199 research outputs found

    Probabilistic modeling of tensorial data for enhancing spatial resolution in magnetic resonance imaging.

    Get PDF
    Las imágenes médicas usan los principios de la Resonancia Magnética (IRM) para medir de forma no invasiva las propiedades de este movimiento. Cuando se aplica al cerebro humano, proporciona información única sobre la conectividad del tejido, lo que hace que la resonancia magnética sea una de las tecnologías clave en un esfuerzo científico continuo a gran escala para mapear el conector del cerebro humano. En consecuencia, es un tema de investigación oportuno e importante para crear modelos matemáticos que infieren parámetros biológicamente significativos a partir de dichos datos. La MRI y la difusión-MRI (dMRI) se han utilizado en aplicaciones que abarcan desde el procesamiento de señales, la visión por computadora y las neurociencias. Aunque los protocolos clínicos actuales permiten adquisiciones rápidas en un número diferente de cortes en varios planos, la resolución espacial no es lo suficientemente alta en muchos casos para el diagnóstico clínico. El principal problema ocurre debido a las limitaciones de hardware en los escáneres de adquisición. Por lo tanto, MRI y dMRI tienen un compromiso difícil entre una buena resolución espacial y una relación de ruido de señal (SNR). Esto conduce a adquisiciones de datos con baja resolución espacial. Se convierte en un problema serio para el análisis clínico por dos razones principales. Primero, una baja resolución espacial en datos visuales reduce la calidad en procesos médicos importantes tales como: diagnóstico de enfermedades, segmentación (tejido, nervios y hueso), construcción anatómica de atlas, reconstrucción detallada de fibras (tractografía), modelos de conductividad cerebral, etc. Segundo, para obtener imágenes de alta resolución se requiere una adquisición a largo plazo. Sin embargo, los protocolos clínicos actuales no permiten una exposición prolongada de la radiación (MRI y dMRI) en sujetos humanos

    New Directions for Contact Integrators

    Get PDF
    Contact integrators are a family of geometric numerical schemes which guarantee the conservation of the contact structure. In this work we review the construction of both the variational and Hamiltonian versions of these methods. We illustrate some of the advantages of geometric integration in the dissipative setting by focusing on models inspired by recent studies in celestial mechanics and cosmology.Comment: To appear as Chapter 24 in GSI 2021, Springer LNCS 1282

    Investigations on the properties and estimation of earth response operators from EM sounding data

    Get PDF
    Incl. 3 reprints at backAvailable from British Library Document Supply Centre- DSC:D82993 / BLDSC - British Library Document Supply CentreSIGLEGBUnited Kingdo

    Summaries of FY 1997 Research in the Chemical Sciences

    Get PDF
    The objective of this program is to expand, through support of basic research, knowledge of various areas of chemistry, physics and chemical engineering with a goal of contributing to new or improved processes for developing and using domestic energy resources in an efficient and environmentally sound manner. Each team of the Division of Chemical Sciences, Fundamental Interactions and Molecular Processes, is divided into programs that cover the various disciplines. Disciplinary areas where research is supported include atomic, molecular, and optical physics; physical, inorganic, and organic chemistry; chemical energy, chemical physics; photochemistry; radiation chemistry; analytical chemistry; separations science; heavy element chemistry; chemical engineering sciences; and advanced battery research. However, traditional disciplinary boundaries should not be considered barriers, and multi-disciplinary efforts are encouraged. In addition, the program supports several major scientific user facilities. The following summaries describe the programs
    corecore