22,961 research outputs found

    Spectral Signatures for Non-rigid 3D Shape Retrieval

    Get PDF
    This thesis addresses problems associated with computing spectral shape signatures for non-rigid 3D object retrieval. More specifically, we use spectral shape analysis tools to describe the characteristics of different 3D object representations. This thesis tries to answer whether spectral shape analysis tools can enhance classical shape signatures to improve the performance of the non-rigid shape retrieval problem. Furthermore, it describes the stages of the framework for composing non-rigid shape signatures, built from the shape Laplacian. This thesis presents four methods to improve each part of the framework for computing spectral shape signatures. The first stage comprises computing the right shape spectrum to describe 3D objects. We introduce the Kinetic Laplace-Beltrami operator which computes enhanced spectral components from 3D meshes specific to non-rigid shape retrieval and we also introduce the Mesh-Free Laplace Operator which computes more precise and robust spectral components from 3D point clouds. After computing the shape spectrum, we propose the Improved Wave Kernel Signature, a more discriminative local descriptor built from the Laplacian eigenfunctions. This descriptor is used throughout this thesis and it achieves, in most cases, state-of-the-art performances. Then, we define a new framework for encoding sparse local descriptors into shape signatures that can be compared to each other. Here, we show how to use the Fisher Vector and Super Vector to encode spectral descriptors and also how to compute dissimilarities between shape signatures using the Efficient Manifold Ranking. Furthermore, we describe the construction of the Point-Cloud Shape Retrieval of Non-Rigid Toys dataset, aimed in testing non-rigid shape signatures on point clouds, after we evidenced a lack of point-cloud benchmarks in the literature. With these ingredients, we are able to construct shape signatures which are specially built for non-rigid shape retrieval

    Shape Retrieval of Non-rigid 3D Human Models

    Get PDF
    3D models of humans are commonly used within computer graphics and vision, and so the ability to distinguish between body shapes is an important shape retrieval problem. We extend our recent paper which provided a benchmark for testing non-rigid 3D shape retrieval algorithms on 3D human models. This benchmark provided a far stricter challenge than previous shape benchmarks. We have added 145 new models for use as a separate training set, in order to standardise the training data used and provide a fairer comparison. We have also included experiments with the FAUST dataset of human scans. All participants of the previous benchmark study have taken part in the new tests reported here, many providing updated results using the new data. In addition, further participants have also taken part, and we provide extra analysis of the retrieval results. A total of 25 different shape retrieval methods are compared

    Skeleton-based canonical forms for non-rigid 3D shape retrieval

    Get PDF
    The retrieval of non-rigid 3D shapes is an important task. A common technique is to simplify this problem to a rigid shape retrieval task by producing a bending invariant canonical form for each shape in the dataset to be searched. It is common for these techniques to attempt to ``unbend'' a shape by applying multidimensional scaling to the distances between points on the mesh, but this leads to unwanted local shape distortions. We instead perform the unbending on the skeleton of the mesh, and use this to drive the deformation of the mesh itself. This leads to a computational speed-up and less distortions of the local details of the shape. We compare our method against other canonical forms and our experiments show that our method achieves state-of-the-art retrieval accuracy in a recent canonical forms benchmark, and only a small drop in retrieval accuracy over state-of-the-art in a second recent benchmark, while being significantly faster

    Geometric modeling of non-rigid 3D shapes : theory and application to object recognition.

    Get PDF
    One of the major goals of computer vision is the development of flexible and efficient methods for shape representation. This is true, especially for non-rigid 3D shapes where a great variety of shapes are produced as a result of deformations of a non-rigid object. Modeling these non-rigid shapes is a very challenging problem. Being able to analyze the properties of such shapes and describe their behavior is the key issue in research. Also, considering photometric features can play an important role in many shape analysis applications, such as shape matching and correspondence because it contains rich information about the visual appearance of real objects. This new information (contained in photometric features) and its important applications add another, new dimension to the problem\u27s difficulty. Two main approaches have been adopted in the literature for shape modeling for the matching and retrieval problem, local and global approaches. Local matching is performed between sparse points or regions of the shape, while the global shape approaches similarity is measured among entire models. These methods have an underlying assumption that shapes are rigidly transformed. And Most descriptors proposed so far are confined to shape, that is, they analyze only geometric and/or topological properties of 3D models. A shape descriptor or model should be isometry invariant, scale invariant, be able to capture the fine details of the shape, computationally efficient, and have many other good properties. A shape descriptor or model is needed. This shape descriptor should be: able to deal with the non-rigid shape deformation, able to handle the scale variation problem with less sensitivity to noise, able to match shapes related to the same class even if these shapes have missing parts, and able to encode both the photometric, and geometric information in one descriptor. This dissertation will address the problem of 3D non-rigid shape representation and textured 3D non-rigid shapes based on local features. Two approaches will be proposed for non-rigid shape matching and retrieval based on Heat Kernel (HK), and Scale-Invariant Heat Kernel (SI-HK) and one approach for modeling textured 3D non-rigid shapes based on scale-invariant Weighted Heat Kernel Signature (WHKS). For the first approach, the Laplace-Beltrami eigenfunctions is used to detect a small number of critical points on the shape surface. Then a shape descriptor is formed based on the heat kernels at the detected critical points for different scales. Sparse representation is used to reduce the dimensionality of the calculated descriptor. The proposed descriptor is used for classification via the Collaborative Representation-based Classification with a Regularized Least Square (CRC-RLS) algorithm. The experimental results have shown that the proposed descriptor can achieve state-of-the-art results on two benchmark data sets. For the second approach, an improved method to introduce scale-invariance has been also proposed to avoid noise-sensitive operations in the original transformation method. Then a new 3D shape descriptor is formed based on the histograms of the scale-invariant HK for a number of critical points on the shape at different time scales. A Collaborative Classification (CC) scheme is then employed for object classification. The experimental results have shown that the proposed descriptor can achieve high performance on the two benchmark data sets. An important observation from the experiments is that the proposed approach is more able to handle data under several distortion scenarios (noise, shot-noise, scale, and under missing parts) than the well-known approaches. For modeling textured 3D non-rigid shapes, this dissertation introduces, for the first time, a mathematical framework for the diffusion geometry on textured shapes. This dissertation presents an approach for shape matching and retrieval based on a weighted heat kernel signature. It shows how to include photometric information as a weight over the shape manifold, and it also propose a novel formulation for heat diffusion over weighted manifolds. Then this dissertation presents a new discretization method for the weighted heat kernel induced by the linear FEM weights. Finally, the weighted heat kernel signature is used as a shape descriptor. The proposed descriptor encodes both the photometric, and geometric information based on the solution of one equation. Finally, this dissertation proposes an approach for 3D face recognition based on the front contours of heat propagation over the face surface. The front contours are extracted automatically as heat is propagating starting from a detected set of landmarks. The propagation contours are used to successfully discriminate the various faces. The proposed approach is evaluated on the largest publicly available database of 3D facial images and successfully compared to the state-of-the-art approaches in the literature. This work can be extended to the problem of dense correspondence between non-rigid shapes. The proposed approaches with the properties of the Laplace-Beltrami eigenfunction can be utilized for 3D mesh segmentation. Another possible application of the proposed approach is the view point selection for 3D objects by selecting the most informative views that collectively provide the most descriptive presentation of the surface

    A Statistical Model of Riemannian Metric Variation for Deformable Shape Analysis

    Get PDF
    The analysis of deformable 3D shape is often cast in terms of the shape's intrinsic geometry due to its invariance to a wide range of non-rigid deformations. However, object's plasticity in non-rigid transformation often result in transformations that are not completely isometric in the surface's geometry and whose mode of deviation from isometry is an identifiable characteristic of the shape and its deformation modes. In this paper, we propose a novel generative model of the variations of the intrinsic metric of de formable shapes, based on the spectral decomposition of the Laplace-Beltrami operator. To this end, we assume two independent models for the eigenvectors and the eigenvalues of the graph-Laplacian of a 3D mesh which are learned in a supervised way from a set of shapes belonging to the same class. We show how this model can be efficiently learned given a set of 3D meshes, and evaluate the performance of the resulting generative model in shape classification and retrieval tasks. Comparison with state-of-the-art solutions for these problems confirm the validity of the approach
    corecore