the multiuser signal struc-
ture in its detection algorithm in a different way. We further
improve the performance of the noncoherent multiuser de-
tectors by exploiting additional information in the form of
selective filtering. The selective filters use the a priori infor-
mation that the desired user selects for transmission only one
of the M messages available in its constellation. Unlike the
nonselective filters of [4, 6, 7], selective filtering for the de-
sired user attempts to suppress only the possible signals of
the interfering users. For the most part, our results show that
the soft-ICs yield better performance than the nonselective
decorrelating andMMSE filters, especially in near-far scenar-
ios. To illustrate the feasibility of the selective filters in sce-
narios with limited information regarding the interferers, for
example, a CDMA down-link, a blind adaptive implementa-
tion of the selective MMSE detector is also presented.

The rest of this paper is organized as follows. Section 2
establishes notation for the additive-noise, synchronous
CDMA system model and discusses the ML detector.
Section 3 discusses prior work on nonselective decorrelator
and MMSE detectors proposed in the literature. This section
also introduces the constrained detectors as well as the non-
coherent detectors based on soft-ICs. Section 4 applies selec-
tive filtering to some of the detectors discussed in Section 3.
This section also discusses a blind adaptive implementation
of the selective MMSE detector as well as a successive in-
terference suppression (SIS) scheme. Section 5 discusses the
numerical results, and concluding remarks are presented in
Section 6. The Appendix contains developments for certain
results in Sections 3 and 4.

2. SYSTEMMODEL ANDOPTIMAL DETECTION

We consider a synchronous CDMA system with K active
users, processing gain N , and a signaling scheme where
each user transmits one of M signals. A discrete-time model
can be obtained by projecting the received signal onto an
N-dimensional orthonormal basis. Using the pseudo-linear
representation introduced in [4], we view the signal space as
being an expanded signal space spanned by the MK signals:
M messages for each of the K users. We concentrate on cases
where the possible waveforms for all messages of all users are
linearly independent. The channel is assumed to be additive

white Gaussian noise (AWGN), and the receiver observes a
superposition of the K signals.

For user k, the N×1 vector sk,m denotes the signa-
ture corresponding to message m while the N×M matrix
Sk

∆=[sk,1 · · · sk,M] denotes the signature matrix. It is assumed
that the signatures in Sk are complex-valued, have unit norm,
and are time limited. The amplitude and phase of message
m of user k are denoted by Ak,m and φk,m, with correspond-
ing M×M diagonal matrices Ak

∆=diag[Ak,1, . . . , Ak,M] and
Φk

∆=diag[e jφk,1 , . . . , e jφk,M ]. The phases are assumed to be in-
dependent and uniformly distributed over [0, 2π]. Let mk

be the transmitted message of user k. We define the vector
bk = [bk,1 · · · bk,M]� where

bk,m =
1, m = mk,

0, otherwise.
(1)

We note that bk belongs to the set F = {e1, . . . , eM} where
ek ∈ {0, 1}M has kth entry ek,k equal to one and zero for all
other entries. It is assumed that theM messages of a user are
equiprobable. The received vector at the output of the bank
of chip-matched filters can be written as

r =
K∑
k=1

SkAkΦkbk + n, (2)

where n is an appropriately-sized AWGN vector with mean
zero and covariance matrix σ2I. Further, r can be expressed
in terms of the MK-length vector b = [b�1 · · ·b�K ]�, the
N×MK matrix S

∆= [S1 · · · SK ], theMK×MK matricesA
∆=

diag[A1, . . . ,AK ], andΦ
∆= diag[Φ1, . . . ,ΦK ] as

r = SAΦb + n. (3)

The aim of the multiuser detector is to recover the mes-
sage vector b ∈ FK . For a given b, let the vector φ =
[e jφ1 · · · e jφK ]� represent the phases corresponding to the K
nonzero entries of b. With known A andΦ, the ML estimate
of b given r is the solution to the optimummultiuser detector
[2]. The estimate may be written as

b̂ = argmax
b∈FK

f
(
r | b,φ,A). (4)

In the AWGN channel, the optimization (4) becomes the fa-
miliar distance minimization problem

b̂ = arg min
b∈FK

‖r− SAΦb‖2. (5)

Note that (4) and (5) describe a coherent detector since
knowledge ofΦ is assumed.

Next, consider the case where the amplitudes A are
known at the receiver as in (4), but both Φ and b are un-
known. Since each element of φmust belong to the unit circle
C1, the joint ML estimate of b and φ is(

b̂, φ̂
) = argmax

b∈FK
max
φ∈CK

1

f
(
r | b,φ,A). (6)
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The implementation of this detector requires an exhaustive
search over possible vectors b. Further, since each of the el-
ements of φ lie on a unit circle, the inner maximization in
(6) is over a nonconvex set and hence there is no guarantee
of finding the global minimum in (5). However, relaxing the
constraints and allowing each of the elements of φ to lie on
the unit disk, C1 yields a convex set for the inner optimiza-
tion. The resulting detector is(

b̂, φ̂
) = argmax

b∈FK

max
φ∈CK

1

f
(
r | b,φ,A). (7)

This detector will be referred to as the joint detector. The
joint detector effectively assumes that A characterizes the
maximum amplitudes of the signals. Both the detector (6)
and the joint detector (7) are generalized likelihood ratio test
(GLRT) detectors that differ in their assumptions regard-
ing the received signal amplitudes. In particular, when all
elements of A become large, the maximum amplitude con-
straint of the joint detector becomes trivial and the joint de-
tector approaches the GLRT detector in [8] which treats the
signal amplitudes as unknown.

3. NONSELECTIVE DETECTION

Recently, several detection methods with reasonable com-
plexity have been formulated that approximate the solution
of the NP-hard ML multiuser-detection problem [11, 12].
Further results using nonlinear programming techniques to
approximate the ML multiuser detector for linear modula-
tion can be found in [13, 14, 15]. In this section, similar to the
linear modulation counterparts considered in [11, 12, 13],
we relax the constraint set of the ML multiuser-detection
problem. We represent the structure of the signal in the form
of a constraint set and explore various detectors with the
same objective function yet different constraint sets.

3.1. Prior work

To place the constrained multiuser detectors in proper con-
text, we start by examining the decorrelative and the MMSE
two-stage detectors proposed in [4, 6, 7]. These detectors
combine two stages: linear filtering and single-user detection.
Let z = Âx denote the estimate of the desired vector Ax and
let the output of the matched filters be

y = SHr = RAx + SHn, (8)

where R = SHS is the cross-correlationmatrix. The first stage
of the decorrelative detector [4] applies the decorrelating fil-
ter R−1 to y to obtain

z = R−1y = Ax + R−1SHn. (9)

If the signals are linearly dependent, we can replace R−1

by the Moore-Penrose generalized inverse [16]; however, for
simplicity, we will assume that the signals are linearly inde-
pendent.

In the first stage of the MMSE detector, we apply the ma-
trix transformation CH to the output r to obtain the estimate

z = Âx = CHr that minimizes the mean square error (MSE)
E[‖CHr− Ax‖2]. The solution is given in [6] as

C = H−1SE, (10)

where H = E[rrH] = SESH + σ2IN , E = E[AxxHA] =
(1/M)A2, and In is the identity matrix of dimension n. Equiv-
alently, if theMMSE filter is applied to thematched filter out-
put y in (8) instead of r, then z = C̃Hy where

C̃ = (R + σ2E−1
)−1

. (11)

Note that in case of linear modulation, E = A2 and the famil-
iar expression z = (R + σ2A−2)−1y is obtained [2, 17].

For both decorrelative andMMSE filtering, the filter out-
put z is an MK-length vector, that is, the concatenation
z = [z�1 , . . . , z

�
K ]
� ofM-length component vectors zk. To de-

scribe decision rules for particular users, we adopt the gen-
eral convention that zk = [xM(k−1)+1, . . . , xMk]� denotes the
kth vector component of anMK-length vector z. To address
the specific elements of zk, we write zk = [zk,1, . . . , zk,M]�.

In the second stage of these detectors, we follow [6, 7]
which suggest using the kth component vector zk as a de-
coupled decision statistic to obtain an estimate m̂k of the kth
user’s message. The simplest such method is the maximum
magnitude (MM) rule, denoted µ(zk), and defined by

m̂k = µ
(
zk
) ∆= arg max

m∈{1,...,M}
∣∣zk,m∣∣2. (12)

In the event of ties, the MM rule arbitrarily chooses one of
the maximizing entries. For orthogonal signaling over a sin-
gle user AWGN channel, the MM rule is optimum; however,
since the decorrelative and MMSE filters introduce correla-
tion in the additive noise and/or interference components of
zk, the MM rule is merely a heuristic. Single-user decoding
rules for user k that exploit the correlation structure are de-
veloped in [4, 6].

3.2. Constrained noncoherentmultiuser detection

Our starting point for the relaxations of the constraints is the
ML detector (6) in which the amplitudesA are known but the
symbols b and phases φ, or equivalentlyΦ, are unknown. In
this case, we estimate them jointly as x = Φb. We define the
set

G = {e jφe | e ∈ F, 0 ≤ φ ≤ 2π
}

(13)

and observe that x ∈ GK . Rewriting (6), the jointly optimal
estimate is

x̂ = arg min
x∈GK

‖r− SAx‖2. (14)

We observe that the minimization (14) is difficult because
GK is a nonconvex constraint set. Due to the high complex-
ity associated with the ML detector, reduced complexity ap-
proximations can be obtained by solving a relaxation of the
original problem [18]. If we relax the constraint set such that
the new constraint set is convex, then the optimizer of the
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quadratic objective function in (14) can be found efficiently
via a variety of nonlinear programmingmethods. This obser-
vation is the key towards the formulation of the approximate
solutions presented in the remainder of this section.

We start with the case where the vector x containing all
the users’ messages is constrained. Although the constraint
xHx = K is nonconvex, a relaxation of the form xHx ≤ K
results in a convex set. The estimate x̂ is the solution of the
optimization problem

minimize ‖r− SAx‖2 subject to ‖x‖2 ≤ K. (15)

The convex set ‖x‖2 ≤ K can be thought of as the interior of
anMK-dimensional hypersphere of radius

√
K . The solution

of the above problem, derived in [11, 12] in the context of
linear modulation, is the generalized MMSE detector

x̂ = A−1
(
R + λ∗A−2

)−1
y, (16)

where λ∗ is the optimum Lagrange multiplier corresponding
to the global constraint (15). Note that (16) reduces to the
MMSE solution [17] for λ∗ = σ2. We apply the MM rule to
the filter output x̂ to obtain the symbol decision m̂k = µ(x̂k).
The resulting detector, consisting of the filter (16) followed
by the MM rule, will be referred to as the global constrained
detector.

Now, we consider local constraints for each individual
user k. Recalling that x = Φb, the kth vector component
of x is xk = Φkbk. Since xk ∈ G, xHk xk = 1 for all k. If
we relax the local constraint xHk xk = 1 to be the convex set
xHk xk ≤ 1, which represents the interior of anM-dimensional
hypersphere of unit radius, then the estimate x̂ is the solution
to

minimize ‖r− SAx‖2

subject to
∥∥xk∥∥2 ≤ 1, k = 1, . . . , K.

(17)

The solution of (17) is (see Appendix A)

x̂ = A−1
(
R +Λ∗A−2

)−1
y, (18)

where Λ∗ is a diagonal matrix containing the Lagrange mul-
tipliers. We then apply the MM rule described in (12) to the
kth component vector x̂k to obtain m̂k = µ(x̂k). This detector
will be referred to as the local constrained detector. Note that
the local constrained detector is not the same as the joint de-
tector (7). Although both detectors are obtained by enforcing
a maximum amplitude constraint on each user k, the joint
detector searches only over vectors x for which each com-
ponent vector xk is of the form ae jφkbk where bk ∈ F and
0 ≤ a ≤ 1.

Note that there may be other suboptimal schemes with
different constraints that yield better performance with lower
complexity compared to the detectors proposed here. Also,
it is not clear whether using a more adequately constrained
search space is better than the expanded search space we have
considered with virtually all magnitudes and phases that sat-
isfy a maximum energy bound (local and global constraints).
These issues require further research.

3.3. Soft-interference cancellation

Multistage detectors, also referred to as multistage interfer-
ence cancellers, fall in the class of decision-directed mul-
tiuser detectors and are viable alternatives to popular lin-
ear detectors such as the decorrelator and MMSE detec-
tors, due to their excellent BER performance and reason-
ably low complexity [2]. Several multistage coherent detec-
tors for linear modulation have been proposed in the lit-
erature, including versions using serial and parallel imple-
mentations and versions using hard and soft bit estimates
[10, 12, 19, 20, 21, 22, 23]. The contributions of this sec-
tion are: first, the detectors proposed here are noncoherent
realizations of the decision directed, nonlinear detectors pro-
posed in [10, 22]; second, new techniques are proposed to
incorporate the signal structure into the decision algorithms.
In particular, we propose three detectors: the serial soft-IC,
the clipped soft-IC, and the parallel soft-IC.

In this section, a stage refers to a single pass through the
detectors of all users. All implementations here use the decor-
relator outputs in the first stage, followed by multiple stages
of processing of these outputs. The goal, once again, is to ob-
tain x̂, the estimate of all transmitted messages. To obtain the
estimate x̂k for the kth user’s message, soft estimates are used
to reconstruct the interference that is then subtracted from
that user’s matched filter output. The differences between
these detectors arise in their implementation, for example,
serial or parallel, as well as in the types of decisions that are
communicated between the users’ detectors.

In the serial soft-IC detector, the first step is to deter-
mine sequentially the estimates x̃k,1, . . . , x̃k,M of the M pos-
sible messages of user k. In the second step, only the entry
x̃k,m with the largest magnitude is retained while the other
M − 1 entries are forced to 0. This estimated and mapped
vector for user k is denoted by x̂k . The mapping ensures that
x̂k has a structure similar to that of xk. Following from (8),
the estimate for messagem of user k is (see Appendix B)

x̃k,m = yk,m
Ak,m

− 1
Ak,m

k−1∑
i=1

M∑
j=1

sHk,msi, jAi, j x̂i, j

− 1
Ak,m

m−1∑
j=1

sHk,msk, jAk, j x̃k, j

− 1
Ak,m

M∑
j=m+1

sHk,msk, jAk, jxk, j

− 1
Ak,m

K∑
i=k+1

M∑
j=1

sHk,msi, jAi, jxi, j ,

(19)

where the components on the right side of (19) are (from left
to right) the matched filter output, the estimates of the pre-
vious k−1 users’ messages, the previously detected estimates
of messages of user k, the not-yet-detected messages of user
k, and the not-yet-detected messages of the other users. After
the M entries of user k are determined, the estimated vector
x̃k is then mapped to x̂k using the maximum magnitude rule

x̂k = eµ(x̃k)x̃k,µ(x̃k). (20)
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This vector estimate x̂k is then used by user k+1 in (19) above
for estimating its vector, and so on. The whole procedure can
be repeated for multiple stages to refine the estimates.

The implementation of the clipped soft-IC detector em-
ploys the same first step (19). In the second step, however, we
incorporate the relaxed constraint |xk,i| ≤ 1 by clipping in
accordance with the following rule:

x̂k,i =

x̃k,i,

∣∣x̃k,i∣∣ ≤ 1,
x̃k,i∣∣x̃k,i∣∣ , otherwise.

(21)

Thus, the difference between the serial soft-IC and the
clipped soft-IC lies in the type of decision fed between the
users.

Lastly, the parallel soft-IC differs from the serial soft-IC
only in the first step. Instead of serial estimation of each
element x̃k,m, the parallel soft-IC estimates all elements of
x̃k = [x̃k,1, . . . , x̃k,M]� in parallel. From (2), we can write the
received signal r in terms of the components xk = Φkbk as

r =
K∑
j=1

S jA jx j + n. (22)

The matched filter vector output for user k is

yk = SHk r = RkkAkxk +
∑
j �=k

Rk jA jx j + SHk n, (23)

where Rk j = SHk S j . Therefore, xk can be estimated as

x̃k =
(
RkkAk

)−1(
yk −

k−1∑
j=1

Rk jA j x̂ j −
K∑

j=k+1
Rk jA jx j

)
. (24)

The components on the right side of (24) are (from left to
right) the matched filter output, the k − 1 processed users
with their estimated and mapped vectors x̂ j , and the users
that are yet to be processed. In the second step, the parallel
soft-IC obtains the users’ message decisions using the same
maximummagnitude mapping rule (20) as the serial soft-IC
detector.

Since the serial soft-IC estimates message elements xk,m
one at a time, its granularity is finer than that of the paral-
lel soft-IC which estimates the entire vector xk in one step.
Hence, it is to be expected that the serial soft-IC will perform
slightly better. Also, note that the serial and parallel soft-ICs
can be implemented without the knowledge of the individual
amplitudes Ak,m. Instead of estimating just xk,m in (19), the
element Ak,mxk,m can be jointly estimated, followed by (20).
Since the MM rule uses only the relative magnitudes, the in-
dividual amplitudes do not have to be known explicitly. It is
easy to observe from (19) and (21) that this is not the case
for the clipped soft-IC for which amplitude values must be
known.

4. SELECTIVE FILTERING

To detect whether user k transmitted message m the nonse-
lective detectors of Section 3 consider all possible signals of

interferers j �= k, as well as the other M − 1 possible sig-
nals of user k as sources of interference. However, it is known
a priori that user k transmits precisely one of his M mes-
sages. Therefore, for m ∈ {1, . . . ,M}, one and only one of
the xk,m is nonzero for each user k ∈ {1, . . . , K}. Selective fil-
tering makes use of this observation. Note that if the desired
user’s signatures (associated with the M messages) are mu-
tually orthogonal, then the selective and nonselective detec-
tors for this user yield identical performance. In this section,
we will examine selective implementations of the decorrela-
tor detector, the MMSE detector and a blind implementa-
tion thereof, and the soft interference canceller. To further
enhance the performance of the selective detectors, an SIS
scheme is also proposed.

In the following, d(i) will denote the ith element of a vec-
tor d, while D(i, j) and D(i, :) will denote the (i, j)th element
and ith row of a matrix D, respectively. For notational con-
venience, all vectors and matrices associated with selective
filtering will be denoted by a bar above the entry. Without
loss of generality, we assume k = 1 to be the desired user,
thus, we focus on the selective detection of x1,m. Specifically,
ȳm is constructed from y1,m and the M(K − 1) entries of y
belonging to the interferers, the selective signature set S̄m is
constructed from s1,m and theM(K − 1) entries of S belong-
ing to the interferers, and the matrix Ām is constructed in a
manner similar to S̄m.

4.1. Selective decorrelation

To formulate the selective decorrelator, we define Hm as
the hypothesis that the first user transmitted signal s1,m.
Our problem is to determine which hypothesis among
{H1, . . . , HM} is correct. From (22), the received signal un-
der hypothesis Hm is

r = s1,mA1,mx1,m +
K∑
k=2

SkAkxk + n (25)

and the decorrelating transformation to suppress all users

k �= 1 is given by (S̄HmS̄m)
−1
S̄Hm [2]. Thus, we first construct

ȳm = S̄Hmr = S̄HmSAx + S̄Hmn (26)

followed by the selective transformation

z̄m = R̄−1m ȳm = R̄−1m S̄HmSAx + η̄m, (27)

where R̄m = S̄HmS̄m and η̄m = R̄−1m S̄Hmn is zero-mean Gaussian
with covariance matrix σ2R̄−1m . Since only the first entry of z̄m
contains the information regarding the first user’s informa-
tion, we construct a new vector v consisting of only the first
entries of theM selective filter outputs z̄1, . . . , z̄M as follows:

v =


z̄1(1)
...

z̄M(1)

 =

R̄−11 (1, :)S̄H1 SAx + η̄1(1)

...

R̄−1M (1, :)S̄HMSAx + η̄M(1)

 = USAx + η̄,

(28)
where the matrixU consists of R̄−1m (1, :)S̄Hm as itsmth row and



1420 EURASIP Journal on Applied Signal Processing

η̄ consists of the first element of η̄m as its mth element. Note

that v is also the estimate �A1x1, therefore, we apply the MM
rule to v to obtain m̂1.

4.2. SelectiveMMSE detection

The MMSE detector is popular due to its amenability to
adaptive implementation. Blind adaptive implementations of
detectors are useful since they only require the signature and
timing of the desired user. They are especially attractive for
the CDMA downlink where, due to the dynamic environ-
ment, it may be difficult for a mobile user to obtain accurate
information regarding signatures and timings of other active
users in the system [24, 25, 26]. In this section, we will first
discuss the selective version of the MMSE filter (10) and then
we will formulate a blind adaptive implementation.

The selective MMSE filter for the first user is obtained
using an approach similar to the one used to obtain the se-
lective decorrelator, specifically, we apply an MMSE trans-
formation to the received signal (25) under each hypothesis
m ∈ {1, . . . ,M}. From (10), the selective MMSE filter corre-
sponding to themth signature is

C̄m = H̄−1
m S̄mĒm, (29)

where Ēm = (1/M)Ā2
m and H̄m = S̄mĒmS̄Hm + σ2IN . The filter

vector c̄1,m corresponding to the mth signature of the first
user is the first column of C̄m, that is, c̄1,m = C̄m(:, 1).

Now we will discuss a blind adaptive implementation of
(29) above. A blind adaptive implementation of the nonco-
herent nonselective MMSE detector was proposed in [6]. We
extend that algorithm to implement a blind adaptive version
of the selective MMSE detector. Since the first user is the user
of interest, the filter coefficients of only this user are adap-
tively varied. Representing the mth diagonal entry of E by
Em, the filter vector c1,m corresponding to the mth signature
of the first user can be obtained as

c1,m =
(
S̄mĒmS̄Hm + σ2IN

)−1
s1,mEm. (30)

Note that c1,m corresponds to the first column of C̄m. If we
denote

r̄m = S̄mĀmx̄m + n, (31)

then

c1,m =
(
E
[
r̄mr̄Hm

])−1
s1,mEm. (32)

Note that in the nonselective version in [6], the filter (32)
involves the term rrH which is readily available. In contrast,
only a subset of that information r̄m is needed here and it
cannot be obtained explicitly due to a lack of knowledge of
the signature set S̄m. This problem can be circumvented by
writing r̄m as

r̄m = r−
∑
i �=m

s1,iA1,ix1,i = r− S̃mÃmx̃m, (33)

where S̃m is the signature matrix of the first user without the

mth signature. Hence, its dimension isN×(M−1). The terms
Ãm, Ẽm, and x̃m may be interpreted in a similarmanner. It can
be shown that

E
[
r̄mr̄Hm

] = E
[
rrH

]− S̃mẼmS̃Hm. (34)

Since the receiver knows the signatures of the desired user,
it can construct S̃mẼmS̃Hm and extract r̄m from the received
signal r. Extending the stochastic gradient algorithm in [6],
the adaptation for themth filter vectormay then be expressed
as

c1,m[n + 1] = c1,m[n]

− µ
[(
r[n]rH[n]− S̃mẼmS̃Hm

)
c1,m[n]− Ems1,m

]
.

(35)

We use the Normalized Squared Error (NSE) criterion [6] to
study the convergence properties of the filter coefficients. The
NSE at the nth iteration is defined as

NSE[n] = 1
M

M∑
m=1

∥∥c̄1,m − c1,m[n]
∥∥2∥∥c̄1,m∥∥2 . (36)

Note that since the structures of the nonselective and selec-
tive MMSE detectors are similar, the convergence analysis of
the former [6] can be easily extended to the latter to obtain
the upper bound on the step size µ to ensure convergence.

4.3. Selective soft-IC

Next, we consider the selective implementation of the serial
soft-IC scheme described in Section 3.3. We use a selective

x̃k,m = 1
Ak,m

(
yk,m −

k−1∑
i=1

M∑
j=1

sHk,msi, jAi, j x̂i, j

−
K∑

i=k+1

M∑
j=1

sHk,msi, jAi, jxi, j

)
,

(37)

then (20) is applied to obtain x̂k,m. Note that, in going from
(19) to (37) above, selective filtering has suppressed the terms
containing the other M − 1 messages of user k. Once all M
soft-outputs of user k are obtained in this manner, the MM
rule is applied to obtain the message decision m̂k.

4.4. Selective filteringwith SIS

Although it is expected that the selective filters will yield
performance improvements over their nonselective counter-
parts, further improvements are possible through the use of
successive decisions. We call the resulting technique selective
filtering with SIS. For a user whose message has already been
decoded, we need only to suppress the signal corresponding
to the decoded message. This is analogous to the successive
interference cancellation (SIC) scheme in [27] where a de-
coded user’s signal is reconstructed and explicitly subtracted
from the received signal r. The algorithm for SIS is as follows:

(1) select the maximum-magnitude matched filter output
corresponding to theM messages of user k;
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(2) sort the users in order of decreasing MMs;
(3) for each user k ∈ {1, . . . , K},

(a) perform selective filtering for the kth user in the
sorted list;

(b) assume the message m̂k of the kth user is cor-
rect, and retain only signature sk,m̂k in the selec-
tive filter matrix used to detect the message for
user k + 1.

In the above algorithm, we can potentially employ any of
the selective detectors proposed in Section 4. We will present
performance results for the selective decorrelator with SIS in
Section 5. Note that the selective decorrelator with SIS and
the noncoherent decision feedback detector proposed in [5]
share the similarity that for the users whose messages have
been decoded, both schemes decorrelate only against the sig-
natures corresponding to the decoded messages. However,
they differ in that [5] performs nonselective decorrelation
against the M − 1 signatures of the desired user and it uses
a second-stage single-user GLRT detector instead of the MM
rule for symbol decisions.

5. NUMERICAL RESULTS

In this section, we evaluate the performance of the pro-
posed constrained detectors, the soft-ICs and the selective
detectors, compared with the nonselective detectors pro-
posed in [4, 6]. Since the exact symbol error rate expres-
sions are cumbersome or intractable for the detectors consid-
ered herein, we resort to simulations for performance evalu-
ations.

In all simulations, we used complex random signatures.
The signatures are linearly independent and hence the in-
verse of the cross-correlation matrix R exists. In all figures,
the first user is assumed to be the desired user and Ps repre-
sents the probability of symbol error.We also assume that the
M messages of user k are received with equal power or that
Ak,m = Ak. The SNR of user k is defined as A2

k/2σ
2. In near-

far scenarios, all interferers are assumed to be at the same
SNR.

Figure 1 shows Ps versus the SNR for K = 2 users,M = 4
messages per user, and a processing gain of N = 20 for the
detectors studied in Section 3. The parametersK andM were
chosen to be small due to the implementation complexity of
the joint detector in (7). However, we note that although the
number of users is small, KM itself is a sizeable fraction of
the processing gain N (experiments with larger processing
gains are considered later on for the detectors proposed in
this paper). Note also that the global (16) and local (18) con-
strained detectors perform very close to the MMSE detector
(10). A similar observation has been made in [12] as well,
and this may be attributed to the resemblance of the analyt-
ical solutions of constrained optimization problems to the
generalized MMSE solution. Figure 2 shows Ps of the desired
user versus the SNR of the interferer in a near-far scenario.
Since the local constrained detector performs only slightly
better than the global detector, it has been omitted from this
figure.
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Figure 1: Comparison of various noncoherent detectors with
(K,M,N) = (2, 4, 20).
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Figure 2: Performance in the near-far scenario with (K,M,N) =
(2, 4, 20). Desired user’s SNR = 12dB.

Figure 3 compares the performance of the various soft-
ICs proposed in this paper, (19), (20), (21), (22), (23), and
(24), to the nonselective decorrelative and MMSE detectors
in a near-far scenario. In all the soft-ICs, a decorrelative first
stage was followed by two more stages of matched-filter-
output processing. Interestingly, the nonselective MMSE de-
tector (10) and (11) does not converge to the decorrelator
in the high interferer-power region in contrast with the per-
formance obtained by multiuser detectors that employ linear
modulation. This is a direct consequence of the fact that, in
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Figure 3: Comparison of soft-ICs in near-far scenario with
(K,M,N) = (2, 4, 20). Desired user’s SNR = 14dB.

the near-far situation, the powers of the interferers are high
compared to the powers associated with all possible messages
of the desired user. Also, the nonselective detectors take the
undesired M − 1 messages of the desired user (with rela-
tively low powers) as well as all interferers’ signals (with high
powers) into account in decoding the desired user’s mes-
sage. Thus, unlike the decorrelator, the nonselective MMSE
filter does not zero-force the contributions of theM − 1 un-
desired messages of the desired user, resulting in a perfor-
mance improvement in near-far scenarios. Note that this is-
sue does not arise for selective filters and the selective MMSE
and decorrelative detectors do converge in the near-far
situations.

Figure 4a compares the performance of the selective and
nonselective filters for a lightly loaded system with K = 2
users, M = 4 signals per user, and N = 20 dimensions;
Figure 4b compares the selective and nonselective implemen-
tations of the decorrelator and MMSE for a fully loaded sys-
tem with K = 5, M = 4, and N = 20. Note that the non-
selective decorrelator and MMSE curves compare well with
those of [6, Figure 3(a)]. Next, we increase both the process-
ing gain N as well as M, the number of messages per user.
Figures 5a and 5b show the relative performance of the de-
tectors for a moderately loaded and a fully loaded system,
respectively. It can be seen that the selective detectors con-
sistently outperform the nonselective detectors at all values
of SNR. Among the selective detectors, the serial soft-IC is
better able to cancel interferers at higher powers, hence the
crossover in Figure 5b.

Figure 6a shows the NSE (36) of the blind adaptive se-
lective (35) and nonselective MMSE detectors [6] averaged
over 10 runs for different step sizes µ. The limiting MSE of
the detector is proportional to the value of NSE to which
the filter coefficients converge. The step size impacts both
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Figure 4: Comparison of selective and nonselective detectors. (a)
shows the performance of a lightly loaded system with (K,M,N) =
(2, 4, 20), whereas (b) is for a fully loaded system with (K,M,N) =
(5, 4, 20).

the rate of convergence and the limiting MSE, and the trade-
off between the two is apparent from the figure. It can be
seen that a larger µ brings about faster convergence but at
the cost of a higher limiting MSE. The selective detector con-
verges to a lower value of NSE compared to its nonselec-
tive counterpart at µ = 0.0001 and vice versa at µ = 0.001.
The performance of the blind selective MMSE detector is il-
lustrated in Figure 6b and compared with that of the blind
nonselective MMSE [6, Figure 7(b)] as well as the non-
blind selective and nonselective MMSE detectors [6, Fig-
ure 3(a)]. For lower values of SNR, µ = 0.001 was used,
whereas for the higher values of SNR, µ = 0.0001 had to
be used to ensure proper convergence. The ability of the
blind filter coefficients to track their nonblind deterministic
counterparts is reflected in the similarity between the error
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Figure 5: Comparison of selective and nonselective detectors with
higher processing gain N = 64. (a) represents a moderately loaded
system with (K,M,N) = (4, 8, 64), whereas (b) represents a fully
loaded system with (K,M,N) = (4, 16, 64).

probability curves for the blind and the nonblind implemen-
tations.

Figure 7 illustrates the performance gained by using the
SIS scheme with the selective decorrelator. Since the nons-
elective decorrelator is near-far resistant [4], the probabil-
ity of symbol error for the desired user remains unchanged
with interference power. The selective decorrelator also ex-
hibits a similar behavior since it projects the received signal
onto a space orthogonal to the interferers’ subspace which
remains unaffected by a change in the interferers’ SNR. With
SIS, however, the situation is different. When the interfer-
ers’ SNRs are lower than the desired user’s SNR, the desired
user is decoded first and it does not benefit from the SIS
scheme. Hence, in the low SNR regions, its performance is
similar to that of the selective decorrelator without SIS. In
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Figure 6: (a) compares the convergence of the blind adaptive selec-
tive and nonselective MMSE filters with (K,M,N) = (5, 4, 20) and
variable step-size µ, whereas (b) compares their performance.

the high SNR regime, the desired user is decoded last with
very high probability and hence it benefits the most from the
SIS scheme (due to a reduction in the space of possible inter-
fering signals) yielding an improvement in symbol error rate
of around two orders of magnitude over the selective decor-
relator without SIS. The SIS curve flattens out in the high
SNR region because the dimensionality of the interference
subspace remains unaffected by a change in the interferers’
SNRs.

For comparison, the SIC of [27] is also included in
Figure 7. Due to the high correlation between the signa-
tures of the users in our case, the multiple-access interference
(MAI) residual terms for the subsequent users remain signif-
icant even after the high-energy users are canceled out. Thus,
the performance of the desired user deteriorates as the SNR
of the interferers is increased; when the SNR of the interferers
is low, the desired user is the first to get decoded and hence it
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Figure 7: Performance of selective decorrelator with SIS with
(K,M,N) = (3, 4, 20) and desired user’s SNR = 15dB.

does not suffer from the excessive MAI. Note that, for some
other instance of the cross-correlation matrix, the SIC may
yield results that are qualitatively similar to that of the SIS
scheme.

6. CONCLUSION

We showed that judicious use of a priori knowledge of the
users’ selective transmission mechanism can yield improved
performance over the noncoherent multiuser detectors pro-
posed in the literature. To this end, we proposed and investi-
gated three categories of detectors.

First, a nonlinear programming approach to noncoher-
ent multiuser detection was explored, where the structure of
the multiuser signal was reflected in the various constraint
sets analyzed. Using this technique, the joint detector was de-
rived to provide a benchmark (a lower bound) for evaluating
the performance of different detectors. The global and local
detectors were also derived as relaxations of the ML detector
but with different constraint sets. These two detectors were
shown to resemble the solution to the generalizedMMSE de-
tector, as previously observed for linear modulation and co-
herent detection.

Second, motivated by the ability of the soft-IC-based co-
herent detectors to perform well in near-far scenarios, the se-
rial, clipped, and parallel implementations of noncoherent
soft-ICs were suggested and investigated. The three detec-
tors mainly differ in the manner in which they incorporate
the a priori information regarding the structure of the sig-
nal. It was observed that the serial soft-IC not only outper-
forms the MMSE and the decorrelative detectors in near-far
scenarios but it does so in equal-received-powers situations
as well.

Third, we proposed and implemented a class of detec-
tors that employ selective filtering. Unlike their nonselective

counterparts, these detectors make use of the a priori infor-
mation that of the M signals available to a user, only one
is transmitted. The decorrelative MMSE and soft-IC selec-
tive detectors were shown to outperform their nonselective
counterparts in all cases. To illustrate the feasibility of the se-
lective detectors in scenarios where limited information re-
garding the interferers is available, for example, a CDMA
down-link, a blind adaptive implementation of the selective
MMSE detector was presented. Finally, an approach to im-
prove the performance of the selective detectors based on
decision-directed successive user suppression was presented
in this paper.

Our results indicate that incorporating the information
regarding the signal structure offers performance improve-
ments. In particular, detectors employing selective filtering
have excellent performance and emerge as viable solutions in
a variety of system conditions.

APPENDICES

A. DERIVATION OF THE LOCAL CONSTRAINED
DETECTOR

Here, we derive the solution of the optimization problem in
(17). The objective function in (17) can be expanded in terms
of y = SHr as

‖r− SAx‖2 = rHr− 2Re
[
yHAx

]
+ xHTx, (A.1)

where T = ARA. Since (17) involves the minimization of a
convex function over a convex set, it has a unique minimum
over this constraint set which can be found using a variety of
iterative algorithms, for example, the gradient descent algo-
rithm [28]. In addition, the convex duality theorem [28] en-
sures that no duality gap exists and we can solve for the dual
problem instead. Since (17) has K constraints, there are K
dual variables. In terms of Tk j = AkSHk S jA j , the Lagrangian
dual function of (A.1) can be expressed as

�(x, λ) = xHTx − 2Re
[
yHAx

]
+

K∑
i=1

λi
(
xHi xi − 1

)
(A.2)

=
K∑
i=1

K∑
j=1

xHi Ti jx j − 2Re

[ K∑
i=1

yHi Aixi

]

+
K∑
i=1

λi
(
xHi xi − 1

) (A.3)

which is to be maximized over x and λ ≥ 0, where λ =
[λ1 · · · λK ]�. The gradient vector associated with �(x, λ) is
∇�(x, λ) = [∇�x1�(x, λ) · · ·∇�xK �(x, λ)]� where

∇xk�(x, λ) = 2

( K∑
j=1

Tk jx j − Akyk + λkxk

)
. (A.4)

Consequently,

∇�(x, λ) = 2(Tx − Ay +Λx), (A.5)
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where

Λ = diag
[
λ1, . . . , λ1︸ ︷︷ ︸
M terms

, . . . , λK , . . . , λK︸ ︷︷ ︸
M terms

]
(A.6)

is an MK×MK diagonal matrix. Let x̂(λ) be the solution of
∇�(x̂(λ), λ) = 0. Solving for x̂(λ), we get

x̂(λ) = (T +Λ)−1Ay, (A.7)

where x̂(λ) = [x̂�1 (λ1) · · · x̂�K (λK )]�. On substituting x̂(λ)
back into (A.2), we arrive at

max
λ≥0

�
(
x̂(λ), λ

) = x̂(λ)HTx̂(λ)− 2Re
[
yHAx̂(λ)

]
+

K∑
i=1

λi
(
x̂i
(
λi
)H

x̂i
(
λi
)− 1

)
.

(A.8)

Simple unconstrained gradient descent algorithms can be
used to iteratively determine each element of λ as follows:

λ̄k(t + 1) = λ̄k(t)− µk
[∇�λk

(
x̂(λ), λ

)]
, (A.9)

which converges to λ̄k. The maximizer of (A.8) is given by
λ∗ = [λ∗1 · · · λ∗K ]� where λ∗k = max (0, λ̄k). Then, from
(A.7), the unique minimizer of (17) can be rewritten as

x̂
(
λ∗
) = A−1

(
R +Λ∗A−2

)−1
y. (A.10)

B. SERIAL SOFT-IC

From the matched-filter output in (8), the element of y cor-
responding to message k of userm can be written as

yk,m =
K∑
i=1

M∑
j=1

sHk,msi, jAi, jxi, j + sHk,mn. (B.1)

Decomposing (B.1) to isolate the terms containing the kth
user’s messages, we have

yk,m =
k−1∑
i=1

M∑
j=1

sHk,msi, jAi, jxi, j +
M∑
j=1

sHk,msk, jAk, jxk, j

+
K∑

i=k+1

M∑
j=1

sHk,msi, jAi, jxi, j + sHk,mn.

(B.2)

Note that the second term on the right side of (B.2) can be
decomposed further to isolate the term representing the cur-
rent message xk,m as

M∑
j=1

sHk,msk, jAk, jxk, j =
m−1∑
j=1

sHk,msk, jAk, jxk, j + sHk,msk,mAk,mxk,m

+
M∑

j=m+1

sHk,msk, jAk, jxk, j .

(B.3)

Since the signatures have unit norm, sHk,msk,m = 1, substitut-
ing (B.3) in (B.2) and solving for xk,m yields

xk,m = yk,m
Ak,m

− 1
Ak,m

k−1∑
i=1

M∑
j=1

sHk,msi, jAi, jxi, j

− 1
Ak,m

m−1∑
j=1

sHk,msk, jAk, jxk, j

− 1
Ak,m

M∑
j=m+1

sHk,msk, jAk, jxk, j

− 1
Ak,m

K∑
i=k+1

M∑
j=1

sHk,msi, jAi, jxi, j .

(B.4)

In the serial soft-IC, the current message estimate x̃k,m is de-
termined using the previous decisions to reconstruct the in-
terference which is then subtracted from the matched filter
output xk,m. By rewriting the right side of (B.4) to distinguish
those xk,m which have already been estimated, we obtain (19).
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