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Challenges and some new directions in channel
coding

Erdal Arıkan, Najeeb ul Hassan, Michael Lentmaier, Guido Montorsi and Jossy Sayir

Abstract: Three areas of ongoing research in channel coding are
surveyed, and recent developments are presented in each area:
spatially coupled Low-Density Parity-Check (LDPC) codes, non-
binary LDPC codes, and polar coding.

Index Terms: LDPC codes, spatial coupling, non-binary codes, po-
lar codes, channel polarization.

I. Introduction

The history of channel coding began hand in hand with Shan-
non’s information theory [1]. Following on the pioneering work
of Golay [2] and Hamming [3], the majority of linear codes de-
veloped in the early ages of coding theory were “error correc-
tion” codes in the sense that their aim is to correct errors made
by the channel. The channel was universally assumed to be a Bi-
nary Symmetric Channel (BSC). The study of error correction
codes culminated with the invention of Reed-Solomon codes [4]
in 1960, which are Maximum Distance Separable (MDS) over
non-binary fields and hence are guaranteed to correct or detect
the largest number of errors possible for a given code length and
dimension.

In parallel to the evolution of linear block codes, the inven-
tion of convolutional codes by Peter Elias in 1955 [5] lead to a
different approach and to the invention of trellis-based decoding
methods such as the Viterbi algorithm [6], [7] and the BCJR al-
gorithm [8]. Both of these algorithms can be easily adapted to
any channel and hence generalise the concept of error correction
to general channels that cannot be described simply in terms of
probability of error. We now speak of “channel coding” rather
than “error correction coding”. Further progress in channel cod-
ing was made by Gottfried Ungerboeck [9] by linking coding to
modulation for convolutional codes.

In 1993, Claude Berrou and co-authors shocked the coding re-
search community in [10] by designing a coding system known
as “turbo codes” that achieved a quantum leap in the perfor-
mance of codes over general channels. They obtained very good
error performance within a small margin of the channel capac-
ity, something that had been thought impossible with practical
systems and moderate complexity by most coding theorists. Yet
Berrou’s approach achieved this in an eminently implementable
system and with linear decoding complexity. In the subse-
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quent scramble to explain the theory behind this puzzling perfor-
mance, a method originally developed by Robert Gallager in his
PhD thesis [11], known as Low-Density Parity-Check (LDPC)
coding was rediscovered in [12] and shown to have comparable
properties. Both these methods have become the workhorses
of modern communication standards, with arguments about the
technical advantages of one over the other mostly obscured by
business and standardization interests of the argumenter. What
is clear and undisputed is that LDPC codes are easier to explain
and analyse and hence should probably take precedence over
turbo codes in teaching. It is nowadays well-known that both
LDPC codes and turbo codes can be viewed as sparse codes on
graphs. As a consequence they share a lot of properties, and
any construction or analysis method that can be applied to one
of them can usually be replicated for the other. Some technical
differences between LDPC or turbo codes may tilt the balance
towards one or the other in specific applications.

We could conclude this history of coding here and bury the
topic into dusty textbooks, sending it the same way as classi-
cal Newtonian mechanics1 and other topics made obsolete by
quantum leaps in research. Many coding researchers nowadays
are confronted with the recurrent “Coding is dead” motto [13]
of experts claiming that, now that capacity is achieved, there is
nothing further to be researched in the field. In fact, as this pa-
per will contribute to showing, coding is still an ongoing and
very active topic of research with advances and innovations to
address important and practical unsolved problems.

Current hurdles in the applicability of modern coding tech-
niques can be classified in two categories:
Complexity While turbo and LDPC codes have brought
capacity-approaching performance within reach of imple-
mentable systems, implementable does not necessarily mean
practical. The complexity of codes that perform well under prac-
tical constraints such as limited decoding delay and high spec-
tral efficiency is still a major hurdle for low power implemen-
tations in integrated circuits. There is a serious need for new
methods that simplify code design, construction, storage, and
decoder implementation.
New applications Turbo and LDPC codes can be seen to
“solve” the capacity problem for elementary point-to-point
channels. Recent years have seen advances in information the-
ory for many multi-user channels such as the multiple access,
broadcast, relay and interference channels. As communication
standards become more ambitious in exploiting the available
physical resources such as spectrum and geographical reach,
there is a push to switch from interference limited parallel point-

1Apologies to mechanics researchers for the seemingly disparaging remark.
In fact, we are aware that classical mechanics is an ongoing and modern research
topic as evidenced by many journals and conferences, just as coding theory is.
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to-point protocols to true multi-user processing with joint en-
coding and/or decoding. There is a need for coding methods
that can do this efficiently for all of the scenarios described. Fur-
thermore, theory has gone further than pure communications by
expanding to distributed compression and joint source/channel
coding, distributed storage, network coding, and quantum chan-
nels and protocols. All of these new theories come with their
own requirements and constraints for coding, and hence coding
research is far from dead when it comes to these new applica-
tions.
The paper will present three areas of ongoing research in coding,
all of which have some degree of relevance to the two challenges
described.

In Section II, we will address spatially coupled LDPC codes,
which have a structure akin convolutional codes. For spatially
coupled codes the asymptotic performance of an iterative de-
coder is improved to that of an optimal decoder, which opens
the way for new degrees of freedom in the code design. For ex-
ample, it is possible to achieve capacity universally for a large
class of channels with simple regular SC-LDPC codes where ir-
regular LDPC codes would require careful individual optimiza-
tions of their degree profiles. We will discuss the design of SC-
LDPC codes for flexible rates, efficient window decoding tech-
niques for reduced complexity and latency, and the robustness of
their decoding for mobile radio channels. In Section III, we will
address non-binary LDPC and related codes. These are codes
over higher order alphabets that can, for example, be mapped
directly onto a modulation alphabet, making them interesting
for high spectral efficiency applications. While these have been
known for a while, the complexity of decoding has made them
unsuited for most practical applications. In this section, we will
discuss research advances in low complexity decoding and also
present a class of LDPC codes with an associated novel de-
coding algorithm known as Analog Digital Belief Propagation
(ADBP) whose complexity does not increase with alphabet size
and hence constitutes a promising development for very high
spectral efficiency communications. Finally, in Section IV, we
will introduce Polar coding, a new technique introduced in [14]
based on a phenomenon known as channel polarization, that has
the flexibility and versatility to be an interesting contender for
many novel application scenarios.

II. Spatially Coupled LDPC Codes

The roots of low-density parity-check (LDPC) codes [11]
trace back to the concept of random coding. It can be shown that
a randomly generated code decoded with an optimal decoder ex-
hibits very good performance with high probability. However,
such a decoder is infeasible in practice because the complexity
will increase exponentially with the code length. The ground-
breaking idea of Gallager was to slightly change the random en-
semble in such a way that the codes can be decoded efficiently
by an iterative algorithm, now known as belief propagation (BP)
decoding. His LDPC codes were defined by sparse parity-check
matrices H that contained a fixed number of K and J non-zero
values in every row and column, respectively, known as regu-
lar LDPC codes. Gallager was able to show that the minimum
distance of typical codes of the ensemble grows linearly with
the block length, which guarantees that very strong codes can
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Fig. 1. Illustration of edge spreading: the protograph of a (3,6)-regular block
code represented by a base matrix B is repeated L = 6 times and the edges
are spread over time according to the component base matrices B0, B1,
and B2, resulting in a terminated LDPCC code.

be constructed if large blocks are allowed. The complexity per
decoded bit, on the other hand, is independent of the length if
the number of decoding iterations is fixed.

The asymptotic performance of an iterative decoder can be
analyzed by tracking the probability distributions of messages
that are exchanged between nodes in the Tanner graph (den-
sity evolution) [15]. The worst channel parameter for which the
decoding error probability converges to zero is called the BP
threshold. The BP thresholds of turbo codes are actually bet-
ter than those of the original regular LDPC codes of Gallager.
A better BP threshold is obtained by allowing the nodes in the
Tanner graph to have different degrees [15]. By optimizing the
degrees of the resulting irregular LDPC code ensembles it is
possible to push the BP thresholds towards capacity. However,
this requires a large fraction of low-degree variable nodes, which
leads to higher error floors at large SNRs. As a consequence of
the degree optimization, the capacity achieving sequences of ir-
regular LDPC codes do no longer show a linear growth of the
minimum distance.

LDPC convolutional codes were invented by Jiménez Felt-
ström and Zigangirov in [16]. Like LDPC block codes, they are
defined by sparse parity-check matrices, which can be infinite
but have a band-diagonal structure like the generator matrices
of classical convolutional codes. When the parity-check matrix
is composed of individual permutation matrices, the structure
of an LDPC code ensemble can be described by a protograph
[17] (a prototype graph) and its corresponding base matrix B.
The graph of an LDPC convolutional code can be obtained by
starting from a sequence of L independent protographs of an
LDPC block code, which are then interconnected by spreading
the edges over blocks of different time instants [18]. The maxi-
mum width of this edge spreading determines the memory,mcc,
of the resulting chain of length L that defines the LDPC convo-
lutional code ensemble. Since the blocks of the original proto-
graph codes are coupled together by this procedure, LDPC con-
volutional codes are also called spatially coupled LDPC codes
(SC-LDPC). Figure 1 shows an illustration of the edge spread-
ing procedure.

A BP threshold analysis of LDPC convolutional codes shows
that the performance of the iterative decoder is improved sig-
nificantly by spatial coupling. In fact, the results in [19] show
that asymptotically, as L tends to infinity, the BP threshold is
boosted to that of the optimal maximum a posteriori (MAP) de-
coder. Stimulated by these findings, Kudekar, Richardson and
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Urbanke developed an analytical proof of this threshold satura-
tion phenomenon [20][21]. More recently, potential functions
have been identified as a powerful tool for characterizing the
connection between MAP thresholds and BP thresholds [22].
All these approaches make use of the area theorem [23] in order
to derive bounds on the MAP threshold and prove threshold sat-
uration for spatially coupled codes. Since the MAP thresholds
of regular LDPC ensembles with increasing node degrees are
known to converge to capacity, it follows that spatial coupling
provides a new way of provably achieving capacity with low-
complexity iterative BP decoding — not only for the BEC but
also for the AWGN channel. Furthermore, the spatially coupled
code ensembles inherit from the uncoupled counterparts, the lin-
early increasing minimum distance property [24]. This combi-
nation of capacity achieving thresholds with low complexity de-
coding and linearly increasing distance is quite unique and has
attracted a lot of interest in the research community.

The capacity achieving property of regular SC-LDPC codes
raises the question whether irregularity is still needed at all. In
principle, it is possible for any arbitrary rational rate to construct
regular codes that guarantee a vanishing gap to capacity with BP
decoding. On the other hand, for some specific code rates, the
required node degrees and hence the decoding complexity in-
crease drastically. But even if we neglect the complexity, there
exists another problem of practical significance that so far has
not received much attention in the literature: for large node de-
grees J andK the threshold saturation effect will only occur for
larger values of the coupling parameter mcc, as illustrated for
the BEC in Fig. 2 [25]. We can see that for a given coupling
width w = mcc +1, the gap to capacity becomes small only for
certain code rates R, and it turns out that these rates correspond
to the ensembles for which the variable node degree J is small.

Motivated by this observation, in [25] some nearly-regular
SC-LDPC code ensembles where introduced, which are built
upon the mixture of two favorable regular codes of same vari-
able node degree. The key is to allow for a slight irregularity
in the code graph to add a degree of freedom that can be used
for supporting arbitrary rational rates as accurately as needed
while keeping the check and variable degrees as low as possible.
These codes exhibit performance close to the Shannon limit for
all rates in the rate interval considered, while having a decoder
complexity as low as for the best regular codes. The exclusion of
variable nodes of degree two in the construction ensures that the
minimum distance of the proposed ensembles increases linearly
with the block length, i.e., the codes are asymptotically good.

A. Efficient Decoding of Spatially Coupled Codes

In order to achieve the MAP threshold, the number L of cou-
pled code blocks should be sufficiently large for reducing the
rate loss due to termination of the chain. But running the BP de-
coder over the complete chain of length L would then result in a
large latency and decoding complexity and hence is not feasible
in practical scenarios. However, thanks to the limited width of
the non-zero region around the diagonal, SC-LDPC codes can
be decoded in a continuous fashion using a sliding window de-
coder [26] of size W (W � L). As a result, decoding latency
and decoding complexity become independent of L. Moreover,
the storage requirements for the decoder are reduced by a factor
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Fig. 2. Density evolution thresholds εBP for (J,K)-regular SC-LDPC ensem-
bles in comparison with the Shannon limit εSh. The coupling width w is
equal to mcc + 1. For a given rate R = 1 − J/K, the smallest pair of
values J and K are chosen under the condition that J ≥ 3. The ensembles
with minimum variable node degree J = 3 are highlighted with squares.
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Fig. 3. Window decoder of size W = 4 at time t. The green variable nodes
represent decoded blocks and the red variable nodes (yt) are the target block
within the current window. The dashed lines represent the read access to the
mcc previously decoded blocks.

of L/W compared to a non-windowed decoder. An example of
the window decoder of size W = 4 is given in Fig. 3.

It has been shown in [27] that for equal structural latency, SC-
LDPC codes under window decoding outperform LDPC codes
for short to long latency values and outperform convolutional
codes from medium to long latency values. For applications re-
quiring very short latency, Viterbi decoded convolutional codes
were still found to be the optimal choice [28][29][27]. Note
that only structural latency was considered in all these compar-
isons which is defined as the number of bits required before
decoding can start. It therefore can be concluded that for low
transmission rate applications (in the range of bit/seconds), con-
volutional codes with moderate constraint length are favorable
since the delay in filling the decoder buffer dominates the over-
all latency. Whereas, for applications with transmission rates in
excess of several Gigabit/seconds, e.g., short range communica-
tion, medium to large structural latency is tolerable and strong
codes such as SC-LDPC codes provide gain in performance
compared to the conventional convolutional codes. Another ad-
vantage of using a window decoder is the flexibility in terms of
decoding latency at the decoder. Since the window size W is a
decoder parameter, it can be varied without changing the code,
providing a flexible trade-off between performance and latency
[27].

In BP decoding, messages are passed between the check and
variable nodes according to a parallel (flooding) or serial (on-
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Fig. 4. Illustration of block-fading channel for a codeword of length N and
F = 2.

demand) rule [30]. In both schedules, all the nodes in the graph
are typically updated at every decoding iteration (uniform sched-
ules). For both LDPC and SC-LDPC, a uniform serial decoding
schedule results in a factor of two in complexity reduction when
applied over the complete length of the code [30]. However, this
gain in complexity reduction reduces to only 20% when uniform
serial schedules are applied within a decoding window [31][32].
In order to reduce the decoding complexity for window decod-
ing, non-uniform window decoding schedules has been intro-
duced in [31][32], which result in 50% reduction in complex-
ity compared to uniform decoding schedules. The reduction in
decoding complexity can be achieved by avoiding unnecessary
updates of nodes not directly connected to the first position in
the window. Only nodes that show improvement based on their
BER compared to the previous iteration are updated in the next
iteration.

B. Performance over Mobile Radio Channels

One of the most remarkable features of spatially coupled
codes is their universality property, which means that a single
code construction performs well for a large variety of channel
conditions. For discrete-input memoryless symmetric channels
the universality of SC-LDPC codes has been shown in [21]. In
this section we consider the block-fading channel and demon-
strate that SC-LDPC codes show a remarkable performance on
this class of channels.

The block-fading channel was introduced in [33] to model
the mobile-radio environment. This model is useful because the
channel coherence time in many cases is much longer than one
symbol duration and several symbols are affected by the same
fading coefficient. The coded information is transmitted over a
finite number of fading blocks to provide diversity. An example
where a codeword of length N spreads across F = 2 fading
realizations is shown in Fig. 4. In general, when dealing with
block-fading channels, two strategies can be adopted: coding
with block interleaving or coding with memory [34]. Spatially-
coupled codes, with their convolutional structure among LDPC
codes, are expected to be a nice example of the second strategy.

The block-fading channel is characterized by an outage prob-
ability, which serves as a lower bound on the word error prob-
ability for any code decoded using a maximum likelihood de-
coder. In terms of density evolution, the density evolution out-
age (DEO) is the event when the bit error probability does not
converge to zero for a fixed value of SNR after a finite or an
infinite number of decoding iterations are performed [35]. The
probability of density evolution outage, for a fixed value of SNR,
can then be calculated using a Monte Carlo method considering
significant number of fading coefficients.

Since the memory of the code plays an important role to ex-
ploit code diversity, we consider SC-LDPC codes with increas-
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Fig. 5. Density evolution outage for SC-LDPC codes with memory 0,1,2 and 3.
The bold lines represent the DEO and dashed lines represent the simulation
results when a code with N = 200, L = 100, is decoded using a window
decoder, F = 2.

ing memory from 0 to 3. The diversity of the code, which is
defined as the slope of the WER curve, is calculated numeri-
cally from the DEO curves presented in Fig. 5. For uncoupled
LDPC codes, the diversity is limited to d = 1.3 (see dotted line
in Fig. 5). This case can be interpreted as an SC-LDPC code
with mcc = 0. If we now increase the coupling parameter to 1,
2 and 3, then the diversity of SC-LDPC codes increases to 3, 6
and 10, respectively [36]. The figure also shows the simulation
results (dashed lines) for finite length codes when the length of
each individual coupled code block isN = 200. The simulation
results match closely with the calculated DEO bounds.

An alternative approach to codes with memory is taken by
the root-LDPC codes [35] with a special check node structure
called rootcheck. Full diversity (d = F = 1/R) is provided
to the systematic information bits only by connecting only one
information bit to every rootcheck. However, designing root-
LDPC codes with diversity order greater than 2 requires codes
with rate less than R = 1/2. The special structure of the codes
makes it a complicated task to generate good root-LDPC codes
with high diversity (and thus low rate).

Another key feature of SC-LDPC codes is its robustness
against the variation in the channel. In case of root-LDPC codes,
the parity-check matrix has to be designed for the specific chan-
nel parameter F to provide a diversity of d = F to the infor-
mation bits. However for SC-LDPC codes, it can be shown that
the code design for a specific value of F is not required whereas
the diversity order strongly depends on the memory of the code.
This feature makes them very suitable for a wireless mobile en-
vironment.

III. Non-Binary Codes and High Spectral Efficiency Codes

Low-Density Parity-Check (LDPC) codes were originally
proposed by Gallager [11] and re-discovered by MacKay &
al. [12] in the years after the invention of turbo codes [10].
LDPC codes have been adopted in several current standards,
e.g., IEEE 802.11n Wi-Fi standard, DVB-S2, T2, and C2 digital
video broadcasting satellite, cable and terrestrian, 10GBase-T
ethernet over twisted pairs, G.hn/G.9960 home networking over



ARIKAN et al.: CHALLENGES AND SOME NEW DIRECTIONS IN CHANNEL CODING 5

power lines. Together with turbo codes, they are the modern
coding technique of choice when it comes to designing commu-
nication systems that approach the theoretical limits of physical
transmission media in terms of data rate, transmission power,
geographical reach and reliability.

All LDPC codes in current standards are binary codes. LDPC
codes over non-binary alphabets were mentioned in [11] and
fully described in [37]. They offer two practical advantages and
one major disadvantage with respect to binary codes:
• Advantage 1: encoding directly over the q-ary alphabet cor-
responding to the signal constellation used for modulation saves
the mapping and de-mapping operations needed to transfer be-
tween binary coding alphabet and non-binary modulation signal
space. Furthermore, the de-mapping operation is costly in terms
of complexity and introduces a loss of sufficient statistic and a
resulting performance loss that can only be partially countered
by proper choice of the mapping, or fully recovered by costly
iterations over the de-mapper and the decoder. With non-binary
codes, there is no mapping and no loss of efficiency through de-
mapping as the input messages to the decoder are a sufficient
statistic for the transmitted symbols, making non-binary LDPC
codes a tempting proposition for high spectral efficiency coding
over higher order constellations.
• Advantage 2: non-binary LDPC codes tend to exhibit less of a
performance loss when the block length is shortened to accom-
modate delay constraints, as compared to binary codes.
• Disadvantage: the decoding complexity of LDPC codes in-
creases with the alphabet size.
The complexity issue has been addressed in a number of re-
finements of the non-binary LDPC iterative decoding algorithm.
The plain description of the decoder requires convolutions of q-
ary distribution-valued messages in every constraint node of the
associated factor graph. A first and appealing improvement [37]
is obtained by switching to the frequency domain where convo-
lutions become multiplications. This involves taking the q point
discrete Fourier transform (DFT) if q is a prime number, or, for
the more practical case where q is a power of two q = 2m, tak-
ing the q point Walsh-Hadamard transform (WHT). This step
reduces the constraint node complexity from q2 to q log q by
evaluating the appropriate transform in its “fast” butterfly-based
implementation, i.e., Fast Fourier transform (FFT) for the DFT
and Fast Hadamard transform (FHT) for the WHT.

While this first improvement is significant, the resulting com-
plexity is still much higher than that of the equivalent binary
decoder. The currently least complex methods known for de-
coding non-binary LDPC codes are various realizations of the
Extended Min-Sum (EMS) [38] algorithm. In this method, con-
volutions are evaluated directly in the time domain but messages
are first truncated to their most significant components, and con-
volutions are evaluated on the truncated alphabets, resulting in
a significant complexity reduction with respect to the q2 opera-
tions needed for a full convolution. While the principle of the
algorithm is easy enough to describe as we just did, in fact its
implementation is quite subtle because of the need to remem-
ber which symbols are retained in the truncated alphabet for
each message and which configurations of input symbols map
to which output symbols in a convolution. Many technical im-
provements of the EMS can be achieved by hardware-aware im-

plementation of the convolution operations, e.g., [39], [40].
In this section, we discuss two current research areas related

to non-binary codes. First, we will look at frequency-domain
methods that operate on truncated messages. The aim here is
to achieve a fairer comparison of complexity between the EMS
and frequency-domain methods, since much of the gain of the
EMS is achieved through message truncation, but in complex-
ity comparisons it is evaluated alongside frequency domain de-
coders operating on full message sets. In the second part of this
section, we will look at a novel non-binary code construction op-
erating over rings rather than fields, with a decoding algorithm
known as Analog Digital Belief Proapagation (APBP) [41]. This
promising new approach has the merit that its complexity does
not increase with the alphabet size, in contrast to regular be-
lief propagation for LDPC codes over q-ary fields, making it an
appealing proposition for very high spectral efficiency commu-
nications.

A. Frequency domain decoding with truncated messages

The ideal constraint node operation of an LPDC decoder op-
erating on a field F implements a Bayesian estimator for the
conceptual scenario illustrated in Figure 6. The estimator pro-
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Fig. 6. Conceptual scenario for a degree 4 constraint node decoder

vides the a-posteriori probability distribution of code symbol
X1 given the observations Y2, Y3 and Y4 of the code symbols
X2, X3 and X4, respectively, where the sum of X1, X2, X3

and X4 is zero over F . Assuming that the input to the de-
coder is provided in terms of a-posteriori probability distribu-
tions PX2|Y2

, PX3|Y3
and PX4|Y4

, i.e., as distribution-valued
messages, it follows that the distribution PX1|Y2Y3Y4

to be com-
puted is a type of convolution of the input distributions. For
example, if F = GF(3) , i.e., the field of numbers {0, 1, 2}
using arithmetic modulo 3, then the output probability that X1

be zero given Y2, Y3 and Y4 is the sum of the probabilities all
configurations of X2, X3 and X4 that sum to zero, i.e., 0,0,0
or 0,1,2 or 0,2,1 or 1,0,2 or 1,1,1 or 1,2,0 or 2,0,1 or 2,1,0 or
2,2,2. This case results in a cyclic convolution of the three
distribution-valued input messages. Over the more commonly
used binary extension fields GF(2m), where the sum is defined
as a bitwise sum, the corresponding operation is a component-
wise cyclic convolution in multi-dimensional binary space.

Convolution can be efficiently operated in the frequency do-
main. For a pure cyclic convolution such as the one illustrated
over GF(3), the transform required is the discrete Fourier trans-
form (DFT). The convolution of vectors in the time domain is
equivalent to the componentwise product of the corresponding
vectors in the transform domain. This process is illustrated in
Figure 7. For the more practically relevant binary extension
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fields GF(2m), the same process applies but the transform re-
quired is the Walsh-Hadamard transform (WHT).

Transform Transform Transform

×
×
×

×
×
×

Transform−1

PX2|Y2
PX3|Y3

PX4|Y4

PX1|Y2Y3Y4

Fig. 7. Frequency domain convolution

Both the DFT and the WHT can be operated efficiently us-
ing a fast butterfly structure as the Fast Fourier transform (FFT)
or the Fast Hadamard Transform (FHT), requiring q log q op-
erations where q is the alphabet size of the code. In a typical
non-binary LDPC decoder realization, these transforms despite
their efficient implementation still use up over 90% of the com-
puting resources and hence constitute the main hurdle for the
practical implementability of non-binary LDPC when compared
to binary LDPC codes. The approach of the EMS is to revert to
time-domain convolutions but operate them on reduced alphabet
sizes q′ � q by truncating each incoming distribution-valued
message to its largest components. The resulting algorithm is
more difficult to operate than may at first appear, because in
such partial convolutions one needs to retain which output val-
ues emerge from the mappings of the differing truncated alpha-
bets of each input message, so the implementation needs to per-
form operations in F in parallel to the convolution operations
over the probabilities. The complexity comparison becomes a
comparison between q′2 and q log q. For example, when oper-
ating in GF(64), the complexity of the frequency domain based
decoder is on the order of 6×64 = 384 operations per constraint
node per iteration, whereas the EMS with messages truncated to
q′ = 8 is in the order of 8 × 8 = 64 operations per constraint
node per iteration. An added benefit of performing convolutions
in the time domain is that one can operate in the logarithmic
domain, replacing products by max operations using the well
established approach that also underpins the min-sum method
for decoding binary LDPC codes.

The comparison described above is not completely fair be-
cause it fails to take into account that message truncation may
also be of benefit when operating in the frequency domain.
Specifically, evaluating a FHT for truncated messages can be
made more efficient if we neutralise all operations that apply to
the constant message tail corresponding to the truncated portion
of the message. In [42], the expected number of operations in a
FHT on truncated messages was evaluated both exactly and us-
ing an approximation approach that makes it easier to compute
for large alphabet sizes. The resulting comparison is promising
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Fig. 8. High spectrally efficient systems using binary codes and pragmatic
receiver (A), non binary codes and non binary BP (B), and ADBP (C).

and shows that much can be gained in operating in the frequency
domain on truncated messages. The study however is limited to
the direct transform and stops short of treating the more diffi-
cult question of how to efficiently evaluate the inverse transform
when one is only interested in its q′ most significant output val-
ues.

B. LDPC codes over rings and Analog Digital Belief Propaga-
tion (ADBP)

Consider the problem of designing a high spectral efficient
transmission system making use of an encoder of rate rc and a
high order q-PAM constellation, yielding a spectral efficiency
η = rc log2(q) [bits/dimension].

The current state-of the art solution, adopted in most stan-
dards, is the pragmatic approach of Figure 8.(A). A binary en-
coder is paired to a q-PAM modulation using an interleaver
and a proper mapping that produces a sequence of constella-
tion points. At the receiver a detector computes binary Log-
Likelihood Ratios from symbol LLRs and passes them to the
binary iterative decoder through a suitably designed interleaver.
The complexity of the LLR computation is linear with q and
consequently exponential with the spectral efficiency η.

The feed-forward receiver scheme is associated to a “prag-
matic” capacity that is smaller than that of the modulation set
and can be maximized using Gray mapping. The feedback struc-
ture (dashed lines in Figure 8.(A)) can recover this capacity loss
if coupled with a proper binary code design. However, iterating
between detector and decoder increases the receiver complex-
ity as the conversion from bit to symbol LLRs and viceversa is
included in the loop, so that its complexity is multiplied by the
number of detector iterations.

A straightforward extension of an (N,K) binary encoder is
obtained by substituting the binary quantities at the input of the
encoder with q-ary symbols. Parity-check symbols are obtained
by performing modq sums instead of mod2 sums in the en-
coding procedure. The set of codewords is then defined as fol-
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lows:
C = {c ∈ ZN

q : Hc = 0},
where the matrix elements are constrained to take only value in
{0,±1}. The asymptotic properties of this class of codes were
studied in [43] and [44], where they were named “modulo-q"
or quantized coset (MQC) codes. Both papers showed that they
achieve the random coding exponent and thus are capable of
achieving capacity.

The q-ary output symbols c from the encoder can then be di-
rectly mapped to q-PAM constellations. At the receiver (Fig-
ure 8.(B)) the use of the regular non binary BP iterative decod-
ing algorithm requires to compute the Log-Likelihood ratios of
the transmitted symbols in the form of q − 1-ary vectors. For
AWGN the LLRs take the following form

λ(ĉ) = −Kn

2

[
|y − x(ĉ)|2 − |y − x(c0)|2

]
∀c 6= c0

where Kn = 1/σ2
n is the concentration of the noise.

A straightforward implementation of non binary BP results in
memory and complexity requirements of the order of O(q) and
O(q2) respectively. In order to reduce the complexity of non
binary decoding, several decoding schemes have been proposed
in recent years. These were discussed in the previous section
and we summarize them again here.

The first straightforward simplification is obtained at check
nodes by replacing the discrete convolution of messages, hav-
ing complexity O(q2), with the product of the message Fourier
transforms. The use of FFT brings down the complexity to
O(q log q). In [45], the authors introduce a log-domain version
of this approach that has advantages in terms of numerical sta-
bility.

Some further simplifications have been proposed in [38] with
the Extended Min Sum (EMS) algorithm, where message vec-
tors are reduced in size by keeping only those elements in the
alphabet with higher reliability. In [46], [39] the same authors
propose a hardware implementation of the EMS decoding algo-
rithm for non-binary LDPC codes.

In [47] the Min-Max algorithm is introduced with a reduced
complexity architecture called selective implementation, which
can reduce by a factor 4 the operations required at the check
nodes; however, complexity is still in the order of O(q2).

Several studies on VLSI implementation of non binary de-
coders based on the previous algorithms have been presented in
literature [48], [49], [50], [51], [52], [53], [54]. The results of
such studies confirm that all non binary decoders require com-
plexity growing with the size of the alphabet.

The analog digital belief propagation (ADBP) algorithm pro-
posed in [41] represents a breakthrough in the reduction of the
complexity and memory requirements with respect to previous
proposed algorithms, as for ADBP both complexity and memory
requirements are independent of the size q of the alphabet. The
main simplification of ADBP is due to the fact that messages are
not stored as vector of size q containing the likelihood of the dis-
crete variables (or equivalently their log-likelihood ratios-LLR)
but rather as the two moments, or related quantities, of some
suitable predefined class of Gaussian-like distributions. ADBP
can be cast into the general class of expectation-propagation al-
gorithms described by Minka [55]. The main contribution in

[41] is the definition of the suitable class of distributions for the
messages relative to wrapped and discretized variables and the
derivation of the updating equations for the message parameters
at the sum and repetition operations of the Tanner graph.

A receiver system using the Analog Digital Belief Propaga-
tion (Figure 8.(C)), takes then as input messages directly the
pair (K, y) of the concentration of the noise and the received
samples. This pair identifies a member of the predefined class
of Gaussian-like likelihoods and ADBP performs the BP updat-
ing by constraining the messages in the graph to stay in the same
distribution class.

The exact ADBP updating equations however are not suit-
able for a straightforward implementation due to the presence
of complex non linear operations. Some simplifications to the
updating equations have been presented in [56]. In [57] the prac-
tical feasibility of ADBP decoding is proved and post synthesis
results of the hardware implementation of required processing
functions are provided.

The ADBP decoder cannot be applied to all types of linear
codes over GF (q) as multiplication by field elements different
from±1 is not allowed in the graph. This constraint has not been
taken into consideration previously at the code design stage and
requires the construction of new and efficient codes. Although
[43] and [44] show that asymptotically this class of codes can
achieve capacity, in literature there are no example of good code
constructions with finite size.

The exceptional complexity reduction achieved from using
the ADBP, together with the asymptotic results motivates for
further research effort in the design of good LDPC encoders
within this class.

IV. Polar Codes

Since its inception, the major challenge in coding theory has
been to find methods that would achieve Shannon limits using
low-complexity methods for code construction, encoding, and
decoding. A solution to this problem has been proposed in [14]
through a method called “channel polarization.” Rather than at-
tacking the coding problem directly, the polarization approach
follows a purely information-theoretic route whereby N inde-
pendent identical copies of a given binary-input channel W are
manipulated by certain combining and splitting operations to
“manufacture” a second set of binary-input channels {W (i)}Ni=1

that have capacities either near 0 or near 1, except for a frac-
tion that vanishes as N becomes large. Once such polarized
channels are obtained, “polar coding” consists of transmitting
information at full rate over W (i) that are near perfect and fix-
ing the inputs of the remaining channels, say, to zero. In [14],
it was shown that polar codes contructed in this manner could
achieve capacity with encoding and decoding methods of com-
plexity O(N logN). In subsequent work [58], it was shown
that the probability of frame error for polar codes goes to zero
roughly as e−

√
N for any fixed rate below capacity; this result

was later refined by [59] who determined the explicit form of
the dependence of the exponent on the code rate.

The basic binary polar code is a linear code defined for any
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block length N = 2n in terms of a generator matrix

GN = F⊗n, F =

[
1 0
1 1

]
, (1)

where F⊗m denotes the nth Kronecker power of F . In polar
coding one encodes a data word u = (u1, . . . ,uN) into a code-
word x = (x1, . . . ,xN) through the transformation x = uGN.
For a rate K/N polar code, one fixes N − K of the coordi-
nates of u to zero, effectively reducing GN to a K ×N matrix.
For example, for a (N,K) = (8, 4) polar code, one may fix
u1, u2, u3, u5 to zero and obtain from

G8 =



1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1


the 4× 8 generator matrix

G4,8 =


1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1

 .
The polar code design problem consists in determining which

set of (N − K) coordinates to freeze so as to achieve the best
possible performance under SC decoding on a given channel. It
turns out that the solution to this problem depends on the chan-
nel at hand, so in general there is no universal set of coordinates
that are guaranteed to work well for all channels of a given ca-
pacity. In [14], only a heuristic method was given for the polar
code design problem. The papers [60], [61], [62] provided a full
solution with complexity O(N). With this development, po-
lar codes became the first provably capacity-achieving class of
codes with polynomial-time algorithms for code construction,
encoding, and decoding.

Other important early theoretical contributions came in rapid
succession from [63], [64], [65], [66], [67]. Polar coding was
extended to non-binary alphabets in [68], [69], [70], [71]. Polar
code designs by using alternative generator matrices with the
goal of improving the code performance were studied in [72],
[73], [74], [75], [76].

As stated above, polar coding is a channel dependent design.
The performance of polar code under “channel mismatch” (i.e.,
using a polar code optimized for one channel on a different one)
has been studied by [77], who showed that there would be a
rate loss. As shown in [78], the non-universality of polar codes
is a property of the suboptimal low-complexity successive can-
cellation decoding algorithm; under ML decoding, polar codes
are universal. More precisely, [78] shows that a polar code op-
timized for a Binary Symmetric Channel (BSC) achieves the
capacity of any other binary-input channel of the same capac-
ity under ML decoding. This result is very interesting theoreti-
cally since it gives a constructive universal code for all binary-
input channels; however, it does this at the expense of giving

up the O(N logN) decoding algorithm. In more recent work
[79], [80], universal polar coding schemes have been described,
which come at the expense of lengthening the regular polar code
construction.

It was recognized from the beginning that the finite length
performance of polar codes was not competitive with the state-
of-the-art. This was in part due to the suboptimal nature of the
standard successive cancellation (SC) decoding algorithm, and
in part due to the relatively weak minimum distance properties
of these codes. Another negative point was that the SC decoder
made its decisions sequentially, which meant that the decoder
latency would grow at least linearly with the code length, which
resulted in a throughput bottleneck. Despite these shortcom-
ings, interest in polar codes for potential applications contin-
ued. The reason for this continued interest may be attributed
to several factors. First, polar codes are firmly rooted in sound
well-understood theoretical principles. Second, while the per-
formance of the basic polar code is not competitive with the
state-of-the-art at short to practical block length, they are still
good enough to maintain hope that with enhancements they can
become a viable alternative. This is not surprising given that po-
lar codes are close cousins of Reed-Muller codes, which are still
an important family of codes [81] in many respects, including
performance. Third, polar codes have the unique property that
their code rate can be adjusted from 0 to 1 without changing the
encoder and decoder. Fourth, polar codes have a recursive struc-
ture, based on Plotkin’s |u|u+v| construction [82], which makes
them highly suitable for implementation in hardware. For these
and other reasons, there have been a great number of proposals
in the last few years to improve the performance of polar codes
while retaining their attractive properties. The proposed meth-
ods may be classified essentially into two categories as encoder-
side and decoder-side techniques.

Among the encoder-side techniques, one may count the non-
binary polar codes and binary polar codes starting with a larger
base matrix (kernel); however, these techniques have not yet at-
tracted much attention from a practical viewpoint due to their
complexity. Other encoder side techniques that have been tried
include the usual concatenation schemes with Reed-Solomon
codes [83], and other concatenation schemes [84], [85], [86].

Two decoder-side techniques that have been tried early on to
improve polar code performance are belief propagation (BP) de-
coding [87] and trellis-based ML decoding [88]. The BP de-
coder did not improve the SC decoder performance by any sig-
nificant amount; however, it continues to be of interest since
the BP decoder has the potential to achieve higher throughputs
compared to SC decoding [89].

The most notable improvement in polar coding performance
came by using a list decoder [90] with CRC, which achieved
near ML performance with complexity roughly O(LN logN)
for a list size L and code lengthN . The CRC helps in two ways.
First, it increases the code minimum distance at relatively small
cost in terms of coding efficiency, thus improving code perfor-
mance especially at high SNR. Second, the CRC helps select the
correct codeword from the set of candidate codewords offered
by the list decoder. It should be mentioned that the above list
decoding algorithm for polar codes was an adaptation of an ear-
lier similar algorithm given in [91] in the context of RM codes.
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Fig. 9. Performance comparison of polar and LDPC codes.

The vast literature on RM codes continues to be a rich source
of ideas in terms of design of efficient decoding techniques for
polar codes. A survey of RM codes from the perspective of de-
coders for polar codes has been given in [92].

We end this survey by giving a performance result for polar
codes. Figure 9 compares the performance of a (2048, 1008)
polar code with the WiMAX (2304,1152) LDPC code. The po-
lar code is obtained from a (2048, 1024) code by inserting a
16-bit CRC into the data and is decoded by a list-of-32 decoder.
The LDPC code results are from the database provided by [93];
decoding is by belief propagation with maximum number of it-
erations limited to 30 and 100 in the results presented. The real-
ization that polar coding performance can rival the state-of-the-
art has spurred intense research for practical implementations
of these codes. We omit from this survey the implementation-
oriented papers since that is already a very large topic by itself.
Whether polar codes will ever appear as part of the portfolio of
solutions in future systems remains uncertain. The state-of-the-
art in error correction coding is mature, with a firm footprint by
turbo and LDPC codes. Whether polar codes offer significant
advantages to make room for themselves in practical applica-
tions depends in large part on further innovation on the subject.

V. Conclusion

We have presented three areas of active research in coding
theory. We introduced spatially coupled LDPC codes for which
the asymptotic performance of the iterative decoder is improved
to that of the optimal decoder. We have discussed non-binary
LDPC codes and have introduced a new decoding algorithm,
analog digital belief propagation (ADBP), whose complexity
does not increase with the alphabet size. Finally, we have de-
scribed polar coding, a novel code construction based on a phe-
nomenon coined channel polarization, which can be proved the-
oretically to achieve channel capacity. We have stated a number
of open problems, among them:
• When decoding non-binary LDPC codes in the frequency do-
main, can we design a reduced complexity inverse transform if
we are only interested in the larger components of the resulting
distribution-valued message?

• How do we design LDPC codes over rings of integers to opti-
mize the performance of the ADBP decoder?
• While the potential of polar codes is established and proven,
how can we improve the performance of its low complexity
sub-optimal decoders at moderate codeword lengths in order for
them to rival the performance of LDPC and turbo codes in prac-
tice? Can the performance of belief propagation be improved
in this context, or are there perhaps brand-new decoding ap-
proaches that could solve this dilemna?
We hope to have shown in this paper that coding theory is an
active area of research with many challenges remaining and a
number of promising innovations on their way to maturing into
technological advances in the coming years.
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