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Abstract

Constructing statistical forecasting models is essential for a wide range of pur-
poses, such as, water resources planning and management, financial planning, and
managing inventory and production systems. In order to improve the accuracy of
flood forecasting, this thesis provides three strategies, which are based on combining
models.

The three strategies are applied to enhance the prediction accuracy for three
models for time series data. The common factor between these strategies is the
decomposed data. The Kolmogorov-Zurbenko filter, which is a developed version of
the Moving Average filter, is applied to extract the decomposed data which are the
three components: the long-term (trend), the seasonal fluctuations, and the short-
term (noise) component. These components are separated based on the assumption
that there is a gap (difference) in their spectra. The events that last for a short time
scale, which is ranged between 2 days to 3 weeks, represent the short-term series. The
next scale is the seasonal variations with a period of 1 year. Finally, any scales with
a period more than one year are related to the long-term component.

The first strategy which improves the prediction accuracy of the Combined Multi-
ple Linear Regression (CMLR) is carried out via modelling the error (residual) terms
of this model by using an Autoregressive Moving Average (ARMA) model. The in-
clusion of an ARMA model will handle the problem of Autocorrelation between the
residual terms of a CMLR. A CMLR is a Multiple Linear Regression model con-
structed by combining the data of the three components that are embedded in time
series data which can be extracted using a filtering technique.

The second strategy which improves the prediction accuracy of the Transfer Function-
Noise model (TF-Noise) is carried out via using the data of three components rather
than raw data. Unlike the MLR, the structure of this model is inherently designed
to take into consideration the special nature of time series data. These two models,
MLR and TF-Noise, are Frequentist statistics-based models.

The third strategy, however, is related to a Bayesian statistics-based model, which
is the Bayesian Multiple Linear Regression, BMLR model. The enhancement of this
model is carried out via specifying three likelihood functions and three prior distri-
butions for the three components rather than specifying one likelihood and one prior
distribution for the raw data. Besides, a Bayesian Vector Autoregressive (BVAR)
model is used to fit the data of the short-term component. Bayesian analysis enables
us to incorporate prior knowledge or evidence from previous experiences or studies
via prior distributions.

One application for the aforementioned developed models is to predict the water
discharge for a river. The water discharge series for three stations that are located
in cities Cohoes, Utica, and Poughkeepsie, and related to the Mohawk and Hudson
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rivers in New York State, US, are used. The independent variables are temperature,
precipitation, wind speed, tide, and groundwater level. Using the decomposed data,
the R Squared value, which is a measure of how well the model fits the data, for
the MLR has been increased to become 0.67 compared to the R Squared for the raw
data which is 0.48 for Cohoes city data. In the Bayesian analysis, the Metropolis-
Hastings Markov Chain Monte Carlo (MH-MCMC) algorithm is used to estimate the
parameters and then the mean value of daily water discharge (flow). The param-
eter’s estimates and uncertainties computed using this algorithm are compared to
those computed using maximum likelihood method which assumes that the model’s
parameters and residual terms are normally distributed. Similar results are obtained
using these two methods.

The Bayesian models, which are constructed using the raw and the decomposed
data, are compared based on the Deviance Information Criterion (DIC) while the
Frequentist-based models are compared using AIC and other model selection methods.
All the model selection methods follow the rule that states the smaller, the better.
The results show that the forecasting models constructed using the three components
outperform models constructed using the raw data. Also, the results for Bayesian
models are in favour of the combined BMLR-BVAR rather than the combined BMLR
where the DIC value declines from 6593.116 to 521.385.

Multivariate time series, MTS, datasets are very common in different financial and
business, economic, and hydrological fields. In many cases, it is desirable to compare
the similarity or dissimilarity of a group of MTS datasets. A considerable amount of
literature has been published on the subject of similarity and dissimilarity for this type
of datasets using the raw data. However, no study has been conducted to examine the
dissimilarity between MTS using the decomposed data. In this study, a methodology
that is based on a component-based distance measure is adapted to separately capture
the dissimilarities between the components of a group of MTS datasets. This approach
will help us to determine the factors that affect each component in the system of
interest. One advantage of applying this method is its ability to provide the required
guarantees that enable us to use a forecasting model for one object, for example,
a city, to forecast future values for another city. Moreover, to support the decision
of similarity, the greater the proximity value for one or more of parameter-based
statistics, such as MSE values for MLR models, the more similar are the objects.

As long as we have MTS datasets, a covariance matrix-based Euclidean and Non-
Euclidean distance measures is applied. The statistical approach used to provide a
decision about the dissimilarity is the Hypothesis Testing. According to the results
of the hypothesis testing for mean distance/dissimilarity and the MSE values for
the MLR models, the similarities between the data of the cities of interest are de-
tected. Eight Euclidean and Non-Euclidean distance measures which are Euclidean,
Procrustes, Riemannian, Procrustes Shape (Full-Procrustes), Cholesky, Power, Log
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Euclidean, and RiemannianLe are used. The performance of these distance measures
is examined based on the order of distance from smallest to largest with respect to
the pairs considered, which are Cohoes and Utica (cu) Cohoes and Poughkeepsie (cp)
and Utica and Poughkeepsie (up) where the distance measures ProcrustesShape, Pro-
crustes, and Cholesky provided the smallest distance values. Based on the clustering
analysis results for the distance measures, the distance measures ProcrustesShape,
Procrustes, and Cholesky, for example, have been clustered in one group. This would
mention that there is no difference in their performance with respect to the pairs of
cities, therefore, we are able to use any one of them to compute the distance between
the datasets of cities.

To provide a full picture of the dissimilarity analysis for time series data, we
present three new distance measures based on three features from the frequency do-
main. These features are the periodogram, power spectral density and the cross
spectral density functions. Using these distance measures, a comparison between
MTS datasets in terms of frequency content can be conducted. The distance is com-
puted based on the XTX matrix which is a positive definite matrix built by using the
periodograms for the variables that have been calculated using the Fast Fourier Trans-
form (FFT). The other matrix used is the Power Spectral Density (PSDE) matrix
that is constructed using the power spectral and the cross-spectral density functions
for the variables. For these two matrices, the results have matched for the distance
measures Procrustes, Riemannian, Power Euclidean, and Log-Euclidean.
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Chapter 1

Introduction

In time series analysis, one of the categorizations of describing and forecasting future
values is based on the principle of “how far into the future the event is to be forecast”.
This categorization implicitly refers to the importance of using the decomposition of
time series that yields components with different time scales. The decomposition
of time series means separating the short-term and seasonal signals from the trend
(long-term component). This separation process provides “clean” data that can be
used for examining and forecasting trends and the causes that lead to different kinds
of trends. Also, this type of clean data can be used to study the climate change and
the reasons behind the changes.

One of the most important and common solutions to carry out the signals’ separa-
tion process is to use a filtering technique. Different filtering techniques can be used
to separate the scales of motion in a time series, for example, the Moving Average
(MA) and the Kolmogorov-Zurbenko (KZ) filters. The result of the filtering process
is three components the long, seasonal, and the short-term component. These com-
ponents for a number of variables (independent variables) are incorporated using a
structure to build a combined model to describe the dependent variables.

One of the new contributions of this study is to improve the predictive accuracy
of the Combined Multiple Linear Regression (CMLR) model via overcoming the issue
of Autocorrelation between the residual terms of this model. The new model can
be called CMLR-Noise model. The existence of these autocorrelations violates one of
the most important assumptions, which is the residual terms have to be uncorrelated.
This assumption has to be considered in a regression model to be validated.

The second new contribution is to enhance the predictive accuracy of the TF-Noise
model which can be conducted using the decomposed data rather than the raw data.
This model is chosen as it is inherently structured using the lagged variables for the
input and the output variables, where often the lagged variables have an important
impact on the forecasting process. The enhanced model, which can be called the

1



Introduction 2

Combined TF-Noise model (CTF-Noise), is constructed using lagged variables for
the three components.

In optimization context, and based on the most common strategies’ types that
are used to estimate the coefficients, the existing statistical methodologies are lim-
ited as the predictive framework is often based on the mean response predictions. In
this case, the uncertainties of data, model’s structure, and parameters, are ignored.
This, in turn, leads to increase the risks of adopting incorrect decisions by the re-
searchers. Based on this, the provision of statistical frameworks that explicitly handle
this issue has to be considered. Statistically, one of the analyses that take the un-
certainties of data, parameters, and model’s mechanics into consideration is Bayesian
analysis. Working within Bayesian statistical framework enables us to consider the
prior knowledge, which is mathematically incorporated into the constructing model
via a prior distribution. Bayesian paradigm creates posterior and posterior predictive
distributions that will be used to provide some summary measures (inferences) for
the parameters of interest, future values, and also the credible intervals. The third
new contribution is to use the decomposed data to construct a Combined Bayesian
Multiple Linear Regression (CBMLR). Using the decomposed data rather than raw
data has increased the value of R Squared for Utica city from 0.43 to 0.56.

Examining the feature of similarity or dissimilarity between MTS datasets is an
important topic in many fields. Different methods have been suggested to measure
the similarity using the raw data. However, examining the similarity or dissimilarity
between MTS datasets using the decomposed data has not been considered. This
examination will provide a detailed picture of how much the datasets for each com-
ponent are similar to each other. Besides, in case that the datasets are not similar,
we are able to determine which component is responsible for obtaining this result.
Knowing the responsible component will enable us to determine the factors and events
that lead to such a decision of dissimilarity. Relying on the results, different tasks
can be accomplished. For example, if we find that the MTS datasets for two cities
are similar in terms of data of the three components and the raw data as well, we will
be able to use a forecasting model for one of these cities to forecast future values for
the other city.

In this study, we show the feasibility of using hypothesis testing for mean distances
to make a decision on whether the behaviour of the raw and the three components data
for a group of MTS datasets (objects) is similar. The distance is computed between
the covariance matrices of the variables for the considered objects. The distance
between covariance matrices is already used in different fields, such as diffusion tensor
imaging. However, being used for the purpose of examining the dissimilarity between
MTS datasets through hypothesis testing is a new contribution in this thesis. This
method can be applied for any MTS datasets for a group of objects.

Furthermore, a parametric-based value, for example, Mean Square Error (MSE)
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can also be used to confirm the decision of similarity of data.
Additionally, in this study, we present three new distance measures based on three

features from the frequency domain. These features are the periodogram, power
spectral density and the cross spectral density functions. These distance measures
can be beneficial to compare the frequency content for MTS datasets.

One application for the new contributions, which are the developed models CMLR-
Noise, CTF-Noise, and CBMLR, is to provide a hydrological forecast. A hydrological
forecast provides the estimation process for future states (values) for hydrological
phenomena. These forecasts are fundamental for performing different operations that
are related to water’s infrastructure and resources management. Additionally, they
can be efficiently utilised to mitigate the risk of natural disasters such as droughts
and floods. In the hydrological field, the amount of water that exceeds a measuring
point or a gauging station in a river at a specific time is called water discharge. The
aim is to provide more accurate forecasts for the amount of water discharge from a
river for three stations.

The structure of this thesis is organised as follows. The remainder of this chapter,
Chapter 1, Section 1.1 presents the definition and types of time series. Section 1.2
introduces a brief overview of the most common methods used to analyse hydrological
data. Literature review is presented in Section 1.3. The kinds of floods are highlighted
in Section 1.4. Section 1.5 provides a brief description of linear systems. General de-
scription of filters is displayed in Section 1.6. Section 1.7 provides a brief explanation
of the Moving Average (MA) filter. Section 1.8 explains the KZ filter. The residual
analysis is introduced in Section 1.9. The most common types of residual’s plots are
presented in Section 1.10. Moreover, in Section 1.11, the process of fitting residu-
als’s data using an ARMA model, which is also known as a Box-Jenkins model, is
highlighted. Information about the Sample Autocorrelation Function (SACF) and
Sample Partial Autocorrelation Function (SPACF), is displayed in Section 1.12. Sec-
tion 1.13 describes one of the most specified models, which is the Autoregressive
model of order one, to the residuals in a regression model. Section 1.14 introduces
the forecasting kinds. Section 1.15 presents the definition and tools for performing
frequency analysis. Section 1.16 gives information about the data used in our study.

Chapter 2 displays two frequentist statistics-based methodologies, which are Mul-
tiple Linear Regression (MLR) and Vector Autoregressive (VAR) Models. The struc-
tures of these two models are used to build combined models. Moreover, our new
model, which is a Combined Multiple Linear Regression-Noise (CMLR-Noise) model
built using an ARMA process for the residuals, is provided in this chapter. The spec-
tral content, which is represented by the periods for the studied series, is given in
this chapter. Finally, the contribution for each component is also computed in this
chapter.

Chapter 3 presents the new Combined Transfer-Function-Noise (CTF-Noise) model,
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which is built using the three components the long-term component, the seasonal
variations, and the short-term component. The tools that are used to determine the
numerator and denominator for each term, as well as the Box-Jenkins model for the
Noise series, are also presented in this chapter. This model will enable the use of a
number of lagged variables. The prewhittened data are used in this chapter.

Chapter 4 provides the base of how to use Bayesian analysis to estimate the
parameters of a combined model. The types of prior distributions and Bayesian
Multiple Linear Regression (BMLR) are considered in this chapter. The Posterior
and Posterior Predictive Distributions, Credible Intervals, the Highest Probability
Density (HPD), and the ways used to Check and Compare Bayesian Models are also
among the subjects considered in this chapter. The second part of this chapter is
concerned with how to apply Bayesian Vector Autoregressive Model, BVAR, for the
short-term component data. The Prior distributions, including Minnesota prior, are
highlighted in this chapter. The contribution of each component is also produced in
Chapter 4.

The essence of Chapter 5 is the application of Hypothesis Testing using the raw
and the decomposed data. The work in this chapter is divided into three parts. The
first part introduces a method to compare mean vectors of variables for two cities using
Hoteling T-Squared test. In this part two cases are considered. The first case includes
all variables, which are temperature, precipitation, wind speed, water discharge, tide,
and groundwater level. In the second case, we ignore the hydrological impact by
eliminating the variables of water discharge and groundwater level. Different results
are obtained for the two cases.

The second part of this chapter presents a method to compare mean distance/dissimilarity
for a group of objects (cities). The distances computed are between the covariance
matrices of the variables, including the covariance matrices of the independent vari-
ables of the MLR for the raw data. In the third part of this chapter, which is carried
out to gain insights into whether there is a difference between the results of dis-
similarity using the time and frequency domains, three new dissimilarity measures
are introduced. These measures are specifically designed using Euclidean and Non-
Euclidean metrics for a number of frequency domain-based features. Euclidean and
Non-Euclidean metrics here are applied for covariance matrices data in the time do-
main and Power Spectral Density (PSDE) and XTX matrices of the periodograms
for the variables in the frequency domain. The final conclusion and the future work
are introduced in Chapter 6.



5 Time Series

1.1 Time Series

A time series is a set of observations which are recorded or observed regularly or
irregularly to measure the variation of a specific phenomenon through time. Generally,
a time series can be classified into a number of kinds based on some features which
are:

• Univariate and Multivariate time series, this type is determined by the number
of the studied series.

• Discretely and continuously recorded observations, this kind is related to the
time that is used to record the studied data. If a series of observations is defined
and represented at any instant of time, this series will be continuous. The best
examples for this type of signals are the sine and cosine functions. On the other
hand, if a series of observations is defined and represented at certain times, the
series will be discrete. This type of signals is also called digitalized signals.

• Stationary and Non-Stationary time series, where stationarity is a crucial fea-
ture that should be considered in a series.

• Deterministic and Stochastic time series: Some time series describes a regular
and deterministic process, which can be modelled using a deterministic mod-
elling technique. But when the behaviour of the series has an indeterministic
pattern, this series is a stochastic process and should be treated and modelled
using one of the models that take the uncertainty into account.

Typically, time series analysis can be utilised effectively to achieve many tasks.
For example, explaining and describing the data, forecasting future values for the
univariate and multivariate time series, clustering and classifying a group of series,
and many other functions. Essentially, there are three distinguishable components,
scales, which are Trend (long), Seasonality, and Short-term component (noise). The
trend usually represents the long-term component behaviour of a time series as it is
often identified with regular variations, which are slowly developing. This component
can be efficiently modelled using a linear equation. With regard to the seasonality,
this type of variations in the studied time series is attributed to the change in the time
that is used to record the considered series, for instance, 4 seasons and 12 months.
Also, some specific intervals in a year, for example, Christmas time, Weekends, Easter
Holiday, and many other events can be regarded as seasonal factors. Finally, the short-
term component can be considered as the most important part compared to the other
components as it contains the “ unknown and indeterministic ” events that last for a
short period of time; this component has attracted lots of researchers to investigate
its nature and behaviour.
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In fact, these three components are embedded in a time series data and in order
to gain a clear insight on the trend in the underlying time series, it is essential to
decompose this series [36, 83]. The isolation of the seasonal effects and the irregular
signals can be enabled by applying a filtration technique. In most cases, to precisely
determine the trend for a desired data, seasonal variations have to be removed a pri-
ori. For example, in some regions in the USA, the unemployment rate in June, due
to the agricultural season, always decreases compared with May, so this temporary
variation does not necessarily reflect a real decline in this rate. In such a case, the
seasonal fluctuations have to be eliminated. This will definitely provide a clear insight
about the real trend for the unemployment rate. There are different techniques to
perform the process of decomposing, such as the filtering technique. Using a filtering
mechanism will often produce one series, for example the long-term component, which
will be used later to create the other required components. This strategy of decom-
posing and modelling has been applied widely in different fields such as economics,
engineering, and meteorological studies [101, 100, 36, 122, 37].

Furthermore, for the purpose of modelling these various components (patterns),
a variety of methods have been used, such as the regression and autoregressive of
different orders models [15]. In general, there are two types of constructions that
can be used to fit a model for the aforementioned components, which are the static
and dynamic models. While the static models take into account only the current
data, the past and current data are included in the dynamic models. For example,
the multiple regression model is regarded as one of the most important and common
types in the static modelling area. This model will enable the researchers to examine
the relationship between a dependent and a number of independents variables. The
error terms are also considered in this model.

On the other hand, an autoregressive, AR model, can be considered as a good
example for the dynamic system. This model will consider the use of lagged versions of
the variables in its structure.The dynamic models are essentially related to the lagged
variables. In the time series analysis, Lagged variables are very important elements
in the constructing models where often a value of the series of interest in a certain
instant of time will have impact on its future values. The lagged variables can be of
any order, and this order is selected based on measures such as the autocorrelation
and partial autocorrelation functions. Although static system has been widely used
for modelling the components long, seasonal, and short-term component, the dynamic
structure can provide more accurate results for forecasting process.

Recently, many countries in the world have witnessed a flooding phenomenon.
This process is often unexpected and most often attributed to climate change. The
prediction of this phenomenon is a difficult task. Many researchers have dealt with
this subject using different procedures [84, 112, 21]. The statistical models and flood
histories have been used extensively for performing the forecasting process. Using
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the statistical analysis, specifically time series models, for forecasting the amount of
water discharge, for example from a river, has increasingly attracted the hydrologists.
In particular, as long as we have data with time series form, we will need to exploit
it in the process of building forecasting models [23, 69, 88, 29, 48, 28, 96, 100, 6].

In this thesis, a filter technique has been implemented to separate the scales em-
bedded in the studied time series data. Also, for performing the task of constructing
a model, different structures have been applied. There is no doubt that utilising the
lags of the time series can significantly affect the efficiency and accuracy of these
models [98].

1.2 Hydrological Forecast

In the hydrological field, researchers generally prefer working with the deterministic
techniques rather than stochastic manners to compute the needed quantities [23].
This also can be observed with probabilistic methods. However, although they are
more expensive in terms of time and the computational cost, the stochastic and
probabilistic methods are required to forecast future values for a hydrological process
[98]. These approaches take into account the non-linearity and the uncertainty of
data for some hydrological systems such as water discharge from a river. A variety of
stochastic methods have been used for processing water discharge data from a river
[6, 96]. Most of them are accomplished using simulation process such as open channel
and rainfall-runoff simulations. The two terms of stochastic and probability represent
the randomness in a specific system. However, the majority of stochastic models are
time-dependent models while probabilistic methods are independent of time [23].

Different factors affect the amount of water discharge from a river. Some of these
factors are climatic conditions such as precipitation and temperature. Precipitation
is regarded as one of the most important variables that affect the water discharge
amount [21, 48, 28, 96]. Moreover, the water discharge system is a dynamic process
and its data are often regularly recorded. Because of the nonlinearity and the uncer-
tainty of hydrological systems data, the process of building a forecasting model may
be a challenge in the operational hydrology area in spite of all the advances in the
weather forecasting in the recent decades.

Often, one of the time series techniques is used to analyse the hydrological system.
Several models have been built utilizing different kinds of techniques. Most of the
constructed models are built without removing the short-term variations and the
meteorological effects from the long-term trends. In time series analysis, due to its role
to enhance the prediction accuracy, it is important to separate the undesirable data,
such as short-term variations, by using one of the filtering techniques [100, 36, 118].
In this thesis, as the data for each variable have different time scales, the KZ filter is
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used to separate the time scales for each variable into long, seasonal, and short-term
component. Based on these components, a number of models have been proposed in
an attempt to predict the water discharge accurately.

1.3 Literature Review

The organization of the literature review has been divided based on the methods
considered:

• The Kolmogorov-Zurbenko Filter (KZ).

• Building and estimating the parameters of forecasting models using classical
and Bayesian statistics.

• Forecasting the Amount of Water Discharge

• Similarity and Dissimilarity measures for time series data.

1.3.1 The Kolmogorov-Zurbenko (KZ) Filter

In meteorological and hydrological studies, to accurately analyse any time series data,
the synoptic and seasonal fluctuations have to be removed. The resultant dataset is
clean from any undesirable signals and can be used to precisely determine the trends,
the climatic changes and the reasons behind these trends and changes [36]. Based on
this perspective, Tsakiri et al. (2014) have applied the KZ filter in the analysis of
the water discharge time series of the Schoharie Creek river, New York. This river is
regarded as one of the two most essential tributaries for the Mohawk River [100]. In
addition, taking into account the special nature for the region related to this river, two
predictive models have been constructed to describe the potential amount of water
discharge for the short-term component. These two models are one for the summer as
flooding is often caused by extensive precipitation and the other for the winter where
flooding is caused by rapid snowmelt. The parameters 29 days and 3 repetitions were
used for the KZ filter to produce the global-term component. As a consequence, and
compared to the pre-decomposition R Squared which was 59%, the percentage of the
explanation for the regression model increased to become approximately 81%.

To investigate and forecast the global climate changes by using images of the spa-
tial and temporal fluctuations of temperature, which were taken all over the world,
Zurbenko and Lua (2012) smoothed out and interpolated gridded temperature data
using the KZ filter [121]. Then, this smoothed series is used to form a global map
for the long-term trend which represents 6 years, and EL Nino-like movements which
represent 2-5 years. The data for this study was taken for the period 1893 to 2008.
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Latitude and altitude variations were collected to enable the application of the KZ fil-
ter. The monthly observations are decomposed into different time scales depending on
the spectral analysis. The results mentioned that the desired signals are constructed
from data with high noise (high frequency signals) by using the KZ filter.

Wise and Comrie (2005) exploited the ability of the KZ filter to analyse the time
series of the Particulate Matter (PM), Tropospheric Ozone (O3), and the Meteoro-
logical Conditions [115]. In order to enable the planners and managers of air quality
to make the correct decisions and map for the future for the management of emissions
and determine the policy for air quality, the meteorological signals must be separated
from the two series O3 and PM. This separation will help to accurately investigate
their trends, which are devoid from the climatic variables. The separating process
was performed using the KZ filter with the parameters 15 days and 5 iterations as the
window width and the number of iterations, respectively. That means, depending on
the width and the repetition times for the filter, any cycle with a period of less than
33 days was removed. The details of determining the number of days for the cycles
to be removed are presented in Section 1.8.

Milanchus et al. (1998) tried to evaluate the effectiveness of the ozone manage-
ment efforts. However, because the meteorological fluctuations are embedded in the
ozone data, it was necessary to filter out the meteorological effect to obtain “ clean”
data. So, to provide a precise evaluation, the KZ filter was applied to clean the ozone
time series from the climatological conditions by isolating the ozone precursor emis-
sions data [73]. As a consequence, the assessment of the effectiveness of the regular
programs for the ozone air quality can be accomplished. They took the series of the
average ozone concentrations for five states in the USA for the period 1984-1995.
Also, hourly time series values for multiple meteorological variables, which were tem-
perature, humidity, cloud cover, and wind speed were collected for the same period.
To evaluate the influence of the control programs on the ozone air quality effectively,
the different scales embedded in the time series of ozone and meteorological time
series were separated.

By using the KZ filter, the authors were able to explain approximately 70% of the
variations in the ozone data that are attributable to the meteorological variations.
Depending on this result, the possibility of detecting and tracking variations for a
meteorological adjusted ozone time series increases.

Moreover, Rao et al. (1997) described the space and time features for the ambient
ozone series by using filtering technique [83]. To obtain effective results for the ozone
problem, the seasonal and synoptic components have to be removed from the ozone
time series. Two different cases were implemented which are KZ15,5 and KZ365,3

to derive the global component, which involves the long and seasonal components
together, and the long-term component, respectively. The authors verified that using
filtration mechanism solved the problem of identifying the percentages of variations
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due to the meteorological fluctuations.
Furthermore, to separate the synoptic and seasonal variations, Eskridge et al.

(1997) used four techniques, which are Anomalies, PEST, the KZ filter, and the
Wavelet Transform [36]. In their research, the data of the temperature time series for
Hong Kong was utilised. The results could be summarized as follows: By smoothing
the data with the KZ15,5 filter, all cycles with a period of less than 33 days were
removed. On the other hand, to remove the yearly cycles, another two new parameters
were selected, which were 365 days and 3 iterations. This filter was sufficient to isolate
the yearly seasonal signals and all cycles with small time-scales, signals with less than
1.7 years, leaving behind only the long-term trend. Moreover, the variance percentage
of the short-term component to the total variance was approximately 20%. The total
variance was calculated for the temperature series before the filtering process. The
variance’s percentage for the long-term component to the total variance was almost
3%. On the other hand, the variance of the seasonal component again to the total
variance was about 77% for the temperature time series for Hong Kong. Cleaning
the raw data from the signals of noise and seasonal fluctuations is am essential step
to calculate the long-term trend. With regard to the Anomalies and PEST methods,
the two types of signals, which were the seasonal and synoptic, were not adequately
removed. Finally, the Wavelet Transform technique produced the same results as the
KZ filter. However, the KZ filter can be applied even though a number of values are
missing, which would be impossible with all of the other three methods. In addition
to this useful property, the computation process of the KZ filter is relatively easier
compared to the same used techniques.

Moreover, employing the KZ filter to assess the temporal and spatial fluctuations
in the ozone air quality by using data of ozone concentration from multiple monitoring
sites in the United States, Rao et al. (1995) were able to verify that there was an
improvement in the ozone air quality in most of the studied locations [81]. This
was performed by considering the temperature-adjusted ozone time series data. That
would suggest that studying the trends using an adjusted time series is much easier
and provides more precise results than using raw data.

To moderate or filter out the effects of the meteorological variables from the ozone
concentrations, Trivikrama and Zurbenko (1994) succeeded to detect the changes
in the ozone air quality by separating the meteorological variations [82]. This was
conducted by applying the KZ29,3, which attenuated any cycle with less than 50 days
for the ozone concentration and temperature time series. Simple linear regression
was used to study the relationship between the filtered series, where the ozone series
was the response variable and temperature represented the predictor, R Squared for
this model was 0.83%. Since the temperature variable was taken into account when
the process of constructing the model was performed, the residuals of this model
represented the variations that can be attributed to the emissions.
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1.3.2 Modelling Methods: Regression, Vector Autoregres-
sive, and Transfer Function Models

Regression and Vector Autoregressive Models

Tsakiri et al. (2014) have used regression analysis to construct forecasting models
for the long, seasonal, and short-term component for water discharge and also the
final combined water discharge model [100]. The analysis by using this method has
enhanced the R Squared value to become 0.81. Also, Tsakiri (2010) used the regres-
sion analysis and vector autoregressive model of order one to study the relationship
between the ambient ozone, temperature, wind speed, and precipitation [101]. The
results revealed that the explanation and the prediction for the response variable am-
bient ozone, has been improved, where the R Squared value became 0.88. Using the
regression model, Trivikrama et al. (1995) were able to detect the downward pattern
in the trend of the ozone concentration.

Transfer Function-Noise Model (TF-Noise) model

Bierkens et al. (1999) separated the groundwater time series data into two parts.
One part to construct the transfer function-noise model, and the other to validate
the resultant forecast model. The precipitation surplus series was used as the in-
put variable. Accurate predictions and representative stochastic simulations of daily
groundwater data were produced [13].

Furthermore, A statkie and Watt (1998) built univariate and multivariate models
to predict daily streamflow data [6]. Non linear Nested Threshold AutoRegressive
model (NETAR) was applied as a univariate model for the streamflow. For the
multivariate method which used the non linear snow melt and the effective rain data
as the input variables, the transfer function-noise model (TF-Noise) model for the
streamflow was constructed. It was found that TF-Noise model would be better to
describe the forecasting model than the others as the value of the MSE for this model
was less than the MSE value for the NETAR model.

Harris and Liu (1993) applied multiple TFM to forecast the consumption of the
electricity in the south east of the United States. Using the electricity consumption
as the output variable and each of the electricity prices, heating degree days, cooling
degree days, and percapita disposable income as the input variables, TF-Noise model
was constructed [47].

Moreover, Khan (1990) used a multiple input transfer function model to predict
the percentage of the gloss value for the coated aluminium that was exposed to an open
environment [63]. Monthly temperature and relative humidity were selected to be
the input variables. Two univariate time series models were built for the temperature
and relative humidity variables to obtain the prewhitening values with the gloss’s
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data. The univariate and multivariate models were used. For the univariate method,
autoregressive model of order one, AR(1), was suggested depending on the behaviour
of the partial autocorrelation function. On the other hand, for the multivariate TF-
Noise model, temperature and relative humidity were used to construct the forecasting
model. The adjusted Root Mean Squared Error (RMSE) was used to diagnose which
model would adequately accomplish this forecasting task. Based on the RMSE’s
values, the multivariate model was chosen to perform the forecasting process for the
future values for the gloss data.

1.3.3 Forecasting the Amount of Water Discharge

Albostan and Onoz (2015) applied three different methods that have an ability to
identify the chaotic behaviour for the daily water discharge series [3]. These meth-
ods are phase space reconstruction, local approximation, and correlation dimensions.
Their study has been performed using the daily water discharge data for the Yesil
Irmak River Basin for the period (1977-2002). The researchers divided this dataset
into two groups. One was selected to perform the analysis and the second dataset
was utilised to test the validity of the model. Taking into consideration that global
warming may be regarded as a serious threat to nature, an accurate prediction can
effectively provide a tool for facing the hazards of this important phenomenon [3].
Their study has successfully identified the nonlinearity for the data regarding the
river flow. The predicted values have a relatively high correlation coefficient with the
raw data which may confirm the validity for the suggested prediction model. Shijin
et al. (2012) have built a hybrid forecasting model using Support Vector Machine to
forecast the amount of water discharge from the Huaihe River [88]. This research has
shown the possibility of improving the prediction process by partitioning of the water
discharge series.

Moreover, Svetĺıková et al. (2007) analysed the monthly water discharge, pre-
cipitation, and rainfall time series in the region of the Klastorske Luky wetland in
Slovakia for the period between 1901 and 2004 [96]. At first, the trend, seasonal,
and short-term component were investigated. The Autoregressive Moving Average
Models (ARMA), Threshold AutoRegressive (TAR) were utilised to fit models for
the components. The TAR with exogenous component and TAR that was associated
with the Long Memory models were used to analyse the time series data for water
discharge and rainfall. The best prediction models for the water discharge were the
nonlinear TAR models and a group of the TAR and Long Memory equations. On
the other hand, for the precipitation data, the ARMA models were the only suitable
methods.

Damle and Ali (2007) investigated the possibility of forecasting the flood using
Time Series Data Mining (TSDM) [28]. By exploiting the ability of chaos theory to
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provide a structured explanation for the irregular nature for some of the Geophysical
phenomena, such as floods and earthquakes, a novel approach to forecast flooding
was presented. The results revealed that a successful prediction model for the flood
was produced using the selected event characterization function. This function relies
on a step-ahead function and the objective function.

1.3.4 Covariance Matrix and the Euclidean and Non-Euclidean
Metrics

Recently, interest in the statistical analysis for the data that are located in a Non-
Euclidean space (e.g. Riemannian Manifold) has been growing increasingly in a wide
range of fields. For example, in Diffusion Tensor Imaging (DTI), the data is repre-
sented by a covariance matrix of dimension 3×3. Therefore, this data belongs to a
Riemannian Manifold [34]. Also, Shape Analysis and the estimation of the covariance
structures are also considered as examples for the data that belong to a Non-Euclidean
space. The classical statistical methods that are often used to analyse data in an Eu-
clidean space have been also applied for analysing data in the Riemannian Manifold
space but with taking into consideration the specific nature of them. Estimation of
even simple statistical tools such as mean and variance can be a difficult task for this
type of data.

Zhou et al. (2016) have presented a number of non-Euclidean statistical meth-
ods that deal with Regularisation, interpolation, and visualisation for diffusion ten-
sor [120]. Using the scale invariant power-Euclidean metric, a group of anisotropy
measures that are specifically beneficial for visualisation has been introduced. A dis-
cussion of using weighted Procrustes methods for interpolation and smoothing for
diffusion tensor has been also highlighted. A key relationship between the principal
square root Euclidean metric and the size-and-shape Procrustes metric has been also
established in the space of symmetric positive semi-definite tensors. The performance
of a number of non-Euclidean metrics has been compared using a dataset of human
brain diffusion-weighted magnetic resonance imaging. The results of the metrics Log-
Euclidean, Euclidean Root, and Procrustes, which are non-Euclidean metrics, are
much better than the results of the Euclidean metric.

With regard to covariance matrices, Li et al. (2015) have developed visual tracking
dependent upon the log Euclidean Riemannian metric for statistics on the covariance
matrices for image features. Also, to reflect the appearance changes for an object, a
novel online log Euclidean subspace learning algorithm IRSL has been suggested [68].

Pigoli and Secchi (2012) applied the spatial statistical methods to investigate
data, which has been collected from a non-Euclidean space [80]. Taking into account
the case of the spatial dependence, they have proposed a new estimator to obtain
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an estimation for the mean of the covariance matrix for two variables which are
temperature and precipitation. They regarded the proposed mean covariance as a
significant estimator when they compared it to one that did not consider the spatial
dependence. Tsakiri (2010) investigated the effect of the noise for a covariance matrix,
which was defined by using the spectral decomposition [101]. Also, she extended her
research to cover the noise problem in the principle component analysis.

In addition, taking into consideration the Non-Euclidean nature for the space of
the positive semi-definite symmetric matrices, Dryden et al. (2009) estimated the
mean of a number of covariance matrices in DTI, where sample covariance matrices
were used as the data for the analysis [34]. Moreover, this study concentrated on the
Procrustes size and shape approach. Jian-Hong and Song-Gui (2006) have proposed
a simple approach to provide the number of the distinct eigenvalues and the spectral
decomposition for a covariance matrix by using the variance component model [60].
This approach relied on the partial ordering of a symmetric matrix and a relation
matrix. This method was used to check the linear dependency between these distinct
eigenvalues.

1.3.5 Similarity and Dissimilarity Measures

A considerable amount of literature has been published on the subject of investigating
the similarity and dissimilarity for time series data. These publications can be divided
into non-parametric and parametric-based distance measures.

Using Non Parametric Methods: Raw Data, Time and Frequency Domains
Features

Several methods have been proposed to perform a comparison (similarity or dissimi-
larity) between time series data. Some of these approaches are only simple descriptive
measurements applied by using a number of distance measures using the actual data.
Methods that utilise some of time series functions have been also used to examine
the property of similarity between the data of interest. Huang et al. (2016) have
proposed a new similarity measure that relies on the distribution of the eigenvalues of
the Hankel matrix [54]. The researchers have proved that this approach can satisfac-
torily work even with time series of different lengths, nonlinear features, and complex
fluctuations.

With reference to use of time domain features, Kovaci (1996) (as cited in [26])
presented a distance metric between two time series using the autocorrelation and
cross correlation functions. Moreover, using the estimated residuals for some linear
and non-linear models, Tong and Dabas (1990) (as cited in [17]) examined the affin-
ity between these fitted models. Bohte et al. (1980) ((as cited in [26]) used the
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autocorrelation function to compute the distance between two time series.
On the other hand, using the frequency domain features, Vemulapalli and Jacobs

(2015) have presented the learning Riemannian metric distance for the positive defi-
nite matrices[107]. They have evaluated this measure on face matching and clustering
processes. The face matching and semi-supervised object classification results showed
that the learned log-Euclidean geodesic distance outperforms classification results of
other types of distances.

In addition, based on the dissimilarity measure that is defined using the Rie-
mannian distance measure, Li et al. (2009) have classified EEG signals using a k
nearest neighbour algorithm [68]. For each frequency, the power spectral density
(power spectrum) can be considered as a point on a Riemannian manifold, in this
case, the Euclidean distance will no longer be suitable for use. Instead, a geodesic
distance function has to be established to measure the Riemannian distance between
two points. Relying on the normalized periodogram, Caiado et al. (2006) have sug-
gested a new distance measure to cluster the stationary and non stationary time series
data [17]. They compared the new measure to different classical types of time series
measures, where this proposed distance measure outperforms the others.

Investigating the Dissimilarity Using Parametric Methods

This type of analysis can be classified as an inferential analysis [26]. Here, rather than
depending on the data of the time series itself and its features, the comparison process
can be performed using the parameters of the fitted models, such as the parameters of
the Autoregressive Moving Average Model (ARMA) models. In this respect, Kalpakis
et al. (2001) considered the problem of clustering ARMA time series, which are fitted
using ARMA models. They proposed the use of the Euclidean distance between the
Linear Predictive Coding (LPC) cepstrum of two time-series as their dissimilarity
measure [62].

Piccolo (1990) (as cited in [17]) proposed a metric that uses the coefficients of the
autoregressive moving average (ARMA) model to measure the degree of dissimilarity
between time series data. Piccolo utilised the Euclidean distance to calculate the
dissimilarity between two vectors of the ARMA model’s coefficients for the industrial
production series. He also constructed a test statistic by using some of time series
functions to examine whether two sets of data have been sampled from a common
distribution.

Additionally, Thomson and De Souza (1985) provided a dissimilarity measure
using Mahalanobis distance for the AR models and studied the properties of the dis-
tribution of this unit. This criterion was widely used in speech recognition field (as
cited in [26]). Furthermore, Anderson (1993) used the spectral distributions as an ex-
ample for frequency domain [72], and Melard et al. (1991) utilised the autocorrelation
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function to perform the hypothesis testing as an example for time domain.

1.3.6 Bayesian Methods

Wang et al. (2017) have presented a Bayesian method using Metropolis-Hastings
Markov Chain Monte Carlo, MH-MCMC, algorithm for forecasting daily river flow
rate for Zhujiachuan River in China [112]. The results obtained have shown that the
proposed Bayesian method is able to produce adequate credible intervals for flood
quantiles that are in accordance with empirical estimates. Tutberidz and Japaridze
(2017) have exploited the structure of VAR modelling method to construct a model for
forecasting activities of business [104]. A macroeconomic model for Georgian economy
was built based on few variables. Bayesian analysis has been used to estimate the
parameters of this model where sensible forecasts for the variables of interest have
been obtained.

Using Multi-Modal Neuroimaging Data, a BVAR Model for Multi-Subject Effec-
tive Connectivity Inference, has been estimated (Chiang et al. 2017) [24]. Simultane-
ous inferences on effective connectivity at both the subject-and group-level have been
allowed by using a Bayesian variable selection method. In Tourism field, Roma et
al. (2016) have proposed two BVAR models of order one, BVAR(1), for the sectorial
regional employment and the sectorial regional Gross Value Added (GVA) in Algarve
[85]. In their research a Minnesota prior has been applied. The results of their study
revealed a number of important facts about the influence of the international finan-
cial crisis that happened in 2007 on the considered factors, which are the employment
average and the GVA.

Lima et al. (2016) have produced an estimated local and regional Generalized Ex-
treme Value distribution parameters for flood frequency analysis using a hierarchical
Bayesian framework [69]. The findings of their research have shown that adequate
credible intervals for flood quantiles have been obtained. To explicitly model and
reduce uncertainties for local and regional Generalized Extreme Value (GEV) distri-
bution parameters for flood frequency analysis, Carlos et al. (2016) have developed
a hierarchical Bayesian GEV model in a multilevel, hierarchical Bayesian framework
[69]. They handled the problem of using data from multiple stations with missing val-
ues and different periods of records. Moreover, Cuaresma et al. (2016) have developed
a BVAR model to forecast a set of macroeconomic and financial variables [27]. A set
of hierarchical priors have been used and they compared the accuracy of forecasting
of this suggested model to a naive univariate model. The forecasts that are based
on the new developed model tend to outperform forecasts from the univariate model
according to the Root Mean Squared Error (RMSE) values. Herr and Krzysztofowicz
(2015) have presented the theory and algorithms for Ensemble Bayesian Forecasting
System (EBFS) to provide a general Bayesian technique for ensemble forecasting that
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can be easily used for large basins [49].

Chan (2015) introduced a class of large BVAR models that are flexible to include
non-Gaussian, heteroscedastic and serially dependent residuals [19]. Using MCMC
method, a unified approach has been presented to estimate the parameters. Based
on in-sample and out-of-sample data, the forecast performance of this approach has
outperformed the performance of common standard method that assumes indepen-
dent, homoscedastic Gaussian innovations. Their approach is more flexible in terms
of satisfying the assumptions of covariance structures for the innovations.

Additionally, a large BVAR model that describes the complex relationship be-
tween the main components of the Harmonized Index of Consumer Prices and their
determinants for the Euro area has been constructed by Giannone et al. (2014) [87].
Their model provided precise forecasts in real-time. Gupta et al. (2012) have taken
into consideration the impact of monetary policy on the dynamics of the USA housing
sector [44].

Based on the impulse-response functions obtained from a large-scale Bayesian Vec-
tor Autoregressive (LBVAR) model that used 143 monthly macroeconomic variables,
a negative effect on the housing sector at the national level by contractionary mone-
tary policy has been detected. In fact, most of the macroeconomic studies work with
multivariate time series models such as VAR. This type of models is often accompa-
nied by a large number of parameters, and as a consequence, over-parameterization
problems occur [64].

Villani (2005) developed a numerical simulation algorithm for processing VAR for
stationary time series that enables incorporating these prior beliefs adequately [108].

Reis and Stedinger (2005) were able to develop a Bayesian MCMC method that
takes the uncertainty in parameters into consideration for constructing a posterior
distribution for flood risk [84]. LeSage and Krivelyova (1999) developed a Bayesian
prior distribution based on cross-sectional autoregressive models to be used for fore-
casting studies that involve spatial variables [66]. They created a spatial weighting
matrix that imposes specific factors on the parameters of the VAR model. To eval-
uate the performance of this new prior, the results of the forecasting accuracy were
compared to the Minnesota prior results where this new proposed prior confirmed its
ability to enhance the accuracy of forecasting for macroeconomic variables.

The estimation is normally accomplished by using classical statistical approaches.
taking into account the statistical uncertainties and involving some belief priors has
not been exploited in the hydrological field [21]. To incorporate them, Chbab and
Duits (1999) built a number of probability distributions using Bayes’ theorem for esti-
mating quantiles of discharges [21]. The results showed that applying Bayesian anal-
ysis has successfully provided estimation results that were better than those gained
by the classical maximum-likelihood estimates.
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1.4 Floods Types

There are five different types of floods Flash Floods, Coastal Floods, Urban Floods,
River (Fluvial) Floods, and Ponding (Pluvial) Floods. In this thesis we concentrate
on the Fluvial Flood. Naturally, Fluvial floods occur when the rainfall continues for a
long period of time where the amount of water will exceed the capacity of the river’s
bank. This amount of water accumulates from different sources where sometimes the
kind of soil is saturated or hard which makes the process of absorbing this amount of
rainfall much harder. As a consequence, most of the rainfall will flow to the river as
well as the rain that directly falls into the river. Sometimes, ice-jam and extensive
snow melt can cause this kind of flooding.

Hydrology is the science of studying movement, distribution, and the quality of
water on the earth. In hydrology, water discharge is defined as the amount of water
that flows outside the river’s bank, and this amount is often measured by m3/s (cubic
meters per second). During a year and in the short-term component, the volume rate
for the water discharge from a river oscillates with different scales with respect to
the rainfall periods. Moreover, in the flood management and surface water planning,
obtaining a reliable estimation of the water discharge from a river can be a crucial task
[48]. With an efficient estimation, which in turn leads to obtain accurate predictions
for future values, the possibility of decreasing the hazardous of floods, by warning
people and make some preparations, will be achieved. For the purpose of analysing
the water discharge, the Mohawk and Hudson Rivers in the New York State have
been selected to perform this study as they have long flood records and many studies
have been conducted for investigating the reasons behind this critical event [86].

Since its inception before 10,000 years ago, the Mohawk River has witnessed un-
usual flood. There are two main types of events “Free water” and “break-up” which
cause flood in this river [41, 42]. The former event appears in late summer and early
autumn, where large amount of precipitation falls. The reason of the later event is
related to the break-up of river ice, as a consequence to the high temperature; also
melting snow and heavy rains commonly occur during winter and early spring.

1.5 Linear Systems

In general, studying linear systems can be useful not only for its significant role in
determining the nature of the relationships between variables, but also for its ability
to formalise many of the procedures for filtering the data of time series by removing
some undesired components, such as seasonality and noise. Most literature about the
linear systems is written from an engineering perspective, for example Bendat and
Piersol, (2000) [10]. In addition to the identification process for the input and output
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variables for the system, these studies specifically concentrate on some aspects, such
as the digital communication and the control theory.

Typically, there are two types of linear systems time-invariant and time-variant
systems. The term time-invariant means that whenever the time of the input variable
changes, the time for the output will also directly change by the same amount. In
other words, if the coefficients of a linear equation are constants, the defined system
is a time-invariant one.

1.5.1 Linear Systems in the Time Domain

In the discrete time, where the observations are recorded for a sequential time, a
time-invariant linear equation can be written as:

yt =
∞∑

k=−∞

hkxt−k (1.1)

where hk is the weight function, which is also known as the impulse response function
of the system. The weight function shows how the input and output are related to
each other. This term (impulse response) stems from the idea that this function
reflects the response of the studied system to an impulse input of a unit size. For
example, assuming that the input xt has a zero value for all t with the exception that
xt at time zero has the value one, can be written as follows:

xt =

{
1 t = 0

0 t 6= 0
.

Then the value of the output at time t is obtained by:

yt =
∑

hkxt−k = ht.

For example, the following special moving average filter

yt =
xt−1 + xt + xt+1

3

represents a linear system with an impulse response equals to:

hk =

{
1/3 k = −1, 0, 1

0 otherwise.

The Step Response function is an another way to describe linear system in the
time domain, which is defined in the discrete time as follows:

St =
∑
k≤t

hk.
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The term step response stems from the idea that this function represents the response
of the system (process) to a unit step change in the input at time zero.

1.6 Digital Filters

A digital filter is a type of filtration that can be applied to discrete-time signals. There
are two kinds of digital filters that depend on the impulse response of the system and
they are known as a Finite Impulse Response (FIR) and an Infinite Impulse Response
(IIR). The Impulse Response term can be attributed to the mechanism of obtaining a
new value (Filtered Value), which is computed by using past, current, and sometimes
even future values may also be involved in this process. Mathematically, this can be
written as follows:

yt =
∞∑

k=−∞

hkx(t−k) (1.2)

where x and y represent the input and output series.
The Moving Average (MA) filter is regarded as one of the simplest FIR digital

filters, for example,

yt =
1

3
(xt+1 + xt + xt−1) (1.3)

is a 3 terms moving average, which depends on a Feed-Forward difference equation.
Feed-Forward here refers to the range of the input signals, which do not contain any
values from the output series. An equation that contains input and output values,
where the values of this output series are extracted by using values of the input series,
and sometimes past values of the output series, is called a difference equation. Using
this type of filtering, FIR filter, for example, moving average method, will produce a
new series with a pattern that is smoother than the input time series. Smoothing in
time series analysis refers to the process of removing the irregular signals to clearly
investigate the desired components such as a trend.

1.7 Moving Average Filter (MA)

Most time series contain different patterns and it can be more useful to categorize
these patterns. Linear Filtering is regarded as one of the most important manners
for extracting the components embedded in time series [37]. In fact, although there
are a number of relatively effective digital filters, the MAF is regarded as one of the
most important and widely used filtration mechanisms [37, 90]. This is attributed
to its efficiency and easy calculation procedures. The definition of this filter implies
that it can be applied by using the average of a number of points from the original
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signal to generate each new point in the output signal. By using the equation form
this can be written as:

yi =
1

m

m−1∑
j=0

x[i+ j] (1.4)

where x and y are the input and output signals, respectively, and m represents the
number of considered points. There are two ways to apply the moving average filter,
depending on the points from the input signals. The first way is when the number of
points for averaging are taken for one side. For example, in a 7 point moving average
filter, if we want to obtain the moving average for the point 70 in the output signal,
the next equation can be used:

y[70] =
x[70] + x[71] + x[72] + x[73] + x[74] + x[75] + x[76]

7
(1.5)

The second way is carried out by using a symmetrical group of points that are
located around the output point. For the same example above, this can be written
as:

y[70] =
x[67] + x[68] + x[69] + x[70] + x[71] + x[72] + x[73]

7
(1.6)

In this case, the limits of the summation for the equation 1.4 will change from j = 0
to m − 1 into j = −(m − 1)/2 to (m − 1)/2. The symmetrical averaging requires
that the value of m must be an odd number. Furthermore, based on the MA method,
Kolmogorov and Zurbenko presented a developed version of this filter which is known
as the Kolmogorov and Zurbenko filter (KZ) filter [121, 36]. The KZ filtering mech-
anism belongs to the class of the low pass filters which enable all signals with low
frequencies to pass through it and at the same time attenuate all the signals with
high frequencies. What is computed in the first iteration of the KZ filter will be the
input series for the second iteration and so on.

1.8 The Kolmogorov-Zurbenko (KZ) Filter

In signal processing system, there are many kinds of filters such as the MA, the
Centered Moving Average (CMA), and the KZ filter. The KZm,p filter, where m and
p are the window width and the number of iterations, respectively, is regarded as
one of the most robust techniques for the linear filtration [100, 122, 83, 118]. This
filter is the MA filter but with repetitive times. The two parameters of this filter are
decided by the number of days that are needed to be filtered out, m, and the number
of iterations, p, which is most often chosen to be in the range between 3 and 5 times
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[115], [36]. To filter out periods of length less than N days, we will use the following
criterion , [36]:

m×√p ≤ N.

For example, if the KZ15,5 filter is used, then these two parameters will remove
cycles of 33 days and less. That means, this criterion is carried out to determine
the point of the desired cut off frequency for the number of periods, for example, the
number of days, months, etc. Lumley and Panofsky 1964 (as cited in [36]) showed that
the Transfer Function is used to examine the behaviour of the linear time invariant
discrete time filters. Using the convolution theorem [36], this function is defined as
the following:

ψ(ω) = H(ω)φ(ω) (1.7)

where φ and ψ are the spectral densities of the original and filtered data, H is the
transform function of the filter, and ω denotes the chosen frequency. Wei Yang and
Igor Zurbenko (2010), [118], have stated that the energy transfer function of the KZ
filter can be measured using the following criterion :

|ψm,k(ω)|2 =

(
1

m

sin(mω/2)

sin(ω/2)

)2

where ω is the chosen frequency. Flaum et al. (2012) have mentioned that the
parameters of the KZ filter are researcher-specified [38]. Since the KZ filter belongs
to the class of the low pass filtering techniques, its mechanism has been applied
extensively to filter out the undesirable signals, as examples of its use, specifically in
the environmental studies, [82], [81], [122], [73], [115], [100], [36], and [50].

As an example of how this filter separates the components, Figure 6.3 shows the
data of the raw and the three components for the log water discharge for Utica city
in New York state in the USA. When we examine the raw data in this figure (top
left), we cannot extract a precise opinion about the long-term trend because of the
noise (high frequency signals). But when we decompose the data using the KZ filter,
a more clear insight for the trend can be obtained (top right). Let X(t) be a vector
of a real-valued time series, the KZ filter for the data of this series is the moving
average filter with window size m, but this window size is repeated p times for each
new resulting output. In other words, the output of each iteration will be dealt as an
input series in the next iteration. The KZ filtering technique for the first iteration
can be written as follows:

KZm,k=1[X(t)] =
1

m

(m−1)
2∑

s=
−(m−1)

2

X(t+ s) (1.8)
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Figure 1.1: The Raw and the Three Components for the Water Discharge for Utica
city Using the KZ Filter

where this is the first iteration with m window width. After that, the series obtained
from the previous equation, Equation 1.8, will be used as an input for the second
iteration as the following:

KZm,k=2[X(t)] =

m−1
2∑

s=
−(m−1)

2

1

m
KZm,k=1[X(t+ s)] (1.9)

and so on for the other iterations. As aforementioned the criterion m
√
p can be used

to determine the point of the desired cut off frequency for the number of periods, for
example, the number of days, months, etc. The KZ filter is classified as one of the
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low pass filters and the cut off frequency for it can be computed by using

2
√

6×

√
1− α

1
2p

m2 − α
1
2p

where α ∈ (0, 1) is a pre-specified value [118]. Since the KZ filtering technique is
originally just a repetitive moving average method, it can deal with the problem
of missing data. For this reason and also for the relatively easy calculation process,
compared with the other types of the filtering techniques, the KZ filtration mechanism
has been extensively used in different fields, especially in the environmental studies.

1.9 Residuals Analysis

To check the validity of the formalised regression model, we need to test whether
the assumptions of the regression model are satisfied or not. The residual terms
of the regression model can be exploited to accomplish this task. The validity of
the constructed model means that the model has satisfactorily fitted the data. The
residual is the difference between the observed and predicted values for the response
variable. This can be written as:

et = yt − ŷt

where the estimated value for the response variable y, which is ŷ, is computed by
using different methods, such as the ordinary least square and maximum likelihood
methods. The simple linear regression model, which is defined as the following:

y = β0 + β1x+ ε (1.10)

can be easily extended to multiple linear regression analysis by adding some other
predictors to this equation. From the linear regression model y = β0 + β1x + ε, we
extract that ε can be computed from y− (β0 + β1x). Using a sample of observations,
the regression model can be written as ŷ = b0+b1x+et. Solving this equation provides
ŷt = b0 + b1xt; this is the point estimate for β0 + β1xt. Consequently, the residual et
represents the point estimate for the error εt.

Furthermore, to be validated, some assumptions have to be satisfied in the resid-
uals of the regression model:

1. The error terms have to be normally distributed with mean zero and variance
σ2.

2. The error terms have to be uncorrelated (independent) to avoid the autocorre-
lation problem between them.
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1.10 Plots of the Residuals

Depicting the residual series versus different variables can be considered as one of the
most important ways to do checking process [15]. Almost every statistical package
provides the possibility of plotting the residuals. Therefore, once the residuals are
calculated, plotting them will be possible against:

1. Data of Xs.

2. Data of ŷ (Fitted Values).

3. Time (if the data is time series data).

There are a number of assumptions that have to be achieved for the residuals:

• Assumption of the Constant Variance: One of the most significant advantages of
the residuals plot is to examine the variance of these residuals. The values of x
axis are the fitted values, ŷ and the values of y axis are the residuals. There are
three different scenarios for the variance. Firstly, the assumption of the constant
variance for the residuals is violated if the residuals fluctuate around zero with
a pattern that can imply that these residuals are increasingly spreading out
as the x axis increases. Secondly, this assumption is also violated when the
fluctuations of the residuals become narrower as the x axis increases. Finally,
a constant variance appears when the residuals construct an approximately
horizontal band, where the variance will remain more stable even when x axis
increases.

• Assumption of the Appropriate Function Form: Typically, when the existing
model does not correctly fit the data, the residuals plot can be considered as a
helpful tool to detect this inappropriate model. Besides, the correct model may
be determined by an alternative pattern that can be seen in the same plot. For
instance, if we use a linear regression model to fit the data, and the residual
plot displays a curve, this may be an indicator to the necessity of rebuilding the
data by using the true relationship which is a non linear relation.

• Assumption of Normality: If the histogram and stem and leaf plots for the
residuals display a plausible bell shape and symmetry about zero, that means
the normal assumption is achieved for the residuals.

• Assumption of the Independency: Violation of the assumption of the indepen-
dency of the residual terms is more likely to happen when the regression anal-
ysis is performed for time series data than cross sectional data. In this case,
the residuals of this analysis can be serially correlated. These correlated values
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lead to the problem of the autocorrelation. The patterns of the autocorrelated
residuals construct two different types of autocorrelations.

1. Firstly, the time-ordered residual terms may have a positive autocorrela-
tion. This positive autocorrelation can occur when a positive error terms
in the time period t produces another positive error terms in the later time
period (t + k). Or, a negative error terms in the time period t is followed
by another negative error terms in the later time period (t+k). A positive
autocorrelation generates a cyclical pattern over time.

2. Secondly, when a positive error terms in period t is followed by a negative
error terms in time period (t + k) and vice versa, that means a negative
correlation exists, which generates an alternating pattern over time.

If regression analysis is performed for time series data and the residuals, which
are depicted versus time, display a cyclical behaviour, this could imply existing
of a positive autocorrelation between the residuals. The independence pattern,
which provides no tendency to either a positive or a negative shape, is required
to hold in the residuals of a regression model. In other words, the pattern of
these residuals over time has to be randomly distributed. If this is the observed
case, that means the regression analysis has successfully taken into account all
the available information by using the fitted model and no other information
can enrich the constructed model.

Moreover, the First-Order Autocorrelation is a type of either positive or negative
pattern for the correlated residuals. This kind of autocorrelation exists when
the error terms, εt, in the time period t is serially related to the error terms in
the time period (t− 1), εt−1, by the formula:

εt = φ1εt−1 + at

where φ1 is the parameter of the correlation between the error terms that are
separated by one time period and a1, a2, . . ., are the values of the randomly and
independently distributed error terms for this model with mean zero, (µ = 0),
and a constant variance (σ2).

1.11 Box-Jenkins Models for the Error Terms of

the Regression Analysis in the Time Series

A time series regression model is often performed to predict values for a serially
recorded data which has a deterministic nature. These models are suitable provided
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that the parameters of the model do not change over time. In addition, the residual
terms for these regression models are required to be randomly distributed with mean
zero and constant variance for each time series period. Besides, for the residuals, the
assumption of being statistically independent has to be available.

However, when a linear regression is employed to analyse the data, the situation
that is most likely to happen is that this assumption is not achieved. Therefore,
when we encounter such a situation, one of the Box-Jenkins models, which are also
known as ARMA models, will be used to model the error terms. Once we select a
model, we combine it with our regression model that we have already constructed, to
formalise the final expression which will be used to forecast the future values. The
mechanism for determining an appropriate model for the residuals series depends on
the functions in Section 1.12.

1.12 Autocorrelation Functions

Examining the pattern of the Sample Autocorrelation Function (SACF) or Sample
Partial Autocorrelation Function (SPACF) is a helpful procedure to decide which
model of the Box-Jenkins will fit the residuals of the time series regression model
adequately. The sample autocorrelation function at the lag k, rk, for the values of a
time series can be defined as follows:

rk =

∑n−k
t=b (zt − z̄)(zt+k − z̄)∑n

t=b(zt − z̄)2
(1.11)

where z̄ =
∑n

t=b zt
(n−b+1)

, n is the number of the observed values for the studied time series,
zb, zb+1, . . . , zn are the values of the working time series. This statistic measures the
linear relationship between the observations of a time series separated by a lag k (time
units). The quantity rk is always between −1 and 1, and whenever this quantity is
near to 1, a strong linear relationship with a positive slope exists. Also, when the
value is near to −1, this implies that the relationship between the values of the series
is also strong but with a negative slope.

For a nonseasonal time series, the SACF can show a number of different patterns.
The first type is the cutting-off pattern. This cutting off appears when rk has a large
value which appears as a spike when we plot the SACF. Theoretically, this leads to
reject the null hypothesis which claims that the theoretical autocorrelation at lag k
equals to zero. The symbol ρk is the theoretical autocorrelation at lag k. Therefore,
if there is no spike after the lag k, we conclude that the SACF cuts off at lag k. The
mathematical equation that can be used to detect the spikes in the SACF, is written
as follows:
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trk =
rk
Srk

(1.12)

where Srk denotes the standard error for rk. Whenever the absolute value for this
quantity for the nonseasonal data is greater than 2, a spike exists in the SACF. On
the other hand, the contrary situation for the cutting-off pattern is the dying down,
which means that the pattern decreases in a fairly stable fashion. Generally, SACF
has three principle ways to die-down:

• Exponentially damped pattern (with or without oscillation).

• A damped sine signal pattern.

• A combination of the two above mentioned patterns.

In addition, these dying-down patterns for the SACF tend to display two fashions,
where the SACF either dies-down fairly quickly or extremely slowly.

1.13 The First-Order Autocorrelation

As long as the error terms for a time series regression model possess an autocorrelation
pattern, the constructed model is inappropriate to fit the data. In such a case, fitting
a model for these autocorrelated errors would be the best solution as the inclusion
of this model will improve the forecasting performance of the constructed model and
eliminate the autocorrelations between the error (residual) terms. Otherwise, wider
prediction intervals will be obtained, and this is not desirable in the prediction process.
However, when these autocorrelated values are handled, the prediction intervals will
be narrower [15].

One of the most frequently encountered structures is the first-order autoregressive
structure. This name is attributable to the nature of the relationship that relates the
error terms in the period t, εt, with the other error terms in the previous period t−1,
εt−1, as we have already mentioned to this relation in the previous expression, which
is εt = φ1εt−1 + at.

1.14 Forecasting

Although there is a wide range of different forecasting techniques for predicting future
time series data, no single mechanism is universally applicable [20]. The selection of
any method depends on conditions or assumptions related to the given series. That
means, for forecasting some values for the desired period, satisfying these assumptions
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will be required to obtain an accurate forecasts. Furthermore, bearing in mind that
any system could change over time, these assumptions should be modified so that any
variations can be incorporated in the forecasting model, especially for the long-term
component forecasting case. It is important to consider that the forecasting procedure
is an extrapolation process, with all risks that will be accompanied [20].

In general, the forecasting methods are classified into two types Qualitative and
Quantitative methods. We summarize them

• Qualitative Methods: Also known as Subjective Methods, forecasting by using
one of these methods is largely dependent on an expert’s opinion. We often
need to use these techniques when there is no historical data, or it is scarce
and not sufficient to give a precise forecast about the studied situation. For
example, when the situation is related to a new product, it will be necessary to
use this type of forecasting to enable the analyst, expert, to give his opinion.
This expert could be one of the members from a sales force, or from a market
research committee.

Utilizing this kind of forecasting technique appears when we need to predict
future values for a historical data when its pattern varies through time. The
process of detecting this variation in the fashion of the desired data will be
implemented by using one of the subjective mechanisms. These qualitative
methods involve subjective curve fitting, Delphi Method, and Technological
Comparisons [15].

• Quantitative Methods: These techniques are generally classified into: Univari-
ate and Multivariate methods. The first group is specified when the studied
system consists of a single time series without consideration for any other vari-
ables that could affect it. This univariate forecasting model requires historical
data, past values for a specific period, to predict future events for this series.
This should be implemented by analysing this historical data with one of the
associated models, for example, autoregressive model of order one. Typically,
this type is used if all the assumptions of the studied system are assumed to
remain the same. But if these assumptions are vulnerable to change in the next
periods, it will not be worth using this type of model to forecast future values.

For the second group, which includes Multivariate Models (Causal Models),
the idea is to incorporate any effect from other time series in the constructed
model. After we determine those influential (independent) variables, a model
that combines them with the dependent series would be built. Then, this con-
structed model will be exploited to predict future data depending on these
related predictors. Using this kind of forecasting method is common, especially



Introduction 30

in the business studies and the environmental area, as this type can reveal any
relationships between the input and output series.

Moreover, in the forecasting process, we are able to produce either a point forecast,
which gives a specific number, or a range of numbers with a confidence interval,
which gives a possibility of including an error terms in the process of calculating the
forecasting values. Extra attention is required to be paid to the necessity that the
forecasting technique should be consistent with the pattern of data for each studied
time series. In general, investigating these errors can help us to decide whether the
forecasting technique is suitable to describe the pattern of the data or not.

When the forecasting method has suitably matched the pattern of the given data
and produced a precise prediction for trend, seasonal, or cyclical component, these
error terms should represent only the irregular (random) component. If this is not
the situation, that means the forecasting technique has not taken into account all
the existing information in this specific time series. For example, if these error terms
construct an upward trend, this may suggest that there is an upward trend which has
not been exploited in the present forecasting model. However, when the prediction
expression has sufficiently accounted for all the embedded information, we need to
measure the magnitude of these errors to check the accuracy of the forecasting model.
This can be implemented by computing the Mean Squared Error (MSE), which can
be calculated as: ∑n

t=1(yt − ŷt)2

n

where yt and ŷt are the actual and predicted values, respectively, and n is the sample
size.

In the hydrological field, and as a consequence of the sophisticated nature of the
data, forecasting remains a difficult and a critical task [29]. The data of this field is
often non-linear, non-stationary, and also contains different scale characteristics. In
fact, in order to increase and improve the accuracy of the prediction for the hydro-
logical data, several novel models have been proposed to tackle and proceed with all
the mentioned difficulties.

1.15 Frequency Domain

The time and frequency domains are used to analyse time series data The methods
of the Time Domain are based on the principle of how the values of the series change
over time. On the other hand, the methods of the Frequency Domain are based on
the principle of how much of this series is located within each band of a previously
determined bandwidth of frequencies. Furthermore, whenever we have one of these
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domains, time or frequency, the process of converting one of them to be represented
by the other can be carried out by using one of the transformation functions.

The Fourier series can be used to transfer a periodic function represented in time
domain to another series represented using a number of frequencies. However, if
the function of interest is aperiodic, Fourier Transformation (FT) can be utilised
to transfer this non-periodic function to be represented using frequency rather than
time. The FT is regarded as one of the most prominent functions that can be used
to transfer a time signal to another signal calculated by using the frequency.

Also, to recover the time signal from the frequency domain, the Inverse Fourier
Transformation (IFT) is typically applied. The Fourier Transformation describes the
time signal as a sum of sinusoids functions, sine and cosine terms, using different
frequencies [51, 59, 114]. So, if we have a signal that is recorded based on a range
of discrete time, the Discrete Fourier Transformation (DFT) converts this signal into
a new one, but with a range of discrete frequencies. The Fourier Transformation for
discrete time functions would be also discrete function, but it is measured using the
frequency. The DFT expresses each value in a time series by using complex sinusoids.
A sequence of N numbers x0, x1, . . . , xN−1 is transformed into a new sequence includes
also N numbers.

Xf =
N−1∑
t=0

Xt · e−2πift/N , f is an integer (1.13)

where f is the frequency and i =
√
−1.

Typically, the domain for f lies within the range [0, N−1], and this can be clearly
seen when the DFT is computed by the Fast Fourier Transform (FFT). Furthermore,
there are other domains for f such as [−N

2
, N

2
− 1] if N is even; and if N is odd,

the domain is [−(N−1)
2

, (N−1)
2

] [93]. Moreover, to recover the time domain signal, the
following equation can be used:

Xt =
1

N

N−1∑
f=0

Xf · e2πift/N . (1.14)

Let Xt represent a time series that contains a periodic sinusoidal component with
a known period (wavelength). The natural model for this series can be written as
follows:

Xt = Acos(ωt+ φ) + Zt (1.15)

where ω is the Frequency for the variation for this sinusoidal function, A is the
Amplitude for the variation, φ represents the Phase and Zt refers to a Stationary
Random Series. The angle (ωt+ φ) is typically measured by using the unit Radians,
where 2π radians equals to 360 degree. Also, because ω is the number of radians per
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unit time, it is called the Angular Frequency. The frequency f , which represents the
number of cycles per unit time, equals to ω

2π
. The Period, also known as a wavelength,

is the reciprocal of the frequency, it equal to 1
f

or 2π
ω

. Equation 1.15 is the simple
form to describe the situation when the time series of interest is represented by one
frequency [58, 114, 93]. In practice, however, most variations in the time series
are associated with more than one frequency, so, in this case Equation 1.15 can be
rewritten in the following form:

Xt =
k∑
j=1

Aj cos(ωjt+ φj) + Zt (1.16)

where Aj, ωj, and φj denote the amplitude, angular frequency, and phase, respectively,
for the frequency j. Since the cos(ωt+φ) equals to cosωt cosφ−sinωt sinφ, Equation
1.16, can alternatively be written by using the sine and cosine terms:

Xt =
k∑
j=1

(aj cosωjt+ bj sinωjt) + Zt (1.17)

where
aj = Aj cosφj and bj = −Ajsinφj.

So, by using either parametric or non-parametric methods for a time series with
a finite set of measurements, the spectral content of this series can be determined.

The spectral analysis is one of the most widely used methods for analysing time
series data in a wide range of fields, such as Oceanography, Geophysics, Astron-
omy, Economic, Marine Science, and Meteorology. This analysis characterizes the
frequency content of a signal. The spectral content describes the distribution of the
power of a signal through frequency. Also, the spectral analysis has an ability to
discover any hidden periodicities (cyclical behaviour) in the data. Essentially, the
non-parametric methods rely on the idea of partitioning the available data to be lim-
ited to a band of frequencies. On the other hand, the parametric analysis methods
attempt to construct models that include some parameters which need to be estimated
by one of the estimation methods.

1.15.1 Non-Parametric Methods

In time series analysis, there are many non-parametric spectral estimators that can
be used to find the spectral content for the desired series, but the most common
techniques are the Periodogram and Correlogram. Although these two estimators
provide sensible high resolution for a signal, the results obtained by applying them
are somewhat poor because of the high variance. This variance does not decrease
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even when the size of data increases. The existence of high variance in the results of
these two non-parametric methods encourages researchers to suggest some techniques
to avoid this problem. However, this can lead to a reduced degree of resolution [93].

Periodogram and Correlogram Techniques

Periodogram Periodogram is a tool that is applied to describe and identify the
dominant cycles in a time series. This tool is used to detect the periodicity or season-
ality in a time series data [93]. Fourier analysis is used to rebuild the deterministic
function by using a combination of sinusoid, sine and cosine (Trigonometric) waves.
So, to examine whether or not a time series exhibits periodicity, plotting the peri-
odogram or spectral density function against the period or frequency can be carried
out. The following function can be used to compute the periodogram:

φp(w) =
1

N

N∑
t=1

(yte
−iωt)2 (1.18)

where yt, t = 0, 1, 2, . . . , N , is a discrete time series whose values are a sequence of
random variables that have mean equals to zero

Eyt = 0. (1.19)

Therefore, one of the major advantages of the periodogram is its ability of revealing
any hidden periodicities that may be contained in the studied time series.

Correlogram The correlogram spectral estimators depend on the correlation coef-
ficient [93] and can be written as follows:

φc(w) =
N−1∑

k=−(N−1)

rωk e
−iwk (1.20)

where rωk is the estimated correlation at lag k. There are two ways to calculate the
rωk , which are:

rωk =
1

N − k

N∑
t=k+1

yty
∗
t−k 0 ≤ k ≤ N − 1 (1.21)

and

rωk =
1

N

N∑
t=k+1

yty
∗
t−k 0 ≤ k ≤ N − 1. (1.22)
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1.16 Data

In this study, daily data is collected for Water Discharge (m3/s), Temperature (F ),
Wind Speed (m/sec), Precipitation (mm/hr), Absolute Humidity (gram per cubic
metre), Dew Point (F ), Sea Level Pressure (millibar mb), Visibility Miles (m), and
Cloud Cover (okta). Daily data for Groundwater Level and Tide are also chosen to be
involved as predictors in this study. All these time series are collected for three cities
Cohoes, Utica, and Poughkeepsie in New York State, US. The source for this data
is the New York Department for Environmental Conservation for the period 2005 to
2014. This dataset is separated into two parts; the data for the period 2005 − 2013
is used to construct the models, and the data for the year 2014 is utilised to validate
the constructed models.

The Logarithm transformation is applied to the water discharge series to stabilize
the variance of the values. Furthermore, because we have variables with different unit
scales, we use the standardised data in the analysis instead of the original time series
datasets. The standardisation procedure is implemented by subtracting each value
for each variable from its mean, and then dividing by the standard deviation of the
associated series.



Chapter 2

Regression and Vector
Autoregressive Models For
Forecasting Water Discharge

Following the Rao and Zurbenko (1994) method [36, 121, 100, 118], it is assumed that
a time series for a variable can be separated as:

Yt = LTt + SEt + SHt

where Y is the original time series, LT is the long-term signal (wave), SE is the
seasonal cycle, SH is the short-term (synoptic) component, and t is the time. This
model is based on the assumption that there is a gap (difference) in the spectra of
each component. The events that last less than 3 weeks represent the short-term
component. The next scale is the seasonal variations which include any season-based
event that repeats itself in a period of one year or less. Finally, any scales of periods
of more than one year are related to the long-term component. This representation
for a time series has been used extensively in the meteorological and environmental
studies [100, 101].

A model is fit to the data of each component and the regression model is the
most commonly used model to accomplish this task. The final combined model is
constructed by combining the extracted components. However, the residual terms for
the regression models for the three components and the final combined model often
suffer from the autocorrelation problem. The R Squared value, the confidence interval,
and the accuracy of prediction are affected by this issue. In this chapter we solve this
problem by modelling the residual terms for the regression models of the components
and the final combined regression model. Specifying one of the Autoregressive Moving
Average (ARMA) models is the most common choice to fit a model for the residual
terms. Therefore, the new contribution in this chapter is to fit an ARMA model to the

35
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residual terms of the constructed models. Adopting this methodology has improved
the prediction process according to the results of the model selection methods the
Akaike Information Criterion, AIC, and the Schwarz Bayesian Criterion, SBC.

In this chapter, we have analysed the data of three cities which are Cohoes, Utica,
and Poughkeepsie, following the same methodology. However, the new contribution
in this chapter has been considered for the data of Utica city. The methodology can
be summarised as follows:

• Building a regression model for the raw and the three components data, the
long, seasonal, and the short-term component, for each city.

• Because the structure of a Vector Autoregressive (VAR) model is based on lag
variables, this model will be a good choice to describe the data of the short-
term component as it essentially represents the high frequency signals in a
series. Based on this, the short-term component data has been analysed using
two approaches, the regression and the VAR models.

• The residual terms for the regression models for Utica’s city data have been
expressed using an ARMA model.

In addition to the purpose of fitting a forecasting model for each city, some results
from these analyses will be used later in the next chapters. For example, the results
of the regression models for the three cities have been used in chapter 5 and also the
results of the regression model for Cohoes city have been used in chapter 4.

The remainder of this chapter has been organised as follows. Section 2.1 provides
information about the simple and multiple linear regression analysis. Sections 2.2
and 2.3 present the most common methods to analyse time series data, which are
the Autoregressive (AR) and Moving Average (MA) processes. Besides, Section 2.4
introduces the Autoregressive Moving Average (ARMA) models. Section 2.5 gives
a brief description of how to specify an ARMA model to the errors of a regression
model. Sections 2.6, 2.7, and 2.8 provide applications for the data of Cohoes, Utica,
and Poughkeepsie cities, respectively. Section 2.9 present a discussion for the results
obtained. Section 2.10 presents the conclusion of this chapter.

Table 2.1 shows the methods applied for the three cities.

2.1 Regression Analysis

Regression analysis is one of the most common methodologies in statistics to predict
values for a response (dependent) variable based on some predictors (independent)
variables [61]. In addition to the prediction task, the regression analysis has been
widely used to assess the influences of predictors on the response variable. Relying on
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Table 2.1: Summary of the Applied Methods for the Studied Cities.
City MLR VAR MLR with AR(1)
Cohoes Raw and all Short-Term

Components
Component

Utica Raw and all Short-Term MLR for the three
components and AR(1) for
the Residual terms

Components
Component

Poughkeepsie Raw and all Short-Term
Components

Component

the number of independent variables, the regression analysis can be divided into two
types, simple and multiple linear regression models (MLR). The former model requires
two parameters to be employed, which are the intercept and the slope parameters.
These parameters refer to the mean value of Y when X equals to zero and the amount
of the change in the mean value of Y when the predictor X increases or decreases by
one unit, respectively. In addition to the intercept term, the latter model needs more
than one slope which are related to the independent variables. Let X1, X2, . . . , Xk be
k independent variables which are associated with the dependent variable Y by the
following regression model:

Yt = β0 + β1X1t + . . .+ βkXkt + εt (2.1)

where β0, β1, . . ., βk are the parameters of the model, and ε is the error term, which
is assumed to possess the following properties:

• E(εt) = 0.

• V ar(εt) = σ2.

• Cov(εt1, εt2) = 0 for t1 6= t2.

Generally, Y consists of a mean which relies on the Xi’s, and a random error, ε,
which represents the other possible variables which have not been explicitly accounted
for in the constructed model. The recorded values for the independent variables
are often regarded as fixed values. Furthermore, since the error term (and as a
consequence the response variable) is considered as a random variable, so its behaviour
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will be controlled by a collection of assumptions. When there are n independent
observations of Y and the associated values of xi, the full model will be as follows:

Y1 = β0 + β1X11 + β2X12 + . . .+ βkX1k + ε1

Y2 = β0 + β1X21 + β2X22 + . . .+ βkX2k + ε2

...

Yn = β0 + β1Xn1 + β2Xn2 + . . .+ βkXnk + εn.

Sometimes the order of these independent variables can be changed to be first,
second, and so on [61]. In matrix notation, the multivariate regression model can be
written as follows:

Y1
Y2
...
Yn

 =


X11 X12 · · · X1k

X21 X22 · · · X2k
...

...
. . .

...
Xn1 Xn2 · · · Xnk



β0
β1
...
βk

+


ε1
ε2
...
εn


or

Y = Xβ + ε.

And the properties of the error term become

• E(ε) = 0.

• Cov(ε) = E(εε′) = σ2I.

2.2 Autoregressive Model

An Autoregressive (AR) model is a model that predicts the changes in the variable
of interest based on two factors: the average c and the preceding (past) values yt−1,
yt−2, . . ., yt−p. This can be written mathematically as

ŷt = c+ φ1yt−1 + φ2yt−2 + . . .+ φpyt−p

where φ1, φ2, . . . , φp are the parameters of the model and p is the order of the AR
model. This model is commonly written as AR(p). The pattern of the sample partial
autocorrelation function (SPACF) is typically used to decide which order has to be
chosen for the AR model [15].
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2.3 Moving Average Model

The Moving Average Model (MA) is constructed using the forecast errors (random
shocks). Mathematically this can be written as follows:

yt = c+ at + θ1at−1 + θ2at−2 + . . .+ θqat−q

where c is the average of the series, at, at−1, . . . , at−q refer to the current and past
random shocks and θ1, θ2, . . . , θq are the parameters of the model, q is the order of the
MA process. This model is commonly written as MA(q). The sample autocorrelation
function (SACF) is responsible for determining the order that should be used for a
MA model.

2.4 Autoregressive Moving Average Model

The result of combining the two models above is an Autoregressive Moving Average
Model (ARMA) of order (p, q). The strategy of constructing this model is composed
of three different stages. These stages are:

• Identification of a proper model for the considered data based on the SACF and
SPACF.

• Estimation of the parameters of the constructed model using one of the esti-
mation methods and diagnostic the adequacy of this model using the residual
analysis.

• Forecasting future values for the response series.

Examining the patterns of the SACF and SPACF is the first step in the process of
constructing an ARMA model. To make sure that the proposed model fits the data,
testing the autocorrelation for the residual terms has to be performed. Therefore,
if the autocorrelations for some lags are statistically significant, this would suggest
that the fitted model is not adequate to capture all the information embedded in the
studied series. As a consequence, it will be required to model the time series by using
a more complex model [15, 105].

2.5 Linear Regression Model with ARMA Errors

Performing a regression analysis using time series variables often produces errors
(residual terms) that have a time series structure. This, in turn, violates the required
assumption of independent errors, which is shown in Section 2.1. Consequently, if the
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autocorrelation problem has not been considered, this will influence the accuracy of
the estimates of the regression coefficients and their standard errors. This problem
can be avoided by providing a formula to express these errors. The formulation is
built by specifying an ARMA model for the residuals. Mathematically, this can be
constructed by adding an ARMA model (which is chosen based on the behaviour of
the SACF and SPACF) to Equation 2.1 [116]. The structure for the residual terms
can be expressed using one of the AR models. Therefore, the new model will be:

yt = β0 + β1x1t + . . .+ βkxkt + et (2.2)

with
et = φ1et−1 + φ2et−2 + . . .+ φpet−p + at

where at ∼ N(0, σ2).
If we use the backshift operator Φ(B) = 1 − φ1B − φ2B

2 − . . . − φpBp, the model
above can be rewritten as

Φ(B)et = at.

Then, taking the inverse operator, Φ−1(B), the model can be written as follows:

et = Φ−1(B)at.

Therefore, the final model can be written:

yt = β0 + β1x1t + . . .+ βkxkt + Φ−1(B)at (2.3)

where at is a white noise series.
This method of specifying an ARMA model for the errors of a MLR model has

been not been applied for a combined MLR model. In this case, the new combined
regression model with an ARMA errors model, which can be called CMLR+Noise,
can be written as

yt = C+Ltx1t+SEx1t+SHx1t+Ltx2t+SEx2t+SHx2t+ . . .+Ltxkt+SExkt+SHxkt+

Φ−1(B)at (2.4)

where Ltt, SEt, and SHt are the variables of long, seasonal, and short-term compo-
nents.

2.6 The Application for Cohoes’ City Data

Figure A.1 in the Appendix illustrates the steps taken to build the developed models
for Cohoes city.
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2.6.1 The Analysis for Cohoes’ City Raw Data

At first, the correlation matrix is calculated as shown in Table 2.2 to check the rela-
tionships between the water discharge (WD) and the meteorological variables Tem-
perature (TE), Wind Speed (WS), Precipitation (PR), Groundwater level (GW ),
and tide (TD) series. The null hypothesis H0: r = 0 is applied against the alterna-
tive hypothesis H1: r 6= 0, where r is the correlation coefficient. Since the correlation
coefficients with the water discharge series have P-values 0.84 and 0.61, which are
greater than the significance level 0.05, the variables Sea Level Pressure and Visibil-
ity Miles are ignored. Based on the output of the correlation matrix, the variable
Dew Point has been eliminated because of the high correlation coefficient with the
Temperature variable. Also, depending on the results of the multiple linear regression
analysis, the variables Absolute Humidity and Cloud Cover are also removed from the
regression equation as their coefficients have P-values greater than the significance
level. Therefore, the chosen variables that will be used to complete our analysis are
temperature, wind speed, precipitation, tide, and groundwater level.

Table 2.2: The Correlation Matrix for the Raw Time Series of Cohoes City.
WD TE WS PR TD GW

WD 1 -0.327 0.133 0.247 0.384 -0.567
TE -0.327 1 -0.161 0.054 -0.056 0.079
WS 0.133 -0.161 1 0.064 0.155 -0.079
PR 0.247 0.054 0.064 1 -0.026 -0.011
TD 0.384 -0.056 0.155 -0.026 1 -0.495
GW -0.567 0.079 -0.079 -0.011 -0.495 1

Additionally, as we have a number of predictors, it will be reasonable to build a
number of nested regression models and choose the best fitting model based on the
R Squared value. The nested regression models are shown in Table 2.3. Based on
its diagnostic statistics, which are shown in the same table, we chose the first model
which is constructed by 5 variables as the best regression model for the raw data.
This model is shown in Equation 2.5.

ŴDt = −0.27TEt + 0.01WS + 0.25PRt + 0.15TDt − 0.48GWt (2.5)

where WD, TE, WS, PR, TD, and GW denote the Water Discharge, Temperature,
Wind Speed, Precipitation, Tide, and Groundwater Level, respectively. The order of
the absolute values of the coefficients from largest to smallest is GW , TE, PR, TD,
and WS. The R Squared value for this model is 0.48.
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2.6.2 The Periods for the Studied Variables for Cohoes’ City

Before using any decomposition technique we need to examine the spectral aspects
for each series to know how these variables behave (change) along the studied period
based on the frequency domain. The periodic behaviour with a regular nature for
any time series can be expressed as a combination of sine and/or cosine signals.
Typically, the main goal of using a combination of signals of cosine, sine, or both
of them is to identify the dominant frequencies (or periods) for the time series of
interest. In spectral analysis, which represents the part of time series analysis that
uses the frequency to examine the data of the series, the periodogram is considered
as one of the most important statistical tools to implement the task of detecting the
periodicity in a time series.

There are several methods to calculate the periodogram, which are often based on
the Fourier Analysis. One of these methods is the Kolmogorov-Zurbenko Periodogram
(KZP). Essentially, the KZP depends on the Fourier Transformation (FT). Working
with a smoothed periodogram series is often preferable as it decreases the degree of
variance. To obtain this smoothed series, different methods have been proposed to
smooth the resultant periodogram. The DiRienzo and Zurbenko smoothing algorithm
(DZ) is applied to smooth the periodogram for all the considered series [117]. Table
2.4 shows the periods for all the variables in our study. The spectral analysis for all

Table 2.4: Periods (days) for the Studied Variables by Using the DZ method for
Cohoes City.

Variable First Peak Second Peak Third Peak
Temperature 365 331 405
Precipitation 13 165 173
Groundwater 365 912 1825
Water Discharge 365 182 912
Tide 365 182

the variables, except the precipitation, reveals that the dominant period is the period
that consists of 365 days. In contrast, the main peak for the precipitation is at the
period of 13 days.

2.6.3 The Decomposition of Cohoes’ City Time Series

In order to precisely determine the trend for the desired series data, the seasonal
variations and the random fluctuations have to be removed from the data. This
act of removing can be accomplished using one of the decomposition techniques.
Fundamentally, there are two common models to describe a decomposed time series,
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which are the additive and the multiplicative models. The operation of separating any
time series into different components that represent the various scales embedded in the
time series values, has no theoretical basis [15]. That means, these two decomposition
models are intuitively built. On the other hand, the criteria to select which model
can be used to construct the time series depends on the behaviour of the seasonal
variation for the series.

If the seasonality increasingly or decreasingly changes, the Multiplicative Model
can be chosen to formulate the components of time series. Alternatively, if the changes
of the seasonal component are characterized as a constant variation, this will lead to
employ the Additive Model for the selected data. The decomposition of time series
into the components, long, seasonal and short-term component, can be regarded as
one of the most effective mechanisms to model time series data [121, 36].

In our previous regression model for the raw data, Equation 2.5, the R squared
value, which is 0.48, is not high enough to select this model to perform the forecasting
process. In order to examine the possibility of enhancing the preceding regression
model, one of the decomposition filters is used to manipulate the process of isolating
the various scales in the time series of interest. The KZ filter is used, where this filter
has an efficient ability to cleanly separate the components of the studied time series
[100, 101, 36, 118]. The decomposition expression for any time series by using the
KZ filter can be written as follows:

Yt = LTt + SEt + SHt (2.6)

where Yt is the original series, LTt, SEt, and SHt denote the Long, Seasonal, and the
Short-term component, respectively. After the time series are partitioned with respect
to the embedded scales, a multivariate model is required to express each component.
In the next sections, we will model each extracted component using a MLR model
in addition to the VAR model that is used to the data of the short-term component.
Figure 2.1 shows the raw and the three extracted components.

2.6.4 The Prediction Modelling for Cohoes’ City Long-Term
Component

Fundamentally, the analysis of the long-term trend and the interpretation of the
results may be a problematic and sophisticated task with the presence of different
scales of motions in the time series. To avoid all the problems and accurately calculate
the trend for WD for Cohoes city, we follow the Rao and Zurbenko’s method that
partitions the time series into three distinguishable components the Long, Seasonal,
and the Short-Term [82, 36]. Depending on this filtration base, the filter KZ15,5,
which removes any cycle of a period of less than 33 days based on the criteria of
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Figure 2.1: The Raw Data and the Three Components for the Temperature for Cohoes
City Using the KZ Filter.

15 × 51/2 ≤ 33, is applied for Cohoes city data. As a consequence, the result is the
long-term component for each series [99, 100].

In fact, these two parameters, 15 days and 5 iterations, are chosen because they
capture the required signals for the trend by achieving the highest total explanation
value, R Squared. That means, we preserve the long-term component’s data, and at
the same time all the undesired waves (high frequency signals) are attenuated. On
the other hand, to examine how the response variable and each of the meteorological
conditions, tide, and groundwater level for the long-term component are correlated,
the correlation matrix, which is shown in Table 2.5, is computed. The order of the
absolute values of the correlation coefficients from the highest to the lowest with the
WD variable are noticed for the variables GW , TD, TE, WS, and PR, respectively.
For analysing the filtered data, a MLR model is formed as shown in the following

Table 2.5: The Correlation Matrix for the Long-Term Component for Cohoes City.
WD TE WS PR TD GW

WD 1 -0.407 0.341 0.163 0.453 -0.623
TE -0.407 1 -0.544 0.344 -0.065 0.087
WS 0.341 -0.544 1 -0.198 0.448 -0.235
PR 0.163 0.344 -0.198 1 -0.081 -0.040
TD 0.453 -0.065 0.448 -0.081 1 -0.512
GW -0.623 0.087 -0.235 -0.040 -0.512 1
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equation:

ŴD15,5(t) = −0.44TE15,5(t)− 0.07WS15,5(t) + 0.29PR15,5(t)

+ 0.25TD15,5(t)− 0.47GW15,5(t) (2.7)

where WD,TE,WS, PR, TD, and GW denote the long-term components of water
discharge, temperature, wind speed, precipitation, tide, and groundwater level, re-
spectively. The total explanation for this model, which is measured using the R
Squared value for Equation 2.7, is 0.62. This determination coefficient value means
that 0.62 of the variability in the water discharge is attributed to the long-term com-
ponent of the climatic variables, tide, and groundwater level.

2.6.5 The Prediction Modelling for Cohoes’ City Seasonal-
Term Component

The seasonal pattern, as the name may imply, is naturally related to the fluctuations
that might happen by seasonal factors, such as quarter intervals, monthly periods, a
day of a week, etc. The seasonality often occurs in fixed and known periods which can
discriminate it from the cyclical behaviour which appears in non fixed periods. After
we compute the long-term component, KZ15,5, de-trending is the next step. This
step can be conducted by subtracting the long-term series from the raw time series.
Then, by using this de-trended series, the seasonal factors are computed relying on
the period that is used to record these values.

Because our data is daily recorded, we need to filter this data depending on the
day; after that the average for each day is computed. That means, the seasonal
component is created. For instance, to calculate the seasonal effects for the first of
January (01/01), we need to add all the available data for this day in the de-trended
series and divide by the number of the (01/01) days in the specified period, which is
9 years (2005− 2013). By using equations, we can write this as:

Seasonal(t) =
1

9

9∑
n=1

(Raw(t)−KZ(t))

where n is the number of times that each day appears through the range of data,
for example 01/01 in the series occurred nine times. Furthermore, to build a regres-
sion model for these seasonal series, the correlation matrix is computed to select the
significantly correlated variables. The correlation matrix is shown in Table 2.6. The
highest two correlation coefficients with the WD are the coefficients of PR and GW
level variables, then TD, WS, and TE, respectively. The regression analysis is car-
ried out to construct a model to predict the seasonal values by using the significantly
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Table 2.6: Correlation Matrix of the Seasonal-Term Component for Cohoes City.
WD TE WS PR TD GW

WD 1 0.039 0.061 0.454 -0.072 -0.44
TE 0.039 1 0.134 -0.104 -0.071 -0.007
WS 0.061 0.134 1 0.048 0.007 0.027
PR 0.454 -0.104 0.048 1 -0.017 0.016
TD -0.072 -0.071 0.007 -0.017 1 -0.014
GW -0.44 -0.007 0.027 0.016 -0.014 1

correlated variables with the water discharge as predictors. This model is shown in
Equation 2.8. The determination coefficient for this model is approximately 0.42.

ŴDSE(t) = 0.05TESE(t) + 0.47PRSE(t)

− 0.07TDSE(t)− 0.41GWSE(t) (2.8)

where WDSE, TESE, PRSE, TDSE, and GWSE denote the seasonal components for
the water discharge, temperature, precipitation, tide, and groundwater level, respec-
tively. Also, as the parameter estimate for the variable WS has a P-value greater
than the significance level, α = 0.05, this predictor is eliminated from the regression
model for the seasonal component.

2.6.6 The Prediction Modelling for Cohoes’ City Short-Term
Component

With regard to the components, the last step in the calculation process is related
to obtain the short-term component series, which is sometimes called the synaptic,
random, or irregular series. This component can be computed by subtracting the
long-term trend and the seasonal factor from the raw series data. Mathematically
speaking,

Short = Raw − Long − Seasonal.

The correlation matrix for the short-term component is computed and shown
in Table 2.7. Examining this matrix reveals the order of correlation with the WD
from highest to lowest, where based on this indicator of correlation the variables can
be ordered as the following, PR, GW , TE, WS, and TD. Moreover, to examine
the relationship between the response variable and the covariates of the short-term
component, two distinctive modelling techniques have been used, which are:

1. Multiple Linear Regression analysis (MLR).
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Table 2.7: The Correlation Matrix of the Short-Term Component for Cohoes City.
WD TE WS PR TD GW

WD 1 -0.117 0.078 0.438 0.009 -0.377
TE -0.117 1 0.049 -0.178 0.005 0.060
WS 0.078 0.049 1 0.109 -0.003 0.000
PR 0.438 -0.178 0.109 1 0.006 -0.013
TD 0.009 0.005 -0.003 0.006 1 -0.025
GW -0.377 0.060 0.000 -0.013 -0.025 1

2. Vector Autoregressive Model (VAR).

Using regression analysis enables us to study the relationships between the cur-
rent variables. On the other hand, because of the specific nature of the short-term
component’s data, as it includes the high frequency data, the use of the Vector Au-
toregressive Model (VAR) can often provide better results than regression model.
The specificity of this component can be attributed to the high frequency data. So,
we perform the two techniques and select the one that produces higher explanation
value.

The Regression Analysis for Cohoes’ City Short-Term Component

Applying MLR analysis for the data of the short-term component provides the fol-
lowing model:

ŴDSH(t) = 0.421PRSH(t)− 0.358GWSH(t) (2.9)

where WDSH denotes the water discharge, PRSH and GWSH denote the predictors
the precipitation and the groundwater level for the short-term component. Moreover,
the remaining predictors, which are temperature, tide and wind speed are eliminated
from the regression model as their coefficients have P-values that are greater than the
significance level. This model explains about 0.32 of the variations in the response
variable by using the data of the variables of precipitation and groundwater level.

Vector Autoregressive Model for Cohoes’ City Short-Term Component

Since the short-term component is a random process as it is related to the events
that quickly happen and finish like the fluctuations of the weather, one of the ARMA
models is required to express the synoptic pattern. The structure of this methodology
can be summarised by expressing each variable as a linear combination of past values
(lags) of itself and the other predictors. The variables precipitation and temperature
are the most important variables that affect the water discharge for the Mohawk
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River [41]. The importance of these two variables can be supported by their signif-
icant correlation coefficients with WD. Based on this, the variables water discharge,
temperature, and precipitation are used to construct the VAR model. The VAR(1)
for the short-term component data model provided the smallest AIC and SBC values
compared to the other constructing models, and is written as follows:

Yt = ΦYt−1 + εt (2.10)

where

Yt =

WDSHt

TESHt

PRSHt

 .
The matrix Φ is a 3 × 3 matrix of the parameters of the first order autoregres-

sive model, these parameters are the coefficients of the influence of the independent
variables, which are the past values of the variables. The white noise series, εt, is a 3
× 1 vector, with a mean zero and a constant variance σ2 and independent from the
variables in the past period, mathematically speaking,

E(εt) = 0

E(εtεs) =

{
σ2 if t = s

0 if t 6= s.

The autoregressive model of order one for each variable in the short-term compo-
nent can be expressed as follows:

WDSHt = φ11WDSHt−1 + φ12TESHt−1 + φ13PRSHt−1 + ε1t

TESHt = φ21WDSHt−1 + φ22TESHt−1 + φ23PRSHt−1 + ε2t

PRSHt = φ31WDSHt−1 + φ32TESHt−1 + φ33PRSHt−1 + ε3t

where WDSHt−1 , TESHt−1 , and PRSHt−1 denote the values of the previous day for the
variables in short-term components. By using the SAS program, the results of the
VAR(1) model are listed as follows:WDSHt

TESHt

PRSHt

 =

 0.724 0.114 0.212
−0.057 0.500 −0.068
−0.092 0.031 0.777

×
WDSHt−1

TESHt−1

PRSHt−1

+

ε1tε2t
ε3t

 .
The model above enables us to predict the value of the current day for the variables

water discharge, temperature, and precipitation, respectively, by using their values
for the previous day. That is, the current value of the water discharge relies on
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its previous day value as well as the values of the temperature and precipitation
for the day before the targeted day. Also, this model reveals that the value of the
coefficient of WDSHt−1 in the first equation, which is 0.724, is the most significant
factor that influences computing the amount of WDSHt ; after that the precipitation
and temperature variables affect with factors 0.212 and 0.114, respectively.

Following the same method, the process of calculating the value of the current day
for the other variables can be carried out. Therefore, the coefficients of the tempera-
ture in the matrix of the Model Parameter Estimates are −0.057, 0.500, and −0.068.
The most important coefficient among these estimates is the coefficient of TESHt−1

which is 0.500. Furthermore, the current value for the precipitation is related to each
of the studied time series, which are water discharge, temperature, and precipitation
for the previous day with about −0.092, 0.031, and 0.777, respectively. The main
coefficient for forecasting the short-term component’s value for the precipitation is
the value of PRSHt−1 , which is 0.777.

Additionally, in order to determine the percentage of the unexplained part by
using this model, the residual data, which is originally related to the variables that
have not been taken into account when we build this model, can be used [101]. As a
consequence, the covariance matrix for the residuals (innovations) is estimated, this
matrix is shown as follows : 0.311 −0.022 0.110

−0.022 0.720 −0.061
0.110 −0.061 0.455

 .
Also, the process of calculating the unexplained percentage requires that the co-

variance matrix for the short-term component data for the variables WD,TE, and
PR has to be estimated, this covariance matrix is shown as follows: 1 −0.101 0.426

−0.101 1 −0.172
0.426 −0.172 0.99

 .
Then, the determinant for each covariance matrix should be calculated and after

that we divide the determinant value of the innovation matrix of the VAR(1) by
the value of the determinant of the covariance matrix of the short-term component,
the result is the value 0.116. This value, 0.116, represents the part that has not
been explained by using this model, as a consequence, the value 0.884 represents the
variations in the water discharge that can be interpreted by using the values of the
previous day of the water discharge itself, temperature, and precipitation variables.
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2.6.7 The Contribution Percentages of the Components for
Cohoes’ City Data

The contribution percentages of the different scales of motions, which are embedded in
a time series, can be computed by utilising the results of the KZ filtering mechanism.
The results are shown in Table 2.8. Firstly, for the long-term component, which is
expressed by Equation 2.7, the contribution percentage of the independent variables
which are the meteorological conditions, tide, and groundwater level to the water
discharge series data is about 0.44, (0.698 × 0.627). Furthermore, the seasonality
effects, which are formed in Expression 2.8, have contributed with approximately
0.008, (0.021 × 0.421), to the response variable. Finally, since we have studied two
modelling techniques for analysing the short-term component data, two percentages
are gained:

• Firstly, the contribution percentage of the variables in the MLR model for the
short-term component for the water discharge, which is expressed in Equation
2.9, is 0.05, (0.160× 0.320), of the variations in water discharge data.

• Secondly, for the VAR(1) model, the R Squared value is 0.688, and the per-
centage of the explanation is 0.11, (0.160× 0.688). This value of explanation is
higher than the previous one for the MLR. That means, to predict the value of
water discharge for the short-term component using the VAR(1) model provides
more accurate results.

Table 2.8: The Results of the Variance and the Coefficient of Determination for all
the components of the KZ15,5 for Cohoes City.

Variance R Squared
Long-Term Component 0.698 0.627
Seasonal-Term Component 0.021 0.421
Short-Term Component 0.160 0.320

2.6.8 The Combining Process for Cohoes’ City Components

Once we complete calculating all the required components, we can use them to fit the
final combined forecasting model. We combine together the three separated compo-
nents, which are shown in Equations 2.7, 2.8, and 2.9, in one model. The R Squared
value for this new combined model is 0.67. When we combine the VAR(1) model for
the short-term component data with the other two MLR models for the components
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long and seasonal, the R Squared value for this combined model is 0.68. The differ-
ence between these R Squared values and the R Squared value before applying the
KZ filter, which is 0.484, shows the ability of the KZ filter to improve the predictive
performance for the MLR analysis.

2.7 The Analysis for Utica’s City Data

Figure A.2 in the Appendix illustrates the steps taken to construct the developed
models for Utica city. The novelty in this chapter is shown in this section using the
data of Utica city.

2.7.1 The Analysis of MLR Model without an ARMA Pro-
cess for the Errors for the Utica’s City Raw Data

The correlation matrix has been computed for the daily raw data and the results are
shown in Table 2.9. Some of the calculated correlation coefficients have significant
relationship with the water discharge based on the P-values where these coefficients
are related to the variables Temperature, Wind Speed, Precipitation, Tide, Cloud
Cover and Groundwater Level. On the other hand, the remainder of the variables,
which are Absolute Humidity, Sea Level Pressure, and Visibility Miles, would not be
included in the process of building a linear model as their P-values are greater than
0.05. The highest correlation coefficient with WD is the correlation coefficients of the
variable GW.

Table 2.9: The Correlation Matrix for the Raw Data for Utica City.
WD TE WS PR TD GW

WD 1 -0.372 0.193 0.283 0.372 -0.451
TE -0.372 1 -0.130 0.006 -0.071 0.075
WS 0.193 -0.130 1 0.149 0.080 -0.045
PR 0.283 0.006 0.149 1 -0.043 0.012
TD 0.372 -0.071 0.080 -0.043 1 -0.490
GW -0.451 0.075 -0.045 0.012 -0.490 1

Figure 2.2 shows the daily raw data for the natural logarithm for the water dis-
charge for Utica city for the considered period, 2005-2014. Furthermore, based on
the available variables, a regression model was built for the raw data as shown in
Equation 2.11. However, because of its non significant relation, based on the P-value
of its coefficient, the cloud cover variable is eliminated from the formed model.
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Figure 2.2: Time Series for Water Discharge for the Period 2005-2014 for Utica City.

ŴDt = −0.29TEt + 0.07WSt + 0.28PRt + 0.21TDt − 0.36GWt (2.11)

where WDt, TEt, WSt, PRt, TDt, and GWt denote the raw data for the water dis-
charge, temperature, wind speed, precipitation, tide, groundwater level, respectively.
The R Squared value for this model is 0.45. This weak relationship between water
discharge and the climatic variables, tide, and groundwater level is strengthened by
using a decomposition technique for isolating the seasonal and short-term components
from the studied series.
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2.7.2 The Analysis of MLR with an ARMA Model for the
Errors for the Utica’s City Raw Data

The existence of some spikes in the ACF and PACF plots for the residual terms for
the MLR model shown in Equation 2.11 in Figure 2.3 reveals that the constructed
MLR is not adequate to fit the raw data for Utica city. These spikes indicate that
there is some other information that has not been taken into consideration by this
model. One solution to handle this problem is to specify an ARMA model for these
residuals. The mechanism for this specification depends on examining the values of
the ACF and PACF. In the PACF plot, as we have two spikes (one of them is large
and the other is rather small), an AR model of order one sufficiently fits the data of
the residual terms. This adequacy has been confirmed by plotting the residual terms
for the final new model (MLR+AR(1)) as shown in Figure 2.4, where, apart from
the first spike in the ACF plot, there are no obvious spikes appear in the plots of the
ACF and the PACF.

The findings of the four model selection methods in Table 2.10 show that adding
an AR(1) for the residuals of the regression model has extremely changed the results
of the accuracy for the forecasting model based on the four tools used.

Figure 2.3: Residual Correlation Diagnostics for Water Discharge.

2.7.3 The Periods for the Studied Variables for Utica City

To spectrally examine the nature of the relationships between the studied vari-
ables, the DiRienzo and Zurbenko (DZ) smoothed function is applied to the pe-
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Figure 2.4: Residual Correlation Diagnostics for Water Discharge After Adding AR(1)
Model.

Table 2.10: Model Selection Methods for the Raw Data for Utica City.
Tools Regression Regression

Without Errors Model With Errors Model
Variance Estimate 0.562 0.126
Std Error Estimate 0.750 0.355
AIC 7443.578 2528.663
SBC 7480.165 2571.348

riodogram, which is calculated using the Kolmogorov-Zurbenko Fourier Transform
(KZFT) method for all the variables. If we investigate the periods in Table 2.11, we
can see that all the variables have relatively long periods that consist of at least 165
days, except the precipitation variable which possesses short-time periods, which are
35 and 12 days. These variations in the periods, which also refer to the changes in
the frequencies of these variables, can indicate the necessity to decompose the studied
time series. The isolation step enables us to individually analyse each component in
our data. Figure 2.5 displays the spectrum of the smoothed series for water discharge
using the DZ method with the parameter 0.0005 where the highest peak indicates
that the dominant period for this variable is 365 days.
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Figure 2.5: Power Spectrum of the Water Discharge Series for Utica City by using
the DZ algorithm.

2.7.4 Decomposition of Utica’s City Time Series

The available data for the variables of interest will be divided into three different
parts, which can be defined mathematically as:

Yt = LTt + SEt + SHt

where Yt, LTt, SEt, and SHt denote the Raw, Long, Seasonal, and the Short-Term
components, respectively.
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Table 2.11: Periods for all the Studied Variables for Utica City by using the DZ
method.

Variable First Peak Second Peak Third Peak
Temperature 365 182
Precipitation 35 12
Groundwater 365 1217
Water Discharge 365 182 912
Tide 365 182
Wind Speed 365 165

2.7.5 Prediction Modelling for Utica’s City Long-Term Com-
ponent without an Errors Model

For Utica’s data, we obtained the long-term component for all the variables by re-
moving all the high frequency signals variations. The high frequency fluctuations are
separated by using the KZ filter of 29 days and 3 iterations as the window size and
the number of iterations, respectively. These parameters 29 and 3 can allow for any
cycle with more than 50 days to pass through it. The correlation coefficients for the
long-term component for all variables are listed in Table 2.12. The correlation coef-

Table 2.12: The Correlation Matrix of the Long-Term Component for the Variables
of Utica City.

WD TE WS PR TD GW
WD 1 -0.546 0.485 0.163 0.472 -0.527
TE -0.546 1 -0.625 0.232 -0.090 0.085
WS 0.485 -0.625 1 -0.126 0.284 -0.150
PR 0.163 0.232 -0.126 1 -0.161 0.046
TD 0.472 -0.090 0.284 -0.161 1 -0.514
GW -0.527 0.085 -0.150 0.046 -0.514 1

ficients of the long-term component of water discharge series are relatively high with
all the variables, except the correlation coefficient of the precipitation. This weak
relationship is confirmed by the periods of these two variables, the water discharge
and precipitation, as shown in Table 2.11. While the dominant periods for the wa-
ter discharge are associated with cycles of at least 182 days, which is long period,
the dominant period for the precipitation variable is only 35 days, which is clearly
short-time period compared with the period of 182 days. Based on these results, it
is expected that the precipitation variable can be more correlated with the short-
term component of water discharge series rather than the long-term component of
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this variable, this will be shown later on in the correlation matrix for the short-term
component.

For the purpose of analysing the long-term trend of the water discharge using the
long-term components of the predictors, a MLR model is constructed. The expression
of the model can be written as follows:

ŴD29,3(t) = −0.492TE29,3(t) + 0.077WS29,3(t) + 0.415PR29,3(t)

+ 0.377TD29,3(t)− 0.263GW29,3(t) (2.12)

where WD29,3, TE29,3, WS29,3, PR29,3, TD29,3, and GW29,3 denote the long-term
components for the water discharge, temperature, wind speed, precipitation, tide,
and groundwater level, respectively. The term ε mentions to all other variables that
are not taken into account when we build this regression model for the response
variable. The coefficient of determination, R Squared, for this constructed model is
0.70 (the value of the R Squared is always between 0 and 100 %). Furthermore, all
the parameter estimates for this model are significant, this is revealed by examining
the P-values where all these values are 0.001.

2.7.6 Prediction Modelling for Utica’s City Long-Term Com-
ponent with an Errors Model

Having investigated the correlation analysis for the residual terms for the MLR model
for the long-term component for the water discharge, constructing an ARMA model
for these terms is necessary. We see from the values in Table 2.13 that better results
have been obtained by augmenting the regression model with an AR(1) model for the
residual terms, thereby accounting for the autocorrelation of the residual terms.

Table 2.13: Model Selection Method for the Long-Term Component.
Tools Regression Regression

Without Errors Model With Errors Model
Variance Estimate 0.296 0.000
Std Error Estimate 0.544 0.026
AIC 5340.251 -14505.5
SBC 5376.838 -14462.9
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2.7.7 Prediction Modelling for Utica’s City Seasonal-Term
Component without an Errors Model

The seasonal component series for each studied variable is found by performing the
following two steps:

• Subtracting the long-term series, the KZ29,3, from the raw data, and the result
is a de-trended series.

• Filtering the de-trended series for each variable depending on the day, as our
data is daily, and taking the average for each day in the studied data. Mathe-
matically, this can be written as follows:

SE(t) =
1

9

9∑
n=1

(Raw(t)−KZ29,3(t))

where 9 here is the number of times that each day appears through the range
of data, which is 2005-2013. For example, if we want to calculate the average
of the day 02− 01, the second of January, in all years chosen, we shall add all
the values from the de-trended series which are associated with the day 02− 01
and after that divide it by 9.

We compute the correlation matrix for the seasonal variations to select the ex-
planatory variables that will be used in the process of building a model. If we exam-

Table 2.14: The Correlation Matrix of the Seasonal-Term Component for Utica City.
WD TE WS PR TD GW

WD 1 0.057 0.206 0.377 0.074 -0.397
TE 0.057 1 0.206 0.008 -0.005 -0.048
WS 0.206 0.206 1 0.146 -0.029 0.000
PR 0.377 0.008 0.146 1 -0.001 0.088
TD 0.074 -0.005 -0.029 -0.001 1 -0.170
GW -0.397 -0.048 0.000 0.088 -0.170 1

ine the correlation coefficients for the water discharge with all the predictors, we can
highlight those with a high correlation coefficient with the water discharge, which
are groundwater level, precipitation, and wind speed as shown in Table 2.14. For
the purpose of explaining and predicting the seasonal component of water discharge,
MLR analysis is used. The MLR model can be written as follows:

ŴDSE(t) = −0.309TESE(t) + 0.151WSSE(t) + 0.299PRSE(t)

+ 0.223TDSE(t)− 0.301GWSE(t) (2.13)
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whereWDSE, TESE,WSSE, PRSE, TDSE, andGWSE denote the seasonal components
for the variables, water discharge, temperature, wind speed, precipitation, tide, and
groundwater level, respectively. This model explains about 0.40 of the variations in
the WD using the preceding variables. All the parameter estimates for this model
are statistically significant relying on the P-values.

2.7.8 Prediction Modelling for Utica’s City Seasonal-Term
Component with an Errors Model

An AR model of order one has been assigned to the data of the residual terms for the
MLR model. By examining the results in Table 2.15, the decision of including an AR
model has enhanced the results of forecasting based on the model selection methods
used.

Table 2.15: Model Selection Method for the Seasonal-Term Component.
Tools Regression Regression

Without Errors Model With Errors Model
Variance Estimate 0.649 0.246
Std Error Estimate 0.805 0.496
AIC 7915.419 4730.703
SBC 7952.005 4773.387

2.7.9 Prediction Modelling for Utica’s City Short-Term Com-
ponent

To compute the short-term component series, we subtract the previous two compo-
nents, which are the long and seasonal, from the raw data. Mathematically, this series
can be written as follows:

SH29,3 = Raw − Long29,3 − Seasonal29,3.

The correlation matrix is calculated for the short-time series for all the variables.
The highest correlation coefficient with the WD in this matrix is the one that is asso-
ciated with the precipitation series, 0.434, as shown in Table 2.16. The groundwater
level and wind speed also have significant relationships with the short-term compo-
nent of water discharge. In contrast to this situation, temperature and tide have a
weak relation with the water discharge in the short-term component. To predict the
short-term component of the water discharge, two methodologies are implemented,
the Regression Analysis and the Vector Autoregressive Model, VAR.
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Table 2.16: The Correlation Matrix of the Short-Term Component for Utica City.
WD TE WS PR TD GW

WD 1 -0.021 0.150 0.434 0.016 -0.208
TE -0.021 1 0.084 -0.145 0.021 0.059
WS 0.150 0.084 1 0.179 -0.000 -0.003
PR 0.434 -0.145 0.179 1 -0.017 -0.014
TD 0.016 0.021 -0.000 -0.017 1 -0.012
GW -0.208 0.059 -0.003 -0.014 -0.012 1

2.7.10 The Regression model for Utica’s City Short-Term
Component Without an Errors Model

The MLR model is implemented where the water discharge series represents the re-
sponse variable, and precipitation, groundwater level, and wind speed are the inde-
pendent variables. This linear model is shown in Expression 2.14.

ŴD29,3(t) = 0.059WS29,3(t) + 0.426PR29,3(t)− 0.209GW29,3(t) (2.14)

where WD29,3,WS29,3, PR29,3, and GW29,3 denote the water discharge, wind speed,
precipitation, and groundwater level, respectively. In the MLR model above, the
parameter estimate for the precipitation variable has a remarkable influence on the
predicted amount of the water discharge in the short-term component. This result is
identical with the spectrum analysis result for these variables, as shown in Table 2.11
where the dominant periods for the precipitation variable have short-times which are
35 and 12 days, respectively. The MLR model interprets about 0.23 of the variations
in the short-term component of the water discharge.

2.7.11 The Regression model for Utica’s City Short-Term
Component with an Errors Model

As shown in Table 2.17, a considerable difference is observed after the inclusion of an
AR(1) model for the residual terms of the MLR model for the short-term component.

The Vector Autoregressive Model for Utica’s City Short-Term Component

Based on the tests of AIC and SBC for model selection, the Vector Autoregressive
model of order 1, VAR(1), which is one of the VARMA models, has been chosen. In
our study, the water discharge, temperature, and precipitation are the variables that
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Table 2.17: Model Selection Method for the Short-Term Component.
Tools Regression Regression

Without Errors Model With Errors Model
Variance Estimate 0.764 0.389
Std Error Estimate 0.874 0.624
AIC 8451.216 6238.872
SBC 8487.803 6281.556

construct the structure of the VAR(1). The results can be written as follows:WDSHt

TESHt

PRSHt

 =

 0.709 0.125 0.099
−0.050 0.536 −0.082
0.003 0.044 0.744

×
WDSHt−1

TESHt−1

PRSHt−1

+

ε1tε2t
ε3t

 .
That means, to predict the value of the current day for the water discharge, we need
to use the values of the previous day (lag1) for the water discharge, temperature,
and precipitation. The highest parameter estimate in the water discharge equation is
associated with the variable of lag one of the water discharge, 0.709, while the tem-
perature and precipitation affect with approximately 0.125 and 0.099, respectively.
Similarly, for predicting the value of the temperature for the present day, the coef-
ficient estimate for the variable of the previous day, lag 1, is the highest parameter
estimate, 0.536. Then each of the precipitation and the water discharge affect with
-0.082, -0.050, respectively. Finally, in order to calculate the precipitation value for
the current day, the variable of the previous value for this variable, lag 1, has a factor
of 0.744, then 0.044 for the lag one of the temperature, and the parameter estimate
0.003 refers to the value of the lag 1 for the water discharge.

To determine how much this VAR(1) model explains from the variations in our
data, we need to compute the covariance matrix for the innovations for this model as
well as the covariance matrix for the short-term component for the studied series. The
following matrix represents the covariance matrix for the residual terms (innovations)
of the VAR(1). 0.415 0.001 0.135

0.001 0.685 −0.034
0.135 −0.034 0.450

 .
In addition, the covariance matrix of the variables water discharge, temperature,

and precipitation has also been computed and is shown as follows: 0, 99 −0.014 0.431
−0.014 0.99 −0.145
0.431 −0.145 0.98

 .
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After these covariance matrices are calculated, the determinant for each of them
is computed. Therefore, by dividing the determinant of the covariance matrix of the
residual terms of the VAR(1) model by the determinant of the covariance matrix of
the short-term component, the result is 0.14 where this refers to the unexplained
part. Consequently, this means that the explained variance by using the vector au-
toregressive model of order one is about 0.86 of the total variations in our studied
data.

2.7.12 The Contribution Percentages for the Components for
Utica City

For testing the effectiveness of the decomposition process, a calculation procedure
should be conducted to achieve this purpose. The process requires to multiply the
value of the coefficient of determination, R Squared, for each component by the
proportion of the variance of the water discharge series also for each component. The
proportion of the variance is computed by dividing the variance of the water discharge
for each component over the variance of the raw data of the water discharge. The R
Squared values and the proportions of the variances are shown in Table 2.18.

Firstly, the contribution of the long-term component of the meteorological vari-
ables, which are temperature, precipitation, and wind speed, in addition to the other
variables, which are tide and groundwater level, to the water discharge series is about
0.38, (0.54× 0.70), from Equation 2.12. Moreover, 0.01, (0.045× 0.4), is the percent-
age of the explanation that is attributed to the seasonal variations from Equation
2.13. With reference to the short-term component, since two distinguishable tech-
niques are applied, we have two different figures for the contribution percentage for
this component. Firstly, the 0.06, (0.27× 0.23) is the total explanation of the short-
term component using the regression analysis from Equation 2.14. Secondly, 0.15,
(0.58 × 0.27) is the amount of the explanation in the data of the water discharge
by modelling the short-term components for the studied variables using an VAR(1)
model.

Table 2.18: The Results of the Variance and the Coefficient of Determination for all
the Components of Utica City.

Variance R Squared
Long-Term Component 0.54 0.70
Seasonal-Term Component 0.045 0.4
Short-Term Component 0.27 0.23
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2.7.13 The Combining Process for Utica’s City Components

If we combine all the components, which are shown in Equations 2.12, 2.13, and 2.14,
the result of the R Squared value is 0.56. This value is better than the R Squared
value for the raw data, 0.45. However, the error terms for this combined MLR model
are autocorrelated as shown in Figure 2.6. To remedy this problem of autocorrelated

Figure 2.6: Fit Diagnostics for the Residuals of Combined Regression Model for the
Water Discharge.

residual terms, an AR(1) model has been used to fit the residuals terms. The results of
new combined MLR model with an AR(1) model for the residuals are shown in Table
2.19. Moreover, when we combine the regression models for the long and seasonal

Table 2.19: Model Selection Method for the Final Model.
Tools Regression Regression

Without Errors Model With Errors Model
Variance Estimate 0.432 0.222
Std Error Estimate 0.657 0.471
AIC 6590.497 2453.619
SBC 6688.061 2557.28
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components with the VAR(1) model for the short-term component, the result of the
R Squared value becomes 0.66. Again, this value is also better than the R squared
values 0.45 and 0.56 for the MLR for the raw data and the Combined MLR.

2.8 The Analysis for Poughkeepsie’s City Data

The same variables have been chosen to construct MLR and VAR models for the data
of Poughkeepsie city.

2.8.1 The Analysis for Poughkeepsie’s City Raw Data

At the beginning, the correlation matrix is computed to choose the statistically sig-
nificant variables that can affect the water discharge series. The variables Absolute
Humidity, Sea Level Pressure, Visibility Miles, and Cloud Cover are removed from the
analysis as they have non significant relations with the WD. Furthermore, because of
its high correlation coefficient with the temperature variable, the variable Dew point
is also eliminated from the analysis. The correlation matrix, which is shown in Table
2.20, reveals that almost all the remaining variables have high correlation coefficients
with the dependent variable.

Table 2.20: The Correlation Matrix of the Raw Data for Poughkeepsie City.
WD TE WS PR TD GW

WD 1 -0.422 0.144 0.395 0.290 -0.436
TE -0.422 1 -0.126 0.019 -0.067 0.223
WS 0.144 -0.126 1 0.080 0.125 -0.090
PR 0.395 0.019 0.080 1 -0.048 0.058
TD 0.290 -0.067 0.125 -0.048 1 -0.393
GW -0.436 0.223 -0.090 0.058 -0.393 1

For the purpose of predicting the long-term component for WD, the regression
analysis is performed based on the explanatory variables. Because of its non signifi-
cant P-value, wind speed variable has been removed from the model. The constructed
model explains about 0.50 of the variations in the WD data, and this model is shown
in Equation 2.15

ŴDt = −0.347TEt + 0.414PRt + 0.159TDt − 0.321GWt. (2.15)
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2.8.2 The Periods for the Studied Variables for Poughkeepsie
City

To investigate the spectral content of the studied data, the DiRienzo and Zurbenko
(DZ) smoothed function is performed to smooth the periodogram, which is previously
calculated by using the Kolmogorov-Zurbenko Fourier Transform (KZFT) method, of
all the variables. If we examine the periods in Table 2.21, we can detect that most of
the studied variables possess long periods except the precipitation variable. This can
verify the necessity of applying a decomposition technique to separate each pattern
in the studied data.

Table 2.21: The Periods of all the Studied Variables for Poughkeepsie City by using
the DZ method.

Variable First Peak Second Peak Third Peak
Temperature 365 182
Precipitation 19 12
Groundwater 365 912 260
Discharge Water 365 608 280
Tide 365 182
Wind 365 3651 912

2.8.3 Decomposition of Time Series for Poughkeepsie City

Often, when a regression analysis, which is performed for a time series data, has a
relatively low R Squared value, there is a possibility to enhance this model. This
enhancing process will be conducted by re-analysing the same data but after ap-
plying one of the decomposition techniques for the original time series. Applying
the KZ29,3 filter for all the variables for Poughkeepsie city provides three patterns for
each variable. In fact, this KZ filter removes all the high frequency signals (short-term
component), which are signals with a period of less than 50 days. The parameters
29 and 3 have been chosen as they provide a regression model with the highest R
Squared value.

2.8.4 Prediction Modelling for Poughkeepsie’s City Long-
Term Component

Separating the long-term signals provides a good opportunity to analyse it by using
the regression analysis. This analysis is accomplished after computing the correla-
tion matrix for all the long-term component variables, this matrix is shown in Table
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2.22. Having investigated this correlation matrix and determined the variables that

Table 2.22: The Correlation Matrix for the Long-Term Component Data for Pough-
keepsie City.

WD TE WS PR TD GW
WD 1 -0.566 0.370 0.267 0.364 -0.620
TE -0.566 1 -0.448 0.248 -0.080 0.269
WS 0.370 -0.448 1 -0.221 0.444 -0.344
PR 0.267 0.248 -0.221 1 -0.146 0.066
TD 0.364 -0.080 0.444 -0.146 1 -0.458
GW -0.620 0.269 -0.344 0.066 -0.458 1

construct the prediction model, the regression analysis is performed and the resultant
model is shown in Expression 2.16.

ŴDt = −0.561TEt + 0.444PRt + 0.204TDt − 0.414GWt. (2.16)

This model explains approximately 0.80 of the variations in the water discharge se-
ries. Furthermore, all the parameter estimates are statistically significant only the
parameter estimate for the variable wind speed has a high P-value, so, for this reason
this variable is not included in the regression model.

2.8.5 Prediction Modelling for Poughkeepsie’s City Seasonal-
Term Component

Once we obtain the long-term component, the process of calculating the seasonal
factor can be enabled. Examining the relationships between the studied variables
by using the correlation matrix, which is shown in Table 2.23, can help us to select
the predictors that will be used to build the regression model for forecasting the
seasonal component of the water discharge. The highest correlation coefficient has
been observed for the data of precipitation. Equation 2.17 represents the prediction
expression for the seasonality of water discharge. This forecasting model explains
about 0.31 of the variations in water discharge series. The variable wind speed again
has a non significant relationship based on the P-value.

ŴDt = −0.082GWt + 0.537PRt + 0.062WS. (2.17)
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Table 2.23: The Correlation Matrix of the Seasonal Fluctuations Data for Pough-
keepsie City.

WD TE WS PR TD GW
WD 1 -0.088 0.090 0.547 0.009 -0.123
TE -0.088 1 0.013 -0.125 -0.019 0.094
WS 0.090 0.013 1 0.045 0.003 -0.044
PR 0.547 -0.125 0.045 1 0.027 -0.068
TD 0.009 -0.019 0.003 0.027 1 0.040
GW -0.123 0.094 -0.044 -0.068 0.040 1

2.8.6 Prediction Modelling for Poughkeepsie’s City Short-
Term Component

Two methods have been used to analyse the data of this component, which are the
Regression Analysis and the Vector Autoregressive model of order one VAR(1). Before
using these two methods, the correlation matrix was computed to investigate the
relationships between the variables, Table 2.24 shows that the most related predictor
to the water discharge is the precipitation variable.

Table 2.24: The Correlation Matrix of the Short-Term Component Data for Pough-
keepsie City.

WD TE WS PR TD GW
WD 1 -0.053 0.116 0.577 0.020 0.057
TE -0.053 1 0.004 -0.135 0.001 -0.008
WS 0.116 0.004 1 0.130 -0.007 0.035
PR 0.577 -0.135 0.130 1 -0.022 0.100
TD 0.020 0.001 -0.007 -0.022 1 0.012
GW 0.057 -0.008 0.035 0.100 0.012 1

The Regression Model for Poughkeepsie’s City Short-Term Component

The multiple linear regression model is built by using the data of the short-term com-
ponent. All the P-values for the coefficients of the independent variables are greater
than the significance level, 0.05, except the P-value for the precipitation coefficient,
so, the regression model has one predictor as shown in Equation 2.18. The explained
variance using this model is about 0.33.

ŴDt = 0.560PRt. (2.18)
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The Vector Autoregressive Model for Poughkeepsie City’s Short-Term
Component

The VAR(1) model is chosen, based on the values of the information criteria AIC and
SBC, to construct the prediction model for the short-term component for Poughkeep-
sie city. The following expression shows the VAR(1):WDSHt

TESHt

PRSHt

 =

 0.735 0.028 0.187
−0.030 0.502 −0.043
−0.066 0.017 0.774

×
WDSHt−1

TESHt−1

PRSHt−1

+

ε1tε2t
ε3t


where WD, TE, and PR denote the water discharge, temperature, and precipitation,
respectively. Basically, to predict the current value for the water discharge, the lag 1
for each variable, which means the value of the previous day, should be used to build
the model. Having estimated the coefficients of the VAR(1), we can notice that each
of which affects with about 0.735, 0.028, 0.187, respectively. Also, it is clear that the
dominant parameter estimate has been observed for the lag1 for WD.

Similarly, it can be noticed that the most important coefficient that is related to
the equation of the temperature is the coefficient of the variable of temperature itself
but for the previous day value (lag 1). Finally, for the precipitation, again the highest
parameter estimate is related to the lag 1 for the precipitation. The VAR(1) model
explains about 0.90 of the variations in the water discharge series for the short-term
component. This explained variance is computed by calculating the determinants for
the covariance matrix of the residuals of the VAR(1) and the covariance matrix of
the variables of the short-term component. Then, by dividing the determinant of the
innovations (residuals) of the VAR(1) model over the determinant of the variables for
the short-term component, the result is approximately 0.10. This value represents
the unexplained amount of the variance when we use this model to predict the value
of the water discharge. These two matrices are shown below where the first matrix
displays the variance of the residuals of the VAR(1) model, and the second matrix is
the covariance matrix of the variables of the short-term component.0.268 0.021 0.161

0.021 0.734 −0.049
0.161 −0.049 0.457

 .
 1 −0.047 0.574
−0.047 1 −0.136
0.574 −0.136 0.99

 .
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2.8.7 The Contribution Percentages for the Components in
Poughkeepsie City

In order to examine to what extent the decomposition process is effective to perform
the separation of the embedded components, the contribution of each component
should be calculated. The variances and the R Squared values are listed in Table
2.25. Firstly, for the long-term pattern, we multiply the proportion of the variance
of the long-term component series by the value of the R Squared of this component,
(0.66× 0.80), and the result is 0.53.

The proportion of the variance of the water discharge for each component can be
computed by dividing the variance of each component over the variance of the original
water discharge series (water discharge series before the decomposition process). In
a similar way, the contribution of the other components can be calculated. While the
seasonal component contributes with about 0.005, the contribution of the short-term
component by using the regression analysis approach is 0.06. However, the short-
term component in the VAR(1) contributes with approximately 0.13. This value is
obtained by multiplying the R Squared value of the VAR(1), which is 0.73, by the
proportion of the variance of the short-term, which is 0.18.

Table 2.25: The Results of the Variance and the Coefficient of Determination for all
the Components of the Variables for Poughkeepsie City.

Variance R Squared
Long-Term Component 0.66 0.80
Seasonal-Term Component 0.01 0.50
Short-Term Component 0.18 0.33

2.8.8 Combining Process for Poughkeepsie City’s Compo-
nents

Finally, to construct the final model, which combines all the components together, we
firstly combined the variables of Equations 2.16, 2.17, and 2.18, the R Squared value
for this model is 0.62. But when we combine the two regression models for the long
and seasonal components with the AR(1) model for the short-term component, the
R Squared value became 0.74. Both of these models are better than the regression
model for the raw data based on the R Squared value to forecast the future values
for the short-term component.
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2.9 Discussion

The frequency content for the variables of the three cities is similar for all the variables,
except the frequency content for the precipitation variable. While a cycle of 365 days
is observed for all the studied variables, cycles of 13, 35, and 19 days are detected
for the precipitation variable for the three cities, Cohoes, Utica, and Poughkeepsie,
respectively. For the three cities, a small difference exists for the behaviours of the
considered variables. This result is derived from the MLR model’s coefficients and
the correlation coefficients of the water discharge with the other predictors, which
are temperature, wind speed, precipitation, tide, and groundwater level. Specifically,
Cohoes and Utica’s results are the closest to each other. For example, the effect’s
order of the independent variables on the response variable, WD, is similar. The effect
of the variables of the raw data can be ordered from the highest regression coefficient
to the lowest regression coefficient as follows: GW, TD, TE, PR, and WS. The same
pattern can be noticed for the correlation coefficients of WD with the independent
variables.

For the three cities and three components, while there is no specific pattern ob-
served according to the regression models coefficients and the correlation coefficients,
the difference between their regression and correlation coefficients with WD is small.
However, for the short-term component, the precipitation variable is the most impor-
tant one based on its regression coefficient and its correlation coefficient with WD.

With regard to the VAR(1) models for the short-term component for the three
cities, these models are built using the variables of lag one for the three studied vari-
ables WD, TE, and PR. For each city, the model VAR(1) constructs three equations,
each equation represents an AR(1) model for a variable. For water’s discharge vari-
able equations, WD, the highest coefficient is the coefficient of the WDt−1 variable,
where for Cohoes, Utica and Poughkeepsie, we have 0.72, 0.70, and 0.735. Similarly,
the highest coefficient in the temperature’s variable equations, TE, is the coefficient
of TEt−1 with 0.50, 0.53, 0.50. Finally, for the precipitation’s variable equations, PR,
the coefficient of PRt−1 is the highest coefficient with 0.77, 0.74, 0.74 for Cohoes,
Utica, and Poughkeepsie.

For the three cities, the explained variances for the VAR(1) models are 0.88, 0.86,
and 0.90. These percentages indicate that the constructing models adequately fit the
data of these variables.

The contribution percentages for the three cities, Cohoes, Utica, and Poughkeep-
sie, for the long-term component are 0.44, 0.38, and 0.53; for the seasonal-term com-
ponent are 0.008, 0.01, and 0.005; for the short-term component for regression model
are 0.05, 0.06, and 0.06; and for regression model for the VAR(1) are 0.11, 0.15, and
0.13.

The results of R Squared values show that the performance of the combined MLR
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models for the three cities outperform the performance of the MLR models con-
structed using the raw data. For the three cities, the R Squared values have been
changed from 0.48, 0.45, 0.50 using the raw data to 0.67, 0.56, 0.62 using the decom-
posed data the long, seasonal, and short-term components.

For Utica city, based on the model selection methods used, the combined MLR
model with an AR(1) model for the residual terms of the combined MLR is better
than the combined MLR without an ARMA model. For example, the AIC value has
been reduced from 7443.578 to 2528.663.

2.10 Conclusion

The Decomposition process that provides three components with different time scales
has improved the prediction accuracy of MLR model. The three components are the
long, seasonal, and the short-term component. To obtain these components, the
Kolmogorov Zurbenko filter has been used. The principle of this filter is derived from
the Moving Average filter. The spectral contents of the three components based on
this filter can be distributed as follows. Any event lasts for a short time, most often
ranging between 2 days to 3 weeks, will be included in the short-term component.
Also, any event maximally lasts one year will be included in the seasonal component.
Finally, any event needs more than one year to finish will be included in the long-
term component. Therefore, based on the results of this study, the variations of the
frequency content of the studied variable are one of the reasons that lead to “poor” R
Squared values for the MLR model for the three cities. The evidence is that when a
MLR model is built based on the decomposed data, the R Squared values have been
increased with relatively high percentages for the three studied cities.

Furthermore, constructing an ARMA model using the residual terms has enhanced
the accuracy of the combined MLR. This result has been extracted based on the results
of the model selection methods of AIC and SBC.
For the three cities, based on the correlation matrices for the raw data, there is no
high correlation coefficient for the precipitation variable with the WD. However, the
precipitation’s short-term component is highly related to the short-term component of
the WD for the three cities. It seems that having different periods causes this result.
The periods are computed using the DiRienzo and Zurbenko smoothing algorithm
(DZ).
The long-term component has contributed with the highest percentage in the final
combined MLR then the short-term component, and finally the seasonal fluctuations.



Chapter 3

Combined Transfer Function-Noise
Model for Forecasting Water
Discharge

In the previous chapter we used the regression model. The structure of this model
is not specifically designed to deal with time series data. The special nature of time
series data requires methods that specifically deal with them to avoid some problems,
such as autocorrelation between residuals, and to exploit some features, such as lagged
variables. In time series analysis, the inclusion of a number of lagged variables leads
to improve the constructed models [15]. The Transfer Function-Noise (TF-Noise)
model is one of the most important models that their structures inherently include
lagged variables [110, 15]. A considerable amount of literature has been published
on this model [13, 48, 63]. However, as far as we now, no study has considered the
case when decomposed data are used to construct this model rather than raw data.
In this chapter, a new developed model, which can be called Combined TF-Noise
model (CTF-Noise), is constructed using the decomposed data. Based on the model
selection methods used, this model yields better results than the TF-Noise model
constructed using the raw data.

This chapter has been organised as follows. Section 3.1 presents a brief description
of types of time series models. Section 3.2 gives an explanation about how to build
a TF-Noise model. Section 3.3 provides a brief overview of the backshift operator in
time series modelling. Section 3.4 presents the analysis of the Poughkeepsie’s raw data
using the TF-Noise model. Section 3.5 is concerned with the methodology employed to
the decomposed data. Section 3.6 deals with the process of combining the components
in one final model. Section 3.7 provides methods to evaluate the estimated Models for
Poughkeepsie city. Section 3.8 provide an analysis for the data of Cohoes city. Section
3.9 analyses the data gathered for Utica city using the TF-Noise model. Section 3.10

73
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presents the methods that are used to evaluate the constructed models for Utica city.
Section 3.11 presents a brief discussion of the most important points obtained in this
chapter. The conclusion of this chapter is presented in Section 3.12.

3.1 Transfer Function-Noise Model

Time series analysis is frequently used to analyse any data that has been regularly
recorded in any dynamic system [37, 59]. This extensive use of the methods of time
series analysis can be attributed to that these methods consider the stochastic nature
for time series data. At the beginning, to determine which method among several
time series techniques can be used, we firstly need to define the model for the data.
In general, there are two types of models that are based on the number of the studied
series, which are the Univariate and Multivariate Models. A univariate model is
constructed using the current and past values for a single time series and often one
of the Autoregressive Moving Average (ARMA) models is used to build the structure
of this model. In this case, any other variables that can affect this series will not
be involved in the analysis. For example, a model for a temperature series can be
constructed using only the current and past values for this series via an AR(1) model.

However, in some fields such as hydrology and economics, a number of related
variables that influence the time series of interest have to be included in the model’s
structure. For example, in an economics system, sales, which is the response variable,
is often associated with the past and current values of the advertising variable, which
is the independent variable. The ARMA models that contain one or more of the input
variables with present and past values are also called the Transfer Function Models
(TF) [98]. The TF models are also known as the Transfer Function-Noise (TF-Noise)
Models, as a model for the residual terms has to be added to the structure of the
function. The TF-Noise models are regarded as an extended case of the linear regres-
sion analysis. Therefore, sometimes they are also referred to as dynamic regression
models [92].

Moreover, as there is a possibility to include a lagged variable for the inputs, this
model is rather similar to the distributed lag model in the economics field. In fact,
for these two kinds, univariate and multivariate, after determining the number of
observations which are involved in the analysis, the resultant time series model can
be exploited to:

• Perform the process of forecasting for the future values of the desired series.

• Perform Stochastic Simulation.

Multivariate time series analysis constructed using a TF-Noise model is one of the
most important and common methods that can be used when the variable of interest
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belongs to the hydrological field [13]. In this method, the response variable, which
is often a hydrological one, for example a water discharge series for a catchment
or a river, will be related to a number of input variables which will represent the
independent variables (predictors) such as the precipitation variable.

The analysis by using the TF-Noise is preferred rather than using the univariate
time series analysis for some significant aspects. Firstly, as the univariate time series
model takes into account just the series of interest, using the input variables to de-
scribe the response variable can provide a physical interpretation for the relationship
between the dependent and the independent variables. Secondly, applying the uni-
variate time analysis requires that the studied series has to be stationary and does
not contain any periodicity to obtain an acceptable results.

In contrast to this situation, the analysis by using the TF-Noise model does not
actually need these requirements (stationarity and non periodicity) to be carried out.
Also, when we use this function to implement the modelling task, the studied time
series (response variable) will already be decomposed into different parts, where each
input series (independent variables) will be linked directly to one of these parts. So,
depending on these parts, we may be able to determine which input variable can be
responsible for most of the variations in the considered time series.

In particular, the TF model has been utilised to construct a model for most of the
hydrological variables such as groundwater level (Tankersle et al., 1993; Gehrels et al.,
1994), stream flows (Hipel et al., 1975; Chow et al., 1983), and suspended sediment
concentration (Gurnell and Fenn, 1984; Lemke, 1991) (as cited in [13]). Moreover,
most applications of this function in the hydrological area have been done by using
precipitation as an input series.

In general, if we have an output series at time t, Yt, and an input series at time t,
Xt, the Autoregressive Moving Average model (ARMA) of the order (p, q) for each
series can be written as follows:

φ(B)Yt = θ(B)εt for output series,

and

φ(B)Xt = θ(B)εt for input series

whereB represents the backward shift operator, which is defined for the autoregressive
and moving average models as follows:

φ(B) = 1− φ1B − φ2B
2 − . . .− φpBp for the autoregressive model,

and

θ(B) = 1− θ1B − θ2B2 − . . .− θpBp for the moving average model, respectively.
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The values θj and φj are the coefficients of the models, which are real constants. ε′s
denote the noise term, white noise, which has a normal distribution with zero mean
and constant variance, σ2. It is possible to regard the Box-Jenkins model, ARMA
(p,q) model, as a linear dynamic process such that the white noise term, εt, is the
input variable and Yt is the output variable. This idea can be extended significantly
to include some input series that are related to the output series, Yt [110].

3.2 How to Build a Transfer Function-Noise and a

Combined Transfer Function-Noise Models

Let Xt and Yt denote the input and output series at time t. In general, TF model
can be written as follows:

Yt = µ+
Cω(B)

δ(B)
BbXt + εt (3.1)

where

• µ is the mean term, which needs to be included in the model when the point
estimate of it has an absolute t value that is greater than 2.

• Yt is the output (response) series.

• Xt is the input series.

• t is the time.

• C represents the scale parameter.

• B is the backward shift operator, which is BXt = Xt−1.

• ω(B) is the backshift operator for the weights (parameters) of the numerator of
the transfer function model for the input variable, which is ω(B) = 1− ω1B −
. . .− ωsBs.

• δ(B) is also the backshift operator for the parameters but for the denominator
of the TF model, which is δ(B) = 1− δ1B − . . .− δrBr.

• b is the delay time, which is tentatively identified by using the Sample Cross-
Correlation Function (SCCF).

• εt is the residual series.
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This model is illustrated in Appendix in Figure A.5.
This model with one input variable can be extended easily to include other inde-

pendent variables, then it can be rewritten as the following:

Yt = µ+
∑
j

Cjωj(B)

δj(B)
BbjXj,t + εt. (3.2)

where Cj represents the scale parameter, Xj,t denotes the jth input time series. bj
denotes the delay time for the influence of the jth input series on the output series.
ωj(B) denotes the polynomial factors for the numerator of the TF model for the jth
input series. δj(B) denotes the polynomial factors for the denominator of the TF
model for the jth input series. Then, after the procedure of selecting an appropriate
ARMA model for the residuals, εt, in Equation 3.2, is accomplished, the final model
will be written as follows:

Yt = µ+
∑
j

Cjωj(B)

δj(B)
BbjXj,t +

θ(B)

φ(B)
at (3.3)

where at denotes the disturbance series that has zero mean and constant variance,
σ2.

The structure of our new model, a combined TF-Noise model, is similar to the
structure of TF-Noise model except that each term for each input variable in the TF-
Noise model needs to be decomposed into long, seasonal, and short-term component.
For one variable, this can mathematically be written as follows:

Yt = µ+
CLTωLT (B)

δLT (B)
BbLTXLTt +

CSEωSE(B)

δSE(B)
BbSEXSEt+

CSHωSH(B)

δSH(B)
BbSHXSHt + εt (3.4)

where LT is the Long-Term component, SE is the Seasonal-Term component, and
SH is the Short-Term component and the other notations are as defined above. εt
needs to be formulated using an ARMA model as mentioned above in the TF-Noise
model. This model of one input can be extended to involve other decomposed inputs.

3.3 The Backshift Operator

In time series analysis, Backshift operator is one of the most important operators
that are used extensively in the constructed models. This term, as the name implies,
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shifts the time of the observation backward by, for example, one period. This can be
represented as follows:

BYt = Yt−1, for example BY70 = Y69.

Similarly, B2 can be written as B2Yt = Yt−2 and so on. Generally,

BkYt = Yt−k, for example, B12Y60 = Y48.

There are different uses for the Backshift operator, for example, to represent the
general stationarity transformation for the seasonal and nonseasonal series. While
the nonseasonal operator is 5 = 1−B, the seasonal operator will be 5L = 1−BL, L
refers to the number of the seasons in a year (L =4 for the quarterly data and L = 12
for the monthly data). The general representation of stationarity transformation is

zt = 5D
L 5d Y ∗t

= (1−BL)D(1−B)dY ∗t

where D refers to the degree of the differencing process for the seasonal series, d
denotes the differencing of the nonseasonal series, and Y ∗ is the transformed version
of the original series. This transformation can be, for example, taking the natural
logarithm for the raw data.

3.4 TF-Noise Modelling for Poughkeepsie’s City

Raw Data

Figure A.3 in Appendix illustrates the steps taken to construct the developed models.
The process of constructing a TF-Noise model requires applying three sequential
steps. These steps are listed as the following:

1. An input series is often autocorrelated and using the direct sample cross cor-
relation function (SCCF) between the input and the output series provides a
misleading indication of the relation between them [92]. Some solutions have
been suggested to handle this problem. One solution is called prewhitening
where the prewhitened values will be used rather than the raw values. The
prewhitened values can be obtained by identifying a tentative model for the
inputs, which are temperature, precipitation, wind speed, tide, and ground-
water level. The identification’s mechanism depends on the behaviour of the
Sample Autocorrelation Function (SACF) and Sample Partial Autocorrelation
Function (SPACF) for the input series. Whenever the SPACF for any input
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variable tends to cut-off after few lags and at the same time the SACF exhibits
a dying down pattern, the adequate model for this input variable should be
one of the Autoregressive models (AR). The fashion of the dying down would
exhibit either an exponential or a sinusoidal distribution.

Moreover, the number of the parameters for the AR model should be associ-
ated with the number of the significant correlation coefficients along the lag
axis. The number of the significant correlation coefficients is determined based
on the spikes in the SPACF plot. In contrast, when the SPACF decreases with
extremely slow exponential or sinusoidal signals and the SACF cuts-off fairly
quickly with a few lags, one of the Moving Average Models (MA) should be
specified to the considered time series. If the behaviour of these two correlation
functions, which are SACF and SPACF, tends to be similar to a dying down
pattern, the chosen model should be one of the Autoregressive Moving Average
Models (ARMA).

The specification of an ARMA model for each input variable can be explained
as follows:

• For the temperature series, which has been transformed to a stationary
series by applying the first differences, and based on the patterns of the
SACF and SPACF, a MA(3) model has been specified. This model can be
defined as the following:

TEt = (1− 0.285B − 0.293B2 − 0.144B3)at. (3.5)

• For the Wind Speed series, which has been also transformed to a stationary
series by taking the first differences, the MA(3) model has fitted the data
adequately. This model can be written as the following:

WSt = (1− 0.798B − 0.194B2 + 0.023B3)at. (3.6)

• For the precipitation series, the MA(4) model has been suggested based
on the behaviours of the SACF and SPACF, and this model is written as:

PRt = (1 + 1.080B + 0.75B2 + 1.070B3 + 0.083B4)at. (3.7)

• For the tide series, which has been stationarised by taking the first differ-
ences, a AR(3) model has been applied and is written as follows:

TDt =
1

(1− 0.902B − 0.055B2 + 0.353B3)
at. (3.8)
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• For the groundwater level series, the first differences has been applied to
stationarise the series. Relying on the values of the SACF and SPACF, an
AR(3) model has adequately fit the data where this model can be defined
as follows:

GWt =
1

(1 + 0.337B + 0.039B2 − 0.039B3)
at. (3.9)

2. All the previous models have been used to obtain the prewhitened values for
the input and output series. Having created them, the SCCF values between
the water discharge and each of the inputs will be computed. The SCCF values
will be utilised to determine the terms for each input variable in the TF-Noise
model. Based on this, the process of identifying an introductory structure for
the TF model and estimating the parameters of this model is the next step. By
using the conditional least squares method to obtain the parameters values, the
preliminary model can be written as follows:

WDt =
(0.061 + 0.061B)

(1 + 1B)
TEt +

(0.202− 0.186B)

(1 + 0.192B)
PRt

+
(0.028 + 0.033B)

(1 + 0.083B)
WSt +

(0.100− 0.010B)

(1 + 1B)
TDt+

(−0.019− 0.016B)

(1 + 0.158B)
GWt + εt (3.10)

where WD,TE, PR,WS, TD,GW , and εt denote the water discharge, temper-
ature, precipitation, wind speed, tide, groundwater level and the error term,
respectively.

3. Up to this point of estimating the parameters of the constructed model, we
have built the preliminary TF model by using the inputs series. By examining
the SACF and SPACF of the residual terms series of the preliminary model, an
ARMA model would be suggested for this data. Depending on the patterns of
the SACF, which is extremely slowly dying down with an exponential signal,
and SPACF, which exhibits 1 spike at lag 1 and cuts-off after this spike, an
ARMA (1,0) model has been selected to describe the behaviour of the noise
data. Then the final TF-Noise model can be written as the following:

WDt =
(0.069− 0.026B)

(1− 0.699B)
TEt +

(0.196− 0.182B)

(1− 0.475B)
PRt +

(0.027 + 0.031B)

(1 + 0.069B)

WSt +
(0.091 + 0.001B)

(1 + 0.209B)
TDt +

(−0.018− 0.015B)

(1 + 0.148B)
GWt +

1

(1− 0.066B)
at

(3.11)
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where all the previous notations have been defined in the model above, and at is a
white noise with mean zero and constant variance, sigma2 respectively.

To investigate whether applying the TF-Noise model to the decomposed data can
yield better results than these obtained using the raw data, the same steps above have
been followed for each component. Then the three components have been combined
to build the CTF-Noise model structure. The next section shows the analysis of the
decomposed data.

3.5 Combined TF-Noise Modelling for Poughkeep-

sie’s City Decomposed Data

After we decomposed the data of all the studied series by using the KZ filtering mech-
anism with the parameters 29 days and 3 iterations, the result is three components
with different scales, which are the long, seasonal, and short-term, for each variable.
The following subsections present the analysis for these components.

3.5.1 TF-Noise Modelling for Poughkeepsie’s City Long-Term
Component

• Firstly, in order to identify an appropriate model for each variable of the input
variables, the SACF and SPACF were calculated and plotted. The behaviour
of the temperature series, which has been transformed to a stationary series by
taking the second differences, would be described by using an autoregressive of
order five model, which is written as AR(5) or ARMA(5,0). This model has
been chosen because the pattern of the SACF dies down extremely slowly and
the fashion of the SPACF cuts-off fairly quickly after lag 5. The AR(5) model
for the temperature is shown in the following equation:

TELT (t) =
1

(1− 0.953B − 0.147B2 + 0.033B3 + 0.044B4 + 0.056B5)

aLTTE(t) (3.12)

where TELT (t) denotes the Long Term component of the temperature, B is
the Backshift operator, and aLTTE(t) is the random shock (white noise) of this
model. By investigating the P-values for the parameters of this model, we have
removed the last three parameters as they have non significant P-values. So,
the model can be written as follows:

TELT (t) =
1

(1− 0.953B − 0.147B2)
aLTTE(t). (3.13)



Combined Transfer Function-Noise Model for Forecasting Water Discharge 82

The AR model has completely fitted the temperature data as shown in Figure
3.1, where the correlation analysis for the residuals of this model shows that
there is no spike at any lag. Since we need to examine the relationship between

Figure 3.1: Residuals Correlation Diagnostics for the Temperature’s Long-Term Com-
ponent for Poughkeepsie’s City.

the temperature and the water discharge series, the prewhitened values should
be used instead of the raw data for both series. For this purpose, Equation
3.13 would be utilised to prewhiten the values of the temperature and the water
discharge. Calculating the prewhitened values is necessary to enable computing
the Sample Cross Correlation Function (SCCF) between the temperature and
water discharge series. As a result, the decision of identifying an appropriate
form for the TF model can then be taken more effectively and precisely.

Before we begin interpreting the SCCF, we need to check that there are no
spikes (high SCCF values) at any negative lag. In case that there are such
spikes, this would lead to an undesirable fact. The fact is that the past values
of the output series, which is the water discharge, influence the future values
of the input series, which is the temperature. No spikes appear in the negative
side of the SCCF between the temperature and water discharge. By investi-
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gating the pattern of the SCCF between the temperature and water discharge
to determine the first spike, which in turn determines the value of b, it has
appeared that this spike exists at lag 0, which in turns means that the effect of
the temperature on the water discharge occurs on the same day. The value of
b is the number of periods before the input series starts to influence the output
series.

To identify the value of s, we have to examine the SCCF for any spikes between
the first spike, which is the b value, and the starting of a clear dying down
pattern. The value s is required to find the number of past values for the
input variable that affect the output series. The clear pattern can have an
exponential or a sinusoidal wave. For the temperature, this value will be set to
1, i.e s = 1, as we have one spike between the lag 0 and the starting point of
the exponential pattern in this SCCF [15]. This implies that we need to use the
operator = (1− ω1B) for the numerator of the temperature in the TF model.

With regard to the denominator of the TF model, we need to determine the
value r. This value represents the number of past values of the output series
that affect on itself. Often, two choices are available. Either r = 1 which can
be taken when an exponential pattern exists, or r = 2 when a sinusoidal fashion
exists. For the temperature, it is ideally to select r = 1 as the clear dying down
pattern in the SCCF has an exponential wave. So, the used operator will be
δB = (1− δ1B). To conclude, the temperature’s term in the TF model for the
long-term can be written as:

WDLT (t) = µ+
C(1− ω1B)

(1− δ1B)
B0TELT (t) + εt (3.14)

where WDLT denotes the Long-Term of the water discharge, TELT is the Long
Term of the temperature, and εt is the error term, which has to be later substi-
tuted by one of the ARMA models.

• Moreover, using the SACF and SPACF to identify a model for the wind speed,
which has been transformed to a stationary series by using the first differences,
we would describe the behaviour of this series by an AR(3) model. The es-
timation of the model’s parameters has been implemented by the conditional
least squares method as shown in Equation 3.15, and relying on the P-values
the third term has been removed as this value was not significant.

WSLT (t) =
1

(1− 1.879B − 0.826B2)
aLTWS(t) (3.15)
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where WSLT denotes the wind speed’s long-term, B is the Backshift operator,
and aLTWS is the random shock (white noise) of this model. Investigating the
SCCF values of this variable with the water discharge revealed that b = 0, which
indicates that the effects of this variable on the WD appears at the same day
(no lag). Additionally, the value of s is equal to 1, which means that we are led
to tentatively choose the following model:

WDLT (t) = µ+ C(1− ω1B)B0WSLT (t) + εt (3.16)

where WDLT (t) denotes the water’s discharge Long Term , WSLT is the wind’s
speed Long Term, and εt is the error term, which has to be later substituted by
one of the ARMA models.

• For the precipitation series, which has been transformed to a stationary series by
applying the first differences, it is reasonable to consider the model AR(1,2,3,12)
as there are spikes at lags 1,2,3, and 12 in the SPACF plot, where this model
will be then used to prewhiten the values of the precipitation and the water
discharge. The conditional least squares method has been utilised to estimate
the parameters of the Autoregressive model, which can be written as follows:

PRLT (t) =
1

(1− 1.837B + 0.664B2 + 0.183B3 − 0.007B12)
aLTPR(t) (3.17)

where PRLT denotes the precipitation’s Long Term, B is the Backshift operator,
and aLTPR is the random shock (white noise) of this model. The SCCF values
can provide the required information, which are the values of b, s, and r, to
build the precipitation’s term in the TF model of the long-term, where:

– b=0 is the lag value for where the first spike has been seen. This would
mean that the effect of the precipitation on the water discharge happens
at the same time, as our data is daily so the effect occurs at the same day.

– As long as we have encountered one spike (significant cross correlation
coefficient) before the damped dying down pattern this would mean that
s is equal to 1.

– As a result for the damped exponential fashion, the value of r would be
equal to 1.

The precipitation’s part in the TF model can be expressed as follows:

WDLT (t) = µ+
C(1− ω1B)

(1− δ1B)
B0PRLT (t) + εt (3.18)
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where WDLT denotes the long-term of the water discharge, PRLT is the pre-
cipitation’s Long Term component, and εt is the error term.

• The tide series is also examined as an input variable, which is transformed to
a stationary series by taking the second differences. The AR(3) model was the
chosen model to represent this series, and this model can be written as follows:

TDLT (t) =
1

(1− 0.540B − 0.329B2 − 0.125B3)
aLTTD(t) (3.19)

where TDLT denotes the tide’s long-term, B is the Backshift operator, and
aLTTD is the random shock of this model. With regard to the form of the tide
variable in the TF model, and because of b = 0 and s = 1, we will consider the
following model:

WDLT (t) = µ+ C(1− ω1B)B0TDLT (t) + εt (3.20)

where WDLT (t) denotes the long-term of the water discharge, TDLT is the long-
term of the tide, and εt is the error term, which has to be later substituted by
one of the ARMA models.

• For the groundwater level series, which has been stationarized by taking the
second differences, the model that would adequately describe the data is the
Autoregressive of order six, AR(6). The reason for selecting this model is at-
tributed to the pattern of the SPACF, which cuts off after lag 6. The model is
written as follows:

GWLT (t) =
1

(1− 0.988B − 0.291B2 + 0.102B5 + 0.105B6)
aLTGW (t) (3.21)

where GWLT denotes the groundwater’s level long term, B is the Backshift
operator, and aLTGW is the random shock of this model. As they have non
significant P-values, the third and fourth terms have been eliminated from the
model. Additionally, in order to determine the term of the groundwater level in
the TFM, we need to investigate the SCCF for the prewhitened values of this
variable with the water discharge. According to the SCCF values, the first spike
has also appeared at lag 0, which implies that the influence of the groundwater
level on the water discharge would appear in the same day (no lag). The SCCF
has a damped exponential pattern and the starting of this fashion begins after
lag 1, which leads to select s = 1. That means we should use the operator
ω(B) = (1 − ω1B). Furthermore, as the pattern after lag 1 has been identified
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as a damped exponential wave, it will be convenient to choose r = 1. These
conclusions lead to tentatively consider the following TF model term for the
groundwater level variable:

WDLT (t) = µ+
C(1− ω1B)

(1− δ1B)
B0GWLT (t) + εt (3.22)

where WDLT denotes the water discharge long-term, GWLT is the long-term
groundwater level, and εt is the error term.

• Secondly, according to the relations that have been captured by examining
the SCCF patterns, the preliminary transfer function model can be defined as
follows:

WDLT (t) =
(−13.83− 18.244B)

(1 + 0.181B)
TELT (t) +

(0.058− 0.019B)

(1− 0.917B)
PRLT (t)

(0.311 + 0.456B)WSLT (t) + (−41.498− 43.984B)TDLT (t)+

(−8.497 + 8.009B)

(1 + 0.812B)
GWLT (t) + εt (3.23)

where WDLT , TELT , PRLT ,WSLT , TDLT , GWLT , and εt denote the long-term
component for the studied variables.

• To complete our analysis using the TF-Noise model, the behaviour of the resid-
ual terms has to be examined and formalised using one of the ARMA models.
The model AR(1) has adequately fit the data and the final structure of the
TF-Noise model is written as follows:

WDt =
(5.572− 0.917B)

(1− 0.256B)
TELT (t) +

(0.204− 0.148B)

(1− 0.774B)
PRLT (t)

+ (0.560− 0.064B)WSLT (t) + (−0.840− 0.202B)TDLT (t)+

(−0.255 + 0.244B)

(1− 0.946B)
GWLT (t)+

1

(0.560− 0.064B)
aLT (t). (3.24)

All the previous notations have been defined in the model above, and aLT is a
white noise series that has zero mean and constant variance, σ2.

3.5.2 TF-Noise Modelling for Poughkeepsie’s City Seasonal-
Term Component

The TF-Noise model for the seasonal component can be constructed be applying the
following steps.
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• The First step is to obtain the prewhitened values for each variable. For tem-
perature series, an ARMA(1,0) model is suitable to fit it based on the SACF
and SPACF, and this model can be written as follows:

TEST (t) =
1

(1− 0.562B)
aSTTE(t) (3.25)

where TEST denotes the temperature’s Seasonal-Term and aSTTE denotes the
white noise series for this model. Equation 3.25 can be utilised to calculate the
prewitened values for the temperature and the response variable. The SCCF
between the temperature and water discharge has been calculated and used to
determine the temperature’s part in the TF model, which can be written as the
following:

WDST (t) = µ+
C(1− ω1B)

(1− δ1B)
B0TEST (t) + εt (3.26)

where WDST denotes the water’s discharge Seasonal-Term, TEST is the tem-
perature’s Seasonal-Term component, and εt is the error term.

• The second examined predictor is the wind speed, therefore, having estimated
the SACF and SPACF for the wind speed data, it would be more reasonable to
build this data by using a MA(1) model, as shown in Equation 3.27

WSST (t) = (1 + 0.087B)aSTWD(t) (3.27)

where WSST and aSTWS denote the Seasonal-Term of the wind speed and the
white noise term, respectively. To determine the numerator and denominator
factors for the wind speed’s part in the TF model, the SCCF values between the
wind speed and the water discharge will be examined to decide the appropriate
operators. As a result, the term of the wind speed in the TF model can be
written as follows:

WDST (t) = µ+
C(1− ω1B)

(1− δ1B)
B0WSST (t) + εt (3.28)

where WDST denotes the water discharge Seasonal-Term, WSST is the wind
speed Seasonal-Term, and εt is the error term, which has to be later substituted
by one of the ARMA models.

• The precipitation series is the third analysed variable and the patterns of the
SACF and SPACF suggested that the model MA(4) would adequately describe
the precipitation data. Equation 3.29 shows the model for this predictor:

PRST (t) = (1 + 1.070B + 1.038B2 + 1.025B3 + 0.149B4)aSTPR(t) (3.29)
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where PrecipitationST and aSTPR denote the precipitation’s Seasonal-Term and
the white noise series, respectively. Moreover, Equation 3.29 has also been used
to obtain the prewitened values for the precipitation and the water discharge
to calculate the SCCF. To determine the precipitation’s portion in the TF
model, we need to investigate the SCCF between the precipitation and the
water discharge. Having examined the results of the SCCF, the next model can
be chosen:

WDST (t) = µ+
C(1− ω1B)

(1− δ1B)
B0PRST (t) + εt (3.30)

where WDST denotes the water discharge seasonal-term, PRST is the precipita-
tion’s seasonal Term, and εt is the error term, which has to be later substituted
by one of the ARMA models.

• Moreover, according to the patterns of the SACF, which dies down extremely
slowly, and the SPACF, which has five obvious spikes, the tide series can be
represented by an AR(5) model, as shown in Equation 3.31

TDST (t) =
1

(1− 1.427B + 0.275B2 + 0.383B3 + 0.145B4 − 0.337B5)
aSTTD(t)

(3.31)
where TDST and aSTTD denote the tide’s seasonal-term and the white noise
term, respectively. Equation 3.31 has been also used to compute the prewhitend
values for the water discharge and the tide series. Inserting the suitable opera-
tors that have been determined by examining the SCCF values for the tide and
the water discharge into the TF provides the next model:

WDST (t) = µ+
C(1− ω1B)

(1− δ1B)
B0TDST (t) + εt (3.32)

where WDST denotes the Seasonal-Term of the water discharge, TDST is the
Seasonal-Term component of the tide series, and εt is the error term, which has
to be later substituted by one of the ARMA models.

• Finally, by investigating the behaviours of the SACF and SPACF for the ground-
water, the model ARMA(2,0) is suggested to fit this time series data, as shown
in Equation 3.33

GWST (t) =
1

(1− 1.159B + 0.337B2)
aSTGW (t) (3.33)

where GWST and aSTPR denote the groundwater’s level Seasonal-Term and the
white noise term, respectively. Examining the behaviour of the SCCF between
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the groundwater level and the water discharge leads to insert the following
operators into the general equation:

WDST (t) = µ+
C(1− ω1B)

(1− δ1B)
B0GWST (t) + εt (3.34)

where WDST denotes the water discharge seasonal-term, GWST is the ground-
water level seasonal-term component, and εt is the error term, which has to be
later substituted by one of the ARMA models.

• After we calculate the SCCF and identify the numerator and denominator poly-
nomial factors for all the input series, the preliminary model for the seasonal
component can be written as follows:

WDST (t) =
(0.005 + 0.004B)

(1 + 0.991B)
TEST (t) +

(0.529− 0.382B)

(1− 0.954B)
PRST (t)

+
(0.058 + 0.031B)

(1− 0.753B)
WSST (t) +

(0.104− 0.052B)

(1 + 0.686B)
TDST (t)+

(−0.025− 0.026B)

(1− 0.011B)
GWST (t) + εt (3.35)

The notation εt is the error term for the model. Examining the residuals of this
preliminary model reveals that an AR(1) model would adequately describe this
series of the residuals, so, the final model, which combines the preliminary TF
model and the AR(1) model, can be written as follows:

WDST (t) =
(−0.016− 0.024B)

(1 + 0.241B)
TEST (t) +

(0.249 + 0.277B)

(1 + 0.108B)
PRST (t)

+
(0.048− 0.001B)

(1− 0.857B)
WSST (t) +

(0.080− 0.193B)

(1 + 0.049B)
TDST (t)+

(−0.094− 0.027B)

(1− 0.350B)
GWST (t) +

1

(1− 0.859B)
aST (t) (3.36)

where aST (t) is a white noise series, which has zero mean and a constant vari-
ance. The final model, Equation 3.36 is adequate to represent the seasonal
component water discharge for Poughkeepsie city, where this adequacy has been
attributed to the pattern of the SACF and SPACF for the residuals for the final
combined model. The model will also be used later to build the final forecasting
expression by adding it to the long and short components.



Combined Transfer Function-Noise Model for Forecasting Water Discharge 90

3.5.3 TF-Noise Modelling for Poughkeepsie’s City Short-Term
Component

For the short-term component, the analysis can be summarised as follows. The values
of the SACF and SPACF show that the ARMA model that would be specified to the
temperature series is the ARMA(1,3). Having estimated the parameters of this model,
it can be written as follows:

TESH(t) =
(1 + 1.458B + 0.681B2 + 0.163B3)

(1 + 0.903B)
aSHTE(t) (3.37)

where TemperatureSH denotes the temperature’s short-term component, and aSTTE
denotes the error term of this model. The next step of studying the effect of this
input series on the response variable is to calculate the SCCF between these two
variables. Typically, to obtain significant information from the SCCF, prewhitened
values should be used to compute this function. The prewhitened values for the
temperature and the water discharge should be calculated by using the previous
identified model, which is ARMA(1,3). Then, by examining the values of the SCCF,
the numerator and denominator polynomial factors for the TF model of this input
series can be identified. In this case, the temperature variable can be written with
the factors(1,1), i.e s=1 and r=1.

Additionally, the other input variables should be treated by using the same man-
ner. That means, we compute the SACF and SPACF to determine the model that can
be utilised to prewitten the values of the input and output series, then we calculate
the SCCF between each input variable and the output series. Thus, the preliminary
model for this short-term component can be written as follows:

WDSH(t) =
(0.037− 0.020B)

(1− 0.935B)
TESH(t) +

(0.479− 0.287B)

(1− 0.902B)
PRSH(t)

+
(0.037− 0.061B)

(1− 0.922B)
WSSH(t) +

(0.007− 0.009B)

(1− 1.963B)
GWSH(t) + εt (3.38)

To formalise our final model for the short-term component for the water discharge,
the residuals of the preliminary model have been examined. The AR(4) model has
been suggested as an appropriate model to fit the data. Therefore, the final model,
which combines the preliminary and the residuals expression, can be written as fol-
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lows:

WDSH(t) =
(0.049 + 0.043B)

(1 + 0.908B)
TESH(t) +

(0.292 + 0.217B)

(1− 0.118B)
PRSH(t)

+
(0.047− 0.071B)

(1− 0.822B)
WSSH(t) +

(0.011 + 0.003B)

(1− 0.951B)
GWSH(t)+

1

(1− 1.012B + 0.364B2 − 0.193B3 + 0.047B4)
aSH(t) (3.39)

This model has been adequately fit this component as revealed by Figure 3.2.

Figure 3.2: Residuals Correlation Diagnostics for the Water’s Discharge Short-Term
Component for Poughkeepsie’s City.

3.6 The Final Combined TF-Noise Model for Pough-

keepsie’s City

Having constructed the three models of the three components, which are the long,
seasonal, and short, the next step is to build the final TF-Noise model, (WDFI),
which combines these three patterns together. We have built the preliminary TF
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model and then we examined the residuals correlation analysis for this model which
reveals that specifying an AR model of order one would fit the noise’s part of the
model adequately. According to this specification, the final TF-Noise can be written
as the following:

WDFI(t) =
(−6.705 + 7.125B)

(1 + 0.624B)
PRFILT (t) +

(−15.922 + 15.190B)

(1 + 0.610B)
GWFILT (t)

+
(0.045 + 0.047B)

(1 + 0.161B)
PRFISE(t) +

(−0.019− 0.002B)

(1− 0.556B)
GWFISE(t)

+
(0.146 + 0.133B)

(1 + 0.048B)
PRFISH(t) +

(0.009 + 0.005B)

(1− 0.829B)
GWFISH(t)+

1

(1− 0.923B)
at (3.40)

where WDFI , PRFILT , GWFILT , PRFISE, GWFISE, PRFISH , GWFISH , and at denote
the final water discharge, the long- term of the precipitation, groundwater level, and
the seasonal component of the precipitation, groundwater level, and the short-term of
precipitation, groundwater level, and a white noise series, respectively. It is obvious
that the final structure of our model depends on the variables precipitation and
groundwater level for the three components, long, seasonal, and short, and the others
have no significant relation with the water discharge.

3.7 Evaluation of the Estimated Models for Pough-

keepsie’s City

To evaluate the obtained models, two different Goodness-of-fit statistics have been
used. These statistics are the Akaike’s Information Criterion (AIC) and the Bayesian
Information Criterion (BIC) or Schwarz Criterion (also known as SBC, SBIC). These
statistics help with comparing the constructed models. For a specific dataset, the
value of the Akaike’s Information Criterion (AIC) has no meaning. However, this
value becomes more interesting when we use it to compare the AIC of several com-
peting models specified a priori. The output is shown in Table 3.1.

Typically, for any model obtained, Information Criteria (IC) includes the covari-
ance matrix and the number of parameters, which will be used to compute the statis-
tics that represent the information conveyed by the model by trying to balance the
trade-off between the terms of a lack of fit and a penalty [8].
The AIC method provides an estimator for a measure of difference between the consid-
ered model and the ’true’ model. The model that has the smallest AIC among several
candidate models is considered as the best linear model. Akaike (1973) presented the
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concept of IC as a statistical tool for conducting the task of model selection. This
criteria is a function that is based on the sum of squared errors (SSE), the number
of the parameters, k, and the number of the observations, n, where this measure of
goodness of fit is defined as the following:

AIC = n× ln
[SSE

n

]
+ 2k.

The following criteria is specifically designed for comparing regression models.

AIC = −2.lnL+ 2× k,

where L is the likelihood function of the model. The criteria below is for comparing
any models.

BIC = −2× lnL+ 2× ln(nk)

By investigating the values of these statistics, which are shown in Table 3.1, it is
obvious that the TF-Noise models built using the decomposed data are more accurate
and as a result these models will be chosen to perform the forecasting process rather
than TF-Noise models built using the raw data.

AIC SBC
TF-Noise for the Raw Data 254.878 358.529
TF-Noise for the Decomposed Data 138.373 260.322

Table 3.1: The Statistical Tests for the Model Selection for Poughkeepsie City.

3.8 Combined TF-Noise Modelling for Cohoes’ City

Decomposed Data

3.8.1 TF-Noise Modelling for Cohoes’ City Long-Term Com-
ponent

By examining the SACF and SPACF for the long-term component of the temperature
variable for Cohoes city, it can be verified that an ARMA(4,0) is the suitable model
to describe this data. The fashion of the former function dies down extremely slowly
and the pattern of the latter function cuts off fairly quickly after the lag 4. Moreover,
an estimated least square points have been obtained for the parameters of the AR(4)
model, which are φ1, φ2, φ3, and φ4. Hence, the model can be written as follows:

TELT (t) =
1

(1− 3.003B + 3.053B2 − 1.092B3 + 0.042B4)
aLT (t). (3.41)
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Because we need to study the relationship between the independent variable, tem-
perature, and the dependent variable, water discharge, the Sample Cross Correlation
Function (SCCF) should be computed. Typically, to find this type of correlation,
prewhitening the values of the variables that will be used is an important step. There-
fore, we will use the previous constructed model, AR(4), for the temperature variable
to prewhiten its original values and the water discharge values. Because of the spikes
that appear in the negative side, it seems that it is not permitted to include any lag
for the temperature variable in our model.

Similarly, the previous steps can be applied to the other predictors, which are
precipitation, groundwater level, wind speed, and tide, the results were as follows:
An AR(3,0) is an adequate model to describe the behaviour of the precipitation
series, as the SPACF has three obvious spikes and the SACF has a pattern that is
exponentially dying down with a very slow movement. The estimated parameters can
be listed in an AR(3) model as follows:

PRLT (t) =
1

(1− 2.979B + 2.973B2 − 0.993B3)
aLT (t). (3.42)

This model will be utilized to compute the prewhitened values that will enable us to
calculate the SCCF values between the precipitation and water discharge variables.
It is not possible to use any lag for the precipitation variable because there are two
spikes in the negative side, which means that the past values for the water discharge
(dependent variable) will affect the future values for the precipitation (independent
variable) values. Furthermore, the groundwater level should be expressed by the
model AR(1). So, the model will be written as follows:

GWLT (t) =
1

(1− 1B)
aLT (t). (3.43)

After we have investigated the SCCF between the groundwater’s level and water
discharge and because it has spikes in the negative side, it is not possible to use any
lag for the groundwater as predictors in our model. The investigation of the SACF
and SPACF of the tide variable has shown that this predictor can be represented
by using an AR(2) model. Since it is not acceptable that we include the lags of the
variables that have spikes in the negative side in SCCF, lags for the tide will not
contribute in the constructed model.

Using the same steps, the SCCF for the wind speed variable can be analysed.
Thus, the preliminary model for this component will be as follows:

WDt = −0.475TELT (t) + 0.317PRLT (t)− 0.479GWlt(t) + 0.265TDLT (t)

− 0.080WSLt(t) + εt. (3.44)
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Examining the SACF and SPACF of the residuals for the preliminary model shows
the possibility of defining this series with AR(4,0) model. Hence, the final model for
this long-term component, which combines the preliminary model and the residuals
model, will be written as follows:

WDLT (t) = 0.125TELT (t) + 0.137PRLT (t)− 0.984GWLt(t) + 0.104TDLT (t)+

1

1− 2.429B + 1.311B2 + 0.678B3 − 0.560B4
aLT (t) (3.45)

whereWDt, TELT , PRLT , GWLt, TDLT , aLT denote the water discharge, temperature,
precipitation, groundwater, tide, and the error term, respectively. Error term has a
normal distribution with zero mean and constant variance, σ2.

3.8.2 TF-Noise Modelling for Cohoes’ City Seasonal-Term
Component

By investigating the SACF and SPACF for the temperature variable, it can be verified
that, as the pattern of the SACF series dies down with a sinusoidal wave and the
pattern of the SPACF cuts off fairly quickly after the lag 1, an ARMA(1,0) is an
adequate model to describe this data. Moreover, an estimated least square point has
been obtained for the parameter of the AR(1) model, which is φ1, so, we can write
the model as follows:

TEST (t) =
1

(1− 0.533B)
aST (t). (3.46)

Because we need to study the relationship between the temperature variable (indepen-
dent), and the water discharge (dependent) variable, the SCCF, should be computed.
We will use the previous constructed AR(1) model for temperature to prewhiten the
temperature and the water discharge values. By investigating the SCCF, it seems
that the first spike appears at lag 1, which means that the temperature will enter the
forecasting model with the variable of lag 1. For the nominator of the temperature’s
term, value 2 will be used as there are two spikes between the first lag and the gen-
eral pattern that follows the first lag. On the other hand, as long as the pattern for
the series follows a sinusoidal fashion, the value 2 will be specified for the denomina-
tor. Similarly, the previous steps can be applied to the other predictors, which are
precipitation, groundwater, wind speed, and tide, the results were as follows:

An autoregressive model with two parameters for the lags 1 and 5 is an adequate
model to describe the behaviour of the precipitation series, as the SPACF has two
obvious spikes and the SACF has a pattern which is dying down. The estimated
parameters can be listed in the AR model as follows:
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PRST (t) =
1

(1− 0.718B + 0.053B5)
aST (t). (3.47)

This model will be utilized to compute the prewhitened values that will enable us to
calculate the SCCF between the precipitation and water discharge. It is not possible
to use any lag for the precipitation variable because there are three obvious spikes in
the negative side, which means that past values for the water discharge (dependent)
will affect the future values of the precipitation (independent) values. Furthermore,
the groundwater level variable should be expressed by an AR(2) model as the SACF
and SPACF revealed the possibility of using this autoregressive model of order 2. So,
the model will be written as follows:

GWST (t) =
1

(1− 1.433B + 0.509B2)
aSt(t). (3.48)

After we have investigated the SCCF for the groundwater’s level and because it has
spikes in the negative side, so, it is not possible to use any lag for the groundwater
level as predictors in our model. Furthermore, investigating of the SACF and SPACF
for the tide variable has shown that this predictor can be represented by using the
model of AR(2). By estimating the parameters of the AR model of order two, the
resultant equation will be written as follows:

TDST (t) =
1

(1− 1.501B + 0.726B2)
aST (t). (3.49)

Furthermore, since it is not reasonable that we include lags for the variables that have
spikes in the negative side in SCCF, lags for the tide variable will not enter in the
forecasting model.

The last predictor is the wind speed. The SACF and SPACF for the wind speed
refer to the ability of expressing this variable by using an Autoregressive Moving
Average model, ARMA(2,2). And the estimated values for the parameters of the
ARMA(2,2) model will be listed in the following equation:

WSSt(t) =
(1− 0.653B − 0.334B2)

(1− 0.776B − 0.062B2)
aST (t). (3.50)

Again, to decide which lag will be used in the prediction model, the SCCF will be
computed after obtaining the prewhitened values. The SCCF shows that lag 1, where
the first spike has occurred, will be used in the forecasting model. Hence, the final
preliminary model for the seasonal component can be written as follows:
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WDST (t) =
(0.083 + 0.120B + 0.055B2)

(1 + 0.192B − 0.349B2)
TEt−1+

(0.073 + 0.069B)

(1 + 0.590B − 0.408B2)
WSt−1+

0.461PRt + εt (3.51)

where WD,TE,WS, and PR denote the water discharge, temperature, wind speed,
and precipitation, respectively.

After we have constructed the preliminary model by using the input variables,
which are temperature, precipitation, and wind speed, we need to determine an ade-
quate ARMA model for the residuals that have been calculated using the preliminary
model. The suggested model can be characterised by using the SACF and SPACF of
the residuals. Since the SACF of the residuals values is dying down with a sinusoidal
wave and the SPACF has two spikes at the lags 1 and 4 and cuts off fairly quickly
after lag 4, AR with order 1 and 4 could be selected to describe this residuals series.
Therefore, the final constructed model will contain the preliminary model as well as
the AR model for the residuals. Mathematically, we can write the constructed model
as follows:

WDST (t) =
(0.083 + 0.120B + 0.055B2)

(1 + 0.192B − 0.349B2)
TEt−1+

(0.073 + 0.069B)

(1 + 0.590B − 0.408B2)
WSt−1+

0.461PRt +
1

(1− 0.837B + 0.071B2)
aST (t) (3.52)

where aST (t) is a white noise series with zero mean and constant variance, σ2.

3.8.3 TF-Noise Modelling for Cohoes’ City Short-Term Com-
ponent

Depending on the results of the SACF and SPACF for the studied variables, we have
the following results:

• For the temperature, an ARMA(2,3) model can represent the data of this vari-
able and the model is written as follows:

TESH(t) =
(1− 1.091B − 0.038B2 + 0.138B3)

(1− 1.583B + 0.667B2)
aSH(t). (3.53)
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• For the precipitation, ARMA(1,3) model is selected to describe the data of this
variable, and the model can be written as follows:

PRSH(t) =
(1 + 0.88259B + 0.830B2 + 0.764B3)

(1− 0.050B)
aSH(t). (3.54)

• For the groundwater level, the model ARMA(1,1) is adequate to fit the data of
this variable, and this model can be written as follows:

GWSH(t) =
(1− 0.570B)

(1− 0.788B)
aSH(t). (3.55)

• For the tide variable, the chosen model, which is ARMA(3,0), can be written
as follows:

TDSH(t) =
1

(1− 1.378B + 0.343B2 + 0.299B3)
aSH(t). (3.56)

• Finally, for the wind speed variable, ARMA(2,0) is suitable to describe the
behaviour of this series, this model can be written as follows:

WSSH(t) =
1

(1− 0.180B + 0.107B2)
aSH(t). (3.57)

• So, depending on the previous constructed models, prewhitening process for
all the variables with the water discharge series has been performed, and the
preliminary transfer function model is written as follows:

WDSH(t) =
−0.016 + 0.094B

(1− 0.567B)
TEt + 0.408PRt − 0.696GWt+

0.042 + 0.054B

1− 0.910B
WSt + ε(t) (3.58)

where WD,TE, PR,GW,WS, and ε(t) denote the water discharge, tempera-
ture, groundwater level, wind speed, and error term, respectively.

• To model the final prediction equation, the residuals from the preliminary model
should be fitted to one of the ARMA models. Therefore, it is possible to fit
them with an ARMA(1,0) model. The final model can be written as follows:

WDSHt =
−0.012 + 0.078B

(1− 0.719B)
TEt + 0.195PRt − 0.829GWt+

1

1− 0.772B
aSH(t). (3.59)
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3.9 TF-Noise Modelling for Utica’s City Raw Data

To investigate the effect of the TF-Noise model on Utica’s city data, we follow the
same steps that are applied to analyse Poughkeepsie’s city data. In this case the
amount of water discharge will be estimated for a station related to Mohawk River.
Firstly, we will perform the analysis using the raw data. The water discharge series
is not stationary as it is clear from Figure 3.3. This series has been stationarised

Figure 3.3: Diagnostic Plots for Water Discharge.

using the first differences. To build a TF model, we have begun our analysis by
examining the input variables, which are temperature, wind speed, precipitation, tide,
and groundwater level. For temperature, the first differences have been applied to
obtain a stationary series. Based on the SACF and SPACF, a MA(4) model has been
specified as we have four obvious spikes in the SACF and the pattern of the SPACF
decreases fairly slowly. Then, the wind speed variable has been also transformed to
a stationary series by applying the first differences. Relying on the behaviour of the
SACF and SPACF, the MA(3) model has been assigned to the wind speed. The series
of precipitation is stationary, so, we do not need to apply any differencing process.
Based on the SACF and SPACF patterns, a MA(4) model has been suggested to fit
the data of this variable.
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With regard to the tide variable, the first differences have been taken to stationar-
ize the tide series. An AR(3) model has been chosen to fit the data of this series. The
final input variable that has to be examined is the groundwater variable, which has
been stationarised by using the first differences. An AR(3) model has been applied
to model the data of the groundwater level variable. Spikes have been noted in the
negative side for the last two variables, tide and groundwater level, this has led to
not incorporate them in the TF structure.

The following two models are the introductory and the final models with an AR(1)
model for the residuals for the raw data.

WDt =
(0.022 + 0.101B)

(1− 0.633B)
TEt +

(0.166− 0.155B)

(1− 0.295B)
PRt

+
(0.041 + 0.042B)

(1 + 0.080B)
WSt + εt (3.60)

WDt =
(0.019 + 0.103B)

(1− 0.627B)
TEt +

(0.169− 0.158B)

(1− 0.279B)
PRt

+
(0.041 + 0.042B)

(1 + 0.092B)
WSt +

1

(1 + 0.050B)
at. (3.61)

To examine the performance of the TF-Noise on the decomposed data, we have
applied the same steps above to the three components as shown in the following
subsections.

3.9.1 TF-Noise Modelling for Utica’s City Long-Term Com-
ponent

As it has been previously mentioned, calculating the functions of the SACF and
SPACF can provide us with the required information for building the models for the
studied variables. Relying on these two correlation functions, the results can be listed
as the following:

• For temperature series, which has been stationarised by taking the second dif-
ferences, the ARMA(2,0) model would reasonably represent the data of this
variable, hence, this model can be written as follows:

TELT (t) =
1

(1− 0.230B − 0.512B2)
aLTTE(t) (3.62)

where TELT is the temperature’s long-term, and aLTTE is a white noise series
with mean of 0 and a constant variance, σ2. With regard to the SCCF, the first
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spike has occurred at lag 0, which means that b = 0. Also, further examination
for the SCCF values has revealed that the numerator’s operator of temperature
in the TF should be equal to 1, i.e s = 1. Since the SCCF dies down in a
damped exponential wave pattern, r = 1 should be assigned to the operator of
water discharge variable.

WDLT (t) = µ+
C(1− ω1B)

(1− δ1B)
B0TELT (t) + εt (3.63)

where WDLT and TELT (t) are the water discharge and temperature Long Term
series, respectively. The εt is the error term of this model that should be sub-
stituted later by one of the ARMA models.

• For the wind speed, the ARMA(2,0) model is selected to describe the data of
this variable, and the model can be written as follows:

WSLT (t) =
1

(1− 0.482B − 0.412B2)
aLTWS(t) (3.64)

where WSLT and aLTWS denote the long-term of wind speed and a white noise
series, respectively. The ability of this autoregressive model to describe the data
of wind speed can be statistically checked by using the correlation analysis for
the residuals. As shown in Figure 3.4, this model has successfully represented
this data as long as there are no spikes in the SACF and SPACF. This would
mean that there is no further information can be extracted from this data. With
regard to the operators of the these two variables in the TF model, the next
equation, Equation 3.65, can identify them:

WDLT (t) = µ+
C(1− ω1B)

(1− δ1B)
B0WSLT (t) + εt (3.65)

where WDLT and WSLT denote the Long Terms for water discharge and wind
speed series, respectively. The εt is the error term of this TF, which needs to
be modelled by one of the Box-Jenkins Models, (ARMA) models.

• For precipitation, the model ARMA(5,0) is adequate to fit the data of this
variable, and this model can be written as follows:

PR(t) =
1

(1− 1.131B − 0.141B2 + 0.230B3 + 0.176B4 − 0.091B5)

aLTPR(t) (3.66)
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Figure 3.4: Cross Correlation of Water Discharge and Wind Speed of the Long-Term
Component for Utica City.

where PR(t) denote the long-term of the precipitation series, and aLTPR is a
white noise series. Examining the pattern of the SCCF between precipitation
and water discharge reveals that the next form can be used for the part of
precipitation in the TF:

WDLT (t) = µ+
C(1− ω1B)

(1− δ1B)
B0PRLT (t) + εt (3.67)

where WDLT is the long-term series of water discharge. The PRLT is the long-
term of precipitation series and εt is the error term of this equation.

• For tide series, which has been also transformed to a stationary series by apply-
ing the third differences, the model ARMA(2,2) was suggested to fit the data
of this variable, and this model can be written as follows:

TideLT (t) =
(1− 1.692B + 0.739B2)

(1− 1.070B + 0.084B2)
aLTTD(t) (3.68)

where TideLT and aLTTD are the long-term of the tide and a white noise series,
respectively. Using the SCCF values of water discharge and tide, the following
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TF, Equation 3.69, can be applied. As shown in Figure 6.3, this equation can
adequately identify the part of tide in the TF model.

Figure 3.5: Cross Correlation of Water Discharge and Tide of the Long-Term Com-
ponent for Utica City.

WDLT (t) = µ+
C(1− ω1B)

(1− δ1B)
B0TDLT (t) + εt (3.69)

where = WDLT denotes the long-term of water discharge, TDLT is the long-
term of tide, and εt is the error term.

• For groundwater level, which has been converted to a stationary series by ap-
plying second differences, the model of ARMA(2,2) would be suitable to fit the
data of this variable, and this model can be written as follows:

GWLT (t) =
(1− 1.673B + 0.753B2)

(1− 1.036B + 0.100B2)
aLTGW (t) (3.70)

where GWLT is the series of the Long Term of groundwater level. Also, aLTGW is
a white noise series. The values s=1 and r=1 would be assigned to the numerator
and the denominator for the groundwater level part in the TF model.

• Therefore, by using the conditional least squares method to estimate the pa-
rameters of the input variables, the preliminary TF model can be written as
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follows:

WDLT =
(0.859− 0.112B)

(1 + 0.551B)
TELT (t) +

(−0.062 + 0.297B)

(1 + 0.625B)
PRLT (t)

+
(0.05624 + 0.056B)

(1− 1B)
WSLT (t) +

(0.961− 1.465B)

(1− 0.819B)
TDLT (t)

+
(0.819− 2.066B)

(1− 0.954B)
GWLT (t) + εLT (t) (3.71)

where WDLT , TELT , PRLT , WSLT , TDLT , GWLT , and the εt denote the Long-
Term components of water discharge, temperature, precipitation, groundwater
level, tide, wind speed, and the error term, respectively.

• Then, to build the final structure for the TF model, the residuals of the pre-
liminary model should be investigated and fitted to one of the Box-Jenkins
models, ARMA models. The model ARMA(1,0) has been suggested to describe
the data of these residuals. So, combining this model with the preliminary
structure produces the full TF-Noise model, which is shown in the following
expression:

WDLT =
(0.103 + 0.051B)

(1− 0.819B)
TELT (t) +

(0.084− 0.067B)

(1− 0.934B)
PRLT (t)+

(0.014− 0.003B)

(1− 0.973B)
WSLT (t) +

(−1.385− 0.848B)

(1− 0.691B)
TDLT (t)

+
(−0.231− 0.669B)

(1− 0.971B)
GWLT (t) +

1

(1− 0.999B)
at (3.72)

where aLT (t) is a white noise series that has zero mean and a constant variance,
σ2.

3.9.2 TF-Noise Modelling for Utica’s City Seasonal-Term Com-
ponent

Depending on the results of the SACF and SPACF of the seasonal components for
the considered variables, we extracted the following results:

• For the temperature, the AR(1,2,3,6,7,8) model would suitably fit the data of
this variable and the model can be written as follows:

TEST (t) =
1

(1− 0.678B + 0.226B2 − 0.141B3 − 0.043B6 − 0.008B7 + 0.153B8)

aSTTE(t) (3.73)
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where TEST is the seasonal series of temperature, and aSTTE is a white noise
series. Computing the SCCF between the two variables of temperature and
water discharge reveals that there is a delay time, b=1, as the first spike has
emerged at lag 1, and because of the presence of one spike at lag 2, the value of
s equals to 1, and the r value equals to 1. Consequently, the appropriate part
for the temperature variable in the TF can be written as follows:

WDST (t) = µ+
C(1− ω1B)

(1− δ1B)
B1TESE(t) + εLT (t) (3.74)

where WDST denotes the seasonal-term of water discharge series and εLT is the
error series.

• For the wind speed, the ARMA(2,2) model has been selected to describe the
data of this variable, and the model can be written as follows:

WSST (t) =
(1− 0.662B − 0.335B2)

(1− 0.966B + 0.045B2)
aSTWS(t) (3.75)

where WSST , denotes the seasonal-term of wind speed, and aSTWS is a white
noise series. Based on the SCCF values, no delay time exists, i.e. b = 0, and
the number of spikes between the first spike and the beginning of the dying
down fashion is 1, this suggested that s = 1. Also, the dying down exponential
pattern implies that the value of r for the wind speed variable in the TF model
should be 1. Mathematically, this can be expressed as shown in Equation 3.76.

WDST (t) = µ+
C(1− ω1B)

(1− δ1B)
B0WSSE(t) + εt (3.76)

where WDSE is the Seasonal Term series of water discharge, and εt is the error
term.

• For the precipitation, the adequate model is a moving average model with four
consecutive lags, which are 1,2,3, and 4, i.e MA(4). This model can be written
as follows:

PRST (t) = (1 + 1.135B + 1.1B2 + 1.088B3 + 0.143B4)aSTPR(t) (3.77)

where PrecipitationST is the seasonal-term series of precipitation, and aSTPR
is a white noise series. Also, depending on the values of the SCCF, the value
of b, which is the delay time, equals to 1, and the number of spikes that appear
after this delay time is 1, i.e s = 1, and r is also equal to 1. Therefore, the
precipitation portion in the TF model can be written as follows:
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WDST (t) = µ+
C(1− ω1B)

(1− δ1B)
B1PRSE(t) + εt (3.78)

where WDST is the seasonal series of water discharge, and εt is the error term.

• For tide series, an autoregressive model with five lags has been determined for
this variable, and this model can be written as follows:

TDST (t) =
1

(1− 1.459B + 0.321B2 + 0.371B3 + 0.132B4 − 0.329B5)

aSTTD(t) (3.79)

where TDST denotes the seasonal-term series for tide, and aSTTD is a white noise
series. No delay time would be included and the number of spikes between the
first spike and the dying down pattern is 1, so s = 1 and r is also 1, where
the pattern has an exponential wave. This information can be illustrated in the
following Equation:

WDST (t) = µ+
C(1− ω1B)

(1− δ1B)
B0TDSE(t) + εt (3.80)

where WDST is the seasonal-term series of water discharge, and εt is the error
term.

• For the groundwater level, an autoregressive model with two lags, 1 and 2, has
been chosen for this variable, and this model can be written as follows:

GWST (t) =
1

(1− 1.493B + 0.529B2)
aSTGW (t) (3.81)

where GWST denotes the seasonal series of groundwater’s level. Also, aSTGW
is a white noise series. If we investigate the SCCF values of water discharge
and groundwater level we can use b = 0, and the operators = (1 − ω1B) and
δB = (1−δ1B), for the numerator and denominator, respectively. This is shown
in the next figure:

• By substituting all the aforementioned variables in the structure of the TF
model, the preliminary model is built as it is shown in the following equation:
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Figure 3.6: The Cross Correlation for the Water Discharge and Groundwater Level
of the Seasonal-Term Component for Utica City.

WDST (t) =
(0.111 + 0.022B)

(1− 0.495B)
B1TEST (t) +

(0.381 + 0.263B)

(1 + 0.991B)
B1PRST (t)+

(0.136− 0.027B)

(1− 0.791B)
WSST +

(0.182− 0.175B)

(1− 0.415B)
TDST (t)+

(−1.044 + 0.738B)

(1− 0.332B)
GWST (t) + εST (3.82)

where WDST , TEST , PRST , WSST , TDST , GWST , and εt denote the water
discharge, temperature, precipitation, wind speed, tide, groundwater level, and
the error term, respectively.

• Then, to build the final structure for the TF model of this seasonal component,
the residuals of the preliminary model should be investigated and fitted to
one of the Box-Jenkins models. The model ARMA(0,1) has been suggested to
describe the data of these residuals. So, combining the ARMA(0,1) model with
the preliminary structure produces the final TF-Noise model, which is shown
in the following expression:
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WDST (t) =
(0.113 + 0.025B)

(1− 0.664B)
B1TEST (t) +

(0.143− 0.085B)

(1− 0.405B)
B1PRST (t)

+
(0.112 + 0.052B)

(1− 0.209B)
WSST +

(0.065− 0.087B)

(1− 0.415B)
TDST (t)+

(−0.651 + 0.548B)

(1− 0.696B + 0.162B2)
GWST (t) +

1

(1− 0.796B)
aST (t). (3.83)

This model has confirmed its validity where the correlation analysis that is
based on the SACF and SPACF, for the residuals reveals that no spikes appear.

3.9.3 TF-Noise Modelling for Utica’s City Short-Term Com-
ponent

For the last component, which is the short-term, and relying on the functions of the
SACF and SPACF, the results can be summarised as the following:

• For temperature series, the ARMA(2,3) model would sensibly fit the data of
this variable and the model is written as follows:

TESH(t) =
(1− 0.992B − 0.166B2 + 0.162B3)

(1− 1.581B + 0.633B2)
aSHTE(t) (3.84)

where TESH denotes the short-term of the temperature series. Also, aSHTE is
a white noise series. This model has verified its ability to describe the data as
shown in Figure 3.7, where there are no spikes at any lag. Examining the SCCF
between the water discharge and temperature series reveals that the suitable
form for this variable in the TF model can be written as the following:

WDSH(t) = µ+
C(1− ω1B)

(1− δ1B)
B0TESH(t) + εt (3.85)

where WDSH is the short-term component of water discharge series, and εt is
the error term.

• For the wind speed, ARMA(1,2) model has been selected to describe the data
of this variable and can be written as follows:

WSSH(t) =
(1− 0.747B − 0.252B2)

(1− 0.987B)
aSHWS(t) (3.86)
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Figure 3.7: Residuals Correlation Diagnostics for the Temperature’s Short-Term Com-
ponent for Utica City.

where WSSH denotes the short-term component of wind speed, and aSHWS is
a white noise series. The SCCF can identify the part of wind speed in the TF
model, which can be described as follows:

WDSH(t) = µ+
C(1− ω1B)

(1− δ1B)
B0WSSH(t) + εt. (3.87)

• For precipitation, investigating the SACF and SPACF for this variable provided
us with the result of possibility of specifying an ARMA(4,0) model for the
input variable as shown in Equation 3.88. The validity of this model has been
confirmed using the correlation analysis for the residuals.

PRSH(t) =
1

(1 + 1.041B + 1.032B2 + 1.030B3 + 0.051B4)
aSHPR(t) (3.88)

where PRSH denotes the Short-term component of precipitation, and aSHPR
is a white noise series. After examining the SCCF between precipitation and
water discharge, we noticed that the first spike occurs at lag 1, i.e. b = 1.
This means that it takes one day for the water discharge to be affected by
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the precipitation variable. With regard to the factors of the numerator and
denominator of this variable, and since there are no spikes between the b value,
where b = 1, and the beginning of the dying down pattern for the SCCF, this
implies that there is no operator for the numerator of precipitation. On the
other hand, for the denominator, it should be reasonable to set up the operator
of the water discharge series to be equal to 1. That means we need to use the
next model:

WDSH(t) = µ+
1

(1− δ1B)
BPRSH(t) + εt (3.89)

where WDSH is the short-term of the water discharge and εt is the error term
of this model.

• For the tide time series, having investigated the values of the SACF and SPACF
for the tide, the suggested model can be an AR(3) model. This model has been
chosen as we have three obvious spikes in the SPACF and at the same time
the pattern of the SACF dies down with a damped sine wave fashion. The
autoregressive model of order three is shown in Equation 3.90.

TDSH(t) =
1

(1− 1.347B + 0.440B2 + 0.241B3)
aSHTD(t) (3.90)

where TideSH denotes the Short-term of tide, and aSHTD is a white noise series.
To study the relationship between tide and water discharge, we computed the
SCCF using the prewhitened values. The result is no spikes at the negative
lags, and a spike has been noticed at lag 3, which means that the influence of
tide on water discharge appears after 3 days. To complete the analysis of this
variable, factors for tide in the TF need to be determined, investigation of the
SCCF provides us with r = 0 and s = 1 for the factors.

• The last considered variable in our studied time series is the groundwater level.
The model AR(2) can be suggested to fit the data of this series; this chosen
model has confirmed its validity by examining the correlation analysis for the
residuals.

GWSH(t) =
1

(1− 1.518B + 0.568B2)
aSHGW (t) (3.91)

where GWSH denotes the short-term for the groundwater level, and aSHGW is
a white noise series. The groundwater’s level portion in the TF structure can
be defined as follows:

WDSH(t) = µ+
1

(1− δ1B)
B0GWSH(t) + εt (3.92)
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where WDSH is the short-term of water discharge, and εt is the error term of
this model.

• Therefore, the preliminary model can be written as follows:

WDSH(t) =
(−0.002− 0.002B)

(1 + 1B)
BTESH(t) +

1

(1 + 0.066B)
BPRSH(t)+

(0.100− 0.044B)

(1− 0.303B)
WSSH(t) +

1

(1 + 0.183B)
B3TDSH(t)+

1

(1 + 0.812B)
GWSH(t) + εSH (3.93)

where WDSH , TESH , PRSH , WSSH , TDSH , GWSH , and εSH denote the short-
term components of water discharge, temperature, precipitation, wind speed,
tide, groundwater’s level, and the error term, respectively. Inspecting the resid-
uals for the preliminary model by using the SACF and SPACF leads to select
the type of the ARMA model that can be used to model the behaviour of these
(noise) data. The model AR(1) has been chosen to fit the noise data, so the
full model can be written as follows:

WDSH(t) =
(−0.001 + 0.096B)

(1− 0.615B)
BTESH(t) +

1

(1 + 0.399B)
BPRSH(t)+

(0.091 + 0.052B)

(1− 0.17B)
WSSH +

1

(1 + 0.991B)
B3TDSH(t)+

1

(1 + 0.671B)
GWSH(t) +

1

(1− 0.721B)
aSH(t) (3.94)

All the previous notations have been already defined, and aSH(t) is a white noise
series with zero mean and a constant variance.

3.9.4 The Final Combined TF-Noise Model for Utica City

In order to build the final combined model, the data of the three components, which
are long, seasonal, and short-term, have been used to implement the TF model. The
results of the TF model with no structure on the noise series are shown in Equation
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3.95.

WDFI(t) =
(−0.101− 0.234B)

(1− 0.409B)
TEFILT (t) +

(0.092 + 0.081B)

(1 + 0.999B)
PRFILT (t)

+
(−0.019− 0.095B)

(1− 0.087B)
BTEFISE(t) +

(0.088− 0.096B)

(1− 0.092B)
BPRFISE(t)

+
(−0.307− 0.064B)

(1− 0.150B)
GWFISE(t) +

(0.052− 0.093B)

(1− 0.087B)
BTEFISH(t)

+
(1)

(1− 0.081B)
BPRFISH(t) +

(1)

(1− 0.161B)
GWFISH(t) + εFI(t). (3.95)

Examining the residual correlation analysis of this model reveals that specifying
an AR model of order one would fit the noise part of the model adequately. According
to this specification, the final TF-Noise model has been built. This final model can
be written as the following:

WDFI(t) =
(0.365− 0.393B)

(1− 0.957B)
TEFILT (t) +

(0.031− 0.002B)

(1− 0.937B)
PRFILT (t)

+
(0.034− 0.003B)

(1− 0.787B)
BTEFISE(t) +

(0.032− 0.018B)

(1− 0.293B)
BPRFISE(t)

+
(−0.128− 0.130B)

(1 + 0.999B)
GWFISE(t) +

(0.064 + 0.002B)

(1− 0.536B)
TEFISH(t)

+
(1)

(1− 0.179B)
PRFISH(t) +

(1)

(1− 0.016B)
GWFISH(t) +

1

(1− 0.870B)
at. (3.96)

3.10 Evaluation of the Estimated Models for Utica

City

The same previous statistics, which are used to evaluate the constructed models for
Poughkeepsie city, have been also utilised to evaluate the constructed models for Utica
city. The results are shown in Table 3.2. Based on these statistics, it is recommended
to use the combined models, which are built using the decomposed data, as they have
the lowest AIC and SBC.

3.11 Discussion

Using the TF-Noise model enables us to incorporate lagged variables for the inputs
based on the SCCF between the output and the input variables. The second feature
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AIC SBC
TF-Noise for the Raw Data 2516.409 2607.028
TF-Noise for the Decomposed Data 2448.503 2583.478

Table 3.2: The Statistical Tests for the Model Selection.

that distinguishes this model and makes it more robust and reliable is the capability
of the inclusion of an ARMA model for the residuals. This will assure that there is no
more information can be added to the model. To avoid the problem of autocorrelation
between the studied variables, the prewhitened values have been used.

With regard to the stationarity of the variables for the raw data, same differences,
which are first differences, have been applied to the variables for the two cities Pough-
keepsie and Utica. Based on the patterns of the SACF and SPACF, nearly similar
tentative models have been used to prewhiten the variables of the raw data. These
models are: (1) Moving Average models of orders 3 and 4 have been chosen for the
variables temperature, precipitation, and wind speed (2) Autoregressive models of
order 3 have been determined for the variables tide and groundwater level. Also, the
residuals’ correlation analysis suggests an AR(1) for the noise part in the preliminary
models for the two cities.

For the three components, the differences used to achieve stationarity for the
variables for the two cities vary, but in most cases either first differences or second
differences have been employed. With reference to the tentative models, the results
oscillate between similarity and dissimilarity for the studied variables for the two
cities. However, the residuals for all the preliminary models for all component have
been described using AR(1) models. In addition, the separating process enables us
to construct three TF-Noise models that can be used to separately forecast the long,
seasonal, and short-term components.

3.12 Conclusion

For the two cities Poughkeepsie and Utica for the three components, the effect of the
input variables, which are temperature, wind speed, precipitation, tide, and ground-
water level, on the output series, which is the water discharge, appears on the same
day. The only exception is that for the Utica’s city seasonal component, one day is
the pure time delay for the effect of the temperature and the precipitation on the
water discharge. These results have been obtained relying on the SCCF values for
these variables.
Different results have been noticed for data for Cohoes city, where the first lag for
temperature and wind speed has been chosen to construct the effect of these two
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variables on the water discharge for the seasonal variations. For all components, all
the other variables have contributed without any lagged values.

Using the decomposed data has improved the accuracy of the TF-Noise forecast-
ing model, which inherently includes lagged variables and an ARMA model for the
residual terms in its structure. The TF-Noise models for each component are better
than the MLR models. This result has been extracted based on the AIC and SBC
values, for example, the AIC value for Utica city data has reduced from 5340.251 to
-14605.7 for the long term component.



Chapter 4

Bayesian Inference for Water
Discharge Modelling and
Uncertainty Analysis

In many fields, such as water resources planning and management, decisions often
need to be taken based on several uncertain factors. The studies of the impact
of climate change and the calculations of water balance in an un-gauged basin are
examples of these factors. The sources of these uncertainties are different, but the
uncertainties of model’s parameters and model’s structure are the most common types
[35]. Essentially, different variables affect the amount of water discharge from a river
but the two most important variables are the precipitation and groundwater level.
Based on this, including these variables in a probability model for the amount of
water discharge is necessary.

Also, most processes in the hydrological system, for example, water discharge
from a river, contain different embedded components in their data which are the
long, seasonal, and the short-term components. To gain a better insight into a trend
of a hydrological process, separating these components is an essential step [36, 83].
The forecasting models constructed using the three components outperform models
constructed using raw data [100]. However, the model’s parameters and structure
uncertainties have not been taken into account as the estimation of the parameters
of these models is often performed based on Frequentist statistics.

The essential feature for Bayesian analysis is the explicit use of probability dis-
tributions for quantifying the model’s parameters and structure uncertainties [14].
Bayesian analysis enables us to incorporate evidence from previous experiences or
studies via prior distribution. Based on a set of data, Bayesian analysis can be de-
fined as the process of constructing a probability model and provide a number of
summary measures. The constructed probability distribution, which is known as the

115
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posterior probability distribution, will be then used to compute the posterior predic-
tive distribution to calculate the required quantities such as predictions for future
observations [14].

The innovation in this chapter is the combined Bayesian MLR and combined
Bayesian MLR-VAR models, where as far as we know that Bayesian analysis has
not been used to estimate the parameters of a combined model constructed using
the three components of the long, seasonal, and the short-term components. To
show the difference between classical Bayesian MLR model and the new combined
Bayesian models, a comparison has been carried out. Based on this, the current
chapter considers two cases. The first case is the analysis of the raw data. A number
of Bayesian Multiple Linear Regression (BMLR) model are constructed using different
hyperparameters for the prior distributions for the model parameters. The second
case is the analysis of the decomposed data where two main Bayesian models are
constructed. One of these models is exclusively built using current values, whereas
the second model is built using current values for the long and seasonal components
and a number of lagged variables for the short-term component. For these two types
different hyperparameters are specified for the prior distributions of the parameters.

This chapter is organised as follows. Section 4.1 presents a brief overview of
Bayesian analysis. Section 4.2 displays a number of known types of prior distribu-
tions for Multiple Linear Regression, MLR, model. Section 4.3 discusses posterior
distribution. Section 4.4 presents a brief description of BMLR analysis. Section 4.5
focuses on the posterior predictive distribution. Section 4.6 presents credible inter-
vals and Highest Probability Density (HPD) function. Section 4.7 highlights some
common ways for checking and evaluating a Bayesian model.

Section 4.8 presents the key theoretical concepts of the Bayesian Vector Autore-
gressive, VAR, models. Section 4.9 shows the priors that are common in the VAR
process. Section 4.10 lists the major steps in our methodology. Section 4.11 presents
our methodology for the first case where no lagged variables are included, on a real
dataset collected for Utica city. Section 4.12 provides the results of combining the
three components.

Section 4.13 presents the analysis for the second case where a number of lagged
variables are included for the short-term component. Section 4.14 displays the find-
ings of the final combined Bayesian model with VAR for the short-term component.
Section 4.15 presents the results. A summary of the use of Bayesian analysis to es-
timate a probability forecasting model structured as a combined model is presented
in Section 4.16. The data for Utica and Cohoes cities have been used to construct
Bayesian models as it has the highest similarity measure based on the results in Table
5.13 where we have exploited these results to specify prior distributions to the two
cities.
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4.1 Bayesian Analysis

Forecasting process in frequentist statistics is accompanied with many issues as high-
lighted by Aitchison (1964) “In the theory of statistical tolerance regions, as usually
presented in frequentist terms, there are inherent difficulties of formulation, develop-
ment and interpretation” [2]. The essence of the problem is attributed to the defini-
tion of the probability in frequentist statistics. Defining the probability in frequentist
statistics as the long-run frequency of event does not fit in some cases. For example,
when there is a new product, data will not be available to construct a forecasting
model.

Applying Bayesian approaches in the modern statistical analysis is becoming in-
creasingly popular with applications in different areas [94]. Bayesian analysis is used
in many fields, for instance, Physical Sciences, Biological Studies, Medicine, and Im-
age processing. Bayesian statistics express beliefs about unknown quantities by using
probabilities that are assumed to be conditional on data. The unknown quantities
here are the parameters of a model. Essentially, Bayesian methods depend on the
Bayes theorem, which was developed in the 1700s by Thomas Bayes. If there are two
events A and B, the Bayes theorem can be written as the following:

P (A|B) =
P (B|A)P (A)

P (B)
. (4.1)

If the event A is replaced with a parameter θ, and the event B is also replaced
with a sample data, y, then the Bayes theorem can be rewritten as follows:

P (θ|y) =
P (y|θ)P (θ)

P (y)
. (4.2)

The denominator, P (y), which is also known as the normalizing constant in
Bayesian analysis, represents the marginal probability for y. This constant is used
to ensure that the integration of the posterior probability, P (θ|y), equals to one. Be-
cause P (y) is a constant and it is often ignored in the written formula, the Bayes
theorem, which is known as the posterior probability, can be written as follows:

P (θ|y) ∝ P (y|θ)P (θ). (4.3)

Here the likelihood function, P (y|θ), is regularly updated with the prior probability,
P (θ), to construct a posterior distribution, P (θ|y) [71]. In other words, the likelihood
function of the data is weighted by the prior to provide the posterior distribution.

From a Frequentist perspective, the parameter θ can be estimated from data,
y= {y1, . . . , yn}. This can be carried out through utilizing a statistical model that
is expressed by a density function p(y|θ) [14]. In contrast to the situation in the
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classical statistics, Bayesian philosophy assumes that the parameter θ can not be
exactly determined but instead the probability statements and distributions can be
used to describe the uncertainty about the parameter.

The prior distributions can strongly or weakly affect the posterior distribution
depending on whether the prior distributions are subjective or objective. The ob-
jective prior distributions are also known as non-informative, diffuse, and flat priors.
Most often, the chosen flat prior is a uniform distribution, where P (θ) = 1. This flat
prior has no influence on the posterior; that means the distribution of the posterior
is similar to the likelihood function. The only difference between the likelihood and
the posterior is that in the former the random variable is y while in the latter the
random variable is the parameter(s) of the model.

Based on the posterior distribution, some summary measures, such as, mean and
variance for the parameter of interest, are computed. There are also some measures
that are sometimes not straightforward such as calculating the probability that a
parameter is greater than a specific value. Typically, this difficulty can be handled by
using a simulation method where the simulated data can provide a solution for such
questions. Moreover, some posterior distribution forms are not standard or unknown
and this imposes using the simulation-based methods to estimate the posterior.

The prominence of Bayesian methods has been attributed to the computing ad-
vances in the late 20th century [94, 71]. Often these methods are practically performed
by repeatedly drawing a number of samples from a target distribution to estimate
the posterior. The Markov Chain Monte Carlo (MCMC) methods are considerably
used to generate samples [94, 18, 64]. Generating conditional independent samples
using the target distribution is the Markov Chain responsibility, MC, where MC is
a stochastic process. And, Monte Carlo, MC, is a numerical integration technique,
which is utilised to compute the integration. By gathering these two common tech-
niques, a series of samples are generated from the posterior to compute the required
quantities using Monte Carlo.

There are several algorithms that depend on the MCMC simulation, but the most
popular algorithms are Gibbs, Metropolis-Hasting, and Metropolis algorithms. As
aforementioned, the Bayesian analysis regards parameters as random variables that
have distributions [94]. The posterior distribution is the key element in the Bayesian
analysis and all of the statistical Bayesian inferences are derived from summary mea-
sures from this distribution. For example, point and interval estimates can be ob-
tained from the mean and quantiles of the posterior distribution, respectively.

Normally, in Bayesian paradigm, the most difficult part in the analysis is the
estimation of a Bayesian model. In classical analysis, the mechanism of Maximum
Likelihood estimation (MLE) depends on computing the parameter values that max-
imize the likelihood function. Then, based on results of the MLE, point estimates for
the standard errors of these estimates are computed. Having estimated these points,
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a classical statistical test is then performed. This test can be conducted by determin-
ing a hypothesized value for the parameter that is yielded from the ML, and subtract
this value from the estimated parameter and then divide by the estimated standard
error.

In contrast to the classical analysis, which finds a point estimate and its standard
error for the parameters of interest, Bayesian analysis provides a posterior distribu-
tion for the parameter. The major steps in the modern Bayesian inference can be
summarised as the following:

1. Multiplying the likelihood by the prior density to compute the posterior distri-
bution for the parameter.

2. Statistics such as mean, median, and variance can be calculated to summarise
the knowledge about the parameter. Each statistic can be found by computing
the required integration using the posterior distribution.

3. Often, the summary statistics cannot be computed analytically when we have
unknown posterior distributions. To overcome this problem, generating a sam-
ple of data for the parameter of interest from the posterior distribution will help
the researcher to compute some statistics.

4.2 Prior Distributions

Despite all the controversy surrounding its use, the prior distribution remains the most
important part of Bayesian analysis; as it is the element that transforms the analysis
from Frequentist to Bayesian. Prior information (knowledge) can be incorporated
into the analysis with the information that is provided by the observed data to elicit
the posterior distribution [97], [14], and [71]. Priori information is represented by the
prior distribution and the information from the observed data is represented by the
likelihood function.

The priori knowledge could be an opinion from an expert or some historical data
or results from a previous research or experiment. Obviously, the chosen prior distri-
bution can have a huge impact on the outputs, and it must be selected carefully. In
case that the posterior distribution has a density function which comes from the same
family of distributions for the prior, the prior distribution is then called a conjugated
prior.

The important term “conjugacy” will be between the likelihood and the prior func-
tion. This term has a substantial effect in Bayesian analysis, where it often provides
known posterior distributions. For example, if the prior distribution is a beta density
function and the likelihood function can be described by a binomial distribution, the
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resulting posterior is also a beta density with different parameters. In this case the
likelihood and prior are called conjugate distributions. Once the posterior distribu-
tion is determined, some summary measures can be computed using the posterior’s
properties. These measures are often mean, median, variance, and confidence interval
(credible interval). Using the credible interval, simple interpretation can be obtained
where it can be easily said that the parameter, θ, falls between the lower and upper
intervals.

The specification of an appropriate prior distribution can be divided into two
types. The first type is to specify a point estimate, and because of that this point
estimate is often not known with a complete certainty, the posterior distribution can
be computed using different values for the prior. Afterwards, we can compare and
select which estimated posterior probability is more reasonable. The second type is
a determined distribution to define the prior. Fundamentally, there are two types of
prior distribution which are always specified to the parameters of interest. These two
types can be summarised as follows:

• Non-informative prior distribution: As the name may imply, this distribution
has no or minimum impact on the resulting posterior. There are some common
distributions that are classified into this type. Often, although the prior has
an improper density, the posterior of θ has a proper distribution. The terms
proper and improper refer to the integrable and non-integrable distributions
(the integration equals to 1). Typically, it is impossible to make inferences with
improper posteriors. This type of non-informative (flat) distributions can be
obtained when an equal likelihood on all the possible values of the parameter
is specified. If there is no or weak knowledge about the parameters of interest,
the reasonable choice will be a flat distribution. The decision of whether the
posterior is proper or improper can be made by verifying whether the normal-
izing constant is finite or not for all y. The uniform distribution is the most
popular flat distribution.

• Informative prior: This term can be assigned to a prior when the chosen distri-
bution has a considerable influence on the posterior; that means, the posterior
distribution will not be controlled by the likelihood function. The researcher
needs to be very careful when this type of distributions is selected. For more
information about the priors see [70].

4.3 Posterior Distributions for the Parameters

In Bayesian analysis, Equation 4.1 has to be solved. Based on the complexity of
the resulting kernel for the posterior function, which is completely related to the
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specified prior distribution, either analytically or using numerical methods, solutions
can be derived. In the case of existence of simple forms (small number of parameters,
linearity, and simple prior distributions), the function P (θ|y) can be analytically
computed. However, in most cases, the joint posterior distribution is unidentified
[65]. In such a case, applying sampling methodologies provide numerical solutions.
Different reasons can lead to unidentified posterior distribution, where

• Different distributions are required if we have different parameters. In this case
it will be easier to identify a conditional and/or marginal distribution for each
type of parameters. For example, if we have a joint distribution density with two
parameters, mean and variance, which is P (θ|y) = P (θ1, θ2|y) and this function
has unidentifiable form (not standard distribution), it is simpler to identify the
conditional distribution P (θ1|θ2, y) and the marginal function P (θ2|y). Based
on the product’s rule, the posterior distribution can be computed as follows:

P (θ|y) = P (θ1, θ2|y) = P (θ1|θ2, y)P (θ2|y).

In the first term of this function, which is P (θ1|θ2, y), θ2 is considered as a
constant, and it can be ignored in the computations. For the second term,
which is P (θ2|y), the parameter(s) θ1 will be integrated out of the joint posterior
distribution as follows:

P (θ2|y) =

∫
θ1

P (θ1, θ2|y)dθ1.

• Some types of joint posterior densities are not integrable with respect to one
or more of parameters of interest. In this case, we are not able to apply the
procedure presented above. However, Gibbs sampling can be used to simu-
late samples from the joint posterior. The Gibbs sampling is presented in the
Appendix.

• The magic algorithm that can work with any type of joint posterior distribution,
whether it is simple or complicated, is the MCMc. This method and some other
common methods that are used in Bayesian analysis are introduced in Appendix.

4.4 Bayesian Multiple Linear Regression

This section introduces Bayesian analysis for the multivariate normal distribution and
the related parameters in the MLR. Suppose that y = (y1, y2, . . . , yn) is a realizations
vector of the response variable, which can be represented using an (n × 1) vector.
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And X = (x1, x2, . . . , xp) is a matrix that contains the explanatory variables, where
the dimension of this matrix is n×p, n is the number of the observations, and p is the
number of the covariates. If the constant term is added to the model, the dimension
of the matrix X will be n×k, where k = p+ 1. The X matrix is commonly known as
the design matrix and the values for the constant term will be 1 in the first column
of the design matrix.

The Bayesian approach for the MLR can be summarised as follows:

yi|(µi, σ2, X) ∼ N(µi, σ
2In)

i = 1, 2, . . . , n

and
µi = β0 + β1xi1 + . . .+ βpxip = xi

′β

where
β = (β0, β1, . . . , βp).

The unknown parameters for the MLR model include the coefficients and the vari-
ance of the model, where θ =

[
β, σ2]. So, p(θ|X) represents the joint prior of the

parameters of interest, which are β and σ2. The joint posterior distribution for β
and σ2 is

p(β, σ2|y) = p(β|σ2,y)× p(σ2|y).

Given σ2, the conditional distribution of β can be defined as follows:

p(β|σ2,y) ∼ N(β̂, σ2V )

where β̂ = (X′X)−1X′y and V = (X′X)−1.
Additionally, the marginal distribution for σ2 has an Inverse Gamma (IG) func-

tion, which can be written as follows:

σ2|y ∼ IG

(
n− k

2
,
(n− k)s2

2

)
where

s2 =
1

n− k
(y −Xβ̂)′(y −Xβ̂).

Therefore, the posterior distribution is a Normal Inverse Gamma function (NIG).
In Bayesian Multiple Linear Regression, BMLR, it is supposed that data are drawn

from a normal (Gaussian) distribution, so, the likelihood function will be:

`(β,σ2|y, x) =
N∏
i=1

P (yi|xi,β,σ2). (4.4)
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Given the parameters β and σ2, P (yi|xi,β, σ2) is the conditional probability density
function of yi that is induced by the conditional distribution of εi. Here, xi is refereed
to as a fixed quantity. If the errors (disturbances) are independent, Gaussian, and
homoscedastic, then Equation 4.4 can be rewritten as the following:

`(β,σ2|y, x) =
N∏
i=1

φ(yi;xiβ,σ
2) (4.5)

where φ(yi;xiβ,σ
2) is the Gaussian probability density function that is evaluated

at yi with mean xiβ and variance σ2. Using Bayes’ theorem, the joint posterior
distribution of β and σ2 can be computed as follows:

p(β,σ2|y, x) =
p(β)p(σ2)` (β,σ2|y, x)∫
β,σ2 p(β)p(σ2)dβdσ2

∝ p(β)p(σ2)` (β,σ2|y, x). (4.6)

The prior distribution of β should be replaced with β|σ2 when the parameter(s) β
relies on σ2. The joint posterior distribution is analog to any other joint probability
distribution for a random variable. With reference to the posterior distribution, the
integrals of functions of parameters are used to compute the estimates and inferences
of parameters. If the posterior is the kernel of a known probability distribution,
then integrals of the parameters can be analytically tractable. Most often, known
kernels exist when a conjugated prior is utilised where this conjugated prior leads to
a known posterior function. In this case, a number of moments of the distribution of
interest are known and can be later used to estimate the parameters. On the other
hand, if unknown kernels arise, then analytically intractable posterior is obtained
where integrals of the parameters can not be analytically computed. Consequently,
numerical integration mechanisms are required to compute the integrals. Most of
numerical integration can be implemented, under some conditions, by using MCMC
sampling. Typically, to carry out Monte Carlo estimation, many samples have to be
drawn from a probability distribution, and for each draw, a suitable function has to
be applied, then the obtaining draws have to be averaged to approximate the integral.

There are some cases where the mean is known and the variance is unknown in
normal distribution. This is an important case as an example of the estimation of a
scale parameter in Bayesian analysis. If the random variable y is distributed normally
with known mean and unknown σ2, then the likelihood of this random variable, which
includes n of independent and identical observations, is:

p(y|σ2) ∝ σ−n exp
(
− 1

2σ2

n∑
i=1

(yi − µ)2)

= (σ2)−n/2 exp(− n

2σ2
v)

(4.7)
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where v = 1
n

∑n
i=1(yi − µ) is a sufficient statistics. It is clear that the corresponding

conjugate prior distribution is the Inverse-Gamma (IG), so:

p(σ2) ∝ (σ2)−(α+1) exp−β|σ2

where α ad β are the hyperparamters of this prior. In Bayesian analysis, the main
object for forecasting is the posterior predictive distribution, where the distribution of
the future values yT+1, . . . , yT+H is conditional on the observed data YT , t = 1, . . . , T ,
i.e. p(yT+1, . . . , yT+H |yT ). To predict the unknown future values for the desired
event, all the relevant information can be calculated using the posterior predictive
distribution. These future values can be captured by choosing the related feature
from the posterior predictive distribution where this feature can be mean, mode, or
median.

4.5 Posterior Predictive Distribution

In Bayesian analysis, the distribution of unobserved data (prediction) conditional
on observed data is called the posterior predictive distribution. Given the observed
data vector y, the parameters vector β, and the unobserved data ypred, the posterior
predictive distribution can be defined to be the following:

p(ypred|y) =

∫
p(ypred,θ|y)dθ

=

∫
p(ypred|θ,y)p(θ|y)dθ.

(4.8)

In addition, given θ, the assumption that the observed and unobserved observa-
tions are conditionally independent has to be achieved. According to this assumption,
the PPD (Equation 4.8) can be rewritten as the following:

p(ypred|y) =

∫
p(ypred|θ)p(θ|y)dθ.

So, the PPD is an integral of the product of the likelihood function p(ypred|θ) and
the posterior distribution p(θ|y) [14, 65, 21]. Since we have a new distribution, which
is the posterior predictive, a determined number of samples will be generated. The
prior predictive distribution, which is also known as the marginal function of the
observations, is not similar to the PPD. The difference is that the prior predictive
distribution is an integral of the product of the likelihood function and the prior
distribution of the parameter, which can be defined as the following:

p(ypred) =

∫
p(ypred|θ)p(θ)dθ
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where the prior predictive distribution is not conditional on the observed data. In
the Bayesian paradigm, the PPD can be effectively exploited to check whether the
constructed model is consistent with data as discussed by Gelman et al. (2013), [14].

4.6 Credible Intervals and Highest Probability Den-

sity

The main motivation for Bayesian thinking is that it provides a more common-sense
interpretation for a number of statistical conclusions. For example, a Bayesian (prob-
ability) interval, which is commonly known as Credible Interval (CI), for an unknown
parameter, can be directly considered as the interval that contains the unknown pa-
rameter. This interpretation is completely different from the one considered in the
frequentist analysis, where the interval is interpreted based on a sequence of similar
inferences that are made in repeated practice.

Different products can be yielded from Bayesian posterior inference, one of them
is summarizing the posterior marginal densities for the parameters of interest [22]. It
is known that by tabulating 100(1 − α)% posterior credible intervals, the marginal
posterior distribution for the parameter considered can be summarised. This quan-
tity can be obtained analytically or by using MCMC method. However, 100(1−α)%
highest probability density (HPD) interval is a highly recommended criterion, specif-
ically, when the marginal posterior distribution is not symmetric [22, 14]. The HPD
has two major properties which they are:

• Inside the interval, the density for every point is higher than that for every
point outside the considered interval.

• The interval has the shortest length for a given probability.

Therefore, after computing the posterior marginal distribution and a number of
samples have been drawn, credible or HPD intervals can be derived. The interval for
a parameter θ can be written as the following:∫ δ2

δ1

p(θ|y)dθ.

4.7 Checking and Comparing Bayesian Models

Having constructed and estimated a posterior distribution for all estimands for a
Bayesian model, it is fundamental to accomplish the task of assessing the fitted model
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to the data. Most of the methods used for this purpose are based on using the poste-
rior predictive distribution. To test the fitting of the resultant model to the considered
data, some quantities from the posterior predictive distribution, such as mean, stan-
dard deviation, and maximum and minimum values, have to be tested. Then, based
on a chosen test, for example a t-test, a hypothesis testing for the difference between
the real and ’simulated’ values of one or more of these test quantities, can be applied.
This method is almost the most common way to check the adequacy of a Bayesian
model to the data of interest [14]. Indeed, the inclusion of all knowledge about
a specific problem in a probability distribution is rather difficult, therefore, it is re-
quired to examine what features or aspects have not been captured by the model [14].

For a scientific problem, often more than one model can fit the data adequately.
Based on this fact, there is a question arises which is: to what extent do poste-
rior inferences vary when the current model is replaced by another new probability
model?. The new model can be different in many aspects, for example, the spec-
ified prior, the hyperparameters, the sampling distribution, or the number of the
considered variables, for example, the covariates in regression analysis. Applying the
posterior predictive distribution to an external data to make predictions for new data
is also preferable as a procedure of checking and is commonly known as an External
Validation.

4.7.1 Deviance Information Criterion (DIC)

The natural way to compare different constructed models is to apply a criterion that
relies on the principle of trade-off between the fitting of the model to the studied data
and the corresponding complexity of the model. Based on this, Spiegelhalter et al.
(2002) proposed a criterion, which is known as Deviance Information Criterion, DIC,
to compare between Bayesian models [91]. This criterion can be summarised as:
DIC= Goodness of Fit+ Model Complexity.
The first term, goodness of fit, can be calculated as the following:

D(θ) = −2LogL(data|θ).

The second term, model complexity, can be computed by estimating the effective
number of parameters in the model. Mathematically, this can be written as

PD = Eθ|y[D]−D(Eθ|y[θ])

= D̄ −D(θ̄)

where D̄ is the posterior mean deviance and D(θ̄) is the deviance that is evaluated at
the posterior mean of the parameters. This criterion can also be rewritten in a way
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that is similar to AIC criterion as the following:

DIC = D(θ̄) + 2PD

= D̄ + PD.

These two quantities can be calculated using MCMC.

4.8 Bayesian Vector Autoregressive

In case that there is a vector of random variables of k-dimensional time series of inter-
est and to practically understand the dynamic relationships over time among them,
analysing and modelling them together is necessary [64, 18]. Also, by using additional
information that is available from the associated series, the forecasts process accuracy
for individual series will be enhanced.

Let yt = (y1t, y2t, . . . , ykt)
′, t = 1, 2, . . . , T denote a vector of time series of k-

dimension. A pth-order Vector Autoregressive Process, commonly denoted as VAR(p),
can be written as follows:

yt = δ + Φ1yt−1 + . . .+ Φpyt−p + ut

where (δ1, . . . , δk)
′ is a vector of constants and Φj = Φ1 . . .Φp is a matrix of dimen-

sion k × k. Also, ut is the error term, where ut ∼ N(0,Σu). By changing the vectors
and matrices with scalars, we will simply provide an AR model of order p.

The simplest form of this modelling technique is the VAR(1) with two variables
(time series A and B), which can be written as the following:[

yA,t
yB,t

]
=

[
δA,0
δB,0

]
+

[
φA,11 φB,12
φA,21 φB,22

]
×
[
yA,t−1
yB,t−1

]
+

[
εA,t
εB,t

]
.

That means,
yA,t = δA,0 + φA,11yA,t−1 + φB,12yB,t−1 + εA,t

yB,t = δB,0 + φA,21yA,t−1 + φB,22yB,t−1 + εB,t.

By using matrix notations, a VAR model can be written as the following:

Y = ΦZ + U (4.9)

where Y = (y1, y2, . . . , yT ), Φ = (δ,Φ1,Φ2, . . . ,Φp), and Z = (Z0,Z1, . . . ,ZT−1),
with Zt−1 = (1, y′t−1, y

′
t−2, . . . , y

′
t−p)

′. By vectorising (applying the ”vec” operator),
the previous equation can be rewritten as follows:

y = (Z′ ⊗ Ik)ϕ+ u (4.10)

where ϕ = vec(Φ), y = vec(Y ), and u = vec(U).
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4.9 Prior Distributions for Bayesian Vector Au-

toregressive

The specification of a diffuse (non-informative) prior distribution is the simplest ver-
sion that can produce Bayesian inferences that are almost similar to the MLE method.
A uniform distribution for the ϕ and a Jeffreys’ prior for the Σu distribution can be
specified. That means, p(ϕ,Σu) ∼ |Σ−(k+1)

u |.
In a way that is similar to the specification of a multivariate normal distribution

to the parameters of a MLR model, a multivariate normal distribution with known
mean vector ϕ0 and covariance matrix Vϕ, can be specified to the parameters vector
ϕ, where it can be written as the following:

ϕ ∼ N(ϕ0, Vϕ).

Therefore, given Σu, which is the covariance matrix of the model, the prior distri-
bution can be written as the following:

p(ϕ) =

(
1

2π

)k(kp+1)/2

|Vϕ|−1/2 exp

[
− 1

2
(ϕ−ϕ0)′V −1ϕ (ϕ−ϕ0)

]
.

In addition, from Equation 4.9 and based on the assumptions of the error term,
each of the T observed response vector y of size k, t = 1, 2, . . . , T is also independent
and identically distributed (i.i.d). It is also supposed that these vectors follow a
multivariate normal distribution (MN) given the vector of the coefficients of the VAR
model, which are ϕ and Σu [64]. Then the joint density of the T vectors of error
defines the Gaussian likelihood function, which is:

`(y|ϕ) =

(
1

2π

)kT/2
|IT⊗Σu|−1/2×exp

[
− 1

2
[y−(Z′⊗Ik)ϕ]′(IT⊗Σ−1u )[y−(Z′⊗Ik)ϕ]

]
.

Multiplying these two functions, the prior and the likelihood, the posterior density
will be yielded:

p(ϕ|y) ∝ p(ϕ)`(ϕ|y)

∝ exp

{
− 1

2

[[
Vϕ
−1/2(ϕ−ϕ0)

]′[
Vϕ
−1/2(ϕ−ϕ0)

]
+ {(IT ⊗ Σ−1/2u )y − (Z ′ ⊗ Σ−1/2u )ϕ}′

× {(IT ⊗ Σ−1/2u )y − (Z ′ ⊗ Σ−1/2u )ϕ}
]}

.

(4.11)
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By defining the following:

ω =

[
V
−1/2
ϕ ϕ0

(IT ⊗ Σ
−1/2
u )y

]
and

Ω =

[
V
−1/2
ϕ

(Z ′ ⊗ Σ
−1/2
u )

]
,

Equation 4.11 can be rewritten as the following:

= −1

2
(ω − Ωϕ)′(ω − Ωϕ)

= −1

2

[
(ϕ− ϕ̄)′Ω′Ω(ϕ− ϕ̄) + (ω − Ωϕ̄)′(ω − Ωϕ̄)

]
.

Therefore, after simplifying, the posterior distribution is:

p(ϕ|y) ∝ exp

[
− 1

2
(ϕ− ϕ̄)′V −1ϕ (ϕ− ϕ̄)

]
(4.12)

where the mean of the posterior density is:

ϕ̄ =
[
V −1ϕ + (ZZ ′ ⊗ Σ−1u )

]−1[
V −1ϕ ϕ0 + (Z ⊗ Σ−1u )y

]
and the covariance matrix of the posterior is:

V̄ϕ =
[
V −1ϕ + (Z ′Z ⊗ Σ−1u )

]−1
.

It is clear that the density above, Equation 4.12, can be recognised as a multi-
variate normal distribution with mean ϕ̄ and covariance matrix V̄ϕ. In other words,
the posterior density of ϕ is N(ϕ̄, V̄ϕ). Because the distribution of this density is of
a known form, it will be easy to use it to draw samples. On the other hand, if the
covariance matrix of the model is not known, a distribution has to be specified to
describe the behaviour of this matrix. The Inverse Wishart distribution (IW) is the
common choice [64]. Practically it is easier to work with the precision, which is simply
the inverse of the variance, rather than the variance itself. In this case, the Wishart
distribution will be used. For the VAR model, which is expressed in Equation 4.9, if
the ut ∼ N(0,Σu), the following multivariate normal distribution can be specified

ϕ|Σu ∼MN(ϕ0, Vϕ = V ⊗ Σu)

and
Σu ∼ IW (S, n).
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In case that we consider the precision matrix instead of the covariance matrix, we
will have

Σ−1u ∼ Wk(S
−1, n).

Based on the priors that have been assigned to the coefficients and the variance
of the model, the resulting posterior distribution is a normal-inverse Wishart distri-
bution, sometimes also called a Gaussian-inverse Wishart distribution, which can be
written as the following: ϕ|Σu, y ∼MN(ϕ′, Vϕ = V ⊗ Σϕ), Σu|y ∼ IWk(S, τ).

4.9.1 The Minnesota Prior Distribution

The Litterman prior, which is also known as Minnesota Prior, is a Gaussian prior that
can be specified for the parameters of a VAR model. This prior density was proposed
by Litterman (1986) and Doan, Litterman, and Sims (1984) [64]. By utilising this
distribution, the VAR estimates will be shrunk towards a multivariate random walk
distribution. This prior is extensively used in the economics time series analysis [66].
This prior can be defined by specifying the following mean and covariance matrix for
the parameters of interest:

• For each equation, the prior mean for the first lag for the endogenous variable
of interest will be set to 1, or any other number, and all other prior means for
the other variables will be zero.

• The prior variance of the intercept terms will be set to infinity and the prior
variance for the other terms in the coefficients matrix, Φi, will be set to the
following two values:

vij, l =

{
(α
l
)2, if i=j,

(αθσi
lσj

)2, if i 6= j.
(4.13)

where α is the prior standard deviation for the parameter, σ2
i is the ith diagonal

entry of Σu, and θ is the term that controls the relative tightness of the prior
variance for the other lagged variables in the equation of interest.

For example, a VAR model of order 2 that all its slope parameters are set up to
their prior mean would be as follows:

yA,t = 0︸︷︷︸
∞

+ 1× yA,t−1︸ ︷︷ ︸
(α)

+ 0× yB,t−1︸ ︷︷ ︸
(αθσ1/σ2)

+ 0× yA,t−1︸ ︷︷ ︸
(α/2)

+ 0× yB,t−1︸ ︷︷ ︸
(αθσ1/2σ2)

+u1t. (4.14)

yB,t = 0︸︷︷︸
∞

+ 0× yA,t−1︸ ︷︷ ︸
(αθσ2/σ1)

+ 1× yB,t−1︸ ︷︷ ︸
(α)

+ 0× yA,t−1︸ ︷︷ ︸
(αθσ2/2σ1)

+ 0× yB,t−1︸ ︷︷ ︸
(α/2)

+u1t. (4.15)

The numbers in the parenthesis are the prior standard deviations for the coefficients.
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4.10 Bayesian Multiple Linear Regression Method-

ology (BMLR)

The major steps of our methodology can be summarised as the following:

1. To apply BMLR, we need to specify prior distributions for the parameters of
the MLR model which they are the coefficients (β) and the variance (σ2).

2. Specifying a Multivariate Normal distribution (MN) for the coefficients and an
Inverse Gamma for the variance has been conducted.

3. Non-informative and informative prior distributions for β have been assigned.

4. Different hyper-parameters have been specified for the prior density to construct
various BMLR and combined BMLR models.

5. Two non-informative priors are applied for the coefficients of the model. These
two priors are (1) normal distribution with zero mean vector and high variance
for all the considered variables (2) uniform distribution with the maximum
likelihood estimates (MLE) of the regression parameters for Utica city as the
starting values for the simulation process. Generally, a non-informative distri-
bution is recommended in case that there are many observations and only a few
parameters where it can provide acceptable results [14]. On the other hand,
and as an attempt to see the impact of the similarity analysis for two cities on
the BMLR, an informative prior distribution is specified. This prior is a MN
distribution for the coefficients (β) with hyper-parameters taken from the MLE
of the regression parameters and their variance-covariance matrix for another
city, here is Cohoes city, to be the hyper-parameters for the city of interest,
which is here Utica city.

4.11 The Application

4.11.1 The Study Region Data and Bayesian Analysis

Utica is a city in New York State, USA, located on the Mohawk River. The length of
this River is 149-mile-long (240 km), where it is the largest tributary for the Hudson
river, and drains out at about 3.412 square miles (8.837 square km). A few miles
north of the Albany city, exactly in the Capital District, the Mohawk River flows into
the Hudson river. The Schoharie and West Canada Creeks are the main tributaries
of the Mohawk River, and this river has a long record of flooding [86].
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In order to select the significant variables, the correlation matrix needs to be
computed. According to their low correlation coefficient, the variables of Absolute
Humidity, Dew Point, Sea Level Pressure, Visibility Miles, and Cloud Cover, are
ignored. The dataset is separated into two parts; the data for the period 2005− 2013
is used to construct the models and the data for year 2014 is utilised to validate and
assess the constructed models. The former is statistically known as the training data,
and the latter is known as the testing data. Figure A.4 in Appendix clarifies the steps
taken to construct the developed models.

4.11.2 BMLR Analysis for the Raw Data

To fit a BMLR model for the water discharge, WD, we need to determine the follow-
ing:

1. The likelihood function for the water discharge conditional on the considered
covariates; this function can be written as the following:

L(WD|X,β) = Normal(µ, σ2In).

Here, the six regression parameters in the likelihood function are β0, . . . , β5.

2. The priors for the parameters, which are the regression coefficients and the
variance of the model.

The WD has the following density function:

WD ∼ Normal(µ, σ2)

where µ = Xβ, X is the design matrix for the covariates.

Three analyses have been performed to construct a Bayesian model for the WD:

• Firstly, a flat distribution for the prior of the parameters needs to be chosen. A
non-informative independent normal prior distribution with mean zero and vari-
ance 1000000 has been specified for each parameter, i.e. β ∼ N(0, 1000000I6).
Different values have been tried to establish the covariance matrix for the co-
efficients, for example, 1, 10, 100, 1000, 10000, 100000, and 1000000, the same
MSE for all cases is obtained. A special case appeared when we considered
the parameters 3000 and 10In for the mean vector and the covariance matrix,
respectively, where the MSE reduces with a remarkable percentage.
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• Secondly, in a Bayesian analysis, an expert opinion or information from relative
studies, such as previous experiments or researches, need to be used to determine
a prior distribution. After defining the priors, their hyper-parameters have to
be set up to some magnitudes. Based on this, the findings of the similarity
analysis that are shown in Chapter 5 in Section 5.5.1 can be exploited effectively
to specify hyper-parameters for the priors to apply an informative Bayesian
analysis for Utica city. The results of similarity show that the data for the two
cities of Utica and Cohoes have the highest similarity measure compared to the
other considered cities.

The specification can be carried out by selecting the coefficients of the MLR
for Cohoes city and their variances as hyper-parameters for the prior of the
parameters. The parameters are the coefficients of BMLR and their prior dis-
tribution is the multivariate normal distribution. Hence, based on Chapter
2 Section 2.6, the mean vector for the coefficients of BMLR is taken from
Equation 2.5 in subsection 2.6.1. Therefore, the vector of the coefficients is:
µ0 = (0,−0.29, 0.01, 0.26, 0.13,−0.47) for the intercept and the explanatory
variables, respectively. With regard to the covariance matrix (Σ0) of the co-
efficients, the covariance matrix of the coefficients of the MLR model for the
Cohoes city model, has been used. The prior distribution of the parameters
(coefficients), therefore, is β ∼ N(µ0,Σ0).

• Finally, a non-informative uniform distribution with constants for all the re-
gression coefficients and their variances and a non-informative gamma prior
distribution for the normal scale (variance) parameter of the model have been
used; with these prior distributions, the maximum likelihood estimates (MLE)
for the regression parameters for Utica city, which occurs in Chapter 2, Section
2.7, Equation 2.11, and their covariance matrix will be used as the starting
values for the simulation process [56, 57].
Having decided the values for both the non-informative and informative prior
distributions, Bayesian models (posterior distributions) for Utica city have been
computed as follows.

– The first BMLR model is constructed by multiplying the likelihood func-
tion of the response variable by the non-informative prior and the obtained
model can be called the Non-Informative BMLR (NI-BMLR). The param-
eters of this model are almost similar to the parameters of the classical
regression analysis.

– By multiplying the likelihood function of the WD by the informative prior
that is based on the MLR model for Cohoes city, the second BMLR model
is built and can be called the Informative BMLR (IN-BMLRCohoes). The



Bayesian Inference for Water Discharge Modelling and Uncertainty Analysis 134

results of this model are rather different from the findings of the classical
regression.

– The structure of the third BMLR model depends on multiplying the like-
lihood function of the WD by the third non-informative prior, which is
the uniform distribution. This model can be called the Non-Informative
BMLR (NI-BMLRUtica). The results that have been computed by the
Random Walk Metropolis algorithm and Gibbs sampling are shown in Ta-
ble 4.1 [94].

Parameter MLR NI-BMLR IN-BMLRCohoes NI-BMLRUtica
IN 0 0 0 0
TE -0.29 -0.29 -0.30 -0.29
WS 0.07 0.07 0.04 0.07
PR 0.28 0.29 0.27 0.28
TD 0.21 0.21 0.15 0.21
GW -0.36 -0.36 -0.40 -0.36

Table 4.1: The Coefficients of MLR, NI-BMLR, IN-BMLRCohoes and NI-BMLRUtica
for the Raw Data.

When a flat (non-informative) prior distribution for the parameters is utilised,
the means of the posterior distribution for the coefficients of the model are almost
identical to the Maximum Likelihood Estimates (MLE) of MLR as shown in Table
4.1. It is obvious that the parameters of MLR, NI-BMLR, NI-BMLRUtica models
are similar.

There are three plots that are commonly used to assess the convergence of the
posterior in Bayesian analysis. Figure 5.2 shows these three diagnostic plots for
assessing the convergence of the generated samples for the parameter of Temperature.
The first plot shown above is called the trace, this plot visualises the behaviour of the
Markov chain for the sampled values of the parameter of interest. It seems that this
series is almost stabilized and constant over the graph. Furthermore, apart from the
large spike at lag 0, the autocorrelation plot indicates no degree of autocorrelation
for the posterior samples, which refers to a good mixing. Finally, the kernel density
plot, which is also known as the posterior density, estimates the posterior marginal
distribution for the temperature’s parameter. In conclusion, these plots imply that
the Markov Chain has successfully converged to the desired posterior.

In Table 4.2, although the results of the posterior distribution for the parameters
are almost similar to the results of the Frequentist sampling distribution for these
parameters, two completely different interpretations are produced for the confidence
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Figure 4.1: Diagnostic Plots for Temperature.

and credible intervals in Frequentism and Bayesianism statistics. In Bayesian statis-
tics the interpretation would be, given the observed data, there is a 90% confidence
probability that the true values for these parameters fall within the range of the com-
puted credible regions. On the other hand, in frequentist statistics, the interpretation
would be, there is a 90% confidence probability that when we compute the confidence
interval from data of this sort, the true values for these parameters will fall within
the calculated ranges. We have applied two confidence probabilities, which are 90%
and 95%. Moreover, for the purpose of model selection, in Table 4.3 and compared
to the other models, the MSE for the IN-BMLRCohoes has the highest value. This
result might be due to the small variances for the coefficients in the MLR for Cohoes
city. This has been noticed when we tried different values for the covariance matrix
of the coefficients. The model with the smallest DIC value shows the best fit to the
data compared to other models. Hence, we can conclude that the IN-BMLRUtica
model can be chosen as it has the smallest DIC value. Figure 4.2 shows the credible
intervals for the parameters of the BMLR model for the raw data.
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Table 4.2: Confidence Interval Comparison Between MLE and Bayesian Methods for
the Estimation of the Parameter of interest.

90% 95%
Parameter Estimate Upper Lower Dif Upper Lower Dif

Bayesian Intercept 0.00 -0.02 0.02 -0.04 -0.01 0.03 -0.05
TE -0.29 -0.34 -0.30 -0.04 -0.31 -0.27 -0.04
WS 0.07 0.05 0.09 -0.04 0.05 0.10 -0.04
PR 0.28 0.26 0.31 -0.04 0.26 0.31 -0.04
TD 0.21 0.16 0.22 -0.05 0.18 0.24 -0.05
GR -0.36 -0.35 -0.30 -0.04 -0.39 -0.3 -0.05

MLE Intercept 0.00 -0.02 0.02 -0.04 -0.02 0.02 -0.04
TE -0.29 -0.34 -0.29 -0.04 -0.31 -0.26 -0.05
WS 0.07 0.05 0.09 -0.04 -0.01 0.03 -0.05
PR 0.28 0.26 0.31 -0.04 0.23 0.28 -0.04
TD 0.21 0.17 0.22 -0.04 0.11 0.16 -0.05
GW -0.36 -0.35 -0.30 -0.04 -0.49 -0.44 -0.05

Table 4.3: DIC Values for the Raw Data with Different Types of Priors.
Model NI-BMLR IN-BMLRCohoes NI-BMLRUtica
DIC 7445.291 7476.317 7439.595
MSE 0.59 0.63 0.59

4.11.3 BMLR Model for the Decomposed Data

For constructing a BMLR model for the decomposed data, which are the components
the long, seasonal, and short-term component, a MN distribution can be chosen as
a prior density for the parameters β for each component. The hyper-parameters are
based on the coefficients of the MLR models and their covariance matrices for the
components of the long, seasonal, and short-term component from subsections 2.6.1,
2.6.4, 2.6.5, and 2.6.6 for Utica city; 2.7.1, 2.7.5, 2.7.7, and 2.7.9 for Cohoes city.
Also, an IG distribution has been specified for the variance of the three models as
shown below.

Prediction Modelling for the Long-Term Component

Follow the same steps listed in the above, we chose the non-informative and informa-
tive prior distributions for the parameters of the BMLR model. The hyper-parameters
are either based on the coefficients and their variances from the MLR model, 2.7, or
constant values. The results for the long-term trend are shown in Table 4.4.
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Figure 4.2: The Confidence Intervals for the Parameters of Raw Data for Utica City.

The MSE values for the testing data, which is the daily data for the year 2014,
for the long-term component, are shown in Table 4.5. Examining these findings leads
us to conclude that using the hyper-parameters that depend on the values of MLR
model for Cohoes city has the highest MSE value.

Prediction Modelling for the Seasonal Variations

A MN and a uniform, and an IG distributions have been specified for the coefficients
and the variance for the seasonal model, respectively. The MN distributions are con-
structed using different hyper-parameters for the mean vector and covariance matrix
for the coefficients.

• The first type of hyper-parameters is based on zero mean vector and 1000000I6
covariance matrix for the coefficients; this is a non-informative prior distribution
that constructs NI-BMLR.

• The second type of hyper-parameters is based on the coefficients of the sea-
sonal MLR model for Cohoes city and their covariance matrix from subsection
2.6.5 Equation 2.8; this is an informative prior density that constructs the IN-
BMLRCohoes.
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Table 4.4: The Coefficients of MLR, NI-BMLR, IN-BMLRCohoes and NI-
BMLRUtica, for the Long-Term Component.

Parameter MLR NI-BMLR IN-BMLRCohoes IN-BMLRUtica
IN 0 0 0 0
TE -0.52 -0.52 -0.54 -0.52
WS 0.07 0.07 0.008 0.06
PR 0.37 0.37 0.35 0.37
TD 0.30 0.30 0.27 0.30
GW -0.33 -0.33 -0.39 -0.33

Table 4.5: MSE values for the Long-Term Component.
Model NI-BMLR IN-BMLRUticaCohoes NI-BMLRUtica
MSE 0.47 0.49 0.47

• The final prior is a non-informative prior which is an uniform distribution with
the maximum likelihood estimates (MLE) of the regression parameters for the
seasonal component for Utica city from subsection 2.7.7 Equation 2.13 as the
starting values for the simulation process using Gibbs sampling. This will pro-
duce the NI-BMLRUtica model. The results are shown in Table 4.6. Again,
because the means of the coefficients are almost identical for the MLR, NI-
BMLR, and NI-BMLRUtica, the MSE value is 0.64 for these models. However,
the result for the IN-BMLRCohoes model is different.

Table 4.6: The Coefficients of MLR, NI-BMLR, IN-BMLRCohoes, and NI-
BMLRUtica, for the Seasonal Variations.

Parameter MLR NI-BMLR IN-BMLRCohoes IN-BMLRUtica
IN 0 0 0 0
TE 0 0 0.04 0
WS 0.14 0.14 0.08 0.14
PR 0.39 0.39 0.43 0.39
TD 0 0 -0.03 0
GW -0.43 -0.43 -0.44 -0.43

Prediction Modelling for the Short-Term Component

The short-term component has been analysed using a manner that is similar to the
method above where the results of MLR from subsections 2.6.6 and 2.7.9 for Equations
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2.9 and 2.14 have been used to accomplish this analysis. The coefficients results are
shown in Table 4.7 and the results for the MSE are shown in Table 4.8. In Table 4.7,
except the third column, there is no difference between the results of the coefficients.
In Table 4.8, identical values for the MSE have been obtained for the NI-BMLR and
NI-BMLRUtica and different MSE value has been noticed for IN-BMLRCohoes where
this value is the smallest one, and this is the first time in our analysis we obtain better
results using Cohoes city data rather than Utica city data.

Table 4.7: The Coefficients of MLR, NI-BMLR, IN-BMLRCohoes, and NI-
BMLRUtica for the Short-Term Component.

Paramter MLR NI-BMLR IN-BMLRCohoes NI-BMLRUtica
IN 0 0 0 0
TE 0.05 0.05 0.01 0.05
WS 0.06 0.06 0.04 0.06
PR 0.42 0.42 0.42 0.42
TD 0.01 0.01 0.00 0.01
GW -0.20 -0.20 -0.29 -0.20

Table 4.8: MSE values for the Short-Term Component.
Model NI-BMLR IN-BMLRCohoes NI8-BMLRUtica
MSE 0.74 0.73 0.74

4.11.4 Contribution Percentages for the Decomposed Data

The contribution of the different scales of motions, which are embedded in a time
series, can be computed by utilising the results of the KZ filtering mechanism. The
output for this analysis are shown in Table 4.9. Firstly, for Bayesian analysis for the

Table 4.9: Results of the Variance and the Coefficient of Determination.
Variance R Squared

Long-Term Component 55.86 0.70
Seasonal-Term Component 4.36 0.35
Short-Term Component 26.29 0.23

long-term pattern, the proportion of the variance for the long-term component series
is multiplied by the value of the R-squared for this component, (55.86 × 0.70), and
the result is 39.57. Mathematically, the proportion of the water discharge variance
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for each component can be computed by dividing the variance of each component by
the variance of the original water discharge series (the water discharge series before
the decomposition process). Using the same procedure, the contributions of the other
components can be computed. While the seasonal component contributes with about
1.53 (4.36× 0.35), the contribution of the short-term component using the regression
analysis approach is 6.22 (26.29× 0.23).

4.12 Combined Bayesian Multiple Linear Regres-

sion (CBMLR) Model

Table 4.10 shows the results of the three posterior distributions that have been con-
structed by combining the three components, long, seasonal, and short, together. It is
clear that almost same results have been obtained by specifying the non-informative
and the informative prior distributions that are based on the MLR results for Cohoes
and Utica cities. For the Non-Informative Combined BMLR (NI-CBMLR) model,
which has been constructed by specifying a non-informative prior distribution, the
MSE has reduced to 0.43 compared to the MSE of the BMLR model that has been
built by specifying the non-informative prior distribution for the raw data, which was
0.56, as shown in Table 4.11. This result clearly indicates that the decomposition
technique has successfully improved the forecasting process of the water discharge for
Utica city.

Component NI-CBMLR IN-CBMLRCohoes NI-CBMLRUtica
Intercept 0.000859 0.000476 -0.00035
LT-Temperature -0.415 -0.413 -0.413
LT-Wind speed 0.044 0.047 0.047
LT-Precipitation 0.310 0.309 0.308
LT-Tide 0.213 0.213 0.213
LT-Ground -0.218 -0.219 -0.218
SE-Precipitation 0.092 0.097 0.097
SE-Groundwater -0.185 -0.184 -0.185
SH-Precipitation 0.198 0.204 0.204
SH-Ground-Water -0.168 -0.169 -0.167

Table 4.10: The Coefficients of NI-CBMLR, IN-CBMLRCohoes, and NI-
CBMLRUtica Models for Long-Term (LT), Seasonal-Term (SE), and Short-Term
(SH).
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Table 4.11: DIC Values for the Combined Models with Different Types of Priors.
Model NI-CBMLR IN-CBMLRCohoes NI-CBMLRUtica
MSE 0.43 0.45 0.43
DIC 6616.294 6619.684 6616.405

4.13 Bayesian Vector Auto Regressive (BVAR) Model

for Short-Term Component

Bayesian VAR model has been used to analyse the data of the short-term component.
This model can adequately represent data that has short-time periods. It has been
previously shown that the two variables of the precipitation and groundwater level
have significant relationships with the water discharge for the short-term component
using the correlation matrix. Therefore, the BVAR model has been built using these
three variables. Essentially, this model is just a multivariate model as three variables
are considered as dependent (response) variables.

The parameters of this model are the AR coefficients and the covariance matrix of
the model. For the priors of these two parameters, the multivariate normal distribu-
tion (MN) and Inverse-Wishart distribution (IW) have been specified. Practically, it
is easier to apply the precision matrix instead of the covariance matrix, in this case,
the Wishart distribution, W, will be used instead of the Inverse-Wishart. Different
hyper-parameters have been assigned to the coefficients of the BVAR model.

For the VAR model, which is expressed in Equation 4.9, if ut ∼ N(0,Σu), the
following multivariate normal distribution can be specified

ϕ|Σu ∼MN(ϕ0, Vϕ = V ⊗ Σu)

and
Σu ∼ IW (S, n).

In case that we consider the precision matrix rather than the variance matrix, we will
have

Σ−1u ∼ Wk(S
−1, n).

Based on the priors that have been assigned to the coefficients and the variance of
the model, the resulting posterior distribution is Normal-Inverse-Wishart distribution.

By imposing prior distributions on the VAR parameters, the BVAR can be used
successfully to overcome problems of over-fitting (over-parametrization) and collinear-
ity that appear when VAR models are applied [16]. For the purpose of fitting a BVAR
model, the Minnesota prior, which is a special case of the conditional Normal-Inverse-
Wishart distribution, has been used. Based on the Minnesota prior, we are able to
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Table 4.12: The Parameter Estimates for the Short-Term of the Precipitation (PR)
Using BVAR model.

PR
Parameter Estimate P Variable
AR11,1 0.84926 0.0001 PR(t-1)
AR11,2 0.01189 0.4791 WD(t-1)
AR11,3 -0.01098 0.8054 GW(t-1)
AR21,1 -0.10647 0.0001 PR(t-2)
AR21,2 0.16495 0.0001 WD(t-2)
AR21,3 -0.01172 0.8622 GW(t-2)
AR31,1 -0.13533 0.0001 PR(t-3)
AR31,2 -0.20655 0.0001 WD(t-3)
AR31,3 0.06508 0.1051 GW(t-3)

assign any value for the mean vector while two parameters control the covariance
matrix of the parameters of the VAR model. These two parameters are α and θ. The
first parameter, α, is the standard deviation of the parameter of interest. As the value
of this parameter increases, the BVAR of order p model becomes similar to a VAR of
order p model. The other parameter, which is θ, controls the relative tightness of the
prior variance for the lags in the equation of the required variable. The value of this
parameter is in the interval (0,1) and whenever this value approaches 1, the chosen
BVAR of order p model approaches a VAR of order p model [16, 64].

The mean vector is set up based on the coefficient estimates from the classical VAR
for the lagged variables for the targeted variable in its equation and the value zero
has been specified for all the other coefficients. With regard to the hyper-parameters
of the covariance matrix of the parameters, α and θ, the values 0.9 and 0.1 have been
selected. In addition to choose the values for these parameters, the covariance matrix
of the model (disturbance) terms needs to be estimated to compute the elements of
the covariance matrix of the parameters. The covariance matrix of the disturbance
terms is a diagonal matrix that is estimated using equation-by-equation AR models.
The results of this analysis for the three response variables, which are precipitation,
water discharge, and groundwater level, for the short-term component using BVAR
model are shown in Tables 4.12, 4.13, and 4.14, respectively. The P-values for the
significant coefficients have been highlighted in the these Tables.

Using the Random Walk Metropolis MCMC algorithm, the results of the posterior
distributions for the parameters of the BVAR are shown in the plots 4.3, 4.4, and 4.5.
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Table 4.13: The Parameter Estimates for the Short-Term Component of Water Dis-
charge (WD) Using BVAR model.

WD
Parameter Estimate P Variable
AR12,1 0.22612 0.0001 PR(t-1)
AR12,2 0.82271 0.0001 WD(t-1)
AR12,3 -0.0367 0.4185 GW(t-1)
AR22,1 -0.26464 0.0001 PR(t-2)
AR22,2 -0.14498 0.0001 WD(t-2)
AR22,3 0.06492 0.3446 GW(t-2)
AR32,1 0.10595 0.0001 PR(t-3)
AR32,2 0.0278 0.1102 WD(t-3)
AR32,3 -0.01976 0.6286 GW(t-3)

Table 4.14: The Parameter Estimates for the Short-Term Component of Groundwater
Using BVAR model.

GW
Parameter Estimate P Variable
AR13,1 -0.01272 0.0221 PR(t-1)
AR13,2 -0.05377 0.0001 WD(t-1)
AR13,3 1.49904 0.0001 GW(t-1)
AR23,1 0.0175 0.007 PR(t-2)
AR23,2 0.02406 0.0002 WD(t-2)
AR23,3 -0.59698 0.0001 GW(t-2)
AR33,1 -0.01101 0.025 PR(t-3)
AR33,2 0.00305 0.5351 WD(t-3)
AR33,3 0.04237 0.0147 GW(t-3)
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Figure 4.3: Posterior Distributions for the Parameters for the First Lag.

4.14 The Final Combined Bayesian model with BVAR

for the Short-Term Component

For the purpose of constructing the final model, the Bayesian analysis has been used
for analysing the combined model, and the results are shown in Table 4.15. Table 4.16
shows the results of the diagnostic statistics, which are DIC and MSE, and based on
the fact that the smallest DIC and MSE test statistics indicate the best fitting model,
the second model, is the best model. This model has been built using the current
variables for the long and seasonal component as well as the first three lags for the
variables of water discharge, precipitation, and groundwater level for the short-term
component. The DIC value for this model is 521.385. The second best model, which
has the DIC value 684.782, has been constructed using the current values of the long
and seasonal components and the first three lags of the variables of precipitation
and groundwater level. This would mean that the inclusion of a number of lagged
variables has improved the forecasting model based on the given diagnostic statistics.
Similar results can be noticed for the MSE values.

In a similar way, Bayesian analysis has been applied to the raw and the decom-
posed data for Cohoes and Poughkeepsie cities. For the raw data, the same three
kinds of priors that have been used to analyse the data of Utica city have been
also used. These prior distributions are: (1) a non-informative independent nor-
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Table 4.15: Results for Long-Term (LT), Seasonal-Term (SE), and Short-Term (SH)
Components for Utica City.

Variables LT Co. SE Co. Variables SH Co.
intercept 0.17 0 Lag1PR 0.114
TE 0.027 -0.0007 Lag1WD 0.483
WS 0.242 0.049 Lag1GW -0.188
PR 0.203 0.066 Lag2PR -0.212
TD 0.011 0.12 Lag2WD -0.11
GW -0.217 -0.176 Lag2GW 0.114

Lag3PR 0.065
Lag3WD 0.061
Lag3GW -0.045

Table 4.16: Model Diagnostic Checks For the Final Model with BVAR for the Short-
Term Component.

DIC MSE
Full model without Lags for the WD in the short-term Co. 684.782 0.244
Full model with Lags for the variables of the short-term Co. 521.385 0.102
Full model without lags for the short-term Co. 6593.116 0.33



Bayesian Inference for Water Discharge Modelling and Uncertainty Analysis 146

Figure 4.4: Posterior Distributions for the Parameters for the Second Lag.

mal prior distribution with mean zero and variance 1000000 for each parameter, i.e.
β ∼ N(0, 1000000I6), (2) an informative independent normal prior distribution with
mean and variance that are based on the results of the regression analysis for Utica
city, (3) a non-informative uniform distribution with constants for all the regression
coefficients and their variances and a non-informative gamma prior distribution for
the normal scale (variance) parameter of the model. The nature of the results for
Bayesian analysis for these two cities is relatively similar to the results for Utica city
in terms of: (1) the parameters estimates, where approximately the same regression
coefficients obtained using the first and third prior distributions and these coefficients
are, in turn, approximately similar to the classical MLR model’s coefficients. (2) The
DIC values for Cohoes city data for the two BMLR models constructed using the first
and third priors are 7130.62 and 7117, respectively. (3) Compared to the coefficients
resultant from using the first and third prior distributions, however, the parameters
estimates using the second prior distribution are slightly different. These parame-
ters estimates are -0.2946, 0.01, 0.2605, 0.1401, -0.4717 for temperature, wind speed,
precipitation, tide, and groundwater level, respectively, also the DIC value for this
model is 7165.738. For Poughkeepsies city, the coefficients are also approximately
similar to the coefficients of the classical MLR for the first and third priors. However,
the results of using the third prior are different, where the values are -0.3463, 0.03,
0.4274, 0.1596, -0.3204 for temperature, wind speed, precipitation, tide, and ground-
water level, respectively. The DIC values are 7661.340, 7690.768, and 7650.323 for
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Figure 4.5: Posterior Distributions for the Parameters for the Third Lag.

the three models.
For the decomposed data for Cohoes and Poughkeepsie cities, the above-mentioned

three prior distributions have been applied to each component, which are the long,
seasonal, and the short-term components. With regard to the coefficients, using the
first and third prior distributions, approximately the same parameters estimates have
been obtained, which are similar to the classical MLR model’s coefficients for the
three components. For Cohoes city for the long-term component using the second
prior, the coefficients are -0.51, -0.09, 0.32, 0.25, -0.45 for temperature, wind speed,
precipitation, tide, and groundwater level, respectively. For the short-term compo-
nent, the BVAR model has been also applied. For Cohoes and Poughkeepsie cities,
the final combined models are constructed using the BMLR model for the long and
seasonal components and BVAR model for the short-term component. The DIC val-
ues are 6376.183 and 5255.887 for Cohoes and Poughkeepsie cities, respectively. The
results are shown in Tables 4.17 and 4.18.

4.15 Results

To forecast a daily future value for water discharge, we have built different models.
These models can be summarised as follows:

1. A BMLR model has been constructed using the raw data where all the coeffi-
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Table 4.17: Results for Long-Term (LT), Seasonal-Term (SE), and Short-Term (SH)
Components for Poughkeepsie City.

Variables LT Co. SE Co. Variables SH Co.
intercept 0 0 Lag1PR 0.108
TE -0.442 0.06 Lag1WD 0.547
WS -0.007 0.015 Lag1GW 0.015
PR 0.353 0.089 Lag2PR -0.114
TD 0.143 0.030 Lag2WD -0.165
GW -0.334 0.011 Lag2GW 0.015

Lag3PR -0.03
Lag3WD 0.091
Lag3GW 0.013

Table 4.18: Results for Long-Term (LT), Seasonal-Term (SE), and Short-Term (SH)
Components for Cohoes City.

Variables LT Co. SE Co. Variables SH Co.
intercept 0 0 Lag1PR 0.153
TE -0.441 0.024 Lag1WD 0.457
WS -0.069 0.011 Lag1GW -0.043
PR 0.295 0.066 Lag2PR -0.154
TD 0.174 0.044 Lag2WD 0.109
GW -0.357 -0.165 Lag2GW 0.015

Lag3PR 0.01047
Lag3WD 0.06092
Lag3GW -0.13725
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cients are significant and the R-squared value is 0.43. That means 0.43 of the
variations are due to the considered covariates, which are temperature, wind
speed, precipitation, tide, and groundwater level.

2. In an attempt to improve this relatively weak relationship, the KZ filter is used
to decompose the data into long, seasonal, and short-term components. Based
on these components, a number of BMLR models have been fitted using different
prior distributions.

3. For the decomposed data, the BMLR models constructed by using informative
and non-informative prior distributions provide the R-squared values that are
shown in Table 4.19.

Table 4.19: R Squared Values for the Constructed Models.
Model IN-Combined-BMLRCohoes NI-Combined-BMLRUtica
R-Squared-Long 0.69 0.70
R-Squared-Seasonal 0.35 0.34
R-Squared-Short 0.24 0.23

4. Calculating the contribution percentages of the Long, Seasonal, and Short-Term
components for the BMLR models has revealed that the order of the contribu-
tion from the highest to the lowest in the data is assigned to the long, short,
and seasonal component, respectively.

5. By combining the three components to elicit the CBMLR model, the R squared
value becomes 0.56. Also, the significant coefficients are temperature, precipi-
tation, tide, and groundwater level for the long-term component; precipitation,
tide, and groundwater level for the seasonal data; precipitation and groundwater
level for the short-term component’s data.

6. With reference to the results of similarity, we have noticed that, although the
statistical distance (SD) between Utica and Cohoes is the lowest, the value of the
MSE was not the smallest for the raw data. Practically, we have discovered that
the reason for the high MSE for the raw data using the Cohoes parameters may
be attributed to the small values for the variances of the coefficients. When we
replaced them with relatively large values, for instance, 10 and 100, we obtained
results that are similar to the results of the MLE method. We also discovered
that the covariances between the coefficients have no influence on the results as
much as the variances, for example, we tried different values, small and large,
but the results did not change.
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However, for the decomposed data, the results were better. This would mean
that we are able to use the parameters of the regression models for Cohoes
city as hyper-parameters for the priors for Utica city in case that data are not
available for Utica city. These findings have been also noticed on the data of
Cohoes city when we used the parameters of the regression model for Utica city
as hyper-parameters for Cohoes city and also a simulated data. Therefore, to
use the results of the similarity analysis, we need to check the variances between
the coefficients and it will be suitable to use the results of the decomposed data
to specify hyper-parameters and also the raw data after checking the variances
for the parameters.

7. When the BVAR model is applied to the short-term component, better result
has been obtained for the final combined Bayesian model compared to the results
obtained using the combined BMLR. This is revealed by using the DIC and MSE
procedures.

8. Based on our analysis, it is not recommended to assign small values (near to
zero) as variances for the coefficients.

4.16 Conclusion

The provision of an accurate flood forecasting model is a vital task. All forecasts
include uncertainty and one of the most successful methods of dealing with this un-
certainty is the use of a structure that inherently considers this uncertainty. The
uncertainty in a hydrological forecast is principally associated with the meteorol-
ogy, specifically, what is related to the precipitation variable, model parameters, and
model’s structure.

Based on this, the structure of Bayesian methods is the optimal structure to
be used as the uncertainties are explicitly considered. The main elements in the
Bayesian analysis are the posterior and posterior predictive densities for a set of
variables of interest. The variables are the parameters of the model and the future
values. Applying the Bayesian analysis can lead to distributions either with known
or unknown kernels. Both types can be solved using a specific sampling technique
such as Gibbs sampling by generating a number of sampled data.

It is important to ensure that the results of the simulation process using MCMC
is converged. The most important feature in the Bayesian analysis is the ability of
obtaining credible intervals or HPD intervals, which can be computed directly (by
using the probability density function) or indirectly (by using generated data from
MCMC method). The predictive distribution can also be exploited to supply a risk-
based approach, i.e. to produce the guarantee that the variable of interest will be
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within a determined range of data in the future. The predictive distribution is of
particular interest as it is considered as the most useful tool to assess the constructed
model.

In this chapter we develop a methodology that takes into account the uncertainties
concerning the model’s parameters and structure and also the effect of the embedded
components in the time series considered. Similar results are obtained using the
MH-MCMC and MLE methods for the parameters of interest and the confidence
intervals for the raw data. By applying the Combined BMLR and BVAR models, the
DIC and MSE values have declined with a remarkable discrepancy compared to these
values of the raw data. For instance, the DIC values decline from 7445.291 for MLR
constructed using NI-BMLR for the raw data to 521.385 using BMLR for the long
and seasonal components and BVAR(3) model for the short-term component. Also,
for each predicted data, credible and HPD intervals are obtained. In addition, for
each parameter, a HPD interval is computed. It is also important to mention that
the similarity between the confidence and credible intervals results can be attributed
to the type of the prior distribution specified to the parameters. Based on the results
of the three cities, there is no significant impact of the similarity results on the
forecasting accuracy of water discharge values based on the DIC values. The result is
derived when an informative prior distribution with hyper-parameters related to the
MLR results for the cities that have the highest similarity measure is used.



Chapter 5

Hypothesis Testing For
Dissimilarity Analysis

Often, in time series analysis, it is required to examine whether the population means
for p×1 random vectors of variables for two subjects (multivariate time series datasets)
are equal. In this case, the null hypothesis is µ1 = µ2, where µ1 and µ2 are the mean
vectors for the variables for the two examined subjects. Also, examining whether
the population means of dissimilarity/distance for a number of subjects are equal is
an important topic [40, 62]. The null hypothesis for dissimilarity analysis is µ1 =
µ2, where µ1 and µ2 are the mean distances for the two subjects of interest. The
dissimilarity analysis is the corner stone for most of the data mining and pattern
recognition methods.

If the null hypothesis using, for example, mean or median of raw data is rejected,
it is often not possible to know which component is responsible for this rejection.
The determination of this component will, in turn, lead to know the variables and the
events that are responsible for this rejection. By filtering out the impact of undesirable
signals using a filtering technique, a number of issues in different analysis, such as
dissimilarity analysis and data mining techniques (clustering, classification, etc), can
be avoided. For example, to cluster a number of countries based on the effectiveness
of regulatory programs and initiatives in improving ozone air quality, it is crucial to
use an ozone air series that is devoid of any meteorological fluctuations. Filtering out
the influence of meteorological fluctuations on ozone concentrations using a filtering
technique will help to detect changes in ozone air quality due to changes in emissions.

In this chapter, we present a new method to detect the component(s) that in-
fluences the results of hypothesis testing that are performed using the raw data for
two cases. Firstly, we compare two mean vectors for variables for two multivari-
ate time series datasets using Hotelling T-Squared test. Secondly, we compare two
mean distances (dissimilarities) using the one way Analysis of Variance (ANOVA)
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and Kruskal Wallis tests for two multivariate time series datasets. In the context of
multivariate time series data mining, the essential problem is how to represent the
data of a time series [40]. One of the most common methods is converting the time
series to another domain for dimensionality reduction. Covariance matrix is an ex-
ample for this converting process [34]. Based on this, covariance matrices are used
to compute the distance between two multivariate time series. For the raw and the
decomposed data, the distance between two covariance matrices are computed using
a number of Euclidean and Non-Euclidean metrics.

Sometimes, for reasons such as wars or natural disasters, it is not feasible to
provide a forecasting model for a specific city. So, we examine the feasibility of using
a forecasting model for one city to forecast future values for another city. However,
to be able to use this option, we need to check whether the data of cities of interest
are similar. Based on this, some of the hypothesis testing findings can be used to
make the decision of similarity. In particular, the hypothesis testing results that are
related to the covariance matrices structured by using the independent variables for a
regression model are used. To support the claim of proximity between the data of the
cities, some parameter-based statistics can be used. For example, the Mean Square
Error, MSE, which is computed for a regression model constructed using the same
independent variables that are used to build the covariance matrices, can be utilised.
Also, to ensure that the data for the two cities are similar, two samples T-Test has
been used to compare means for each variable for the two cities of interest. The
questions that are required to be answered are the following:

• Does hypothesis testing for comparing mean vectors for variables using the raw
data convey the full picture about the differences between the studied groups?
Equivalently, it can be rewritten as the following: Is there any hidden informa-
tion about two multivariate time series datasets and has not been captured by
comparing the mean vectors for the variables or mean distances using the raw
data?

• Could applying hypothesis testing for the data for the three components show
different results to what has been obtained using the raw data?

• Are we able to determine the component(s) and then the variables that are
responsible for the differences (if they exist) if testing the raw data reveals
some differences between the considered groups?

• If the effect of a special group of variables, such as hydrological variables, is
ignored, could the results of hypothesis testing change?

This chapter is organised as follows. Section 5.1 provides a brief description of the
decomposed data, comparing mean vectors for variables, and dissimilarity analysis.
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Section 5.2 shows how to examine whether two mean vectors for variables for two
subjects are equal using two samples Hotelling T-Squared test. Section 5.3 introduces
a brief overview of a number of common types of distance measures for Univariate and
Multivariate time series. Section 5.4 presents a brief overview of hypotheses testing.
Section 5.5 displays the methodology for comparing two mean vectors for the variables
for two subjects. This section is divided into two subsections. Subsection 5.5.1
explains the two samples Hotelling T-Squared for the raw and the three components’
data. Subsection 5.5.2 considers the case when the impact of the responsible data,
which is the hydrological data, is removed. The hydrological data is represented by
the variables of the water discharge and groundwater level.
Section 5.6 is also subdivided into two subsections. Subsection 5.6.1 applies a number
of Euclidean and Non-Euclidean metrics to the covariance matrices for the raw and
the decomposed data to examine the similarity between two subjects. The second
subsection, 5.6.2, seeks to assess the impact of removing the hydrological data on the
dissimilarity results. In Section 5.7 a comparison between the distance measures is
performed.

So far we have dealt with the dissimilarity analysis using time domain’s data
and methods. As long as our data is time series data, it is necessary to examine
the dissimilarity between the subjects using frequency domain data and methods.
To examine the dissimilarity based on the frequency domain’s data, we present three
new developed dissimilarity measures and their applications to a group of multivariate
time series datasets. These three dissimilarity measures are covered in Section 5.8. In
the first subsection, 5.8.1, we show how to construct a Power Spectral Density (PSDE)
matrix and also how to apply the existing Euclidean and Non-Euclidean metrics to
pairs of these matrices, and using this as a measure of similarity of the matrices in
the frequency domain. In the second subsection, 5.8.2, we use the Eigenvalues for this
matrix, PSDE matrix, for the raw data as a dissimilarity measure using the Euclidean
distance. In the third subsection, 5.8.3, we discuss how to use the XTX matrix for
the Periodograms of the variables for the raw data as a dissimilarity measure also in
the frequency domain. Only the raw data has been used to examine the performance
of these new developed dissimilarity measures. A discussion of the results obtained is
presented in Section 5.9. Finally, Section 5.10 presents the conclusion of this chapter.

5.1 The Decomposed Data, Comparing Mean Vari-

ables, and Dissimilarity Analysis

In univariate and multivariate time series analysis, separating different scales of mo-
tions, which is known as the decomposition or filtering process, is often a pivotal
technique that is required to be applied in the process of building a time series model
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[121, 36]. Although the decomposed data has confirmed its ability to provide better
results in the modelling process than the raw data in terms of forecasting accuracy
[101, 100], no study, as far as we know, has attempted to shed a light on its use
in another area, such as hypothesis testing for comparing means, similarity analysis,
data mining, and machine learning algorithms. In this chapter we extend the use of
the decomposed data to be included in two of the aforementioned applications, which
are the hypothesis testing and the dissimilarity analysis.

Typically, the first step in the analysis of multivariate datasets is computing the
mean vector and the covariance matrix. Both of these statistics, mean vector and
covariance matrix, can be exploited to study the relationships between two subjects
(multivariate time series datasets) [61]. The most common test to perform this com-
parison is the two samples Hotelling T-Squared test. This test is typically applied
based on the mean vectors for the variables for two subjects [46].

On the other hand, the covariance matrix, which contains the variances of the
considered variables along the main diagonal and the covariances between each pair of
variables in the off-diagonal entries, can also be used to do a comparison to investigate
the dissimilarity of datasets between two or more subjects. There is a growing body
of literature that recognises the importance of the statistical covariance analysis,
[5], in similarity-based techniques in different areas such as diffusion tensor imaging
[120, 34] and longitudinal (panel) data [34]. The covariance matrix for a multivariate
probability distribution is always a Positive Semi-Definite (PSD) matrix [34, 5]. This
kind of matrices can also be seen in different areas, for example, many applications
in the computer vision include features that can be represented using this matrix.

According to Dryden et al. (2009), the natural space for the covariance matrix is
a Riemannian space [34]. Based on this, it is more suitable to use a Non-Euclidean
metric rather than a Euclidean metric to calculate the distance. Additionally, since
time series data is a special case of longitudinal data [53], using a Riemannian metric
is a more suitable choice to compute the dissimilarity magnitude between two mul-
tivariate time series datasets than the Euclidean metrics. By applying hypothesis
testing, we can use the distance between two covariance matrices to deduce whether
the datasets for two subjects are similar. Different Euclidean and Non-Euclidean
metrics have been used to assess whether they provide the same decision for the null
hypothesis. In case that the main analysis is clustering or classifying a number of mul-
tivariate time series datasets, the performance of each Euclidean and Non-Euclidean
metric can be assessed.

The distance between time series datasets is a fundamental subject in several
fields, such as meteorology, business, economics, finance, medicine, hydrology, as-
tronomy, seismicity, and many others [113, 17]. In fact, the results of similarity or
dissimilarity are also necessary to apply most of the data mining techniques, which
is an increasingly important area in applied statistics [26, 95]. As a result, a variety
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of methods have been proposed to handle the vast amount of information that is
available on the web. For example, in meteorology we may be interested in cluster-
ing or classifying a number of countries based on temperature time series data. In
economics, it is required to classify or discriminate some countries depending upon
some time series indicators, such as unemployment or inflation rates. Therefore, an
increasing interest towards similarity and dissimilarity measures for comparing time
series data has been noticed [40]. In addition, this increase is also attributed to the
advances in the computers and numerical algorithms [113].

The topic of identifying the similarities and dissimilarities between time series data
has been specifically studied in the clustering, classification, and discriminant analyses
literature [68, 95, 17]. Moreover, in multivariate time series analysis, specifically in
economics and environmental studies, often a large number of time series datasets
needs to be analysed. This, in turn, means large memory space and long time are
required to process them. In some data mining and machine learning techniques, such
as similarity analysis, classification, and clustering, the working data is not necessarily
the raw data. In many cases, it can be replaced with another data form, for example,
covariance and correlation matrices. This process of replacement has been already
extensively applied in many applications [40].

5.2 Two Samples Hotelling T-Squared Test

Let R be a set of N subjects. For each subject, p outcome variables X..1, . . . , X..p at
different times are measured. The sequence for the subject i at time j can be written
as the following:

xij. =


xij1
xij2

...
xijp


where i = 1, 2, . . . N , j = 1, 2, . . . , ti, and k = 1, 2, . . . , p.

The null and alternative hypothesis for the Hotelling T-Squared test are:

H0 : µ1 = µ2

H1 : µ1 6= µ2

where µ1 = (µ11, µ12, . . . , µ1p) is a p-dimensional vector, where µ11, µ12, . . . , µ1p are the
means for the variables for the first subject; µ2 = (µ21, µ22, . . . , µ2p) is a p-dimensional
vector, where µ21, µ22, . . . , µ2p are the means for the variables for the second subject.
The null and alternative hypotheses can also be written in a vector form, for example,
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the null hypothesis can be replaced with:

H0 :


µ11

µ12
...
µ1p

 =


µ21

µ22
...
µ2p

 .

The formula for the two samples Hotelling T-Squared test is defined as the fol-
lowing:

T 2 = (x̄1 − x̄2)
′
{
SP (

1

t1
+

1

t2
)

}−1
(x̄1 − x̄2) (5.1)

where x̄1 is the sample mean vector for the first subject and x̄2 is the sample mean
vector for the second subject, the dimension for these vectors is p× 1. Also, SP is a
pooled covariance matrix, which can be defined as follows:

Sp =
(t1 − 1)Sx1 + (t2 − 1)Sx2

(t1 − 1) + (t2 − 1)

where Sx1 and Sx2 are the covariance matrices for the two subjects of interest, t1 and
t2 are the samples sizes for the two subjects.
However, to account for the effect of the serial dependency (autocorrelation) as the
data here is time series data, two solutions are common. The first solution is carried
out by calculating the Hotelling T squared value using the residuals rather than the
raw data. These residuals are obtained using one of the time series models, such as
ARMA models. The second solution is by reconstructing the covariance matrix using
Standard Deviation and Correlation matrices, which has been used here, for more
information see [106, 76, 32]. In this case, the T-squared value can be written as
follows:

T 2 = (x̄1 − x̄2)
′§−1(x̄1 − x̄2) (5.2)

where §−1 is the sample covariance matrix that is expressed using the standard devia-
tion and first-Order Autocorrelation matrix. Moreover, if t1 and t2 are large enough,
the value of T 2 will have a chi-squared distribution with p degrees of freedom.

5.3 Types of Distance Measures based on the se-

ries number

Distance measures are split into two kinds based on the number of the considered
series. These types can be summarised as follows.
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5.3.1 Distance Measures for Univariate Time Series

There are many similarity, dissimilarity, and distance measures specifically proposed
to deal with univariate time series datasets. For example:

• Piccolo (1990) introduced a metric for the ARIMA models as the Euclidean
distance between the parameters of the ARIMA models [17, 26]. Let TS1 and
TS2 be two time series; πj,x and πj,y be two parameter vectors for the two time
series. This metric can be written as:

dPIC(TS1, TS2) =

√√√√ n∑
j=1

(πj,x − πj,y)2.

• Galeano and Peña (2000) [17] suggested the Sample Autocorrelation function
(SACF)-based dissimilarity metric, which can be defined as:

dSACF (TS1, TS2) =
√

( ˆρTS1 − ˆρTS2)
′Ω( ˆρTS1 − ˆρTS2)

where ˆρTS1 and ˆρTS2 are two SACF vectors for a number of lags, and Ω is the
weight matrix. If Ω equals to identity matrix, then the resulting formula is
simply the Euclidean distance. Also, when Ω is the inverse of the variance-
covariance matrix between the two SACF vectors, the resulting formula is the
Mahalanobis distance, which is

dMAH(TS1, TS2) =
√

( ˆρTS1 − ˆρTS2)
′S−1( ˆρTS1 − ˆρTS2).

• The Sample Partial Autocorrelation, SPACF, and Inverse Sample Autocorrela-
tion Function, ISACF, can also be used as a dissimilarity measure between two
time series.

• Caiado et al. (2006) proposed the periodogram-based dissimilarity metric. This
metric uses the Euclidean distance for the periodograms for the two time series
of interest as a dissimilarity measure [17]. This metric can be defined as:

dP (TS1, TS2) =

√√√√ n/2∑
j=1

[
PTS1(ωj)− PTS2(ωj)]

where PTS1(ωj) and PTS2(ωj) are the periodograms that have been calculated
using the Fourier Transform for n/2 frequencies, where ωj denotes the frequency.
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5.3.2 Distance Measures for Multivariate Time Series

Multivariate time series (MTS) datasets can be found in different fields, such as fi-
nance, meteorology and hydrology. Examining the similarity between Multivariate
time series datasets has been widely considered [113, 40]. Each series possess a num-
ber of characteristics in time and frequency domains and they are often used to build
distance measures. Different output can be obtained to represent the distance (dis-
similarities) between two matrices. A single value, a vector, and a matrix can be
obtained based on the used data and the distance measure. Calculating pairwise
distances between the rows of two design matrices returns a distance matrix. The
design (data) matrix is a matrix in which each row represents an individual object
and each column represents the value for this object with the corresponding variable.
Fundamentally, the distance matrix is used in data minings or pattern recognition
algorithms, such as clustering and classification. To measure the distance between
two Positive Semi-Definite matrices (PSD), by using, for example, the Euclidean or
Mahalanobis measures, a single value is returned. However, the Euclidean distance
suffers from many defects on PSD matrices [5].

Recently, researchers have shown an increased interest in the use of Non-Euclidean
metrics to study some data minings techniques such as clustering and classification
[68]. This kind of metrics takes into consideration the Non-Euclidean nature for
the space for positive semi-definite symmetric matrices [107]. Covariance matrix is
one of the most important and used structures in the applications of Non-Euclidean
metrics[34, 5]. Using Non-Euclidean metrics has confirmed its ability to provide
better results in a number of analyses, such as cluster and classification, specifically
in diffusion tensor imaging [34] than Euclidean-based metrics [68].
In multivariate time series analysis where often large datasets need to be analysed,
it will be practically more suitable to use any shortened form of data instead of the
raw data [40]. In light of this, using a sample of covariance matrices as the data to be
analysed would be a reasonable choice. Below there is a number of distance measures
particularly used with the PSD matrices [107, 34], for example, the covariance matrix
in the time domain and the power spectral density matrix in the frequency domain.

• The Euclidean Distance between two covariance matrices, S1 and S2, can be
written as:

DEU(S1, S2) =‖ S1 − S2 ‖=
√
trace(S1 − S2)T (S1 − S2) (5.3)

where ‖ Y ‖=
√
trace(Y TY ) is the Euclidean distance, which is also known as

the Frobenius norm.

• The logarithm Euclidean distance, which is proposed by Arsigny et al. (2007),
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is defined as follows:

DLE(S1, S2) =‖ Log(S1)− Log(S2) ‖ (5.4)

where the Logarithm of a covariance matrix S can be obtained using the spectral
decomposition form for a matrix. The spectral decomposition form for any
PSD matrix is defined as U ∧ UT , where U is an orthogonal matrix composed
of the eigenvectors for the matrix S, ∧ is a diagonal matrix composed of the
eigenvalues for the matrix S [5]. In this case the log for the matrix S, log
S, is U(log∧)UT . Using the spectral decomposition form is also common for
computing the exponential for a PSD matrix.

• The Riemannian metric, which is another logarithm-based distance for any PSD
matrix, can be written as follows:

DRE(S1, S2) =‖ log(S
−1/2
1 S2S

−1/2
1 ) ‖ . (5.5)

• The RiemannianLe metric, [33] which is Riemannian metric for the multiplica-
tion of each covariance matrix by its transpose, can be written as follows:

DRELE(S1, S2) =
1

2
‖ log(M−1/2KM−1/2) ‖ (5.6)

where M = S1S
T
1 , K = S2S

T
2 .

• The Cholesky distance, which can be computed using the factorization for
the covariance matrix using the Cholesky decomposition, where S = LLT ,
L = chol(S) is a lower triangular matrix with positive diagonal entries, can
be written as:

DCH(S1, S2) = ||chol(S1)− chol(S2)||. (5.7)

• Another type of decomposition that can be used when the considered matrix is
PSD matrix is the square root where S1/2 = U ∧1/2 UT , so, the Root Euclidean
distance is defined as follows:

DRE(S1, S2) =‖ S1/2
1 − S1/2

2 ‖ . (5.8)

• For two covariance matrices S1 and S2 with dimension k×k, the Non-Euclidean
size and shape metric, which is known as Procrustes size-and-shape, between
them can be defined as:

DPR(S1, S2) = inf
R∈O(k)

‖ L1 − L2R ‖ (5.9)
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where Li is a decomposition form for a covariance matrix Si such that Si = LiL
T
i ,

i = 1, 2. The decomposition form can be either Cholesky where Li is a lower
triangular matrix with positive diagonal entries, that means Li = chol(Si) or
the matrix square root where L = S1/2 = U ∧1/2 UT , S here is represented by
the spectral decomposition form where S = U ∧ UT .

• Full Procrustes Shape metric can be written as follows:

DPRSH(S1, S2) = inf
R∈O(k),V≥0

‖ L1

||L1||
− V L2R ‖ (5.10)

where S1 = (L1R)(L1R)T for any R ∈ O(k), R an orthogonal matrix [34].

• Power Euclidean metric can be written as follows:

DPO(S1, S2) =
1

α
‖ Sα1 − Sα2 ‖ . (5.11)

DPOS(S1, S2) =‖ S1/2
1 − S1/2

2 ‖ . (5.12)

5.4 Hypothesis Testing

In our research, hypothesis testing is the required analysis to obtain a decision
about(1) comparing mean vectors for variables for the two subjects of interest and (2)
comparing mean distances (dissimilarities) for a number of subjects using covariance
matrices. For the first case, the null hypothesis claims that two mean vectors for
variables for two subjects are equal as mentioned in section 5.2. This hypothesis is
tested using the Hotelling T-Squared test. Similarly, for the second case, the null
hypothesis claims that the mean distances for a number of subjects (multivariate
datasets) are equal. This hypothesis is tested using either one way ANOVA method,
which is used when the data are normally distributed, or the Kruskal Wallis test,
which is used when the data are not normally distributed. Therefore, the first step
needs to be accomplished is to check whether the data are normally distributed. The
null and the alternative hypotheses will be:
H0: Distance data are normally distributed.
H1: Distance data are not normally distributed, respectively.
Moreover, the null hypothesis for the one way ANOVA test is:
H0: Mean distances for all groups are equal, this can be written as
µ1 = µ2 = µ3,
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and the alternative hypothesis will be
H1: At least one group has a different mean.
However, if the studied data are not normally distributed, the common alternative
test is the Kruskal Wallis.
The null hypothesis for this test is:
H0: All the median distances are equal, and the alternative hypothesis is:
H1: At least one median distance is different.

5.5 Methodology for Comparing Two Mean Vec-

tors for Two Subjects

5.5.1 Comparing Two Mean Vectors for Two Cities

In this study, daily recorded measurements for the period between 2005 and 2013
for the variables of temperature, precipitation, wind speed, tide, groundwater level,
and water discharge are collected. The considered cities here are Cohoes, Utica, and
Poughkeepsie, which are located in New York state, US. The rivers are the Mohawk
and Hudson, while the former passes through Cohoes and Utica cities, the latter
passes through Poughkeepsie city. The raw data for all the cities and all variables
have been decomposed to obtain long, seasonal, and short-term components as shown
in chapter 2 Sections 2.6, 2.7, and 2.8. As the Hotelling T-Squared test deals with
two subjects (two cities) each time, the analysed pairs of cities are: Cohoes and Utica
(cu), Cohoes and Poughkeepsie (cp), and Utica and Poughkeepsie (up). The software
used in this chapter are SAS (9.4), Minitab(18), Matlab (7.8), R program (3.4.0), and
Excel 2013. The findings can be summarised as follows:

1. For the raw data, the analysed cities pairs are shown in Table 5.1. According
to the P-values of Hotelling T-Squared test, three decisions, which are Not
Reject, Not Reject, and Reject, have been taken for the pairs cu, cp, and up,
respectively. Based on these results, the datasets for the two pairs cu and
cp have been generated from similar populations (distributions). As we have
different cities, we are interested to know if the decisions taken for the null
hypothesis are consistent with the geographical distances, in terms of the more
closer, the more similar, for each pair of cities. The geographical distance
between the two cities for the pairs cu, cp, is short and perhaps this is one
of the reasons that lead to the result of Not Rejecting the null hypotheses.
Similarly, the decision of Rejecting the null hypothesis for the pair (up) may
be attributed to the geographical distance, as this pair has the longest distance
compared to the other pairs, and also different rivers passes through these two



163 Methodology for Comparing Two Mean Vectors for Two Subjects

cities, Utica and Poughkeepsie.

The same test has been carried out to the datasets for the long, seasonal, and
short-term components to gain more insight about what will be resulted if we
apply the Hotelling T-Squared test for the data for the three pairs given. This
step, in particular, will help us to know if the datasets for the three components
for the two pairs cu and cp are originality not dissimilar, which led to not reject
the null hypothesis, or perhaps there is a difference for at least one component
and has not been captured by testing the raw data. Also, for the pair up, we will
be able to know which component(s) is responsible for the differences, which
led to the decision of not rejecting the null hypothesis.

The Pairs of Cities T-Squared P-Values GD Decision
cu 4.253 0.642 88 mile Not Reject
cp 7.199 0.302 99 mile Not Reject
up 14.659 0.023 170 mile Reject

Table 5.1: The T-Squared and P-Values for the Raw Data.

2. For the Long-Term Component, the results are shown in Table 5.2. Three “Not
Reject” decisions have been made based on the P-values for the pairs cu, cp,
and up, respectively. This would suggest that the long-term component for the
three cities has the same pattern for the data for the period 2005 to 2013. This
result is consistent with the results of the raw data for the first two pairs, but
for the pair up, the result is contradictory.

The Pairs of Cities T-Squared P-Values Geo Decision
cu 3.788 0.705 88 mile Not Reject
cp 1.936 0.925 99 mile Not Reject
up 6.946 0.325 170 mile Not Reject

Table 5.2: The T-Squared and P-Values for the Long-Term Component.

3. For the Seasonal data, Table 5.3 shows the results for the Hoteling T-Squared
test and the P-values. Based on the P-values, the decisions made for the seasonal
fluctuations are opposite to findings produced using the raw data for the pair
cp. That means there is a significant difference between the seasonal data, but
this difference has not been captured when the raw data is investigated. The
low contribution percentages for the seasonal components for the considered
cities, Cohoes and Poughkeepsie, which are shown in Sections 2.6.7 and 2.8.7,
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might be the reason that this difference has not been captured by analysing
the raw data. However, for the pairs cu and up, the analysis for the seasonal
components has provided similar findings to that produced using the raw data.

The Pairs of Cities T-Squared P-Values Geo Decision
cu 3.253 0.51 88 mile Not Reject
cp 31.154 0.01 99 mile Reject
up 16.592 0.03 170 mile Reject

Table 5.3: The T-Squared and P-Values for the Seasonal Variations.

4. For the Short-Term Component, one decision, which is the null hypothesis can
not be rejected, has been made for the data for the short-term components for
the two pairs cu and cp. With regard to the results of this component for the
pair up, the null hypothesis has been rejected. Table 5.4 displays the results for
this component.

The Pairs of Cities T Squared P-Values Geo Decision
cu 7.810 0.252 88 mile Not Reject
cp 8.562 0.199 99 mile Not Reject
up 18.582 0.03 170 mile Reject

Table 5.4: The T-Squared and P-Values for the Short-Term Component.

The hypothesis testing results for the data of the raw and the three components are
shown in Table 5.5. Examining the results in Table 5.5 reveals that the components

Type of Data cu cp up
Raw Not Reject Not Reject Reject
Long Not Reject Not Reject Not Reject
Seasonal Not Reject Reject Reject
Short Not Reject Not Reject Reject

Table 5.5: Results for the Null Hypotheses.

that lead to not reject the null hypothesis for the pair cu are the three components
and for the pair cp are the long and short-term components. Even though the raw
data for the pair Cohoes and Poughkeepsie (cp) has similar pattern based on the
Hoteling T-Squared test for the raw data, the seasonal variations for this pair has a
different behaviour. For the pair (up), we can say that the impact of the seasonal and
the short-term components is more than the impact of the long-term component.
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Having known that the seasonal and the short-term components are responsible
for the rejection of the null hypothesis for the pair up, we examined the variables for
the seasonal and short-term components for these two cities. Two statistics, which
are the mean and the variance for each variable, which are temperature, wind speed,
precipitation, water discharge, tide, and groundwater level, have been computed and
examined. The means and variances for the water discharge and groundwater level,
which represent the hydrological effect, for these two cities, Utica and Poughkeepsie,
are relatively different. This result has been supported by applying a two sample
T-test for these two variables. A significant difference has been detected based on the
P-values for the two variables WD and GW.

5.5.2 Comparing Two Mean Vectors Without the Hydrolog-
ical Effect

In this subsection we examine the situation when the effect of the hydrological data
is removed. The previous approach will be carried out, the difference is the mean
vectors tested will include four variables, temperature, precipitation, wind speed, and
tide. That means the data of water discharge and groundwater level is no longer
included in the analysis. The results are shown as follows.

1. For the Raw Data, three not rejecting decisions for the null hypothesis have
been made based on the P-values. Table 5.6 shows these decisions.

The Pairs of Cities T-Squared P-Values Geo Decision
cu 5.887 0.207 88 mile Not Reject
cp 2.266 0.686 99 mile Not Reject
up 9.232 0.18 170 mile Not Reject

Table 5.6: The T-Squared and P-Values for the Raw Data Without the Hydrological
Effect.

To check the impact of the decomposition of time series, we apply the same test
to the data of the long, seasonal, and short-term component.

2. For the Long-Term Data, the values of the Hotelling T-Squared test and P-
values in Table 5.7 lead to not reject the null hypotheses. This result is similar
to the preceding finding when the influence of the hydrological data has been
considered. This would mean that the means vectors for the data of the long-
term component for each pair of cities are not affected by the data of water
discharge and groundwater level.
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The Pairs of Cities T-Squared P-Values Geo Decision
cu 3.136 0.535 88 mile Not Reject
cp 3.514 0.475 99 mile Not Reject
up 3.243 0.518 170 mile Not Reject

Table 5.7: The T-Squared and P-Values for the Long Term Component Without the
Hydrological Effect.

3. For the Seasonal Variations, there is an obvious response to the step of removing
the hydrological data. While we have rejected the null hypotheses in the case
of the inclusion of the hydrological data, we are not able to reject it when we
remove this influence. This could be an evident reason to say that the differences
between the mean vectors for the two pairs cp and up can be attributed to the
data of the water discharge and groundwater level.

The Pairs of Cities T-Squared P-Values Geo Decision
cu 2.6601 0.6162 88 mile Not Reject
cp 2.878 0.5784 99 mile Not Reject
up 1.9642 0.7424 170 mile Not Reject

Table 5.8: The T-Squared and P-Values for the Seasonal Variations Without the
Hydrological Effect.

4. For the Short-Term component, one decision has been taken, which is the null
hypotheses have not been rejected, for the data of this component as shown in
Table 5.9.

The Pairs of Cities T Squared P-value Geo Decision
cu 3.116 0.5386 88 mile Not Reject
cp 6.773 0.1484 99 mile Not Reject
up 3.642 0.4566 170 mile Not Reject

Table 5.9: The T-Squared and P-Values for the Short-Term Component Without the
Hydrological Effect.

If we examine the results for this test in Table 5.10, we can see that the findings
for the raw and the three components data, for the pairs cu, cp, and up have one
decision, which is the null hypothesis is not rejected. Based on this, the reason for
the variations between the data of the three cities was because of the hydrological
data. When this data has been removed, the null hypotheses for the data for the raw
and the three components have not been rejected.
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Data cu cp up
Raw Not Reject Not Reject Not Reject
Long Not Reject Not Reject Not Reject
Sesaonal Not Reject Not Reject Not Reject
Short Not Reject Not Reject Not Reject

Table 5.10: Results for the Null Hypotheses Without the Hydrological Effect.

5.6 Methodology for Dissimilarity Analysis

5.6.1 Dissimilarity Analysis for the Raw and the Decom-
posed Data

For each city, nine covariance matrices have been computed where each matrix has
been calculated using the daily data for each year for the period 2005-2013. In our
research, we have chosen eight distance measures to compute the statistical distance
(SD). These measures are: Euclidean, Procrustes, Riemannian, Procrustes Shape,
Cholesky, Power, Log Euclidean, and RiemannianLe. Except the Euclidean distance,
all the other distance measures are Non-Euclidean metrics. The SD here is computed
between two covariance matrices associated with the considered pair of cities. That
means, for each pair and for each distance measure, 9 distance values have been
computed as we have daily data for nine years.

The first step in the analysis is to check the normality for the distance values
for all the distance measures used. Figure 5.1 shows the plot of normality for the
Riemannian distance values. Based on the significance level, which is 0.05, the null
hypothesis is not rejected and the data are normally distributed, where the P-value
is 0.319. Having checked that the distribution for these distances is the normal
distribution, the one way ANOVA test has been applied for all distance measures.
Also, for each distance measure for the raw data, as each pair contains 9 distance
values, the total distance values to be tested using the one way ANOVA test are 27
values.

According to the P-values, the decision of rejecting the null hypothesis, which is
µ1 = µ2 = µ3, has been taken, where all the P-values are less than 0.05 as shown
in Table 5.11. This means that there is at least one pair has a mean distance that
is different from the other. In other words, there are significant differences between
the considered pairs of cities based on the available time series datasets. The reason
for this result is perhaps attributable to the data of the pair up, where as it has
been previously mentioned in section 5.5.1 that the data for the pair up has not been
generated from similar populations. We have applied Tukey test, which depends on
the differences of means to determine whether the mean difference between each two
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Figure 5.1: Probability Plot for the Riemannian Distance Measure for the Raw Data
for the Pair cp.

pairs is significant, the two pairs cu and cp have been classified in one group, and the
pair up in a different group.
We have separately checked the statistics of mean and variance for each variable
for the raw data for the pairs cu and cp. There are no obvious differences between
these statistics for all the variables for Cohoes and Utica cities. This result has been
supported using the two samples T-test for all the variables for the same two cities.
There are no significant differences between the data of these two cities.

In Figure 5.2, we can visualize these differences by examining the Box plots for
the three pairs of cities for the Log Euclidean distance. The highest median distance
in this figure is only 1.55 for the pair cp. Also, for this pair of cities, the interquartile
range, which is the width of the box plot for this group, is 0.54. The pair cu has the
lowest median, which is approximately 0.82, and also the lowest interquartile range,
which is about 0.26. The median for the pair up is 1.48, and the highest interquartile
range in this plot has been noticed for this pair, up.

To find the component(s) that has led to this result, the same steps above for
dissimilarity analysis have been repeated but by using the decomposed data.
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Distance Measure P-Values
Procrustes 0.001
Riemannian 0.001
ProcrustesShape 0.005
Cholesky 0.001
Power 0.001
Euclidean 0.009
LogEuclidean 0.004
RiemannianLe 0.001

Table 5.11: The P-Values for the One Way ANOVA test for the Distance Measures
for the Raw Data.

Dissimilarity Analysis for the Long-Term Component

• For nine years for the period between 2005 and 2013 and for each distance mea-
sure, 27 covariance matrices have been computed for the long-term component
series for the three pairs of cities. For example, the covariance matrix for the
long-term component data for Utica city for year 2005 can be written as follows:

0.99 0.07 0.32 −0.65 −0.11 0.59
0.07 1.00 0.30 0.33 0.23 −0.07
0.32 0.30 1.00 0.21 −0.36 0.41
−0.65 0.33 0.21 0.99 0.44 −0.64
−0.11 0.23 −0.36 0.44 1.00 −0.67
0.59 −0.07 0.41 −0.64 −0.67 0.99


The dimension of this array is 6× 6 for the variables temperature, wind speed,
precipitation, water discharge, tide, and groundwater level, respectively.

• In order to examine the amount of dissimilarity between each pair of cities,
the eight distance measures have been applied. Calculating the SD provides a
set of distance values for the considered nine years for each pair. For example,
the Log-Euclidean distance values for the long-term component for each pair of
cities are shown in Table 5.12.

• In the context of hypothesis testing, since there is one categorical variable,
which is the pairs of cities, and the data are normally distributed, the one way
ANOVA test has been used.

Thus, based on the P-values, which are less than 0.05 for all the distance measures
used, the results for the long-term component are statistically significant by testing
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Figure 5.2: The Box Plots for the Log-Euclidean Distance Measure for the Raw Data.

the mean distances for all pairs given. For the long-term component for Cohoes and
Utica cities, we have examined the mean and variance for each variable and applied
two samples T-test for each variable. No statistically significant difference has been
noticed between the data of Cohoes and Utica.

Dissimilarity Analysis for the Seasonal Fluctuations

Testing the normality assumption for the distance measures values for the seasonal
fluctuations has led to reject the null hypothesis that claims the distance measure
values for the seasonal data have a normal distribution for the three pairs. For
example, Figure 5.3 shows the probability plot for the values of the power Euclidean
distance measure for the seasonal variations for the pair cu. Based on the P-values,
the decision of not rejecting the null hypothesis has been taken. In this case, we are
not able to use the one way ANOVA test. As an alternative, the Kruskal Wallis test
has been applied. Based on the P-values for this test the decision of not rejecting
the null hypothesis has been made. For the seasonal component for Cohoes and
Utica cities, we have applied two samples T-test. Again, no statistically significant
difference has been noticed between the the data of these two cities.
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cu cp up
2005 0.81 2.37 2.65
2006 2.35 1.15 2.61
2007 1.84 2.09 2.43
2008 0.59 1.51 1.45
2009 1.12 1.12 1.65
2010 1.99 1.37 2.74
2011 0.99 2.11 2.19
2012 1.51 1.02 2.02
2013 1.33 1.79 2.01

Table 5.12: The Log-Euclidean Distance Measure for the Long-Term Component
Data.

Dissimilarity Analysis for the Short-Term Component

Since the values for all the distance measures kinds for the short-term component data
are normally distributed, we use the one way ANOVA test. The null hypothesis has
been also rejected for all the distance measure kinds. No statistically significant dif-
ference has been obtained using the two samples T-test for the short-term component
data for Cohoes and Utica cities.

Comparison Between the Geographical and Statistical Distances

Often it is expected that whenever two cities are close to each other, the behaviour
for some variables such as climatic and hydrological data, has a similar pattern. To
investigate if this expectation is applicable using our data, we have carried out a
comparison. Briefly this comparison is performed to check if the order (low to high)
of the mean SD is identical to the order (low to high) for the Geographical Distance
(GD) for each pair of cities. This examination has been carried out for the raw, long,
seasonal, and short-term component data and the results are shown in Table 5.13.

Type Geo Raw long seasonal short
cp 88.5 mile 1.19 1.167 0.76 1.04
cu 99.5 mile 0.68 0.953 0.46 0.68
up 170 mile 1.28 1.487 0.86 1.17

Table 5.13: The Geographical and Statistical Distances (Euclidean).

In Dissimilarity analysis, whenever we have a small distance value obtained by
one of distance measures, the degree of similarity will be high. The results can be
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Figure 5.3: Probability Plot for the Power Euclidean Distance Measure for the Sea-
sonal Fluctuations for cu.

summarised as follows:

• In Table 5.13, same order has been noticed for the geographical and statistical
distances for the third pair up. The geographical distance between these two
cities is the highest, and the mean SD are also the highest mean among all
the other pairs. For the first two pairs, a reverse situation has been detected.
Although the GD between Cohoes and Utica cu is higher than the distance
between Cohoes and Poughkeepsie cp, the patterns of their climatic and hydro-
logical variables are more similar.

• In Table 5.13, the same results for the raw data have been noticed for the long
and seasonal components.

• For the short-term component, as shown in Table 5.13, the pair cu also has
displayed the minimum mean SD, then, the pairs cp and up.

To sum up, for the raw and the three components, the pair cu has the highest
degree of similarity even though the distance between them is not the lowest. This,
in turn, indicates that the data for these two cities are more similar than the other
two pairs. The same river, which is the Mohawk River, passes through the two cities
for this pair and this perhaps leads to this result.
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5.6.2 Dissimilarity Analysis Without the Hydrological Effect

Having rejected the null hypothesis when all the studied variables are included and
tested using the one way ANOVA method, the mean and variances for the variables
for the three components have been examined. The mean and variance for the two
variables of water discharge and groundwater level for the two components for the
seasonal and the short-term component for the two cities, Utica and Poughkeepsie, are
relatively different. Based on this, we removed these two variables from the datasets,
then we followed the same steps above. Hence, the new datasets are climatic datasets
contain the data of the series temperature, precipitation, wind speed. Additionally,
tide data has also been included.

Consequently, the covariance matrix for this group of variables will be a matrix of
dimension 4 × 4. The covariance matrices have been computed for the raw and the
three components. In order to obtain a decision about the dissimilarity between all
the pairs after eliminating the effect of water discharge and groundwater level, the
hypothesis testing should be performed. The normality assumption for all the dis-
tance measures for the raw data is no longer achieved here. In this case the Kruskal
Wallis test has been chosen to test the null hypothesis instead of one way ANOVA
test. The Kruskal Wallis test depends upon the median of the data. The calculated
P-values for all the distance measures are shown in Table 5.14. For the raw data, as
all the P-probabilities for all the considered distance measures have values that are
greater than 0.05, the null hypothesis has not been rejected. This result is different
compared to the case of including all the variables. For the long-term component,
which its data are normally distributed, when we applied the one way ANOVA test,
we obtained the P-values shown in Table 5.14, where these values are greater than
0.05, except ProcrustesShape measure. This would suggest that there are no signifi-
cant differences over the studied pairs for the long-term component.

For the seasonal variations, the Kruskal Wallis has been used and the results for
the P-values are shown in Table 5.14. The P-values for all the distance measures are
greater than 0.05; this has led to not reject the null hypothesis. This, in turn, means
that there is no significant difference between the pairs for the seasonal fluctuations.

For the short-term component, the values of all the distance measures are not
normally distributed. This has led to use the Kruskal Wallis test. The results obtained
using this criterion are shown in Table 5.14. It is obvious that these results are not
similar to the case when the hydrological variables have been involved where here
the null hypotheses have not been rejected. This means, apart from the hydrological
data, that the short-term component for the cities has a similar pattern.
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Type Raw Long Seasonal Short
Procrustes 0.84 0.06 0.40 0.55
Riemannian 0.46 0.06 0.64 0.49
ProcrustesShape 0.61 0.03 0.20 0.68
Cholesky 0.79 0.12 0.53 0.64
Power 0.82 0.07 0.32 0.61
Euclidean 0.83 0.07 0.11 0.62
LogEuclidean 0.52 0.06 0.44 0.49
RiemannianLe 0.46 0.06 0.23 0.51

Table 5.14: The P-Values for all the Distance Measures for the Raw and Three
Components Data Without the Hydrological Effect.

Comparison Between the Geographical and Statistical Distances

• For the raw data, Table 5.15 shows that the order of the GD, (low to high),
has not completely matched the order of the SD. The SD for the raw and the
three components has been calculated by taking the mean for the distances that
have been computed by using the Power Euclidean distance measure for the nine
years considered. Even though the GD for the pair cp is smaller than the GD for
the pair cu, the SD for the cp is higher, 0.57. This indicates that the magnitude
of similarity between the data of Cohoes and Utica is higher than the similarity
between the data of the two cities of Cohoes and Poughkeepsie. Additionally,
the orders of the GD and SD for the third pair up are similar where both of
them are in the third order except the distance for the short-term.

• For the long-term component, both GD and SD show the same order. This
means that the closer the two cities are to each other, the higher the amount of
similarity between their data is.

• For the seasonal variations, the order is similar to the order of the long-term
component as shown in Table 5.15.

• For the short-term component, the orders (low to high) of the GD and SD
distances for the pairs have not matched. The highest SD has appeared for the
pair cp, which has the smallest GD. The pair up has the second highest SD
while the pair of cu has the smallest value, where this is shown in Table 5.15.

With regard to the dissimilarity analysis results based on the covariance matrices
for the independent variables of the MLR models for the raw and the three compo-
nents data for the three cities, the P-values for the one way ANOVA test are greater
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Type Geo Raw Long Seasonal Short
cp 88.5 mile 0.57 0.99 0.1 0.49
cu 99.5 mile 0.46 1.15 0.12 0.42
up 170 mile 1.55 1.487 0.18 0.46

Table 5.15: The Geographical and Statistical Distances (Power Euclidean) for the
Raw and Components Data Without the Hydrological Effect.

than the significance level, 0.05. These results lead to not reject the null hypothesis
that claims there is no difference between the mean distances for the three pairs. The
mean distance is calculated using the same Euclidean and Non-Euclidean distance
measures.

Relying on the results of different hypothesis testing for the pairs, specifically, cu,
it would be possible to use the MLR models for the raw and the three components
interchangeably for forecasting future values for the Cohoes and Utica cities. That
means, if there is no possibility to obtain a forecasting model for one of these cities,
using the forecasting model for the other will provide acceptable results. To sup-
port this result, the greater the proximity value for one or more of parameters-based
statistics, such as MSE for MLR models, the more similar the objects are.

5.7 Comparison Between the Distance Measures

In order to compare the behaviour of the eight distance measures, the values of these
measures for the year 2005 for the raw and the three components long, seasonal, and
short-term component for all pairs cu, cp, and up have been transformed (mapped)
into the range [0,1] using the Max-Min normalization technique. A number of slightly
distinct patterns have been observed when we sorted the mapped data from the
smallest to the largest which could be summarised as follows:

• For the raw data, a consistent pattern can be observed for the three pairs
cu, cp, and up where the distance measures can be ordered from smallest to
largest as follows: ProcrustesShape, Procrustes, Cholesky, Euclidean, Power,
LogEuclidean, Riemannian, RiemannianLe. Figure 5.4 shows this consistency
over the three pairs where the mapped values for the eight distance measures
for year 2005 have been plotted.

• For the long-term component data, no common behaviour can be detected for
the three pairs. However, based on the sorted data, the first three measures
ProcrustesShape, Procrustes, and Cholesky and also the last two measures Rie-
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Figure 5.4: The Mapped Raw Values for the Eight Distance Measures for Year 2005.

mannian and RiemannianLe have similar pattern of variation over the three
pairs as shown in Figure 5.5.

• For the Seasonal Variations, the same results for the raw data have been ob-
tained for the seasonal fluctuations where the measures have been sorted from
the smallest to the largest as follows: ProcrustesShape, Procrustes, Cholesky,
Euclidean, Power, LogEuclidean, Riemannian, and RiemannianLe.

• For the short-term component, compared to the raw and seasonal results, slightly
different findings have occurred for this component, where the only difference
is the order of the two distance measures Power and Euclidean.

Furthermore, for the data of the raw and each component, all the eight distance
measures are clustered according to their performance with respect to the three pairs
cu, cp, and up. The results of the clustering process are summarised using a Dendro-
gram which is a plot that arranges the clusters produced by a hierarchical clustering
as a tree consists of many u-shaped lines that connect data points (distance measures)
to each other.

The dendrograms are created using two clusters. Figures 5.6 and 5.7 show the
dendrograms for the raw and short-term component data. Also, dendrograms for
the long and seasonal components are shown in Figures A.6 and A.7 in Appendix.
A small difference can be noticed for the dendrograms plotted. Figure 5.6 shows
the Dendrogram for the raw data where the measures Procrustes, Cholesky, and Pro-
crustesShape construct one cluster while the remaining measures construct the second
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Figure 5.5: The Mapped Long-Term Values for the Eight Distance Measures for Year
2005.

cluster. This graph reveals that the similarity level between the measures included in
each cluster separately (within groups) is greater than the similarity level between the
two clusters (between groups). Moreover, in the short-term component’s dendrogram,
the first cluster (left) is composed of three distance measures Procrustes, Cholesky,
and ProcrustesShape which means that these measures are close to each other. Based
on the connection points, however, the measures Procrustes and Cholesky are more
similar to each other than they are to the ProcrustesShape measure. The second
cluster includes Riemannian, LogEuclidean, RiemannianLe, Power, and Euclidean
distance measures. The measures Riemannian and LogEuclidean are more similar to
each other than they are to the RiemannianLe measure. Also, Power and Euclidean
are more similar to each other than they are to the other measures.

5.8 Frequency Domain Positive Semi-Definite Matrices-

Based Metrics

In this part of this chapter we present three new developed dissimilarity metrics all of
them constructed using features from the frequency domain. These metrics have been
applied to the raw data in an attempt to examine their behaviours using multivariate
time series datasets. Hypothesis testing has been also used to obtain a decision about
whether mean distances for the frequency content for the groups (pairs) are equal.
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Figure 5.6: The Dendrogram for the Raw Data for the Eight Distance Measures for
Year 2005.

The null hypothesis here will be the mean distance for the three pairs cu, cp, and
up, are equal. The mean distance here is computed based on the frequency as we use
the Power Spectral Density (PSDE) Matrix and the Periodogram for the variables.
The PSDE and periodograms for the variables are calculated using the frequency.
The new developed metrics and their applications are summarised in the following
subsections.

5.8.1 Dissimilarity Analysis Using the Power Spectral Den-
sity Matrix (PSDE)

Each signal possesses some features in the time and frequency domains. The most
common time domain signal’s attributes are the autocorrelation, partial autocorre-
lation, and the cross-correlation. On the other hand, the functions that are often
used to describe the signals in the frequency domain are the power spectral density
(auto spectrum) and the cross power spectral density (cross spectrum) functions.
Using these two functions, the Power Spectral Density Matrix (PSDE) matrix will
be created. The structure of the PSDE matrix is similar to the covariance matrix
structure, where the diagonal elements are the auto spectrum (spectrum of the signal
with itself) and the off-diagonal entries are the cross-spectrum between two signals.
This matrix is built using one frequency ω, where ω ∈ [ωmin, ωmax].
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Figure 5.7: The Dendrogram for the Short-Term Data for the Eight Distance Measures
for Year 2005.

Most of time series (signals) can be expressed using the sine and cosine functions
for the frequencies that construct it [58] as shown in Equation 5.13.

yt =
a0
2

+

p−1∑
k=1

fk(akcosωkt+ bksinωkt) (5.13)

and

fk =

{
1/2 ifN is even and k = p− 1

1 if N otherwise

where

• t is the time subscript, where t = 1, 2, . . . , N

• yt is the time series.

• N is the number of observations.

• p is the number of frequencies for Fourier decomposition, where p = N+2
2

if N
is odd and p = N+1

2
if N is even.

• k is the frequency index, k = 1, 2, . . . , p− 1.
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• a0 is the mean where a0 = 2x̄.

• ak are the cosine coefficients.

• bk are the sine coefficients.

• ωk are the Fourier frequencies, where ωk = 2πk
N

.

The periodogram is defined as:

Pk = N/2

(
(a2k + b2k)

)
.

In addition, the cross periodogram between two time series x and y can be written
as follows:

P x
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As a function for frequency, not time, the Power Spectral Density function (PSDE),

also known as the Auto power spectral density, presents the frequency content of a
signal. In other words, this function determines how the variations (energy) of the
signal oscillates based on the frequency. The PSDE for x is defined as follows:

J11(ω) =

p∑
j=−p

WjP
x
k+j (5.14)

where W is a vector of (2p + 1) smoothing weights, and P is the periodogram. The
Cross Spectral Density (CSD) is the Fourier Transform, FT, for the cross correlation
function between two series, rxy. The CSD can be written as follows:

P12(ω) =
∞∑

n=−∞

rxy(n) exp(−iωn) (5.15)

where i represents the imaginary unit. If x = y, the CSD transforms to the PSDE.
The matrix below is the PSDE matrix for Poughkeepsie city for the data of the
variables Temperature, Wind Speed, and Precipitation, for year 2013. In our analysis,
we have included all the considered variables, which are, in addition to the variables
above, Water Discharge, Tide, and Groundwater level, respectively. The diagonal
elements are real values and represent the auto spectral density of the variables, and
the off-diagonal entries are complex numbers and represent the cross spectral for the
variables 11.88 + 0.00i −0.66− 1.00i 3.37− 0.19i

−0.66 + 1.00i 1.64 + 0.00i 0.00 + 0.21i
3.37 + 0.19i 0.00− 0.21i 1.47 + 0.00i

 .
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Seven Euclidean and Non-Euclidean distance measures have been used to calcu-
late the distance for each considered pair using the PSDE. These measurements are:
Euclidean, Procrustes, Riemannian, Procrustes Shape (Full-Procrustes), Cholesky,
Power Euclidean, Log Euclidean. Table 5.16 displays the Riemannian Distance (RD)
for the PSDE matrices for the raw data for the three pairs.

Year RD Pair RD Pair RD Pair
2005 3.51 cu 6.32 cp 7.73 up
2006 5.04 cu 3.73 cp 6.26 up
2007 6.24 cu 8.49 cp 6.84 up
2008 2.26 cu 5.75 cp 4.97 up
2009 4.41 cu 4.14 cp 4.95 up
2010 4.54 cu 4.27 cp 5.81 up
2011 4.28 cu 5.90 cp 6.27 up
2012 4.89 cu 3.26 cp 5.87 up
2013 3.95 cu 5.34 cp 5.85 up

Table 5.16: The Riemannian Distance (RD) Measure for the PSDE Matrices.

Additionally, as shown in Table 5.17, applying the one way ANOVA test produces
two different groups of decisions. In the first group, which includes the measures of
Procrustes, fullprocrustes, and Cholesky, the null hypothesis has not been rejected
based on the P-values. On the other hand, in the second group, which consists of
the measures of Riemannian, Euclidean, LogEuclidean, and Root Euclidean (power),
the null hypothesis has been rejected. Just to mention, the distance measures in the
first group are mathematically calculated using the Cholesky decomposition. Hence,
according to these results, some of the distance measures, first group, show that there
is significant difference between the frequency-based mean distance for the three pairs.
However, the results for the second group indicate that there is no significant difference
between the frequency content for the three pairs.

5.8.2 Using the Eigenvalues for the PSDE matrix as a Dis-
similarity Measure

Once we construct a PSDE matrix, the eigenvalues for this matrix can be computed.
The eigenvalues can be used to construct a dissimilarity measure. Because the results
are vectors of eigenvalues which belong to a Euclidean space, we have used the Eu-
clidean distance to compute the distances between the vectors. Mathematically, this
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Distance-Type P-Value
Procrustes 0.718
Riemannian 0.02
Full-procrustes 0.453
Cholesky 0.17
PowerEuclidean 0.003
Euclidean 0.003
Log-Euclidean 0.018

Table 5.17: The P-Values for the Distance Measures for the PSDE Matrices.

can be written as follows:

dEI(TS1, TS2) =

√√√√ k∑
j=1

(EIjTS1 − EIjTS2)2

where TS1 and TS2 are the two considered subjects (multivariate time series datasets).
Also, EITS1 and EITS2 are the eigenvalue vectors for the PSDE matrices for these
two multivariate time series datasets, and j is the index for the eigenvalues. We
have checked that this Eigenvalue-based distance satisfies the properties of being a
metric. These properties are the symmetry, where dEI(TS1, TS2) = dEI(TS2, TS1),
non-negativity, where dEI(TS1, TS2) > 0, and the triangle inequality property, where
dEI(TS1 + TS2) ≤ dEITS1+dEITS2. Table 5.18 shows the eigenvalues for the PSDE
matrices for Cohoes City for the studied years. Table 5.19 displays the dissimilarity

Year e1 e2 e3 e4 e5 e6
2005 29.92 11.34 2.53 0.42 0.13 0.08
2006 16.23 8.33 2.84 0.42 0.18 0.08
2007 37.80 17.76 1.24 0.32 0.11 0.00
2008 27.03 11.88 1.57 0.48 0.15 0.05
2009 18.14 10.00 1.46 0.49 0.17 0.03
2010 29.09 13.17 1.76 0.35 0.09 0.03
2011 18.33 13.11 2.90 0.61 0.07 0.02
2012 28.22 10.79 2.54 0.49 0.15 0.02
2013 20.17 12.17 1.94 0.31 0.09 0.02

Table 5.18: The Eigenvalues for the PSDE matrices for Cohoes City.

analysis using the Euclidean distance for the raw data for the three pairs.
Because there are three pairs and the data are not normally distributed, the

Kruskal-Wallis test has been used. Based on the P-value, 0.01, the null hypothesis
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Year/Pair cu cp up
2005 1.08 19.00 19.17
2006 2.89 3.05 1.23
2007 1.71 9.95 11.38
2008 1.17 9.34 10.34
2009 0.95 2.71 3.47
2010 3.53 8.43 11.77
2011 1.34 3.97 2.88
2012 3.81 5.76 9.48
2013 1.56 1.85 2.23

Table 5.19: The Euclidean Distance for the Eigenvalues Vectors for the PSDE Matri-
ces.

has been rejected which, in turn, means that there is at least one median is different
from the medians of the other pairs.

5.8.3 XTX Matrix for the Periodograms as a Dissimilarity
Measure

Typically, in statistics, specifically in regression analysis, a matrix X that its columns
represent the variables and its rows represent the studied observations is called a
design matrix. When we multiply the transpose of this matrix, which is (XT ) by the
matrix itself, the result is a new symmetric square matrix with dimensions determined
by the number of variables. Additionally, this new constructed matrix is a positive
definite matrix and it is essentially used to estimate the parameters of the regression
model using the least squares method. Here we build a similar matrix but for the
periodograms of the variables rather than the raw data to be used in the dissimilarity
analysis by applying Euclidean and Non-Euclidean metrics.

The periodograms for the variables have been calculated using the Fast Fourier
Transform (FFT). The matrix below is the XTX matrix for the periodograms for the
Cohoes city variables for the year 2006.

5813.04 597.73 617.19 1333.44 4429.10 369.62
597.73 378.35 282.79 475.01 873.53 115.23
617.19 282.79 1190.23 894.55 891.94 166.18
1333.44 475.01 894.55 4077.67 6133.98 909.32
4429.10 873.53 891.94 6133.98 12228.12 1346.42
369.62 115.23 166.18 909.32 1346.42 214.08

 .

Table 5.20 shows the values for the Riemannian distance measure for the XT



Hypothesis Testing For Dissimilarity Analysis 184

matrices for the three pairs of cities. As long as the data are normally distributed,

Year RE Pair RE Pair RE Pair
2005 2.08 cu 5.22 cp 4.96 up
2006 5.23 cu 5.45 cp 4.14 up
2007 3.03 cu 5.08 cp 4.93 up
2008 4.20 cu 5.18 cp 5.67 up
2009 3.19 cu 4.64 cp 5.57 up
2010 4.95 cu 3.02 cp 5.13 up
2011 1.53 cu 3.10 cp 3.37 up
2012 2.73 cu 6.86 cp 6.71 up
2013 6.35 cu 5.95 cp 5.18 up

Table 5.20: The Riemannian Distance for the XTX Matrices for the Periodograms
for Each Pair of Cities.

the one way ANOVA test is carried out and the results for P-value are shown in
Table 5.21. Again, the results extracted using the XTX matrices provide two groups.

Distance-Measure P-Values
Procrustes 0.06
Riemannian 0.04
ProcrustesShape (Full Procrustes) 0.013
Cholesky 0.029
PowerEuclidean 0.039
Euclidean 0.04
LogEuclidean 0.021
RiemannianLe 0.103

Table 5.21: The P-values for the ANOVA Test.

Based on the P-values for the first group, which includes Procrustes and Rieman-
nianLe measures, the null hypothesis has not been rejected. That means, there is
no significant difference between the frequency content for three pairs. However, the
results for the second group, which includes Riemannian, ProcrustesShape (Full Pro-
crustes), Cholesky, Power Euclidean, Euclidean, and LogEuclidean, lead to reject the
null hypothesis that claims the periodogram-based mean distances are equal for the
three pairs.
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5.9 Discussion

In the first part of this chapter we dealt with the two sample Hotelling T-Squared
test to obtain a decision about whether two multivariate time series datasets have
been generated from similar populations. For the raw, long, seasonal, and short-
term component data, two cases related to whether the hydrological effect, which is
represented by the data of the two series, water discharge and groundwater level, have
been considered. For the raw data, the null hypothesis, which claims that the mean
vectors for all the pairs are equal, has been rejected for one pair, up, and has not
been rejected for the other two pairs, cu and cp.

When we extended the analysis to include the data of the three components as
an attempt to detect which component has led to this result of not rejecting the
null hypothesis for the pair up, we observed that the null hypotheses for the data
of the seasonal and short-term components have not been rejected. Based on this
result, these two components, seasonal and short, have led to this rejection. For the
pair cu, the null hypotheses for the raw and the three components have not been
rejected. For the pair cp, by examining the three components, the mean vectors for
the seasonal fluctuations were not equal. But these results have not been detected
when we analysed the raw data, perhaps because of its low contribution percentage
compared to the long and short-term components as discussed in the contribution
percentages in Sections 2.6.7 and 2.8.7.

The differences between the results may be attributed to the GD or having same
river passing through each pair; where we have noticed that the GD for the pairs cu
and cp is shorter than GD for the pair up. However, when we have eliminated the
impact of the hydrological data, the null hypothesis for the raw data for the three
pairs has not been rejected. This would suggest that the raw data for the three cities
has same patterns based on the climatic variables and the tide variable. That means
there are no significant differences between the multivariate time series datasets for
the period given for the three pairs of cities if we only consider the climatic and
tide variables. This result has been extracted by applying two samples Hotelling T-
Squared test for comparing the means of temperature, precipitation, wind speed, and
tide.

On the other hand, the results for the second part of this chapter, which is the
hypothesis’s testing for the dissimilarity analysis part, provide one decision, which is
the null hypothesis, has been rejected based on the P-values as shown in Table 5.11.
This analysis has been conducted using one way ANOVA test for the means for eight
distance measures for the three pairs. The ANOVA one way method tests the three
pairs together. The null hypothesis for the raw data has been rejected. This result
could be attributed to the inclusion of the pair up within the range of the tested pairs
where it has been verified previously by the analysis of comparing means, Hotelling
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T-Squared test, that the pair up has significant differences. Similar results have been
noticed for the null hypotheses for the three components.

The results of the seasonal component could be supported by the findings of
the previous analysis of comparing two mean vectors for this component as the null
hypotheses have been rejected for two pairs. Similarly, the rejection of the null hy-
pothesis for the short-term component using the one way ANOVA test was perhaps
expected as the pair up is one of the examined pairs, where the null hypothesis for this
component has been rejected in the Hotelling T-Squared test. However, the results
for the long-term component for the two analyses, Hotelling T-Squared and ANOVA,
were different.

The last part in this discussion for the dissimilarity analysis is related to the
case when the impact of the hydrological data is removed. As has been previously
mentioned, applying the Hotelling T-Squared test, has led to not reject the null
hypotheses for the raw and the three components data. Provided that the results of
similarity between the data of the two cities of interest using the hypothesis testing
are in favour of no significant difference between them, the possibility of using a
forecasting model for one city to forecast future values for another city is achievable.
Besides, existence of one or more of parameter-based statistics, such as MSE values,
that are approximately similar, will also support the similarity decision.

The last part in this chapter is devoted to the new three developed dissimilarity
measures. For the outputs of hypothesis testing using the Euclidean distance for the
three dissimilarity measures, which are power spectral density matrix, Eigenvalues of
the PSDE, and XTX matrix of the periodograms, the decision of rejecting the null
hypothesis has been taken. However, if we compare the results of hypothesis testing
using the PSDE and XTX, we will see that in addition to the discrepancy within each
case, where the null hypothesis has been rejected for some distance measures and has
not been rejected for the others, there are some differences between these two dissimi-
larity measures. The results for the distance measures Procrustes, Riemannian, Power
Euclidean, and Log-Euclidean are almost identical. For the other distance measures,
different dissimilarity decisions have been made. Within hypothesis testing context,
there is no possibility to assess the performance of these dissimilarity measures. How-
ever, the accomplishment of assessing task will be possible if we apply these distance
measures to one of data mining techniques, such as clustering and classification.

With regard to the comparison between the geographical and statistical distances,
firstly, for the case of involving the whole studied variables, the results for the third
pair, which is up, show that there is no difference between the geographical and
statistical distances for the raw and decomposed data. The first two pairs have shown
reverse results in terms of geographical and statistical distances. Even though the GD
is smaller for the pair cp, the SD between the two cities of this pair is higher than the
SD for the pair cu. When the hydrological impact has been ignored, the third pair
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has still displayed similar results to what has been obtained when the effect of the
hydrological data has been involved for the raw, long, and seasonal data. However,
the highest SD for the short-term component has been observed for the pair cp. For
the raw and short-term component data, the SD values for the pair cp are higher
than the SD for the pair cu.

5.10 Conclusion

In this chapter, the main tool is the hypothesis testing which has been used to ex-
amine whether two multivariate time series datasets (1) have been generated from
similar distributions, (2) are similar. Based on the results for this study, if the null
hypothesis for the two cases above is rejected, it is recommended to use the decom-
posed data to provide more accurate and detailed decisions which clearly determine
the component(s) that are responsible for rejecting the null hypothesis.

Additionally, the geographical distance and having the same river passes through
two cities are factors that can significantly influence the results of a comparison
process for the data of interest. Sometimes, there are variables that have an obvi-
ous impact on the results of the comparison and when we eliminate them, different
outcomes can be obtained. These findings are produced by using the two samples
Hotelling T-Squared, one way ANOVA, and Kruskall Wallis tests.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this study, decomposition of time series improves the forecasting accuracy for a
number of Bayesian and Frequentist-based methods. These methods are Multiple
Linear Regression (MLR), Transfer-Function-Noise (TF-Noise), and Bayesian Multi-
ple Linear Regression models. It also has been noticed that the difference between
the models MLR, TF-Noise, and BMLR is not big in terms of the accuracy of water
discharge predictions. However, the models BMLR-BVAR have better results com-
pared to them. These results have been obtained based on daily data collected for
three cities located in New York State, which are Cohoes, Utica, and Poughkeepsie,
and two rivers, which are Mohawk and Hudson Rivers. These data are collected
for the variables temperature, precipitation, wind speed, tide, water discharge, and
groundwater level for the period 2005-2014, where the data of year 2014 has been
used to evaluate the constructed models. The main conclusions from the study are:
On the basis of MSE values, better results for the three models MLR, TF-Noise, and
BMLR models have been obtained by using the decomposed data rather than the
raw data. For example, for Cohoes city, the MSE value has reduced from 0.51 for the
MLR constructed using the raw data to 0.40 for the CMLR constructed using the
decomposed data. However, even better results have been obtained for the combined
models, combined MLR and combined BMLR, when we modelled the short-term
component using a VAR(1) model. For example for Utica city, the value of MSE has
declined from 0.56 for BMLR using the raw data to 0.10 for BMLR-BVAR model
using the decomposed data.

Also, based on the results of this research, the performance of the combined MLR
that is augmented with an autoregressive model for the random error outperforms the
combined MLR without an autoregressive model for the errors, thereby accounting
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for the autocorrelation of the errors. Based on the results of the three cities, there
is no significant impact of the similarity results on the forecasting accuracy of water
discharge values based on the DIC values. This result is derived when an informative
prior distribution with hyper-parameters that are related to the results of MLR model
for the city that has the highest similarity measure to the city of interest is used.

The decomposed data, which are known as the components, are three the long,
seasonal, and the short-term component, extracted using the KZ filter. There are
two parameters that control the behaviour of the KZ filter, which are the window
width and the number of iterations. Different parameters can be chosen based on the
number of days that need to be filtered out and the resulting R Squared value, where
the parameters that lead to produce the highest R Squared value can be selected.
For example, in our analysis and based on the resultant R Squared values, we have
specified the parameters 29 days and 3 iterations, and 15 days and 5 iterations for the
three cities. Based on the KZ filter, the contribution of the three scales of motions
to the total variance for the response variable can be computed. The KZ filter is one
of the best techniques that can be used to detect and track changes in a time series
due to its simplicity, accuracy, and its ability to deal with the missing values.

In each chapter a comparison process has been conducted between the models con-
structed using the raw data and the models constructed using the decomposed data.
Chapters 2 and 3 present the analyses that are carried out using the frequentist-based
statistical methods and Chapter 4 deals with the Bayesian-based statistical method.
Typically, the assumption that the residual terms have to be uncorrelated is required
to be satisfied in the constructed model to obtain accurate forecasting results. How-
ever, this assumption is often not achieved when the analysed data are time series
data. This statistical problem has been extensively considered in MLR models built
using the raw data. But, in CMLR model, which is constructed using decomposed
time series data, the problem of autocorrelation between the residual terms of this
model has not previously been considered. In Chapter 2 we have developed a CMLR-
Noise model constructed using a MLR model for the data of the three components
the long, seasonal, and the short-term component, with an AR(1) model for the
residual terms that are serially correlated. This model has substantially improved
the prediction accuracy by removing the impact of the autocorrelation between the
residual terms. Based on the model selection methods used, the forecasting models
constructed using the decomposed data and an AR(1) model for the disturbances
outperform the forecasting models constructed using the raw data. For example, for
Utica’s city data, the AIC value reduced from 6590.497 to 2453.619 when we added
an AR(1) model to the CMLR model.

In Chapter 3 we have shown that the CTF-Noise model constructed using the
decomposed data provides better results than the TF-Noise model constructed using
the raw data. For instance, for Utica city the AIC value reduced from 2516.409
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for the TF-Noise model using the raw data to 2448.503 for the CTF-Noise model
using the decomposed data. The prewhitened values have been used rather than the
original values for the raw and the decomposed data. The prewhitening process is
applied to provide a filter that can be used to transfer the input and output series
into a white noise series which is devoid of autocorrelations. The process of obtaining
the prewhitened values has been carried out by identifying a tentative model for the
inputs where the mechanism of the identification depends on the behaviour of the
SACF and SPACF for the input series. Also, to examine the relationship between
the input and the output variables, the SCCF function has been used. The CTF-
Noise model involves a number of lagged variables which can be determined based on
the SCCF. The structure of this model is built using a difference equation. An AR(1)
model is specified to fit the data of the residual terms for the final model.

The third procedure considered to enhance the prediction accuracy, which is pre-
sented in Chapter 4, is carried out by using Bayesian analysis to estimate the pa-
rameters of the models constructed using the decomposed data and also the final
combined model. Bayesian analysis enables us to overcome an important issue in the
forecasting process, which is the uncertainties in data, parameters, and the structure
of the model. We have used the BMLR model and the BVAR of order 3 structure to
fit models for the decomposed data. Firstly, the BMLR has been utilised to model
the data of the three components, the long, seasonal, and the short-term component
and also to fit the final combined BMLR model. Secondly, the BMLR has been used
to model the data of the long and seasonal components, and the model BVAR of
order 3 has been used to model the data of the short-term component and the result
is the final combined BMLR-BVAR(3) model. Both models produced better results
than the raw data-based BMLR model according to the MSE and DIC values. For
Utica’s city data, the DIC values reduced from 6593.116 for the combined BMLR to
521.385 for the BMLR-BVAR(3). The outperformance of the proposed model can be
attributed to the inclusion of the three lagged variables, which are lags 1, 2, and 3, for
the variables water discharge, precipitation, and groundwater level for the short-term
component.

The proposed combined Bayesian models have a number of desirable features.
Firstly, the variance of the models, σ2, is treated as a random and an unknown value
to incorporate the uncertainty of the parameters. For BMLR, we used the Inverse
Gamma (IG) distribution to describe the behaviour of the variance (or we can use
the Gamma distribution for the precision (the inverse of variance)). Secondly, the
multivariate normal (MN) distribution has been used to describe the behaviour of
the model’s coefficients with two parameters, which are the mean vector and the
variance-covariance matrix for the coefficients. Additionally, the likelihood is orig-
inally distributed with a MN distribution. So, using these two distributions, the
multivariate normal for the mean vector (coefficients) and IG for the variance of the



191 Conclusion

model, together constructs a conjugate prior which is the Normal-Inverse-Gamma
distribution (NIG). The product of the likelihood by this conjugate prior will yield a
posterior function that has a NIG distribution.

Similarly, for the BVAR of order 3, we have used the Inverse Wishart, IW, distri-
bution to generate data for the unknown variance-covariance matrix for the model,
and the Minnesota prior to generate data for the coefficients. Using of the Minnesota
prior will reduce the number of the parameters in the BVAR model. In other words,
this prior will handle the problem of the overfitting which is one of the most important
issues in the VAR models. The Minnesota prior is a special case of the conditional
Normal-Inverse-Wishart, NIW prior. The covariance matrix of the coefficients of the
VAR model that is used in the Minnesota prior is a diagonal matrix estimated using
”equation-by-equation” AR models. Also, the likelihood function has a MN distri-
bution. The resulting posterior distribution, therefore, is a Normal-Inverse-Wishart
distribution. Even though the results of estimation using Bayesian Analysis either
with non-informative or informative priors are nearly similar to the estimates that are
produced using the Maximum Likelihood (MLE) method, the accuracy of Bayesian
estimates is much better based on the credible intervals.

Also, working within Bayesian framework enables us to change the classical method
of obtaining predictions for new outputs. In Bayesian analysis, this is implemented
by using the resultant predictive distribution by using either numerical simulations
or mathematical derivations. The predictive distribution has been computed using
the Random Walk MCMC algorithm. Besides, the predictive distribution is of par-
ticular interest where it provides better insight about the model and the quality of
the method used. The credible intervals are another reason to prefer using Bayesian
analysis instead of Frequentist analysis. The credible intervals produce a range of
values such that the value of the parameter of interest falls within this range with a
pre-specified probability.

Frequentist-based models, which are regression and vector autoregressive mod-
els, have been applied for all the three cities. In addition to the models regression
and vector autoregressive, the transfer function-noise model has been also applied for
Poughkeepsie, Cohoes, and Utica cities. Bayesian-based models, which are Bayesian
regression and Bayesian vector autoregressive models, have been also applied to fore-
cast the water discharge for the three cities. The methodologies used are applicable
for any time series data that are composed of embedded components, in particular, in
the economics field, where different variables need to be analysed at the same time.

To forecast daily future values for the water discharge for Poughkeepsie city, three
different models have been constructed. Figure 6.1 shows the three developed models
that have been graphed with the original values (blue line) of the water discharge.
The first model (MLR, red line, MSE=0.49) is fitted using the MLR model for the
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raw data. This model is written as follows:

ŴDt = −0.347TEt + 0.414PRt + 0.159TDt − 0.321GWt. (6.1)

where WD, TE, PR, TD, and GW , denote the water discharge, temperature, pre-
cipitation, tide, and groundwater level, respectively. The second model (Combined
MLR (CMLR), green line, MSE=0.37) has been built by combining the variables of
Equations 2.16, 2.17, and 2.18.

The third model (CTF-Noise, darkred line, MSE=0.34) has been constructed
using the CTF-Noise for the decomposed series for the long, seasonal, and short-
term components, which is shown in Equation 3.40, which has been built using the
variables of Equations 3.24, 3.36, and 3.38. Based on the MSE values, the CTF-Noise
model is the best model as it provides the lowest MSE value. Overall, apart from
the data of March and October, our forecasts agree with the original values well,
showing an upward, downward, and then upward trends starts from the beginning of
the year and captured the seasonality toward the end of the year. It appears that
the performance of CMLR is more close to CTF-Noise models than to MLR model,
which might be attributed to the use of the decomposed data in these two models,
CMLR and CTF-Noise.

Figure 6.2 shows the original values (blue line, with a straight-line to describe
the missing values that have been estimated from mid-October until mid-December)
for the water discharge for Cohoes city for year 2014 along with the (1) Multiple
Linear Regression model (MLR, red line, MSE=0.51) (2) Combined Multiple Lin-
ear Regression model (CMLR, green line, MSE=0.40), and (3) Combined Transfer
Function-Noise model (CTF-Noise, darkred line, MSE=0.38). The CTF-Noise model
is the best constructed model depending on the MSE values.

For Utica city, Figure 6.3 shows the raw data of the water discharge (Original
values, blue line) along with (1) CMLR model (red line) constructed using Equations
2.12, 2.13, 2.14, and AR(1) for the residual terms (2) CTF-Noise model (green line)
constructed using Equations 3.71, 3.82, 3.93, and AR(1) model for the residual terms
(3) combined BMLR-BVAR model (darkred line) constructed by applying BMLR
model for the data of the long and seasonal components with a non-informative
independent normal prior distribution, and BVAR model for the data of the short-
term component with Minnesota Prior distribution. Based on the MSE values, the
performance of BMLR-BVAR model is the best compared to the other models, where
the MSE values for these models are 0.222, 0.116, and 0.102, respectively.

With regard to the results of Chapter 5, it has been shown that a decision about
the cities’ data similarity can be obtained using the hypothesis testing. To support
the decision of data similarity, the MSE values of the MLR can also be considered.
Knowing that the data for two or more objects are similar can help us to use an
object’s forecasting model to forecast the future values for another object.
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Figure 6.1: The Original Data and the Three Developed Models, Multiple Linear
Regression (MLR), Combined Multiple Linear Regression (CMLR), and Combined
Transfer Function-Noise (CTF-Noise), for the Water Discharge for Poughkeepsie city.

In this study we show that there is no difference between the mean distance of the
raw and the decomposed data of the three cities based on the one way ANOVA test
for the mean distance/dissimilar. Using a number of Euclidean and non-Euclidean
distance measures, the distance between the covariance matrices of the variables of
the studied cities is computed. The variables considered are the independent variables
that have been used to construct MLR models for the cities of interest using the raw
data. It has been also noted that the MSE values of the MLR models of the raw data
are close to each other. So, considering these results, we are able to use one of the
MLR models for one city to forecast future values for another city.

Also, we show the possibility of determining the component(s) and then the vari-
able(s) that are responsible for rejecting the null hypothesis. The null hypothesis here
claims that the mean distances are equal. This determination is not possible if we
apply hypothesis testing using the raw data. Two mean types have been considered;
the first one is the mean vector of variables of a city where the Hotelling T-Squared
test has been used while the second mean, which is a scalar, has been computed using
the mean of distances for a number of years. The distance has been computed using
a number of Euclidean and non-Euclidean distance measures for covariance matrices
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Figure 6.2: The Raw Data and the Three Developed Models for the Water Discharge
for Cohoes city.

for cities’ variables. The one way ANOVA and Kruskal Wallis tests have been applied
in case that the data are normally or not normally distributed, respectively. Using
this methodology will essentially enable us to know the events that are behind each
component and lead to the result that there is a significant difference between the
data of the studied cities. Based on their performance with respect to the three pairs,
the same order has been observed from smallest to largest for the eight distance mea-
sures used. ProcrustesShape, Procrustes, and Cholesky have provided the smallest
distances for the raw and the decomposed data.

Finally, to get the full picture of dissimilarity for multivariate time series datasets,
part of this thesis has been devoted to examine the dissimilarity between multivariate
time series datasets based on the frequency domain. In Chapter 5 we present three
new developed distance measures. Three features from Frequency domain are used.
These features are the periodogram, power spectral density and the cross spectral
density functions. The data of these features are described by two matrices and a
vector. The first matrix is the XTX matrix of the periodograms of the variables of
temperature, precipitation, tide, wind speed, water discharge, and groundwater level,
this matrix is a Positive Definite matrix. The second matrix, which is the Power
Spectral Density Matrix (PSDE), has been built using power spectral density and
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Figure 6.3: The Raw Data and the Three Developed Models for the Water Discharge
for Utica city.

cross spectral density functions for the studied variables.

Using these matrices, we have applied the same distance measures that have been
previously used with the covariance matrices. The distance measures are Euclidean,
Procrustes, Riemannian, Procrustes Shape, Cholesky, Power, Log Euclidean, and
RiemannianLe. We also use the Eigenvalues vectors of the PSDE matrix to derive
a distance measure using the Euclidean distance. The results obtained using these
new developed distance measures are not completely matched the dissimilarity results
that are obtained using the covariance matrices, which are time domain-based data.

In case that we have a reasonable number of objects, for example, cities, the
behaviour of the previous and new distance measures can be assessed using one of
data mining techniques, such as clustering and classification analyses. Overall, the
major contributions of the thesis are the development of new statistical models for
accurate forecast for water discharge and new dissimilarity measures for time series
data based on a number of frequency domain features.
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6.2 Future Work

• Constructing a combined model by applying VAR process for the three compo-
nents and comparing the results with the VAR for raw data.

• Constructing a combined Frequency-Domain Linear Regression for the three
components and comparing it with a Frequency-Domain Linear Regression for
raw data.

• Constructing a combined model by applying neural network model for the three
components and comparing the results with a neural network model for the raw
data.

• Applying Bayesian analysis for estimating a combined model constructed using
TF-Noise model and comparing it with a TF-Noise model built by using raw
data and estimated by using Bayesian analysis. The application of Bayesian
analysis will significantly reduce the number of resultant parameters, which is
known as the over fitting problem.

• Applying Bayesian Hierarchical analysis for a combined model constructed using
TF-Noise model and comparing it with a TF-Noise model constructed using raw
data and estimated by using Bayesian analysis.

• Applying BVAR model for the three components, long, seasonal, and short,
and construct the final combined Bayesian VAR model and then compare the
results with the results of normal Bayesian.

• Applying Bayesian hierarchical modelling, which is also known as multilevel
or random-effects models, for a combined model could lead to provide results
that are more significant compared to normal Bayesian analysis. Hierarchical
Bayesian means that the hyperparameters of the model themselves will have
distributions.

• Investigate the possibility of constructing normal (using raw data) and a com-
bined Frequency-Domain Linear Regression using Bayesian analysis.

• In multivariate time series analysis and in case that there is a number of cities
that enables us to perform one of data mining techniques, such as clustering
and classification, it will be possible to assess the performance of these different
distance measures.

• Also, for any data mining analysis, there is a possibility of performing a compar-
ison between the results of a distance measure that is based on the covariance
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matrix for the raw data and the distance measure that is based on a combined
covariance matrix (similar to the idea of a pooled covariance matrix but by using
the covariance matrices of long, seasonal, and short instead of the covariance
matrices for the two tested groups).

The process of applying some analysis such as clustering and classification has
many advantages. For example, it is well known that with times series data there
is a need to perform some specific transformations, for instance, the seasonal
adjustments. Therefore, it will be easier to implement these transformations
for a group of series without examining each series separately.

• It is worth to apply the methodologies proposed in this chapter in some fields,
specifically in the marketing, economic, environment.

• Applying the KZ filter to the covariance matrices and then apply one of the
pattern recognition analyses, cluster or classification, and then make a compar-
ison between the results of these analyses before and after applying KZ to the
covariance matrix.
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Appendix

For univariate linear regression where we have one predictor, the likelihood function
for an observation yi can be written as follows:

` (yi|β, σ2) =
1√

2πσ2
exp
(
− (yi − βxi)2

2σ2
). (A.1)

The full likelihood for all observations will be

` (y|β, σ2) =
1√

2πσ2
exp
(
−

n∑
i=1

(yi − βxi)2

2σ2
). (A.2)

A.1 Gibbs Sampling

The integrals of the posterior distribution produce the quantities of interest, such
as mean, median, and variance. Hence, the main key in the Bayesian analysis is to
calculate the integrals which in turn produce some inferences about the distribution.
For simple posterior distributions, the integrals can be solved using some numerical
integrations or even by using a paper and a pencil. But when the type of the poste-
rior is relatively complex, such as a multivariate distribution (with many parameters),
the best treatment will be the MCMC, which is the predominant method in Bayesian
inference.
Gibbs sampler was proposed in the early 1990s by Geman and Geman, 1984, and
Gelfand and Smith, 1990, [43], [89]. The major step in this sampling mechanism is
to reduce the calculations of sampling from a high (multivariate) dimensional joint
density into a number of samples of low (univariate) dimensional conditional distribu-
tions. In other words, rather than one joint sample with dimensional p, the number
of the considered parameters p one dimensional samples will be generated. Then,
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the posterior summaries of interest can be calculated by using the samples that have
been drawn from the posterior distribution. Priori to use the samples to compute the
required posterior summaries, it is fundamental to examine the convergence. This
examination can be implemented by using either virtual or mathematical procedures.
To illustrate Gibbs sampler, assume that our target distribution is p(θ|y) with θ =
(θ1, θ2) and we are able to sample from p(θ1|θ2, y) and p(θ2|θ1, y). The process will
begin by setting an initial values for the considered parameters, these initial values
are θ01 and θ02, any iteration in Gibbs sampler involves the following two steps:

• Generate θn1 from p(θ1|θn−12 , y).

• Generate θn2 from p(θ2|θn1 , y).

In Bayesian statistics, the Gibbs Sampling (GS) is regarded as one of the most ex-
tensively used methods to sample a sequence of data from the posterior distribution.
This algorithm is originally a special case from the Metropolis-Hastings algorithm
and can be used when:

• The posterior distribution under study is a multivariate distribution, and there
is no possibility to sample using the two previous approaches, inversion and
rejecting methods.

• There is feasibility to sample from the conditional distribution for each param-
eter.

A.2 The Inversion Method of Sampling

It is preferable and common to use an inversion method to draw a sample of data
from a univariate distribution. Essentially, the inversion method follows two main
steps:

• From the uniform distribution, a random number u between 0 and 1 is drawn.

• Computes z = F−1(u) from the f(x).

To generate a number of observations from a uniform (0,1), we use the density function
of the uniform and after that we will need to use the sampled data to calculate the
integral from zero to z.

When there is a density that has no specific routines which allow to sample from
it, drawing a sample of data from u ∼ U(0, 1) and computing z from u =

∫ z
L
f(x)dx

can be implemented. This inversion method is efficient, however, there are two major
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limitations that affect using it as a general technique to draw samples from a poste-
rior distribution. The first limitation is its failure to analytically derive the inverse
function, then this method can not be used. The second limitation appears when
the density under study is a multivariate density function. For example, if there are
two variables, x and y, the reasonable solution to proceed the problem of having two
unknown variables in one equation is to choose a value for one of these variables and
then utilises the inversion method for drawing from the conditional distribution of
the other variable. This procedure will significantly transfer the original two bivariate
process into one of the sampling methods for a univariate conditional distribution. In
fact, this idea is the basis for Gibbs sampling.

A.3 The Rejection Method of Sampling

There are different methods to be used when F−1(u) can not be computed. To some
extent, the rejection method of sampling is regarded as one of the most important
methods after the inversion approach. To sample from a specific distribution, f(x),
this technique can be defined by the following three steps:

• Suppose that a value z can be easily generated from a distribution g(x) such
that the values of m ∗ g(x) are relatively greater than f(x) at approximately all
points, where m is a constant.

• Calculate the ratio R = f(z)
m∗g(z) .

• Sample u ∼ U(0, 1). When R ≥ u, the value of z will be accepted as a draw
from f(x). Otherwise, repeat the process from step 1.

The term m ∗ g(x) is usually called an ”envelop function”. This method has two
limitation points. First, determining an envelope function sometimes may not be
easy. Second, the results may not be efficient.

A.4 Metropolis Algorithm

The Metropolis algorithm is one of the most important and common algorithms and
this method is the foundation for the MCMC method. This technique is based on
identifying a symmetric proposal distribution, which is known as a transition function
which is:

p(θr|θ(r−1)) = p(θ(r−1)|θr).
Using this function a number of samples are drawn where these draws either rejected
or not based on a pre-specified decision rule.
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A.5 Metropolis-Hasting Algorithm (MH)

The MH algorithm is a method used to generate samples from a probability distri-
bution, which is the full joint density function. The feature that discriminates this
method is its ability to work with multivariate distributions and also with this method
we do not need an envelope function. The major steps of this technique are:

• For the parameter θ, a starting value will be established: θj=0 = L. Then, set
j = 1.

• Draw a candidate parameter, which is θc, from a proposal density, which is p(.).

• Then, the ratio G = f(θc)p(θj−1|θc)
f(θj−1)p(θc|θj−1)

.

• The computed ratio, G, will be compared with a Uniform(0,1) random draw u.
If G ≥ u, then we will set θj = θc. Otherwise, θj = θg−1.

• Set j = j + 1, and then to step 2 to draw the required number of samples.

The starting values in the first step could be derived from MLE or even an arbitrary
numbers. The MCMC theory says that the algorithm’s stationary distribution will
be the required posterior distribution, regardless of the starting values selected. The
stationary distribution is the distribution in which the Markov chain produced by the
algorithm converges. For more information see [71].

A.6 MCMC

As a consequence to the limitations of the inversion and rejection methods, the need
to apply an efficient algorithm that can proceed all the limitations in the two previous
approaches appears. In the last few decades, Markov Chain Monte Carlo (MCMC)
algorithms have been extensively applied to facilitate the sampling process from any
complex density function. The first part of this mechanism, Markov Chain, is re-
sponsible about generating new value from the posterior distribution, given that the
previous value is known. This will lead to simulate a sequence of data from the poste-
rior distribution. The second part of the name is related to the process of calculating
the integral for each simulated value.

Gibbs Sampling Using the Inversion Method

To use this method, the conditional distribution for each variable has to be computed.
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A.7 Distributions

• Normal Distribution, where the Density function is:

f(θ)
1√
2πσ

exp
(
− (θ − µ)2

2σ2
). (A.3)

In MCMC it is preferable to use the parameter τ instead of σ2 to simplify the
calculations. So, Equation A.3 can be rewritten as the following:

τ√
2π

exp

(
− τ(θ − µ)2

2

)
. (A.4)

• Gamma Distribution, where the Density function of this distribution can be
written as the following:

f(θ) =
βα

Γα
θα−1 exp(−βθ). (A.5)

The parameters of this distribution are α and β which they are the shape and
scale parameters, respectively.

• Inverse Gamma Distribution: When we need to specify a distribution to the
reciprocal of a random variable that is distributed according to the Gamma
distribution, the Inverse Gamma is the required distribution. In Bayesian anal-
ysis, when a non-informative prior is used, this density function appears as the
marginal posterior for the unknown variance of a normal model.

f(θ) =
1

βαΓα
θ−(α+1) exp−1/βθ. (A.6)

• Chi-Squared distribution, where the density function can be written as:

f(θ) =
1

Γ(v/2)2v/2
θ(v/2)−1 exp−θ/2. (A.7)

• The mean and the precision of the posterior are usually a combination of the
mean and precision of the prior and likelihood functions. If y|mu ∼ N(µ, σ2)
and µ ∼ N(µ0, σ

2
o), then

µ ∼ N

(
σ2
o

(σ2/n) + σ2
o

y +
σ2

(σ2/n) + σ2
o

µ0

)
,

(
1

σ2
o

+
n

σ2

−1
)
.
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Figure A.1: Chart Illustrates the Steps Taken to Construct the Developed Models for
Cohoes City.
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Figure A.2: Chart Illustrates the Steps Taken to Construct the Developed Models for
Utica City.
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Figure A.3: Chart Illustrates the Steps Taken to Construct the Developed Models for
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Figure A.4: Chart Illustrates the Steps Taken to Construct the Developed Models.
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Figure A.5: Chart Illustrates the Steps Taken to Construct the Developed Models.
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Figure A.6: The Dendrogram for the Long-Term Data for the Eight Distance Mea-
sures for Year 2005.

Figure A.7: The Dendrogram for the Seasonal Data for the Eight Distance Measures
for Year 2005.


