26 research outputs found

    Quantum stabilizer codes and beyond

    Get PDF
    The importance of quantum error correction in paving the way to build a practical quantum computer is no longer in doubt. This dissertation makes a threefold contribution to the mathematical theory of quantum error-correcting codes. Firstly, it extends the framework of an important class of quantum codes -- nonbinary stabilizer codes. It clarifies the connections of stabilizer codes to classical codes over quadratic extension fields, provides many new constructions of quantum codes, and develops further the theory of optimal quantum codes and punctured quantum codes. Secondly, it contributes to the theory of operator quantum error correcting codes also called as subsystem codes. These codes are expected to have efficient error recovery schemes than stabilizer codes. This dissertation develops a framework for study and analysis of subsystem codes using character theoretic methods. In particular, this work establishes a close link between subsystem codes and classical codes showing that the subsystem codes can be constructed from arbitrary classical codes. Thirdly, it seeks to exploit the knowledge of noise to design efficient quantum codes and considers more realistic channels than the commonly studied depolarizing channel. It gives systematic constructions of asymmetric quantum stabilizer codes that exploit the asymmetry of errors in certain quantum channels.Comment: Ph.D. Dissertation, Texas A&M University, 200

    Challenges and Some New Directions in Channel Coding

    Get PDF
    Three areas of ongoing research in channel coding are surveyed, and recent developments are presented in each area: spatially coupled Low-Density Parity-Check (LDPC) codes, nonbinary LDPC codes, and polar coding.This is the author accepted manuscript. The final version is available from IEEE via http://dx.doi.org/10.1109/JCN.2015.00006

    Architectures for soft-decision decoding of non-binary codes

    Full text link
    En esta tesis se estudia el dise¿no de decodificadores no-binarios para la correcci'on de errores en sistemas de comunicaci'on modernos de alta velocidad. El objetivo es proponer soluciones de baja complejidad para los algoritmos de decodificaci'on basados en los c'odigos de comprobaci'on de paridad de baja densidad no-binarios (NB-LDPC) y en los c'odigos Reed-Solomon, con la finalidad de implementar arquitecturas hardware eficientes. En la primera parte de la tesis se analizan los cuellos de botella existentes en los algoritmos y en las arquitecturas de decodificadores NB-LDPC y se proponen soluciones de baja complejidad y de alta velocidad basadas en el volteo de s'¿mbolos. En primer lugar, se estudian las soluciones basadas en actualizaci'on por inundaci 'on con el objetivo de obtener la mayor velocidad posible sin tener en cuenta la ganancia de codificaci'on. Se proponen dos decodificadores diferentes basados en clipping y t'ecnicas de bloqueo, sin embargo, la frecuencia m'axima est'a limitada debido a un exceso de cableado. Por este motivo, se exploran algunos m'etodos para reducir los problemas de rutado en c'odigos NB-LDPC. Como soluci'on se propone una arquitectura basada en difusi'on parcial para algoritmos de volteo de s'¿mbolos que mitiga la congesti'on por rutado. Como las soluciones de actualizaci 'on por inundaci'on de mayor velocidad son sub-'optimas desde el punto de vista de capacidad de correci'on, decidimos dise¿nar soluciones para la actualizaci'on serie, con el objetivo de alcanzar una mayor velocidad manteniendo la ganancia de codificaci'on de los algoritmos originales de volteo de s'¿mbolo. Se presentan dos algoritmos y arquitecturas de actualizaci'on serie, reduciendo el 'area y aumentando de la velocidad m'axima alcanzable. Por 'ultimo, se generalizan los algoritmos de volteo de s'¿mbolo y se muestra como algunos casos particulares puede lograr una ganancia de codificaci'on cercana a los algoritmos Min-sum y Min-max con una menor complejidad. Tambi'en se propone una arquitectura eficiente, que muestra que el 'area se reduce a la mitad en comparaci'on con una soluci'on de mapeo directo. En la segunda parte de la tesis, se comparan algoritmos de decodificaci'on Reed- Solomon basados en decisi'on blanda, concluyendo que el algoritmo de baja complejidad Chase (LCC) es la soluci'on m'as eficiente si la alta velocidad es el objetivo principal. Sin embargo, los esquemas LCC se basan en la interpolaci'on, que introduce algunas limitaciones hardware debido a su complejidad. Con el fin de reducir la complejidad sin modificar la capacidad de correcci'on, se propone un esquema de decisi'on blanda para LCC basado en algoritmos de decisi'on dura. Por 'ultimo se dise¿na una arquitectura eficiente para este nuevo esquemaGarcía Herrero, FM. (2013). Architectures for soft-decision decoding of non-binary codes [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/33753TESISPremiad

    Analysis and Decoding of Linear Lee-Metric Codes with Application to Code-Based Cryptography

    Get PDF
    Lee-metric codes are defined over integer residue rings endowed with the Lee metric. Even though the metric is one of the oldest metric considered in coding-theroy and has interesting applications in, for instance, DNA storage and code-based cryptography, it received relatively few attentions compared to other distances like the Hamming metric or the rank metric. Hence, codes in the Lee metric are still less studied than codes in other metrics. Recently, the interest in the Lee metric increased due to its similarities with the Euclidean norm used in lattice-based cryptosystem. Additionally, it is a promising metric to reduce the key sizes or signature sizes in code-based cryptosystem. However, basic coding-theoretic concepts, such as a tight Singleton-like bound or the construction of optimal codes, are still open problems. Thus, in this thesis we focus on some open problems in the Lee metric and Lee-metric codes. Firstly, we introduce generalized weights for the Lee metric in different settings by adapting the existing theory for the Hamming metric over finite rings. We discuss their utility and derive new Singleton-like bounds in the Lee metric. Eventually, we abandon the classical idea of generalized weights and introduce generalized distances based on the algebraic structure of integer residue rings. This allows us to provide a novel and improved Singleton-like bound in the Lee metric over integer residue rings. For all the bounds we discuss the density of their optimal codes. Originally, the Lee metric has been introduced over a qq-ary alphabet to cope with phase shift modulation. We consider two channel models in the Lee metric. The first is a memoryless channel matching to the Lee metric under the decoding rule ``decode to the nearest codeword''. The second model is a block-wise channel introducing an error of fixed Lee weight, motivated by code-based cryptography where errors of fixed weight are added intentionally. We show that both channels coincide in the limit of large block length, meaning that their marginal distributions match. This distribution enables to provide bounds on the asymptotic growth rate of the surface and volume spectrum of spheres and balls in the Lee metric, and to derive bounds on the block error probability of the two channel models in terms of random coding union bounds. As vectors of fixed Lee weight are also of interest to cryptographic applications, we discuss the problem of scalar multiplication in the Lee metric in the asymptotic regime and in a finite-length setting. The Lee weight of a vector may be increased or decreased by the product with a nontrivial scalar. From a cryptographic view point this problem is interesting, since an attacker may be able to reduce the weight of the error and hence reduce the complexity of the underlying problem. The construction of a vector with constant Lee weight using integer partitions is analyzed and an efficient method for drawing vectors of constant Lee weight uniformly at random from the set of all such vectors is given. We then focus on regular LDPC code families defined over integer residue rings and analyze their performance with respect to the Lee metric. We determine the expected Lee weight enumerator for a random code in fixed regular LDPC code ensemble and analyze its asymptotic growth rate. This allows us to estimate the expected decoding error probability. Eventually, we estimate the error-correction performance of selected LDPC code families under belief propagation decoding and symbol message passing decoding and compare the performances. The thesis is concluded with an application of the results derived to code-based cryptography. Namely, we apply the marginal distribution to improve the yet known fastest Lee-information set decoding algorithm

    Challenges and some new directions in channel coding

    Get PDF
    Three areas of ongoing research in channel coding are surveyed, and recent developments are presented in each area: Spatially coupled low-density parity-check (LDPC) codes, nonbinary LDPC codes, and polar coding. © 2015 KICS

    Contributions to folded reed-solomon codes for burst error correction

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Applications of finite geometries to designs and codes

    Get PDF
    This dissertation concerns the intersection of three areas of discrete mathematics: finite geometries, design theory, and coding theory. The central theme is the power of finite geometry designs, which are constructed from the points and t-dimensional subspaces of a projective or affine geometry. We use these designs to construct and analyze combinatorial objects which inherit their best properties from these geometric structures. A central question in the study of finite geometry designs is Hamada’s conjecture, which proposes that finite geometry designs are the unique designs with minimum p-rank among all designs with the same parameters. In this dissertation, we will examine several questions related to Hamada’s conjecture, including the existence of counterexamples. We will also study the applicability of certain decoding methods to known counterexamples. We begin by constructing an infinite family of counterexamples to Hamada’s conjecture. These designs are the first infinite class of counterexamples for the affine case of Hamada’s conjecture. We further demonstrate how these designs, along with the projective polarity designs of Jungnickel and Tonchev, admit majority-logic decoding schemes. The codes obtained from these polarity designs attain error-correcting performance which is, in certain cases, equal to that of the finite geometry designs from which they are derived. This further demonstrates the highly geometric structure maintained by these designs. Finite geometries also help us construct several types of quantum error-correcting codes. We use relatives of finite geometry designs to construct infinite families of q-ary quantum stabilizer codes. We also construct entanglement-assisted quantum error-correcting codes (EAQECCs) which admit a particularly efficient and effective error-correcting scheme, while also providing the first general method for constructing these quantum codes with known parameters and desirable properties. Finite geometry designs are used to give exceptional examples of these codes
    corecore