1,250 research outputs found

    Blind fluorescence structured illumination microscopy: A new reconstruction strategy

    Get PDF
    In this communication, a fast reconstruction algorithm is proposed for fluorescence \textit{blind} structured illumination microscopy (SIM) under the sample positivity constraint. This new algorithm is by far simpler and faster than existing solutions, paving the way to 3D and/or real-time 2D reconstruction.Comment: submitted to IEEE ICIP 201

    Structured illumination microscopy with unknown patterns and a statistical prior

    Full text link
    Structured illumination microscopy (SIM) improves resolution by down-modulating high-frequency information of an object to fit within the passband of the optical system. Generally, the reconstruction process requires prior knowledge of the illumination patterns, which implies a well-calibrated and aberration-free system. Here, we propose a new \textit{algorithmic self-calibration} strategy for SIM that does not need to know the exact patterns {\it a priori}, but only their covariance. The algorithm, termed PE-SIMS, includes a Pattern-Estimation (PE) step requiring the uniformity of the sum of the illumination patterns and a SIM reconstruction procedure using a Statistical prior (SIMS). Additionally, we perform a pixel reassignment process (SIMS-PR) to enhance the reconstruction quality. We achieve 2Ă—\times better resolution than a conventional widefield microscope, while remaining insensitive to aberration-induced pattern distortion and robust against parameter tuning

    Phase Retrieval via Matrix Completion

    Full text link
    This paper develops a novel framework for phase retrieval, a problem which arises in X-ray crystallography, diffraction imaging, astronomical imaging and many other applications. Our approach combines multiple structured illuminations together with ideas from convex programming to recover the phase from intensity measurements, typically from the modulus of the diffracted wave. We demonstrate empirically that any complex-valued object can be recovered from the knowledge of the magnitude of just a few diffracted patterns by solving a simple convex optimization problem inspired by the recent literature on matrix completion. More importantly, we also demonstrate that our noise-aware algorithms are stable in the sense that the reconstruction degrades gracefully as the signal-to-noise ratio decreases. Finally, we introduce some theory showing that one can design very simple structured illumination patterns such that three diffracted figures uniquely determine the phase of the object we wish to recover

    Fluorescence blind structured illumination microscopy: a new reconstruction strategy

    Get PDF
    International audienceIn this communication, a fast reconstruction algorithm is proposed for fluorescence blind structured illumination mi-croscopy (SIM) under the sample positivity constraint. This new algorithm is by far simpler and faster than existing solutions , paving the way to 3D and real-time 2D reconstruction

    Advanced Denoising for X-ray Ptychography

    Get PDF
    The success of ptychographic imaging experiments strongly depends on achieving high signal-to-noise ratio. This is particularly important in nanoscale imaging experiments when diffraction signals are very weak and the experiments are accompanied by significant parasitic scattering (background), outliers or correlated noise sources. It is also critical when rare events such as cosmic rays, or bad frames caused by electronic glitches or shutter timing malfunction take place. In this paper, we propose a novel iterative algorithm with rigorous analysis that exploits the direct forward model for parasitic noise and sample smoothness to achieve a thorough characterization and removal of structured and random noise. We present a formal description of the proposed algorithm and prove its convergence under mild conditions. Numerical experiments from simulations and real data (both soft and hard X-ray beamlines) demonstrate that the proposed algorithms produce better results when compared to state-of-the-art methods.Comment: 24 pages, 9 figure

    Variational algorithms to remove stationary noise. Application to microscopy imaging.

    Get PDF
    International audienceA framework and an algorithm are presented in order to remove stationary noise from images. This algorithm is called VSNR (Variational Stationary Noise Remover). It can be interpreted both as a restoration method in a Bayesian framework and as a cartoon+texture decomposition method. In numerous denoising applications the white noise assumption fails: structured patterns (e.g. stripes) appear in the images. The model described here addresses these cases. Applications are presented with images acquired using different modalities: scan- ning electron microscope, FIB-nanotomography, and an emerging fluorescence microscopy technique called SPIM (Selective Plane Illumination Microscope)
    • …
    corecore