439 research outputs found

    Coherent versus noncoherent signaling for satellite-aided mobile communications

    Get PDF
    The use of coherent versus noncoherent communications is an unresolved issue for the mobile satellite community. Should one select the more robust but less efficient noncoherent strategy for communications over satellite-aided mobile channels, or does the introduction of a space platform in the mobile link improve signal stability (both amplitude and phase) such that conventional coherent schemes become attractive? This publication tries to answer some of the questions by discussing the results from experiments using a coherent QPSK receiver. The issues discussed include items such as the measured performance in Rician fading, the link error floor in a fading environment, etc. The results are compared and contrasted with that of a noncoherent limiter/discriminator FM receiver

    Dispensing with Channel Estimation…

    No full text
    In this article, we investigate the feasibility of noncoherent detection schemes in wireless communication systems as a low-complexity alternative to the family of coherent schemes. The noncoherent schemes require no channel knowledge at the receiver for the detection of the received signal, while the coherent schemes require channel inherently complex estimation, which implies that pilot symbols have to be transmitted resulting in a wastage of the available bandwidth as well as the transmission power

    Performance Analysis of Coherent and Noncoherent Modulation under I/Q Imbalance

    Full text link
    In-phase/quadrature-phase Imbalance (IQI) is considered a major performance-limiting impairment in direct-conversion transceivers. Its effects become even more pronounced at higher carrier frequencies such as the millimeter-wave frequency bands being considered for 5G systems. In this paper, we quantify the effects of IQI on the performance of different modulation schemes under multipath fading channels. This is realized by developing a general framework for the symbol error rate (SER) analysis of coherent phase shift keying, noncoherent differential phase shift keying and noncoherent frequency shift keying under IQI effects. In this context, the moment generating function of the signal-to-interference-plus-noise-ratio is first derived for both single-carrier and multi-carrier systems suffering from transmitter (TX) IQI only, receiver (RX) IQI only and joint TX/RX IQI. Capitalizing on this, we derive analytic expressions for the SER of the different modulation schemes. These expressions are corroborated by comparisons with corresponding results from computer simulations and they provide insights into the dependence of IQI on the system parameters. We demonstrate that the effects of IQI differ considerably depending on the considered system as some cases of single-carrier transmission appear robust to IQI, whereas multi-carrier systems experiencing IQI at the RX require compensation in order to achieve a reliable communication link

    The Noncoherent Rician Fading Channel -- Part I : Structure of the Capacity-Achieving Input

    Full text link
    Transmission of information over a discrete-time memoryless Rician fading channel is considered where neither the receiver nor the transmitter knows the fading coefficients. First the structure of the capacity-achieving input signals is investigated when the input is constrained to have limited peakedness by imposing either a fourth moment or a peak constraint. When the input is subject to second and fourth moment limitations, it is shown that the capacity-achieving input amplitude distribution is discrete with a finite number of mass points in the low-power regime. A similar discrete structure for the optimal amplitude is proven over the entire SNR range when there is only a peak power constraint. The Rician fading with phase-noise channel model, where there is phase uncertainty in the specular component, is analyzed. For this model it is shown that, with only an average power constraint, the capacity-achieving input amplitude is discrete with a finite number of levels. For the classical average power limited Rician fading channel, it is proven that the optimal input amplitude distribution has bounded support.Comment: To appear in the IEEE Transactions on Wireless Communication

    Narrow band digital modulation for land mobile radio.

    Get PDF

    Soft-decision multiple-symbol differential sphere detection and decision-feedback differential detection for differential QAM dispensing with channel estimation in the face of rapidly fading channels

    No full text
    Turbo detection performed by exchanging extrinsic information between the soft-decision QAM detector and the channel decoder is beneficial for the sake of exploring the bit dependency imposed both by modulation and by channel coding. However, when the soft-decision coherent QAM detectors are provided with imperfect channel estimates in rapidly fading channels, they tend to produce potentially unreliable LLRs that deviate from the true probabilities, which degrades the turbo detection performance. Against this background, in this paper, we propose a range of new soft-decision multiple-symbol differential sphere detection (MSDSD) and decision-feedback differential detection (DFDD) solutions for differential QAM (DQAM), which dispense with channel estimation in the face of rapidly fading channels. Our proposed design aims for solving the two inherent problems in soft-decision DQAM detection design, which have also been the most substantial obstacle in the way of offering a solution for turbo detected MSDSD aided differential MIMO schemes using QAM: 1) how to facilitate the soft-decision detection of the DQAM's amplitudes, which-in contrast to the DPSK phases-do not form a unitary matrix, and 2) how to separate and streamline the DQAM's soft-decision amplitude and phase detectors. Our simulation results demonstrate that our proposed MSDSD aided DQAM solution is capable of substantially outperforming its MSDSD aided DPSK counterpart in coded systems without imposing a higher complexity. Moreover, our proposed DFDD aided DQAM solution is shown to outperform the conventional solutions in literature. Our discussions on the important subject of coherent versus noncoherent schemes suggest that compared to coherent square QAM relying on realistic imperfect channel estimation, MSDSD aided DQAM may be deemed as a better candidate for turbo detection assisted coded systems operating at high Doppler frequencie

    Iterative amplitude/phase multiple-symbol differential sphere detection for DAPSK modulated transmissions

    No full text
    Differentially encoded and non-coherently detected transceivers exhibit a low complexity, since they dispense with complex channel estimation. Albeit this is achieved at the cost of requiring an increased transmit power, they are particularly beneficial, for example in cooperative communication scenarios, where the employment of channel estimation for all the mobile-to-mobile links may become unrealistic. In pursuit of high bandwidth efficiency, differential amplitude and phase shift keying (DAPSK) was devised using constellations of multiple concentric rings. In order to increase resilience against the typical high-Doppler-induced performance degradation of DAPSK and/or enhance the maximum achievable error-free transmission rate for DAPSK modulated systems, multiple-symbol differential detection (MSDD) may be invoked. However, the complexity of the maximum-a-posteriori (MAP) MSDD increases exponentially with the detection window size and hence may become excessive upon increasing the window size, especially in the context of iterative detection aided channel coded system. In order to circumvent this excessive complexity, we conceive a decomposed two-stage iterative amplitude and phase (A/P) detection framework, where the challenge of having a non-constant-modulus constellation is tackled with the aid of a specifically designed information exchange between the independent A/P detection stages, thus allowing the incorporation of reduced-complexity sphere detection (SD). Consequently, a near-MAP-MSDD performance can be achieved at a significantly reduced complexity, which may be five orders of magnitude lower than that imposed by the traditional MAP-MSDD in the 16-DAPSK scenario considered

    Trellis coding with Continuous Phase Modulation (CPM) for satellite-based land-mobile communications

    Get PDF
    This volume of the final report summarizes the results of our studies on the satellite-based mobile communications project. It includes: a detailed analysis, design, and simulations of trellis coded, full/partial response CPM signals with/without interleaving over various Rician fading channels; analysis and simulation of computational cutoff rates for coherent, noncoherent, and differential detection of CPM signals; optimization of the complete transmission system; analysis and simulation of power spectrum of the CPM signals; design and development of a class of Doppler frequency shift estimators; design and development of a symbol timing recovery circuit; and breadboard implementation of the transmission system. Studies prove the suitability of the CPM system for mobile communications

    Design guidelines for spatial modulation

    No full text
    A new class of low-complexity, yet energyefficient Multiple-Input Multiple-Output (MIMO) transmission techniques, namely the family of Spatial Modulation (SM) aided MIMOs (SM-MIMO) has emerged. These systems are capable of exploiting the spatial dimensions (i.e. the antenna indices) as an additional dimension invoked for transmitting information, apart from the traditional Amplitude and Phase Modulation (APM). SM is capable of efficiently operating in diverse MIMO configurations in the context of future communication systems. It constitutes a promising transmission candidate for large-scale MIMO design and for the indoor optical wireless communication whilst relying on a single-Radio Frequency (RF) chain. Moreover, SM may also be viewed as an entirely new hybrid modulation scheme, which is still in its infancy. This paper aims for providing a general survey of the SM design framework as well as of its intrinsic limits. In particular, we focus our attention on the associated transceiver design, on spatial constellation optimization, on link adaptation techniques, on distributed/ cooperative protocol design issues, and on their meritorious variants
    corecore