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Abstract

This thesis addresses problems associated with computing spectral shape signatures for

non-rigid 3D object retrieval. More specifically, we use spectral shape analysis tools to

describe the characteristics of different 3D object representations. This thesis tries to answer

whether spectral shape analysis tools can enhance classical shape signatures to improve the

performance of the non-rigid shape retrieval problem. Furthermore, it describes the stages

of the framework for composing non-rigid shape signatures, built from the shape Laplacian.

This thesis presents four methods to improve each part of the framework for computing

spectral shape signatures. The first stage comprises computing the right shape spectrum to

describe 3D objects. We introduce the Kinetic Laplace-Beltrami operator which computes

enhanced spectral components from 3D meshes specific to non-rigid shape retrieval and

we also introduce the Mesh-Free Laplace Operator which computes more precise and robust

spectral components from 3D point clouds. After computing the shape spectrum, we propose

the Improved Wave Kernel Signature, a more discriminative local descriptor built from the

Laplacian eigenfunctions. This descriptor is used throughout this thesis and it achieves, in

most cases, state-of-the-art performances. Then, we define a new framework for encoding

sparse local descriptors into shape signatures that can be compared to each other. Here,

we show how to use the Fisher Vector and Super Vector to encode spectral descriptors and

also how to compute dissimilarities between shape signatures using the Efficient Manifold

Ranking. Furthermore, we describe the construction of the Point-Cloud Shape Retrieval of

Non-Rigid Toys dataset, aimed in testing non-rigid shape signatures on point clouds, after

we evidenced a lack of point-cloud benchmarks in the literature. With these ingredients, we

are able to construct shape signatures which are specially built for non-rigid shape retrieval.
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Chapter 1

Introduction

Shape analysis has attracted the interest of many researchers in the computer vision and

pattern recognition communities in the past few years. This is because three-dimensional

(3D) models are becoming more practical and they are appearing more often in many types

of applications. These models can be acquired in many different ways using scanners or

cameras, and can be captured even from non-expert users in this field. They can also be

created or edited by 3D modeling software with a low learning curve. This explains the

gigantic number of models available in the Internet for free in databases like Google 3D

Warehouse [Google, 2015] containing millions of models. Usually in shape analysis, models

are represented by their boundaries or shell, not by their volume.

Shape analysis comprises examining and describing the form of geometric shapes so

computers can detect similarities between objects in a database. Principal applications in

this case are: search for deformations of the same object [Lian et al., 2011, Lian et al., 2015,

Pickup et al., 2014b], search for objects from same categories [Biasotti et al., 2014], match

parts of the shapes or find correspondences [Bronstein et al., 2010a], mesh segmentation

[Chen et al., 2009], understand shape changes for medical purposes [Castellani et al., 2011]

and face recognition [Samir et al., 2006, Maalej et al., 2011]. The problem is that shapes are

represented in the three-dimensional space without any standardization on size, orientation

or discretization. Therefore, analyzing shapes in order to find similarities between 3D models

is not a matter of comparing vertices but finding more robust representations that can be

compared properly and efficiently.

1
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1.1 The problems

The usual way to compare digital objects is by using a signature, also called fingerprint (the

name was used for the first time in shape analysis by Reuter [Reuter et al., 2005]), that

carries most important information about the shape. It is desirable that this representation

is stable against non-rigid deformations of the same shape and typical rigid transformations

that 3D models undergo, like rotation, mirroring, etc. Shape signatures usually represent

local characteristics of shapes, which are associated with their vertices. They usually capture

information about the neighborhood of a vertex and so they can be directly applied to some

important tasks like point correspondence and shape segmentation. There are many ways to

address the problem of representing the local properties of surfaces. The most well known

methods use different variations of the scale-invariant feature transform (SIFT) [Lowe, 1999]

or the Laplace-Beltrami operator (LBO).

Another constraint, that comes from how the data is registered, is the way shapes are

stored in memory. The two most common ways are using point clouds or meshes. The

problem is that methods designed to compute descriptors depend on the way shapes are

described. This is a problem since point clouds are less informative than meshes when both

are equally dense. For computing the Laplace-Beltrami Operator, there exist methods to

deal with both representations, although existing methods are only approximations for the

true LBO. The most well know are the cotangent scheme [Meyer et al., 2003] for meshes and

the PCD Laplace (Point-Cloud Data Laplace) [Belkin et al., 2009] for point clouds.

On the other hand, local descriptors cannot be immediately applied to the problem of

shape retrieval, because this task is not addressed by comparing descriptors, but by compar-

ing global signatures. In this thesis, we refer to signatures as the global shape representation

and to descriptors as the local shape representation (coupled to vertices). Creating signa-

tures is not a simple task since shapes can have arbitrary number of vertices, edges and faces.

To create an ideal generic representation of a shape model all important characteristics shall

be preserved during the encoding process. Even so, the global representation must compress

local characteristics using the same representation in order to facilitate comparisons.

There are many different approaches to encode descriptors into signatures. They succeed
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in representing local features in a same-basis space, however, there is not one encoding process

that is always better than others. They depend on the characteristics of the descriptors.

Regarding the problem being faced (dataset characteristics), it is necessary to compute

different local descriptors which handle important deformations in a specific manner. For

instance, in the non-rigid shape retrieval problem, descriptors have to be invariant where joint

motions occur even though their neighborhood is different after the motion. To address, for

instance, a benchmark of solid objects, like chairs, wardrobes and beds, it is important to

have a signatures that can learn the common transformations of same-class objects.

1.2 Our goals

In our study, we are interested in coding different aspects of shapes to improve the efficiency

of spectral descriptors in shape analysis. More specifically, we are interested in a general

framework for spectral signatures, which computes a designed LBO for the problem in hand

and generates descriptors which carry all important shape characteristics. After computing

descriptors, it is necessary to compute a fast and stable encoding scheme which does not

reduce the descriptor potential. Finally, it is necessary to compute signature discrepancies in

a fair way that reflect the real differences between objects. With all these components, the

questions that we want to answer are: Can we use spectral analysis to construct enhanced

spectral descriptors which can perform at state-of-the-art performance? Is it possible to

achieve efficient shape retrieval using only spectral components? If not, what are the tools

that we need to increase spectral shape retrieval performance? Our efforts are aimed to give

the best answers to these questions throughout this thesis.

1.3 Contributions

To achieve the goal of creating enhanced spectral signatures for 3D shape retrieval we make

the following contributions in this thesis.
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1.3.1 Improved Wave Kernel Signature

In spectral shape analysis, the shape spectra is represented by the eigenvalues and eigen-

functions of the eigendecomposition of the Laplace-Beltrami operator. These statistics are

used to describe localized characteristics of the shape. By using the different frequencies of

the eigenfunctions it is possible to characterize one particular position of the shape in many

different ways by varying the vibration modes. One of the problems when creating a spectral

shape signature is how to model the weighting of the shape spectra, which will define how

much information about local and global aspects shall be taken into account.

The weighting is described by a filter which controls the significance of different frequen-

cies. Whether the majority of the weightings are concentrated in the low frequencies, only

the major topological structure of the object will be captured by the signature. On the other

hand, if we account all the shape spectra equally, the high frequencies will aggregate noise

to the descriptor, since these relate to information from different parts of the shape.

After analyzing the effects of different weightings to the WKS, we proposed to create

filters which are more stable to the gross structure of the shape but also aggregate more high

frequency information about the shape. By creating more stable filters along the frequencies

of the shape spectrum it is possible to create a better signature for non-rigid shape retrieval

which captures both the major structure of the object and the fine details at the same time.

1.3.2 Robust encoding framework

Once local descriptors are computed from 3D models, it is necessary to write these descriptors

on a commensurable basis so they can be compared to each other. There exist many different

encoding schemes that have this goal, however, some are more robust than others. In this

thesis, we propose to use state-of-the-art encoding schemes in conjunction with spectral

signatures. We show how to encode local spectral descriptors with Fisher Vector [Perronnin

and Dance, 2007] and Super Vector [Zhou et al., 2010]. This combination had never been done

before. Furthermore, we show experimentally that is possible to use these encoding methods

with spectral descriptors once they can be approximated by Gaussian Mixture Models. We

present experiments which prove that this aggregation increase the performance of spectral
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signatures.

For this, we exhaustively evaluate the performance of our framework by a series of ex-

periments computed over many different spectral descriptors, datasets and settings. In the

end, we compare our results with state-of-the-art signatures.

1.3.3 Kinetic Laplace-Beltrami operator

Given that the shape spectra should be more informative and discriminative than the results

were showing us, we decided to undertake the more fundamental strategy of designing an

LBO that is specialized in non-rigid shape retrieval. The Kinetic Laplace-Beltrami operator

(KLBO) takes a more general approach to modify the dynamics that occur on the shape’s

surface.

Therewith, we introduce a new framework that can be modified to deal with the problem

at hand. We propose a number of different weightings to bias most important features on

the model, leading to a formulation which is specially built for the problem. We explain

how it is possible to deal with the non-rigid shape retrieval problem by weighting the kinetic

energy by a map that is small in areas on the shape where articulations are likely to occur

and stable to non-rigid motions.

We present many experiments that show that the KLBO is very good at retrieving non-

rigid shapes, comparing to the classic LBO. We also show that KLBO descriptors can also

be used with state-of-the-art encoding schemes, since descriptors can be approximated by

GMMs. In the end, we show a full comparison with other signatures designed for shape

retrieval.

1.3.4 Non-rigid point-cloud dataset

On the other hand, meshes are not the only discrete shape representation. 3D point-cloud

objects are the immediate result of 3D scans of real 3D objects. Given the necessity of

comparing 3D non-rigid shapes based directly on a rough 3D scan of the object we have

created a point-cloud dataset which aims in evaluating how methods perform on the non-

rigid point-cloud retrieval task. In this way, our dataset is the first of its kind. In this task,

a shape retrieval method has to worry about common scanning problems, mainly caused by
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object self-occlusions, however, this task cannot be classified as a part-based shape retrieval

problem because the gross structure of the shape is always presented (only fine details are

missing). Therefore, we created this dataset to promote the development of non-rigid 3D

shape retrieval of point clouds.

This dataset has the objective of evaluating shape retrieval methods that can be computed

directly and efficiently from point clouds. For this, we present a dataset named PRoNTo:

Point-Cloud Shape Retrieval of Non-Rigid Toys, which has been scanned by us and contains

100 3D non-rigid point clouds, divided in 10 classes, with 10 model per class. Every point

cloud was resampled to two sizes: one with 4K points and another with 10K points to

demonstrate the effect of different sampling ratios on the descriptors. All models were

sampled to the same number of points in either datasets so that variations in model sizes

does not influence the descriptors.

The dataset is available in the SHREC’17 PRoNTo website [Limberger and Wilson, 2017].

We show in the end a summary of the methods submitted to the benchmark and evaluation

statistics resulted from shape retrievals on the dataset. From there, we draw our conclusions

based on the results.

1.3.5 Mesh-Free Laplace-Beltrami operator

The Mesh-Free Laplace operator (MFLO) is an optimized operator for computing an isotropic

discrete Laplace operator for point clouds. The MFLO does not need to estimate a local

tangent plane nor compute a Voronoi diagram for each sample like other approaches [Belkin

et al., 2009, Liu et al., 2012], speeding up Laplacian-matrix computation. Our operator

approximates the Laplace-Beltrami operator on the unknown manifold which the point cloud

was sampled, under certain sampling conditions.

The standard Graph Laplacian (GL) can be used to compute the Laplacian of point

clouds. However, there are two problems with constructing this operator for a point cloud.

Firstly, the point cloud does not have a mesh and therefore we need to produce a connection

scheme for the points to construct a graph. Secondly, some arbitrary connection scheme

will not faithfully reproduce the LBO of the underlying surface. To replicate the Laplace-

Beltrami operator on the underlying manifold a weighting scheme must account the distance
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between points on the manifold and not on the Euclidean space.

With this in mind, we approximate manifold distances using Taylor series of the function

on the manifold in normal co-ordinates at every point of the point cloud. This scheme

approximates the underlying manifold if points are isotropically sampled from the manifold

and sufficiently dense.

We show experiments of the MFLO for computing the LBO and constructing spectral

signatures for respective point clouds. Then, we perform shape retrieval in the PRoNTo

dataset, and also in the sampled versions of SHREC’10, SHREC’11 and SHREC’15 non-

rigid datasets. We also compare the MFLO with other methods that compute the LBO for

point clouds: the PCDLaplace [Belkin et al., 2009], Point-Based Manifold Harmonics [Liu

et al., 2012] and the Graph Laplacian.

1.4 Thesis structure

The remainder of the thesis is organized as follows: Chapter 2 reviews the research literature

related to the work presented in this thesis. Chapter 3 shows how we improve the WKS

to non-rigid shape retrieval and Chapter 4 shows how to create global signatures from local

descriptors using state-of-the-art encoding methods. Then, Chapter 5 presents improvements

to the computation of the LBO for non-rigid shape retrieval by weighting the kinetic energy

on the manifold. Furthermore, Chapter 6 describes the conception of the non-rigid point-

cloud dataset, created to test non-rigid shape retrieval of point-cloud shapes. Chapter 7

shows how to compute a point-cloud version of the discrete LBO using an isotropic edge-

weighting scheme to characterize features on the unknown underlying manifold. Chapter 8

concludes this thesis and points to several problems that deserve further research.





Chapter 2

Literature Review

In this section, we review methods related to different formulations for the Laplace-Beltrami

operator, non-rigid shape descriptors proposed in the literature and also methods to en-

code local descriptors into shape signatures. First, we define the LBO and then comment

on related methods. Second, we group non-rigid shape descriptors into three categories:

spectral-based, geometry-based, and learning-based descriptors, and discuss their innova-

tions. Then, we review feature encoding methods and, finally, we detail non-rigid shape

retrieval datasets proposed in the literature.

2.1 Laplace-Beltrami operator

The Laplace operator generalized to operate on functions defined on a Riemannian manifold

M (2D in our case) is known as the Laplace-Beltrami operator ∆M. It is a linear operator

defined as the divergence of the gradient taking functions into functions

∆Mf = −5 · 5M f (2.1)

given that f is a twice-differentiable real-valued function. The negative sign is simply to

respect the standard convention for graph Laplacians. The eigendecomposition of the LBO,

represented by its eigenvalues and eigenfunctions, is known as the spectrum of the shape.

In the discrete case (∆Mf), there are several methods concerned in computing the LBO

for meshes [Taubin, 1995, Desbrun et al., 1999, Pinkall et al., 1993, Meyer et al., 2003, Reuter

9
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et al., 2006, Xu, 2006, Levy, 2006, Belkin et al., 2008]. Meyer et al. proposed the cotangent

weight scheme [Meyer et al., 2003] which we utilize in our construction. We consider f : V →

R, where the ith component f(i) is the function value at the vertex i in V. Using Meyer et

al.’s discretization, the LBO is written as

∆Mf = Lf = A−1Wf (2.2)

where L is the discrete Laplace operator, A is a positive definite diagonal matrix and the

elements of W are given by

W (i, j) =



(cotαij+cotβij)
2 if (i, j) ∈ E,

−
∑
k 6=i

W (i, k) if i = j,

0 otherwise.

(2.3)

where αij and βij are the angles ∠(vivavj) and ∠(vivbvj) as shown in Fig. 2.1. The diagonal

elements Aii are the Voronoi areas (green polygon) associated to the vertex vi.

αij

βij

va

vb

vj

vi

Figure 2.1: Illustration of the angles αij and βij , and the Voronoi area (green polygon)
associated to the vertex vi of the cotangent weight scheme [Meyer et al., 2003].

In order to find the spectrum of the shape, the eigendecomposition of the LBO is com-

puted. The eigenvectors and eigenfunctions are solutions of the generalized eigenproblem

Lφ = λφ (2.4)

Wφ = λAφ. (2.5)
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Xu [Xu, 2004] showed that the cotangent weight scheme does not converge in general,

and Belkin et al. [Belkin et al., 2008] proposed a new discretization method that converges

even when meshes present imperfections.

Recently, Andreux et al. [Andreux et al., 2014] proposed an anisotropic LBO which keeps

key properties of the isotropic LBO and benefits from a more semantically meaningful diffu-

sion process. Later, Boscaini et al. [Boscaini et al., 2016] constructed shape descriptors from

anisotropic oriented diffusion kernels which were learned using a deep learning architecture.

There has been also an increasing focus on computing the discrete LBO for point sets.

Belkin et al. [Belkin et al., 2009] introduced a sort of meshing procedure where a local

tangent space is estimated for each point. From there, they compute an operator, named

PCDLaplace, that converges to the LBO as the point cloud become denser. Luo et al. [Luo

et al., 2009] compute a Voronoi weighting scheme to estimate integrals over the manifold using

a geodesic metric. Later, Liu et al. [Liu et al., 2012] built a symmetrizable discrete LBO over

point-sampled manifold surfaces, named Point-Based Manifold Harmonic Transform (PB-

MHT). Differently from Luo et al.’s work, they construct Voronoi diagrams based on the

Euclidean distance, and show that their solution converges better than previous techniques.

After computing the shape spectra (eigenvalues and eigenfunctions), it can be used in

many ways to represent the intrinsic shape. The Laplacian matrix L has many properties

when computed over an undirected graph. For example, the multiplicity of the eigenvalue

zero of the Laplacian matrix is equal to the number of connected components of the graph.

For computing appropriate descriptors, it is necessary to take this into consideration. Also,

good methods for computing L create a positive-semidefinite matrix, which generates only

positive eigenvalues. In the next section, we will focus in showing methods that use the

shape spectra to create shape representations.

2.2 Spectral-based descriptors

In the past years, spectral-based descriptors have been earned attention by the community

since they satisfy most of the desirable properties of local descriptors. Spectral-based tech-

niques take advantages of intrinsic properties of spectral graph theory to present an elegant
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solution to non-rigid shape retrieval. This solution relies on the analysis of the eigensystem

(eigenvalues and eigenfunctions) of the Laplace-Beltrami operator.

To create a spectral descriptor one needs to organize the shape spectra in a way that

it is representative for the respective application. The shape spectra is the spectrum of

the Laplace-Beltrami operator of the shape. The LBO of the shape can be computed from

meshes and point clouds using discrete versions of the LBO, as shown in the previous section.

Then, spectrum of the LBO is given by the eigendecomposition of the LBO matrix, which

results in its eigenvalues and eigenfunctions (λ, φ).

These spectral components were first used to represent shapes by Reuter et al. [Reuter

et al., 2005] in 2005. They used the eigenvalues of the LBO sorted in ascending order as a

shape fingerprint for shape identification and comparison. Soon after, Rustamov [Rustamov,

2007] incorporated the eigenfunctions of the LBO to describe the global shape using GPS

embedding. Since then, descriptors normally use both the eigenvalues and eigenfunctions to

represent object’s shapes. In the following section, we describe in more details the principal

shape signatures created from the shape’s spectral components.

2.2.1 Shape DNA

Creating signatures using the spectra of the shape was first addressed by Reuter et al.

[Reuter et al., 2005, Reuter et al., 2006]. In this seminal paper, the authors use a collection

of eigenvalues of the LBO to represent local properties

ShapeDNA = 0 ≤ λ1 ≤ λ2 ≤ λ3 ≤ λ4 ≤ . . . ≤ λn. (2.6)

Although Reuter’s signature ensures that it can recognize shapes in different poses, there

exist compact non-isometric shapes that have the same spectra, therefore, they cannot be

fully distinguished only by the eigenvalues of the LBO.

2.2.2 Global point signature

To overcome Shape DNA’s drawback, Rustamov [Rustamov, 2007] uses all the spectra (eigen-

values and eigenvectors) of a shape to create the Global Point Signature (GPS). The GPS
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of a point p is giving by

GPS(p) =

(
1√
λ1
φ1(p),

1√
λ2
φ2(p),

1√
λ3
φ3(p), . . . ,

1√
λn
φn(p)

)
(2.7)

He also proposes an isometric-invariant shape embedding, where the global signature is

computed by a histogram of pairwise distances [Osada et al., 2002] between points in the

embedding space. This approach solves the previous problem of distinguishing non-isometric

shapes with the same spectra but introduces the sign correction problem to the eigenfunc-

tions.

2.2.3 Heat kernel signature

Sun et al. [Sun et al., 2009] introduced a deformation-invariant signature based on the heat

kernel, solving the sign correction problem of the GPS. Named the Heat Kernel Signature

(HKS), the descriptor is based on the diffusion of heat over the surface of the model, governed

by the heat equation

∆Mu(x, t) =
∂u

∂t
(x, t), (2.8)

where u is a function in respect to space and time that requires to satisfy the Dirichlet

boundary condition u(x, t) = 0 for all x ∈ ∂M during all t. Given a starting distribution of

heat at time t, the purpose is to measure how the heat is diffused across the shape, and, from

this distribution, compute a heat-based descriptor. The HKS can be seen as the remaining

heat at x between an interval of time [t0, t1] (t0 > 0 and t1 > t0). This is computed by the

heat kernel kt:

HKS(x, t) = kt(x, x) =

∞∑
k=1

φk(x)2e−λkt, (2.9)

where λ are the eigenvalues and φ the eigenfunctions of the Laplace-Beltrami operator ∆M.

This formulation with the heat kernel has a number of good properties:

• Intrinsic: The invariance of the LBO leads to an invariance of the heat kernel under

isometric transformations.

• Informative: The heat kernel contains all the information about geometric properties

of the shape.
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• Multi-scale: It contains information about different scales (time measurements) lead-

ing to local and global knowledge.

• Stable: The heat kernel is stable under small perturbations of the underlying manifold.

2.2.4 Scale-invariant heat kernel signature

Although the HKS can describe a shape at multiple scales (at different time samples) it is

not scale-invariant. This means that if there are two identical shapes but they appear in

different sizes, their HKS will be different. Bronstein and Kokkinos proposed a normalization

to the HKS that makes it totally scale invariant (SI-HKS) [Bronstein and Kokkinos, 2010].

This way, sampling the HKS logarithmically in time (t = ατ ) at each point x results in:

hτ = HKS(x, ατ ) (2.10)

From now, it is possible to normalize the signature since the scaling of the shape hτ to h′τ ,

results in a shift in time by s = 2 logα β and in a scaling in amplitude by β2:

h′τ = β2hτ+s (2.11)

According to Bronstein and Kokkinos [Bronstein and Kokkinos, 2010] it is possible to remove

the constant β2 by taking the logarithm of h, and then the discrete derivative with respect

to τ :

ḣ′ = ḣτ+s (2.12)

Then, by taking the discrete Fourier transform it is possible to remove the time shift

H ′(ω) = H(ω)e2πωs (2.13)

where H and H ′ are the Fourier transform of h and h′ respectively, and ω ∈ [0, 2π]. Finally,

by taking the Fourier transform modulus it is possible to eliminate the phase and have a
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signature that is invariant to its scale

|H ′(ω)| = |H(ω)| (2.14)

2.2.5 Wave kernel signature

Aubry et al. [Aubry et al., 2011b] introduced the Wave Kernel Signature (WKS), which

evaluates the probability of measuring a quantum mechanical particle at a specific location

x ∈ X by varying its energy E. Aubry et al. use the Schrodinger equation governed by

the wave function ψ(x, t) (Equation 2.15) to describe the quantum mechanical behavior of

particles over an object surface.

i∆Mψ(x, t) =
∂ψ

∂t
(x, t), (2.15)

The Wave Kernel Signature is very similar to the heat equation but it has different induced

dynamics. Rather than use different time intervals, Aubry et al. compute the descriptor at

different energy scales using band-pass filters. The WKS is given by

WKS(E, x) =
∞∑
k=1

φk(x)2fE(λk)
2 (2.16)

where fE (Equation 2.17) is a distribution that can properly characterize shape properties

at different scales.

fE(Λk)
2 = exp

[
−(e− log(Λk))

2

2σ2

]
e ∈ [log Λ1, log Λmax] (2.17)

By choosing a log-normal distribution function to account for spectrum variances, the WKS

present some undesirable properties which will be further discussed in Chapter 3. These

properties have been grounds of investigation in this thesis in order to create a more ro-

bust signature. Nonetheless, the WKS can also be made scale invariant following the same

framework of Bronstein and Kokkinos [Bronstein and Kokkinos, 2010].
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2.2.6 Other spectral methods

Many researchers have made modifications to the computation of previous spectral ap-

proaches to increase the retrieval performance of spectral signatures for certain problems. In

this section, we detail these methods and comment on their novelty.

Raviv et al. [Raviv et al., 2010] extended the heat kernel signature, normally computed

from meshes, to a volumetric descriptor computed from the volume of an object. In this case,

the LBO is computed from a voxelized version of the 3D model to generate the Volumetric

Heat Kernel Signature (VHKS). Another modification to the HKS was made by Castel-

lani et al. [Castellani et al., 2011], where they introduce the Global Heat Kernel Signature

(GHKS), which is a concatenation of histograms for a fixed number of HKS scales. They

used the GHKS for brain classification to distinguish patients affected by schizophrenia.

Li and Hamza [Li and BenHamza, 2013] introduced a spectral graph wavelet framework

to retrieve shapes in non-rigid databases, where local descriptors are extracted using the

spectral graph wavelet transform. Masoumi et al. [Masoumi et al., 2016] improved previous

work [Li and BenHamza, 2013] by incorporating the vertex area in the computation of the

descriptor. Recently, Ye and Yu [Ye and Yu, 2015] took advantage of functional operators to

design a framework specifically for encoding non-rigid geometries by using a context-aware

integral kernel operator on a manifold. Li et al. [Li et al., 2016] computed a descriptor

for non-rigid shape retrieval based on the HKS which is only computed on assigned key-

points to reduce computational complexity. Mohamed and Hamza [Mohamed and Hamza,

2016] created a descriptor based on the spectral shape skeleton computed from the second

eigenfunction of the LBO, and compared these skeletons using a graph matching framework.

2.3 Geometry-based descriptors

Geometry-based descriptors use statistics computed on primitive geometric attributes, for

instance, distance between any two points and/or histograms of primitive geometric at-

tributes, to characterize 3D models. In the following subsections, we will discuss the main

geometry-based descriptors methods proposed in the literature to describe 3D shapes. First,

we discuss the two first shape descriptors created to describe objects: Spin Images [Johnson,
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1997] and Shape Context [Belongie and Malik, 2000]. Then, we focus our attention to the

category of descriptors which use the Scale-Invariant Feature Transform (SIFT) to represent

local features. Finally, we describe algorithms which perform Multidimensional Scaling to

transform the shape into its canonical form and remove the influence of shape articulations.

2.3.1 Spin images

One of the first works that addresses shape signatures is Spin Images [Johnson, 1997] .

Johnson created a parameterization in a local space, around a point and a tangent plane,

where intuitively a plane is rotated around the normal vector of each point accumulating

the remaining points of the shape as the plane sweeps space. This accumulation of points

creates a spin image, which can be used to compare shapes.

Accumulation of points depend on point density of the shape, since a mesh with T points

will generate T Spin Images. Johnson uses a map function to map points from the three

dimensional space to two dimensional space. Because spin images are generated around a

local base space, they are invariant to rigid transformation of the shape. For each point in

the model xi one needs to compute the parameters α and β (Eq. 2.18) which represent the

radial distance and the axial distance, respectively, from the origin pi of the normal vector

ni. This two distances create a spin map, which is accumulated into discrete bins to create

the Spin Image.

(α, β) = (
√
‖x− p‖2 − (n · (x− p))2,n · (x− p)) (2.18)

In order to match shapes using spin images, it is necessary to calculate spin images from

all points of all models in the database. This way, two spin images P and Q with N bins

each are compared using a similarity measure

C(P,Q) = arctanh(R(P,Q))2 − λ
(

1

N − 3

)
, (2.19)
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where R is the correlation coefficient

R(P,Q) =
N
∑

piqi −
∑

pi
∑

qi√
(N
∑

p2
i − (

∑
pi)2)(N

∑
q2
i − (

∑
qi)2)

. (2.20)

This function returns a large value if two spin images have a large number of overlapping

bins. Also, shapes can be compared using compressed spin images, reducing the dimension

of the data from M spin images to S Eigen spin images computed by PCA. Then with a

projection of these images it is possible to search for a shape using a closest point search

procedure and this allows the use of efficient techniques for matching spin images.

2.3.2 Shape context

The idea of Shape Context (SC) is similar with the one of spin images. Belongie and Malik

[Belongie and Malik, 2000] create local bases in the shape and represent the shape from each

local base. But instead of using an accumulator of points, they use a log-polar histogram

of relative coordinates. For this, the boundaries of the objects must be detected and be

uniform sampled, but the last it is not mandatory. Initially, they applied SC for measuring

shape similarity and recovering point correspondences. Belongie [Belongie et al., 2000] also

applied Shape Context for correspondence recovery and 2D shape-based object recognition

from pictures taken from objects in distinct views. Later, Kokkinos et al. [Kokkinos et al.,

2012] developed an intrinsic version of the shape context for 3D models, that can be seen as

a meta descriptor which can be applied to any photometric or geometric property field.

2.3.3 Scale-invariant feature transform

Scale-Invariant Feature Transform (SIFT) is a feature descriptor that have been first applied

to describe features in images [Lowe, 1999]. Due to its great success it was also extended

to describe features in 3D. As the name suggests, it is invariant to scale but also invariant

to rotation and translation and partially invariant to light changes and affine 3D projection.

SIFTs generally are assigned to high-contrast regions, like on the edges of images. Once they

are localized, the descriptor is created by computing an orientation histogram around the

keypoint. These keypoints can be matched in different images by identifying their nearest
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neighbours.

Many variants of this algorithm have been proposed in the literature: 3D SIFTs were

applied to action recognition in video sequences where the third dimension represents the

temporal space [Flitton et al., 2010, Laptev et al., 2007, Laptev and Lindeberg, 2006, Sco-

vanner et al., 2007]. Other variants tried to reduce the computation time of SIFT: DSIFT

[Vedaldi and Fulkerson, 2008] and SURF [Bay et al., 2008]. When it comes to 3D object de-

scriptors, SIFTs are usually computed from multiple viewpoints of the same object [Ohbuchi

et al., 2008, Furuya and Ohbuchi, 2009, Furuya and Ohbuchi, 2014, Ohbuchi and Furuya,

2010] or applied directly to 3D objects by using 3D SURF [Knopp et al., 2010].

In the multi-view scenario, depth images are taken from the object in many different

viewpoints. Then, 2D SIFTs are computed from these 2D range images. From there, bag-

of-features are computed and compared using the calculated SIFTs as features. In [Ohbuchi

et al., 2008], authors compute salient local visual features (SSIFT) from range images. In

[Furuya and Ohbuchi, 2009], they chose to change SSIFT for DSIFT, to improve retrieval

accuracy of highly articulated models. In [Ohbuchi and Furuya, 2010], they compute different

types of SIFTs on the range images (SSIFT, DSIFT and 1SIFT) to aggregate local and global

information at the same time and combine them into a unique descriptor.

In [Knopp et al., 2010], 3D SIFTs are extracted directly from the 3D shape. First, the

3D shape is voxelized using the intersection of faces with the 3D grid. Then, features points

are chosen as the local extremes of the Hessian filter responses, where S is the absolute value

of the determinant of the Hessian matrix

S(~x, σ) = |H(~x, σ)| =

∣∣∣∣∣∣∣∣∣∣∣


Lxx(~x, σ) Lxy(~x, σ) Lxz(~x, σ)

Lyx(~x, σ) Lyy(~x, σ) Lyz(~x, σ)

Lzx(~x, σ) Lzy(~x, σ) Lzz(~x, σ)



∣∣∣∣∣∣∣∣∣∣∣
. (2.21)

Thus, 3D SURF descriptors are computed around each feature points, and finally, bag-of-

features is computed likewise.

Furuya and Ohbuchi [Furuya and Ohbuchi, 2014] fused local features to create a more

powerful descriptor. They computed SIFTs and merged them using an anchor manifold
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graph. As a more extensive comparison, Furuya and Ohbuchi [Takahiko Furuya, 2015]

developed a feature aggregation algorithm named Diffusion-On-Manifold to encode local

features into a global descriptor. They also proposed a new local feature called Position and

Orientation Distribution, that describes the oriented-points distribution using a Sphere-Of-

Interest.

2.3.4 Multidimensional scaling

Many techniques have also been proposed to handle non-rigid shape retrieval by first ap-

plying multidimensional scaling (MDS). MDS transforms models into their canonical form,

therefore, removing the influence of shape motions and simplifying the computation of 3D

descriptors, which do not need to worry about shape articulations.

Elad and Kimmel [Elad and Kimmel, 2003] computed bending invariant signatures by

applying MDS on the intrinsic geodesic distances between surface points, computed from

the fast marching on triangulated domains algorithm. Lian et al. [Lian et al., 2013] pro-

pose to apply an algorithm called Clock Matching to depth-buffer images, captured around

the 3D objects in their canonical forms. After this, Bag-of-Features is applied to create a

quantization of features to every view (CM-BOF). Finally, a multi-view shape matching is

applied to compute the dissimilarities between models. Also based on MDS, Li et al. [Li

et al., 2014a] proposed a hybrid descriptor (MDS-ZFDR) by combining distance-based and

curvature-based features. Pickup et al. [Pickup et al., 2015] computed canonical forms based

on Euclidean distances. By substituting MDS with their canonical-form method in the work

of Lian et al. [Lian et al., 2013], they created shape descriptors that perform at a comparable

accuracy but present lower computation times. In a similar way to canonical forms, Pickup

et al. [Pickup et al., 2016a] created a descriptor by unbending the skeleton of the mesh and

used it with Lian et al.’s work [Lian et al., 2013] to perform non-rigid shape retrieval.

2.4 Learning-based descriptors

Recently, there have been works concerned with applying machine learning methods to ge-

ometric data. Note that these are intrinsically different from the previous mentioned ap-
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proaches, since previous ones do not use any offline training data. This is a recent and

important field which deserves attention. Their drawback is that they require some prior

knowledge such as training data so they can learn class attributes.

Litman et al. [Litman et al., 2014] worked with supervised learning to replaced the unsu-

pervised construction of the dictionary in BoF by a supervised learning scheme via bi-level

optimization. Later, Litman and Bronstein [Litman and Bronstein, 2014] defined a generic

family of parametric spectral descriptors, from where HKS and WKS are particular cases.

They show how to learn an optimized descriptor by taking into account the statistics of

shapes. The new spectral descriptor is learned by modifying the filters (kernel) that are

computed from the shape spectra. Boscaini et al. [Boscaini et al., 2015] proposed a localized

spectral convolutional neural network using the windowed Fourier transform to represent

local shape structures. Using this learning procedure, they were able to create class-specific

descriptors for deformable shapes. Giachetti et al. [Giachetti et al., 2016] used learned sub-

space projections to differentiate human body subjects using classical signatures (ShapeDNA

and Histogram of area projection transform).

2.5 Feature encoding methods

The idea of creating global shape signatures from local descriptors is neither new nor straight-

forward. Aubry et al. [Aubry et al., 2011b] states that comparing 3D shapes is a difficult

computational challenge. The most common way of encoding local descriptors is by using

histograms of the local feature vectors. This strategy is widely used because it removes the

local dependence of each descriptor by writing them as an association to a vocabulary. This

vocabulary can be computed by segmenting a training set into semantically coherent clusters

(K -means) or by finding the probability of each sample belonging to each cluster (Gaussian

Mixture Model). In the next two sections we describe the most common methods to compute

a visual vocabulary (K -means and GMM) and in the following sections we describe different

encoding schemes.
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2.5.1 K -means clustering

K -means is the most popular clustering algorithm to construct a geometric vocabulary. In

this method, each sample is assigned to the cluster which has the nearest mean. Given a

set of observations {x1, ...,xT }, k -means can be formulated as a minimization of the squared

sums of each cluster:

arg min
S

K∑
k=1

∑
x∈Sk

||x− µk||2, (2.22)

where µk is the mean of points in Sk. K-means is used, in this context, to create a dictionary

for either soft or hard encodings, e.g. for Histogram encoding or Kernel codebook encoding.

2.5.2 Gaussian mixture model clustering

A Gaussian Mixture Model (GMM) is a probabilistic distribution function uλ (Eq. 2.23

and 2.24) composed by a set of K Gaussian distributions. Each Gaussian is represented by

three parameters wk, µk and Σk which represents respectively the weight, the means and the

covariance matrix. GMM clustering can be seen as a soft clustering method where to each

sample is assigned a probability of belonging to each cluster. Usually an iterative algorithm

is used to converge to a local optimum solution in order to find the parameters of each

Gaussian. A GMM is used to create dictionaries for the Fisher Vector and the Super Vector.

uλ(x) =
K∑
k=1

wkN (x|µk,Σk) :
K∑
k=1

wk = 1 (2.23)

N (x|µk,Σk) =
1√

(2π)D|Σk|
exp[−1

2
(x− µk)>Σ−1k (x− µk)] (2.24)

2.5.3 Histogram encoding

Histogram encoding or Vector Quantization (VQ) is the precursor of all other encodings and

it is represented by a histogram of the quantized local descriptors assigned in a hard manner.

The vocabulary is built by learning a codebook of size K using k -means. Then, each local

descriptor is associated to one codeword. This histogram of all associations is the Histogram

encoding vector and it has the same size of the codebook (K). Sivic and Zisserman [Sivic
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and Zisserman, 2003] use VQ to search for user outlined objects in videos.

2.5.4 Kernel codebook

Kernel codebook encoding is the standard Bag-of-Feature (BoF) encoding. It encodes local

descriptors by assigning them to visual words. This removes the local dependence of each

local descriptor by describing the probability of occurrence (soft assignment version) of each

local descriptor in a geometric vocabulary. Firstly, a vocabulary of words P = {p1, ...,pK} of

size K is generated by an unsupervised learning algorithm like vector quantization through

k -means. This algorithm clusters similar features from a training set thus generating the

“visual words”. After this, local descriptors X = {x1, ...,xT } are assigned to the vocabulary.

Each association can be seen as the probability of each descriptor xi to be assigned to each

visual word pi. This is computed by:

θ(xi) = c(xi) exp

[
−||xi − pi||22

2σ2

]
, (2.25)

where c(x) is selected to normalize θ(xi) (|θ(xi)|1 = 1). Integrating this over the entire shape

Γ(X)BoF =

∫
X
θ(xi)dΩ(xi), (2.26)

leads to the BoF representation of the shape (Γ(X)BoF ), where Ω(xi) is the standard area

measure on X, and so the descriptor has the same size as the vocabulary (K).

Ovsjanikov et al. [Ovsjanikov et al., 2009] and Bronstein et al. [Bronstein et al., 2011]

have used BoF to combine spectral signatures (HKS and SI-HKS, respectively) to represent

shapes, removing the local dependence of each local descriptor. They calculate the distance

between two shapes using a Hamming metric between bag-of-features of each shape in the

Hamming space. They also propose the Spatially Sensitive Bags of Features (SSBoF) to

avoid losing the spatial relation between geometric words during the encoding process. More

recently, Litman et al. [Litman et al., 2014] developed a supervised learning approach to

construct the dictionary of BoF model, showing significant improvements in performance

over the compared methods.

There are other signatures that also make use of the BoF framework but do not use
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spectral local descriptors. In [Furuya and Ohbuchi, 2009], Furuya et al. use BoF to encode

SIFTs generated by depth images rendered in different views from a 3D model. In a recent

benchmark of 3D shape retrieval [Li et al., 2014c], Tatsuma (Depth Buffered Super-Vector

Coding) and Furuya [Ohbuchi and Furuya, 2010] have also applied BoF to their local fea-

tures. In a benchmark of retrieval of non-rigid 3D human models [Pickup et al., 2014a],

Tatsuma (Bag-of-Features approach with Augmented Point Feature Histograms), Bu (High-

level Feature Learning for 3D Shapes) and Li [Li et al., 2014a], besides Litman et al. [Litman

et al., 2014], have encoded local features using BoF. In both most recent benchmarks, the

best results were obtained by techniques that have used the Bag-of-Features framework.

2.5.5 Locality-constrained linear coding

Similar to other encoding methods, Locality-constrained linear coding (LLC) needs to com-

pute a dictionary of “visual words” using k -means. Thus, it projects each descriptor xi into

a set of M < K closest visual words closest to xi. Let µ1, . . . , µK be the visual vocabulary

generated by k-means and π1, . . . , πM the indices of the M closest visual words µk closer to

xi. The M visual words can be denoted as B = [µπ1 , . . . , µπM ]. The LLC is given by the

coefficients α ∈ RM of the approximation xi ≈ Bα

[ΓLLC(xi)]πm = αm,m = 1, . . . ,M. (2.27)

The LLC encoding can be obtained by max-pooling

[ΓLLC ]j = max
i=1,...,N

[ΓLLC(xi)]j (2.28)

Wang et al. [Wang et al., 2010] proposed and use LLC to classify images in three bench-

marks (Caltech-101, Caltech-256 and Pascal VOC 2007) achieving state-of-the-art perfor-

mance at the time but being overtaken by [Chatfield et al., 2011] later.
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2.5.6 Fisher vector

The Fisher Vector encoding characterizes a large set of vectors by their deviation from a

vocabulary, generating a high-dimensional gradient vector representation. Let X = {xt,xt ∈

RD, t = 1...T} be a large set of vectors and λ = {wk,µk,Σk, k = 1...K} a set of parameters

of a probability density function (pdf) uλ, where wk, µk and Σk are respectively the weight,

mean vector and covariance matrix of a Gaussian k of the GMM. Let us assume that the

generation process of X can be modelled by the parameters of uλ. The gradient of the

log-likelihood, also called Fisher score, describes the contribution of each parameter to the

generation process and is given by [Jaakkola and Haussler, 1998]:

GXλ = ∇λ log uλ(X|λ) (2.29)

The dimensionality of the gradient vector does not depend on the sample size T , but

depends on the dimension D of each sample vector and the number of parameters K of

uλ, since each dimension is evaluated with each parameter of the pdf (Eqs. 2.23 and 2.24).

To be able to compare GXλ vectors they must be properly scaled. According to [Jaakkola

and Haussler, 1998] a measure of pairwise similarity between samples is given by the Fisher

Kernel:

K(X,Y ) = GXλ F
−1
λ GYλ , (2.30)

where Fλ is the Fisher information matrix,

Fλ = Ex∼uλ [GXλ G
′X
λ ]. (2.31)

Scaling GXλ by F
−1/2
λ give us the FV representation (ΓXλ ) of the sample X with respect

to the parameters λ:

ΓXλ = F
−1/2
λ GXλ . (2.32)

To encode local descriptor using FV, the parameters of a Gaussian Mixture Model (2.23)

are estimated using the Expectation Minimization (EM) algorithm in order to optimize a

Maximum Likelihood criterion. Then, local descriptors are written wrt. the probabilistic
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model, which means express X by its gradient in respect to uλ. This is done by associating

each vector xt to a mode k in the GMM. First, we compute the association strength (soft

assignment) that is given by the posterior probability [Perronnin and Dance, 2007, Perronnin

et al., 2010a]:

qtk =
exp[−1

2(xt − µk)>Σ−1k (xt − µk)]
ΣK
i=1 exp[−1

2(xt − µi)>Σ−1i (xt − µi)]
. (2.33)

Second, for each mode k and each descriptor dimension j = 1..D, we can compute the

deviation vectors (gradient) with respect to the mean and covariance, respectively,

ujk =
1

T
√
wk

T∑
i=1

qik
xji − µjk
σjk

, (2.34)

vjk =
1

T
√

2wk

T∑
i=1

qik

[(
xji − µjk
σjk

)2

− 1

]
. (2.35)

Finally, the FV representation of a shape S is the concatenation of the vectorization of

the matrices u and v. It generates a high-dimensional vector with 2KD dimensions, where

D is the size of each local descriptor:

ΓFV = ΓXλ = [u>1 . . .u
>
K ,v

>
1 . . .v

>
K ]> (2.36)

Recently, image retrieval and classification tasks have been improved by the use of FV

[Csurka and Perronnin, 2011, Schneider and Tuytelaars, 2014], which has shown many ad-

vantages over BoF and being this a particular case of BoF [Sanchez et al., 2013]. Chatfield et

al. used FV to encode SIFT descriptors achieving state-of-the-art accuracy on Pascal VOC

2007 and Caltech-101 dataset [Chatfield et al., 2011].

In 3D shape analysis FV has been used by Furuya and Onbuchi [Furuya and Ohbuchi,

2014] to encode statistical descriptors (DSIFT and MO1SIFT). They fuse both signatures

using a technique called Multi-Feature Anchor Manifold, however, in this case SV and LLC

performs better than FV and shows to be more accurate in SHREC 2014 Large-scale Com-

prehensive 3D Shape Retrieval dataset [Li et al., 2014c].
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2.5.7 Super vector

Super Vector encoding (SV) [Zhou et al., 2010] is similar to the Fisher Vector encoding. In

their framework Zhou et al. perform a nonlinear map to create a high-dimensional sparse

vector. Differently from FV, SV only considers two-order differences between descriptors and

clusters means. Instead of the third-order differences they add another component related

to the mass of each cluster. Thus, the magnitude of their signature is K(D + 1).

The Super Vector encoding can be calculated by the following expressions:

pk =
1

N

N∑
i=1

qik (2.37)

sk = s
√
pk (2.38)

uk =
1
√
pk

N∑
i=1

qik(xt − µk) (2.39)

As we can see in Equation 2.39, the Super Vector encoding normalizes each element by the

square root of the posterior probability (
√
pk) in contrast to the prior probability (

√
wk).

The final descriptor (ΓSV ) is given by the following concatenation:

ΓSV = [s1,u
>
1 , ..., sK ,u

>
K ]> (2.40)

2.6 Non-rigid shape retrieval datasets

Many datasets were proposed in the literature to test shape descriptors robustness against

shape articulations. In the following subsections, we present the most important datasets

created to test non-rigid shape retrieval performances.

2.6.1 McGill 3D shape benchmark

While Bronstein et al. [Bronstein et al., 2006] non-rigid dataset was worried about non-rigid

shape correspondences, the McGill 3D Shape Benchmark (MSB) [Siddiqi et al., 2008] was

the first shape retrieval benchmark focused on testing descriptors performance against shape

articulations. The McGill dataset, published in 2008, had some of their models adapted
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from the Princeton Shape Benchmark (PSB) [Shilane et al., 2004], some downloaded from

different repositories and others created by them using CAD modeling tools. The dataset

is available in “mesh” form (triangulated) and “voxelized” form, a representation that we

rarely see nowadays.

The majority of recent descriptors do not explicitly use the McGill benchmark to test

their methods since there have been other benchmarks proposed that use McGill models in

their collections. These are the cases of [Lian et al., 2010, Lian et al., 2011, Lian et al., 2015]

where they provide the classification ground truth of the data so that descriptors can test

their performance. On the other hand, only part of this dataset is focused in non-rigid shape

retrieval, which led these models to be adapted to an entire non-rigid dataset later [Lian

et al., 2010].

2.6.2 Shape retrieval contest of non-rigid 3D models

The Shape Retrieval Contest of Non-rigid 3D Models dataset was proposed as a track of

the Shape Retrieval Contest (SHREC) in 2010 by Lian and Godil [Lian et al., 2010]. It is a

non-rigid shape retrieval benchmark where its models were taken solely from McGill dataset.

200 models were extracted from it to ensure every class had the same number of models.

Since a classification file was given with the dataset, it was then possible to compute accurate

statistics about descriptors performance and compare to other algorithms.

2.6.3 Shape retrieval contest of non-rigid 3D watertight meshes

Considering that [Lian et al., 2010] had only 200 models, Lian and Godil [Lian et al., 2011]

created a new dataset with 600 non-rigid models in the SHREC in 2011. This time, the mesh

models were extracted from a number of databases [TOSCA, 2009, Lian et al., 2010, Shilane

et al., 2004, Siddiqi et al., 2008]. All meshes were made watertight, i.e., there are no holes,

cracks or missing features on the mesh. This facilitates the formulation of shape descriptors

that require a manifold structure.
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2.6.4 Shape retrieval of non-rigid 3D human models

There is also another much more challenging non-rigid benchmark, proposed by Pickup

et al. [Pickup et al., 2014b], which features exclusively human models in two different datasets:

one synthetic (SHREC’14S) and another real (SHREC’14R). The synthetic dataset features

“made up” data created using DAZ Studio, and the real dataset was created by scanning

real human participants. In the Synthetic dataset, models have in average 60K vertices while

in the real datasets models have 15K vertices.

The main difference from these datasets is that the disparities between classes are much

more smaller than compared to other datasets. This makes harder the detection of features

that can distinguish classes, making it a very challenging benchmark.

2.6.5 Non-rigid 3D shape retrieval

To create an even more complex non-rigid dataset, Lian and Zhang [Lian et al., 2015] took

different models from [Lian et al., 2011] and more models from 3D Warehouse [Google,

2015]. With all these models in hand, they created 23 deformed version of each model by

articulating them around their joints resulting in 1200 models organized in 50 categories.

This dataset was published in the SHREC in 2015 and it is the most complete non-rigid

dataset already created to test descriptors performance against shape articulations.

Following in Table 2.1, we show a summary of the non-rigid datasets proposed in the

literature for non-rigid shape retrieval and their numbers.

2.7 Summary

In this chapter we have examined the principal components related to 3D shape analysis,

focusing in shape signatures developed to address the problem of shape retrieval. We have

seen that in order to create a shape signature it is commonly first necessary to compute a

local descriptor, then create a vocabulary using a set of these descriptors and write them in

respect to the vocabulary by using an encoding method.

The review then proceeded to look at the main local descriptors proposed in the literature

and how they operate. These have been divided in spectral-based methods, geometry-based
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Table 2.1: Number of models, classes, models within the same classes and models sources of
each benchmark. The numbers of models within the same classes are the same except in the
MSB, which vary between 20 and 30, depending of the class.

Benchmark # Models # Classes
# Models

within classes
Sources

MSB 457 19 20-30 [Shilane et al., 2004]

SHREC’10 200 10 20 [Siddiqi et al., 2008]

SHREC’11 600 30 20
[TOSCA, 2009, Lian et al.,

2010, Shilane et al.,
2004, Siddiqi et al., 2008]

SHREC’14S 300 15 20 created by authors

SHREC’14R 400 10 40 created by authors

SHREC’15 1200 50 24
[TOSCA, 2009, Google,

2015, Lian et al., 2011, Shilane
et al., 2004, Siddiqi et al., 2008]

methods and learning-based methods. Geometry methods include Spin Images, which was

the first 3D shape descriptor created to represent 3D models, Shape Context and many

methods based on SIFT. On the other hand, spectral methods concern those which use

the Laplace-Beltrami operator to compute their signature. Among these, it is important to

mention Shape DNA, GPS, HKS, SIHKS and WKS. Nonetheless, learning-based methods

try to learn relevant class dissimilarities to create descriptors with are easily distinguishable.

The review then considers techniques to combine local descriptors, called encoding schemes.

The main methods commonly used are VQ, BoF, FV and SV. Furthermore, it also reviews

two methods to create visual vocabularies: K -means and GMM clustering.

Finally, last section of the literature review details recent non-rigid shape retrieval bench-

marks created to test shape signatures performances. The three more important here are

Shape retrieval contest of non-rigid 3D models (SHREC’10), Shape retrieval contest of non-

rigid 3D watertight meshes (SHREC’11) and Non-rigid 3D shape retrieval (SHREC’15). The

next chapters report efforts being done to improve shape retrieval by using improved spectral

signatures on the principal non-rigid shape retrieval benchmarks.



Chapter 3

Improved Wave Kernel Signature

In this chapter, we detail the investigation made on the Wave Kernel Signature, more specif-

ically, on the WKS filters that weight the shape spectra to create shape descriptors. As

said previously, the log-normal distribution function used to handle the spectrum variance

within same class shapes presents some problems. First, it blurs the high frequencies of the

spectrum and, second, it concentrates the majority of weightings in the low frequencies of

the spectrum. Therefore, in this chapter we propose improvements to the WKS in these two

directions. We also propose improvements in the direction of a more robust shape signature

to the non-rigid shape retrieval problem by aggregating shape curvatures into the descriptor

formulation.

The chapter was published in [Limberger and Wilson, 2015] and it is organized in the

following way. We introduce the topic and motivate the reader in Section 3.1. Then, we

explain how we deal with the eigenvalue weighting problems in Section 3.2. We show how

to create a signature which is more robust to non-rigid shape deformations in Section 3.3.

Finally, in Section 3.4, we show experiments where we are able to observe improvements due

to the two proposed changes. Retrieval performances are shown only in Chapter 4, where a

global signature for the shape is computed from the new local descriptors.

31
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3.1 Introduction

Spectral methods have gained increased attention recently for their advantageous proper-

ties. They are intrinsic by construction, invariant to isometric deformations, relatively sta-

ble against articulations and can be efficiently computed for 3D shapes (they do not require

vertex correspondences between models). Applications of spectral methods can be seen in

several areas: shape analysis [Levy, 2006], shape retrieval [Reuter et al., 2005], correspon-

dence [Bronstein et al., 2010a] and segmentation [Chen et al., 2009]. The main idea of spec-

tral methods is to use the eigenvalues and eigenfunctions of the (discrete) Laplace-Beltrami

operator (LBO) to compute spectral signatures, which capture local and global information

of the shape.

The traditional Wave Kernel Signature (WKS) [Aubry et al., 2011b] has proved to be a

useful tool for finding non-rigid shape correspondences. In their paper, Aubry et al. used the

solutions of the Schrödinger’s equation to create a wave-based descriptor for shape analysis.

The WKS is a computed by a collection of band-pass filters applied over the shape spectrum

as shown in Figure 3.2. Despite its correspondence functionality, as initially proposed, it can

also be applied to non-rigid shape retrieval.

The Heat Kernel Signature [Sun et al., 2009] was also applied to retrieve shapes in

many other occasions [Bronstein et al., 2011, Bronstein and Kokkinos, 2010, Litman et al.,

2014, Ovsjanikov et al., 2009]. The HKS applies low-pass filters to the shape spectrum,

which can be seen in Figure 3.1, acquiring mainly global shape information.

We performed an analysis of the local descriptors cited above, along with the SIHKS,

to understand the reasons why these signatures can satisfactorily retrieve models from non-

rigid databases. Nonetheless, we then investigate ways to improve retrieval performances of

these descriptors. By analyzing the HKS and WKS filters (Figure 3.1 and 3.2) we can see

that the WKS aggregates more information about the shape spectrum in the descriptors.

It also usually achieves better retrieval scores when compared to the HKS and SIHKS. For

these reasons, we investigate ways to improve the WKS to better describe features for 3D

non-rigid shape retrieval.
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Figure 3.1: Illustration of the HKS’s low-pass filters (e−λkt) applied to the shape spectrum.
There are shown the frequencies 20, 30, 40, 50, 60, 70, 80, 90 and 100, respectively.
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Figure 3.2: Illustration of the WKS’s band-pass filters (fE(λk)) applied to the shape spec-
trum. There are shown the frequencies 20, 30, 40, 50, 60, 70, 80, 90 and 100, respectively.
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3.2 Adaptive eigenvalue scaling

In order to construct a spectral signature, it is necessary to apply a filter to the shape spectra

(eigenvalues of the LBO) in a way that we can create a feature vector for each point of the

shape. Each element of the feature vector is a combination of different frequencies of the

spectral eigenfunctions. These filters must be optimized to deal with noise and deformations

of the shape. We show in Figures 3.1 and 3.2 the filters used by the HKS and the WKS to

compose their descriptors.

By looking into the filters of spectral signatures, we can see that the low frequencies of

the band-pass filters (WKS) (Eq. 3.1) are very narrow (Figure 3.2), i.e., they only account

for a very specific part of the spectrum. On the other hand, the high frequencies are very

large, aggregating a huge part of the spectrum in only one descriptor frequency. While the

low frequencies of the descriptor can suffer from noise since they are a very small part of

the spectrum, the high frequencies do not add much information considering it fuses many

details in one descriptor frequency.

fE(Λk)
2 = exp

[
−(e− log(Λk))

2

2σ2

]
e ∈ [log Λ1, log Λmax] (3.1)

The WKS filter (Eq. 3.1) aims in accounting for the difference that the shape spectrum

(eigenvalues) can have within the same class. Although the shape spectra should be the same,

articulating shape joints cause a small change in the eigenvalues that needs to be accounted

for. The WKS has a probability density function given by a log-normal distribution to

account for this variance. This means the WKS assumes the eigenvalues of same-class shapes

vary according to a log-normal distribution, i.e., being the majority of the absolute differences

close to zero and very few larger than zero.

Following this argument, we looked into the differences of eigenvalues of same-class

shapes. In Figure 3.3, we plot eight histograms that represent the difference of eigenval-

ues of 20 shapes of ants from SHREC’10 with their respective normalized errors. We did the

same plots for other shapes as well from SHREC’10 and most of them have shown similar

outcomes.

In the first plot, we show the histogram of the eigenvalue differences without any scaling;
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in the next five plots, we show different power scalings with our proposed cube root scaling

(which we are going to talk about soon); finally, we show the logarithmic scaling used by

the WKS and also the logarithmic scale with base 10. Then, on each histogram we draw

a normal distribution (red curve) fitted to the histogram that accounts for the eigenvalue

variance. We show the respective normalized errors

E2 =
||H − F ||2
||H||2

(3.2)

of this fitting at the top of each histogram, where H are the respective heights of the his-

togram bins and F is the normal distribution. Clearly, the power scaling functions have a

smaller error compared to the logarithmic functions. The smallest fitting error in the his-

tograms is given by the cubic root scaling. With this new scaling, we have a signature which

accounts better for the difference of eigenvalues of same-class shapes.
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Figure 3.3: Analysis of the differences of eigenvalues in different scales. As you can see, the
cubic root scaling has the smallest fitting error. This points to a signature which acknowl-
edges better the difference of eigenvalues of shapes from the same class since the majority
of the histogram bars are now “inside” the normal distribution (below the red curve). This
leads to signatures that are more similar to shapes that belong to the same class.

The point here is that the real data (the difference of eigenvalues of the same-class shapes)



36 CHAPTER 3. IMPROVED WAVE KERNEL SIGNATURE

are not log-normally distributed, therefore, the WKS do not account accurately for changes

in the shape spectra using a log-normal distribution. On the other hand, the cubic root

scaling is better in this way. It precisely accounts the difference of the eigenvalues can have

when the shape is articulated. Retrieval results in the entire benchmark confirm the success

of this strategy and these are shown in the following chapters. We do not show evaluation

performances here because we still need to define the other parts of the framework for shape

retrieval.

The difference in the scaling can also be seen in the band-pass filters. Figure 3.4 shows

the new filters when using a cube root scaling instead of logarithmic scaling. Note how the

cube root scale does not suffer from the same problems of the logarithmic scale that we

detailed before. The first frequencies are not as sharp as in the WKS, reducing the influence

of noise in the filter, and the last frequencies do not blur the entire spectrum, aggregating

more information to the descriptor. This leads to a signature the is informative along all its

frequencies, because the filters are more equally distributed across the spectrum.
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Figure 3.4: Illustration of the IWKS’s band-pass filters (fC(Λk)) which will be applied to
the shape spectrum. There are shown the frequencies 20, 30, 40, 50, 60, 70, 80, 90 and 100,
respectively. In this graphs, it is possible to see that the filters are more distributed along
the frequencies of the signature. Furthermore, the last frequencies do not blur the spectrum
completely as it happens in the HKS and in the WKS.
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To decrease the difference of the eigenvalues from shapes that belong to the same class

we also proposed a second improvement. By reducing the influence of shape joints in the

descriptor we were able to increase the retrieval performance of the IWKS even more. More

details and the final IWKS equation are given in the following section.

3.3 Curvature aggregation

To start addressing the effect of articulation, we analyzed the outcomes of joint motions

in the spectrum of the shape, and we noted that descriptors were consistently different

after deforming the respective 3D shapes. With this in mind, we believe that removing

the influence of shape joints in the shape descriptor will give a better representation of the

intrinsic shape. To reduce this influence we need to downweight joint regions so that they

do not influence the final descriptor.

Curvatures are a good and automatic way of producing maps over the surface of objects,

and they represent how the local patch is bent and also its bending direction. We start

looking at different sorts of curvatures that could represent what we need. To compute

curvatures over the surface we use the work described in [Rusinkiewicz, 2004]. Rusinkiewicz

computes face curvatures by computing the second fundamental tensor (II) of triangle faces

II(X,Y ) =

 II(X1, Y1) II(X1, Y2)

II(X2, Y1) II(X2, Y2)

 . (3.3)

Vertex curvatures are estimated by averaging adjacent triangle curvatures weighted by the

respective Voronoi area of the face. This is done by transforming the coordinates system of

the II matrix from the face to the vertex coordinate system. Finally, principal curvatures and

directions are extracted by computing the eigenvalues and eigenvectors of II in the vertex

coordinate system.

By computing the eigendecomposition of II(X,Y ) two eigenvalues are found k1 and k2

which are called the principal curvatures (P ), and two eigenvectors v1 and v2, which are

called the principal directions which we observe the principal curvatures. These curvatures

can be combined to define other curvature attributes, which can be seen in Table 3.1. Figure



38 CHAPTER 3. IMPROVED WAVE KERNEL SIGNATURE

3.5 shows some curvatures plotted over the shape of a dinosaur.

Table 3.1: Different statistics that can be computed from the principal curvatures.

Curvature Formula Characteristic

Maximum Principal
Curvature

k1 Maximum folding at a certain point

Minimum Principal
Curvature

k2 Minimum folding at a certain point

Gaussian k1k2 Indicates whether a surface has been warped or not

Mean H = k1+k2
2 The average curvature of the local patch

Curvedness (k21+k22)1/2 Measure the intensity of folding

(b) Minimum(a) Maximum

(c) Gaussian (e) Curvedness(d) Mean

Figure 3.5: Plot of different curvatures over the shape of a dinosaur.

Combining these maps with spectral signatures can generate even more discriminative

and meaningful maps which are crucial for object recognition. The maximum principal cur-

vature has very small or negative values on joint regions, therefore, combining the maximum

principal curvature with spectral signatures result in signatures which are less variant to

shape motions. The maximum principal curvature was chosen based on experiments on the

signatures to retrieve shapes in non-rigid databases. Thus, we aggregate shape curvatures
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by shifting spectral descriptors by the maximum principal curvature, thus computing:

IWKS(x, e) =

∞∑
k=1

φk(x)2fC(Λk, e)2 + αC(x) fC(Λk, e)2 = exp

[
−(e− 3

√
Λk)

2

2σ2

]
(3.4)

where e ∈ [ 3
√
λf ,

3
√
λmax], λf is the first non-zero eigenvalue, C(x) = max(k1x, 0), α normal-

izes C accordingly to the signature values, and (Λ, φ) are eigenvalues and eigenfunctions of

the LBO.

The IWKS is designed to reduce the influence of articulation in non-rigid shapes since it

downweights joint regions of the shape. However, it also does something more. The map also

weights different structures of the shape, increasing the separability of these regions. Both

characteristics can be seen in Figure 3.6, where joint regions are less weighted (in blue) and

the two primitives presented on the object (spheres and tube) can be easily distinguished.

Figure 3.6: Plot of the maximum curvature over the shape of twoballs. As can be seen, the
curvature can “label” parts which have the same meaning. Furthermore, it can reduce the
influence of shape motion by downweighting joint regions.

Therefore, the final IWKS is given by Equation 3.4. It can be used instead of the HKS,

SIHKS or WKS to describe and retrieve shapes in non-rigid databases. In the next section,

we perform experiments with the IWKS together with our encoding framework for non-rigid

shape retrieval.
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3.4 Experiments

In this section, we show an analysis of the Improved Wave Kernel signature applied to

different models and compare against other spectral descriptors. We focus in showing here

that our signature is much more informative than other signatures, once it benefits from a

better filtering of the shape spectra.

The IWKS aims in creating a signature which is invariant to shape motions. This way,

to compute distances between pairs of shapes it is first necessary to create a global repre-

sentation of the shape. The creation of global signatures from local descriptors is going to

be addressed in the next chapter (4). There, it is possible to find quantitative experiments

on non-rigid 3D shape retrieval, their performance statistics and comparisons against state-

of-the-art signatures. Here, we focus in comparing only qualitative experiments of the local

descriptors generated by different spectral signatures (HKS, SIHKS, WKS and of course

IWKS).

By comparing first the WKS with the IWKS, we can easily see from Figures 3.2 and 3.4

that the IWKS filters are more equally distributed along the spectrum frequencies. It is also

possible to see that, for the first frequencies, the IWKS filters will go through the frequencies

faster, considering the mean of the filter, while the WKS will start slowly. This happens

because of the difference in the weighting (logarithmic vs cubic root). However, in the last

frequencies, the WKS filters will have to be wide to cover the final spectral frequencies

causing many frequency descriptors to be the same. In Figure 3.7, we can see that for

the same descriptor frequency showed on the dinosaur models, the IWKS presents more

high frequency information than the WKS because, as previously said, the IWKS filter goes

through the first spectrum frequencies quicker but never blurs any information, regardless

of the filter frequency.

Figure 3.8 shows a comparison among HKS, SIHKS, WKS and IWKS signatures. On

the left, we show the four descriptors plotted over the shape of a dinosaur. On the right,

we show the respective signature plotted over all frequencies. If the reader pays attention

to the last frequencies of the plots, he will see that the last frequencies of the HKS, SIHKS

and WKS are blurred (flat horizontal lines) because of the distribution of filters along the
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spectrum. The filters that represent the last frequencies are too wide and aggregate the

same information. This leads to the generation of the horizontal lines which do not add any

information to the descriptor. On the other hand, the last frequencies of the IWKS still have

useful information which can be used to distinguish one shape from another.

3.5 Timing analysis

The IWKS has the same computational complexity of the WKS. After computing the

eigendecomposition of the LBO, the computational complexity for computing the IWKS

is O(|Λ|F ), where F is the number of times we sample the descriptor at different energies.

In our case these parameters are fixed and are |λ| = 300 and F = 100. The average time for

computing the IWKS is 0.01 seconds. This time does not account for computing the shape

spectrum.

3.6 Summary

The Improved Wave Kernel signature is a result of an empirical analysis of the differences

among eigenvalues of same-class shapes. In the original paper of the Wave Kernel Signature,

Aubry et al. [Aubry et al., 2011b] have chosen the function to handle differences between

eigenvalues using a theoretical analysis. This resulted in the logarithm scale function of the

original WKS. However, when applied over distinct datasets this function behaves differently.

By using an empirical analysis of the differences of eigenvalues we found a scale function that

behaves accordingly the data. In other words, the scaling function depends on the data and,

in order to maximize retrieval performance, the scaling function should be a result of an

empirical analysis of the training dataset.

The eigenvalue scaling depends on the data so it should adapt according the data. In

the SHREC’15 Non-Rigid 3D Shape Retrieval, we analyzed the difference between eigenval-

ues from the articulated shape of an ant and we discover that the distribution function is

better fitted using a power scale (eigs1/3), which is the cubic root. This modification in the

scaling gives a better Gaussian fit to the data and improves the retrieval performance of the

benchmark.
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Besides the eigenvalue scaling function, we also improve spectral signatures by adding an

additional ingredient to their formulation, the curvature aggregation. This feature is designed

to increase the separation of shape features. It does that in two ways. First, it reduces the

influence of articulations, since it downweights joint regions of the shape. Second, it labels

different parts of the shape by equally weighting regions which belong to the same category.

To choose what is the weight that will be applied to the descriptor we have computed and

analyzed many shape curvatures. We chose to use here the maximum curvature given it

gave the best retrieval performances and it has shown to be stabler and smoother than other

extrinsic properties.
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(a)

(b)

Figure 3.7: Comparison plot between the WKS (a) and the IWKS (b) at same color scale
from 0 (blue) to 2 (yellow). We show 9 dinosaur models (from SHREC’15) of each signature
all at the 30th frequency of the respective descriptor. We can see that the IWKS is more
informative along the entire shape (higher frequency information), not only giving separation
between legs and body trunk. This is because the IWKS filters are sharper from the 20th
frequency onwards and do not blur completely the spectrum. Thus, for the same descrip-
tor frequency, the IWKS carries more information about the shape, especially in the last
descriptor frequencies.



44 CHAPTER 3. IMPROVED WAVE KERNEL SIGNATURE

Figure 3.8: Comparison plot between (in order from top to bottom) the HKS, SIHKS, WKS
and IWKS respectively. On the left, it is shown dinosaur models coloured by the 30th
frequency (5th for SIHKS). On the right, are plotted 5% of the descriptors for all frequencies
(x-axis) for the respective model. It is possible to see that the IWKS is more informative,
both in the dinosaur model (because it contains more details) and in the signature plot, since
the last frequencies are not blurred and do not appear as horizontal lines in the plot like the
other descriptors. Horizontal lines do not add any information to the descriptor once those
descriptor frequencies are the same.



Chapter 4

Using Robust Encodings With

Spectral Signatures

In this chapter, we propose to use state-of-the-art encoding methods combined with spectral

signatures to represent 3D shapes. Although spectral signatures have many desirable prop-

erties to describe 3D shapes, for instance being invariant under rigid transformations and

stable against non-rigid transformations, they do not perform so well in recent benchmarks.

A large number of local descriptors have been created to represent local characteristics

of geometric shapes for the purpose of many computer vision, geometry processing and

shape analysis tasks. A local descriptor is a compact representation that characterizes a

small region of a shape. They usually capture information about the neighbourhood of a

vertex and so they can be directly applied to some important tasks like point correspondence

and shape segmentation. For this purpose, it is desirable to compute signatures that are

invariant under rigid, non-rigid and isometric deformations, the typical deformations that 3D

models undergo. However, local descriptors cannot be immediately applied to the problem

of shape retrieval, because this task is not addressed by comparing local features but by

comparing global signatures (signatures that represent the shape as a whole). Creating a

global signature is not a simple task since shapes can have arbitrary number of vertices, edges

and faces. To create a generic representation of a shape all important characteristics should

be preserved during the encoding process. Even so, the global representation must compress

45
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local characteristics using a commensurable basis in order to facilitate comparisons.

The chapter was published in [Limberger and Wilson, 2015], but before that, we partici-

pated in the SHREC’15 contest [Lian et al., 2015]. The remaining of this chapter is organized

in the following way. We discuss related work in Section 4.1. Then, we show how our encod-

ing framework is structured in Section 4.2. We show how to compute signature distances in

Section 4.3. Finally, the proposed framework is evaluated and compared in Section 4.4.

4.1 Related methods

In this section, before introducing the encoding framework, we provide a brief background

about related methods that use the Bag-of-Features paradigm (BoF) applied to shape re-

trieval. We also mention where the Fisher Vector and the Super Vector were used in the

literature to improve retrieval.

The idea of creating shape signatures from local signatures is neither new nor straight-

forward. The usual way to describe a set of local descriptors into a shape-level signature for

retrieval and classification purposes is building a Bag-of-Features model to remove the local

dependency of each descriptor by writing local properties as a histogram of their occurrences.

Although recent approaches mainly use the classical BoF, the use of other encoding meth-

ods can bring many advantages over the traditional method. For instance, the Fisher Vector

combines the strengths of generative and discriminative models [Perronnin and Dance, 2007].

While the BoF characterizes a sample by the number of occurrences of visual words, FV is

characterized by the deviation from a probabilistic vocabulary. Chatfield et al. [Chatfield

et al., 2011] states that Fisher Vector and Super Vector encodings are better than other

encoding methods, since they carry extra information about the displacement between de-

scriptors and visual words.

With the popularization of the BoF paradigm, Ovsjanikov et al. [Ovsjanikov et al., 2009]

and later Bronstein et al. [Bronstein et al., 2011] proposed to encode local descriptors to a

global representation of the shape, removing the local dependence of each descriptor. They

used Bag-of-Features to obtain a visual word-based representation of the shape that can

be compared efficiently. They formulate their signature as the normalized probability of
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associating each geometric word from the vocabulary with all vertices of the shape. The

distance between two shapes is given by a Hamming metric between the bag-of-features of

each shape in the Hamming space.

There are other signatures that also make use of the BoF framework but do not use

spectral local descriptors. In [Furuya and Ohbuchi, 2009], Furuya et al. use BoF to en-

code SIFTs generated by depth images rendered in different views from a 3D model. In

a recent benchmark of 3D shape retrieval [Li et al., 2014b], Furuya and Ohbuchi [Furuya

and Ohbuchi, 2013] have also applied BoF to their local features. In a non-rigid 3D shape

retrieval benchmark of human models [Pickup et al., 2014a], Tatsuma (Bag-of-Features ap-

proach with Augmented Point Feature Histograms), Bu (High-level Feature Learning for 3D

Shapes) and Li [Li et al., 2014a], besides Litman et al. [Litman et al., 2014], have encoded

local features using BoF. In other recent benchmarks [Li et al., 2014c, Li et al., 2012], the

best results were obtained by techniques that have used BoF or similar frameworks.

The use of Fisher Vectors to classify and retrieve images has been recently addressed

by a number of researchers. Perronnin and Dance [Perronnin and Dance, 2007] applied FV

to the problem of image categorization, Perronnin et al. [Perronnin et al., 2010a] proposed

a compressed form of FV to retrieve images in a large database, Sanchez et al. [Sanchez

et al., 2013] and Csurka and Perronnin [Csurka and Perronnin, 2011] show that the FV

framework is the state-of-the-art approach for classification and retrieval purposes since it

has a more efficient representation of an image. Takeyoshi and Kikinis [Vohra et al., 2002] use

FV to classify patients with epilepsy, Schneider and Tuytelaars [Schneider and Tuytelaars,

2014] applied FV in sketch classification and Simonyan et al. [Simonyan et al., 2013] create

a face descriptor achieving state-of-the-art performance on a challenge benchmark. The

use of Gaussian Mixture Models (basic concept of FV) to characterize 3D shapes was first

experimentally addressed by [Aubry et al., 2011a].

On the other hand, Super Vector (SV) [Zhou et al., 2010] has shown to be a good encoding

to represent local features. Super Vector is a nonlinear mapping from the descriptor space

to a high-dimensional sparse vector. Algorithmically, it can be seen as a simple extension of

Vector Quantization. In a recent benchmark [Lian et al., 2015], SV was used to aggregate

local 3D shape features achieving the best performance among other participants. In [Li
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et al., 2014c], Tatsuma used Super Vector to encode features extracted from rendered depth

buffer images, achieving the best performance in the benchmark.

4.2 Encoding framework

In this section, we propose an efficient and discriminative encoding framework to address

the problem of creating global signatures for 3D models from local descriptors based on the

spectrum of the shape, for the purpose of shape retrieval and classification. In conjunction

with creating the global representation, we also propose to use Manifold Ranking to compute

the dissimilarities between encodings.

We propose the use of Fisher Vector or Super Vector to encode spectral signatures thus

describing the entire representation of a shape. Until now, the Fisher Vector had never been

used to represent 3D models before. Differently from [Bronstein et al., 2011, Ovsjanikov et al.,

2009], our approach uses a Gaussian Mixture Model as a dictionary of probabilistic visual

words and encodes the global signature using three orders statistics (0-th, 1-st, 2-nd) rather

than using only the first order. Further, while BoF generates a K-dimensional histogram,

where K is the vocabulary size, Fisher Vector encoding generates a high-dimensional vector

with 2KD dimensions, where D is the size of each local descriptor, being more discriminative

but still simple to compare, since all shapes are encoded in the same basis.

This encoding framework is used during many parts of this thesis for the purpose of

creating a global shape signatures from local shape descriptors.

4.2.1 Spectral Signatures

In this section, we explain how to compute spectral descriptors from 3D meshes and the

parameters that we used for each signature. All the settings shown here are used throughout

this thesis when we compute the spectral signatures HKS, SIHKS, WKS and IWKS.

First, we start by the discretization of the LBO. We use the algorithm of Meyer et al. [Meyer

et al., 2003] even though it has shown to not converge in general [Xu, 2004]. By using wa-

tertight meshes, we did not experience any convergence problems. In Section 2.1, we show a

description of this discretization in more details. When performing the eigenvalue decompo-
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sition, we compute the first 300 eigenvalues and eigenfunctions of the LBO to characterize

shapes using the generalized eigenproblem (Equation 2.5).

Regarding spectral descriptors, we used the respective available author implementations

[Aubry et al., 2011b, Bronstein and Kokkinos, 2010, Limberger and Wilson, 2015, Sun et al.,

2009]. We have chosen the parameters that maximize retrieval performance in the general

case and used the same throughout all experiments, regardless of what benchmark we are

testing. In the following, λi represent the eigenvalue at position i in ascending order and λf

is the first nonzero eigenvalue.

The Heat Kernel Signature and the Scale-Invariant Heat Kernel Signature are

sampled 100 times in the time interval [log(4 ln(10)/λ300), log(4 ln(10)/λ2)], according to

author’s implementation. Then, we sample the first 15 frequencies of the SIHKS after com-

puting scale normalization using Fast Fourier transform. The Wave Kernel Signature is

sampled 100 times in the energy interval [log(λ2), log(λ300)]. The WKS variance used in all

datasets was wksvar = 6. The Improved Wave Kernel Signature is sampled 100 times

in the energy interval [ 3
√
λf ,

3
√
λ300]. The IWKS variances are iwksvar = 5, iwksvar = 2.5

and iwksvar = 3.75 for SHREC’10, ’11 and ’15, respectively. The variances of WKS and

IWKS have a different impact on the respective signature because the weighting filters are

different, i.e., if the same IWKS variances would be used in the WKS they would generate

different outcomes.

After analyzing the IWKS shift [Limberger and Wilson, 2015] carefully, described in

Chapter 3, we have found better results using a normalized curvature distribution

S(x) =
m · C(x)

mean(C(x))
(4.1)

where m is a parameter representing the desired mean after scaling the curvatures C(x).

This makes curvatures more stable even when shapes are different in size or deformed. This

shift is applied to all signatures (HKS, SIHKS, WKS and IWKS). Finally, we use S(x) in

signature shift, differently from [Limberger and Wilson, 2015], which uses C(x). Fig. 4.1

shows a plot of S(x) over different deformed shapes. It is easy to see that S(x) is less weighted

on joint regions (mainly parts near leg joints) and it remains stable across deformations of
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the shape (see the tail and the neck).

Figure 4.1: Plot of S(x) on different dinosaur models from SHREC’15 benchmark using the
same colormap. Blue stands for low values and yellow stands for high values. As can be seen,
the positive curvatures remain stable along non-rigid deformations of the shape. Models are
respectively 69, 171, 323 and 393.

All the four signatures are shifted by curvature to increase separation of features as de-

scribed above, where m = 0.3, m = 0.5 and m = 0.5 for each respective dataset: SHREC’10,

’11 and ’15.

4.2.2 Encoding Spectral Signatures

Similarly to images, encoding methods can be applied to shapes. Although shapes have

a complex structure in a 3-dimensional space, encodings can be applied effectively after

calculating proper local descriptors, which must respect the following properties:

1. Isometry-invariant signature: It is essential that a shape can be described by isometry-

invariant descriptors to avoid prior alignment (placing the model in the same orienta-

tion).

2. Multi-level signature: It is necessary to describe a shape in multiple scales. For this,

all descriptors must have the same size although the number of descriptors still can
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depend on the shape (number of vertices).

The spectral signatures fulfill all these requirements. Each frequency of the descriptor is

seen as a layer that describes the entire shape. Encoding methods are applied to these layers

to encode all the information in a high dimensional vector. Moreover, there are other good

properties that descriptors should hold to properly represent shapes, for instance being stable

against non-rigid motions and different sampling rates. Although these are very important

for the success of shape retrieval, the encoding process do not depend on them.

In order to encode local descriptors we need to characterize them by their deviation from

a generative model. Let

S = {xt,xt ∈ RD, t = 1...T} (4.2)

be a set of local descriptors of a shape S, where T is the number of vertices and D the

descriptor dimension, and

λ = {wk, µk,Σk, k = 1...K} (4.3)

a set of parameters of a Gaussian Mixture Model pλ, where wk, µk and Σk are respectively the

weight, mean vector and covariance vector of the k-th Gaussian of the GMM. We assume

that covariances matrices are diagonal thus writing them as vectors. The distribution of

descriptors pλ(x) is given by

pλ(x) =
K∑
k=1

wkN (x|µk,Σk) :
K∑
k=1

wk = 1. (4.4)

The Gaussian Mixture Model parameters are estimated using the Expectation-Maximization

(EM) algorithm [Sanchez et al., 2013] in order to optimize a Maximum Likelihood criterion

for the data X. The EM is an iterative algorithm that estimates parameters of a statistical

model (X), when data is missing from the observation x = (x1, x2, . . . ). In our case, we

would like to learn the parameters of a Gaussian Mixture Model, which are the means and

covariances of the probabilistic distributions. Thus, EM algorithm is what allows us to infer

those parameters values. In order to create a dictionary of GMMs for shape retrieval, the

EM algorithm selects the K more distinct features, using k-means, from a subset of models

to compose the dictionary of mixture models.
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To compute the EM-algorithm we first initialize it with k-means clustering, giving a

label to each data point. Then EM computes Gaussian mixture models with this respective

information (means and variances from the clusters) and assigns a posterior probability to

each data point belonging to each cluster (Expectation part). With these probabilities, it

re-estimate new means and variances to fit the new data points (Maximization part). By

iterating these last two steps, the EM-algorithm converges to the model parameters.

Thus, differently from K-means algorithm that assigns each sample to a cluster, EM-

algorithm finds a Gaussian Mixture model which gives the probability that each data point

belongs to each cluster. EM algorithm is computed from a set of descriptors from the

whole dataset. All vertex descriptors from this set are concatenated in one single vector of

features so the algorithm can assemble similar feature kernels regardless of their location on

the shapes. We chose to use the first 29 models of each dataset to compute the respective

dictionary. The number of models was chosen as a middle point between an undersampled

and oversampled dictionary (to contain at least one feature of each type and to not contain

many duplicates). Occam’s razor intuition says that if we have two different hypothesis to

explain what is happening in the data we should pick the simplest possible explanation,

which means, the solution that has fewer clusters K but still converge to a similar solution.

Therefore, we chose to compute GMMs with K = 38 components.

The choices of the number of components and number of models depend on the data,

however, they do not fluctuate much at a certain interval. The chosen parameters are selected

because they shown to produce good results in the retrieval problem. It is rather difficult

to estimate the best value for K, since one wants to maximize the likelihood (L), but one

does not want a high number of parameters (P ). Minimizing P and maximizing L it is

not simple. Usually people see how well the GMMs work on the output result (retrieval

performance in our case) over different values of K and then people pick the best K. We

chose these parameters because they have shown to be robust to all sorts of models in the

available non-rigid benchmarks.

Thereby, we are now able to compute the FV (ΓFV ) and the SV (ΓSV ). The FV produces

three-order-deviation vectors (q,u,v) from the vocabulary to characterize the set of local

descriptors. The first order is the association strength (soft assignment), which is computed
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by the posterior probability

qtk =
exp[−1

2(xt − µk)>Σ−1k (xt − µk)]
ΣK
i=1 exp[−1

2(xt − µi)>Σ−1i (xt − µi)]
. (4.5)

Then, the second and third orders are computed w.r.t. the mean and covariance. For each

mode k and each descriptor dimension j = 1..D, deviation vectors are computed

ujk =
1

T
√
wk

T∑
i=1

qik
xji − µjk
σjk

, (4.6)

vjk =
1

T
√

2wk

T∑
i=1

qik

[(
xji − µjk
σjk

)2

− 1

]
(4.7)

where σjk are the square roots of the covariances Σk. In the end, FV is given by the

vectorization and concatenation of the matrices ujk and vjk.

ΓFV = ΓXλ = [u>1 . . .u
>
K ,v

>
1 . . .v

>
K ]> (4.8)

Differently from the FV, the SV only considers two-order-deviation vectors (q,u) but it

adds a component related to the mass of each cluster (s)

pk =
1

N

N∑
t=1

qtk sk = s
√
pk

uk =
1
√
pk

N∑
t=1

qtk(xt − µk)

(4.9)

where s is a weight to balance sk and uk numerically. Finally, SV is given by

ΓSV = [s1,u
>
1 , ..., sK ,u

>
K ]> (4.10)

Following [Perronnin et al., 2010b], we also apply Power Normalization (4.11) and L2

Normalization (4.12) to FV and SV signatures to properly compare shapes

PN(z) = sign(z)|z|1/2 (4.11)
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L2N(z) =
z

‖z‖
. (4.12)

Figure 4.2 shows the pipeline of our encoding framework. Thus, we create a dissimilarity

matrix by computing distances between every model in the database using Manifold Ranking,

which is the subject of the next section.

Local Descriptor- HKS- SIHKS- WKS
Feature Encoding- Fisher Vector- Super Vector

Distance Measure- Manifold Ranking DissimilarityMatrix3D Shape

Figure 4.2: Encoding framework. First, local descriptors are computed from 3D models.
Then, one of the state-of-the-art statistical encodings schemes is applied to the descriptors.
Finally, Manifold Ranking is computed to gauge the differences between descriptors.

4.3 Manifold Ranking

After encoding the descriptors in the same basis, they now need to be compared. One way

to do that is by computing Euclidean distances between feature vectors. However, this is

not an efficient distance measure as signatures are represented by high-dimensional vectors

(usually more than 6K values) which can be strongly affected by outliers. Another way is

using Principal Component Analysis (PCA) to reduce features dimensionality. This is a

better idea that generally lead to superior results, however, some information will be lost in

the process, even by removing only less-important dimensions. An even better method is

Manifold Ranking (MR) [Zhou et al., 2004], which is a graph-based ranking algorithm that

captures information about the entire descriptor but it does not suffer from outliers.

The MR algorithm leads to a better separation of features than using a pairwise euclidean

distance by exploiting the global structure of the intrinsic manifold, created from the feature

vectors. First, it computes the intrinsic manifold based on the descriptors, generated by

either FV or SV. It then computes the similarity between descriptors by navigating manifold

graph edges, similar to a diffusion process. Therewith, a relative ranking score is assigned to

each feature vector, differently from a pairwise similarity, as usually employed by dissimilarity

measures. To compute the similarities of another model in respect to the database, the same

process is repeated, this time starting at the respective descriptor’s node. MR is becoming
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a standard way to compute dissimilarities of feature vectors in large datasets as shown by

many researchers [Li et al., 2012, Li et al., 2014c, Lian et al., 2010, Lian et al., 2011, Pickup

et al., 2014b, Takahiko Furuya, 2015].

However, Manifold Ranking is computationally expensive on large datasets, which sig-

nificantly limits its applicability to a variety of data types. This way, we use the Efficient

Manifold Raking (EMR) [Xu et al., 2011], which is a faster version of the MR. EMR ad-

dresses differently the graph construction and ranking computation stages, which are the MR

algorithm’s bottleneck. Therefore, experimental results show that EMR has comparable re-

call performance to the MR, but it has a much better response time as the size of the graph

becomes larger. By computing an efficient ranking function, EMR also allows out-of-sample

retrieval, crucial to real-world retrieval systems.

4.4 Experiments

In this section, we demonstrate that local spectral descriptors can be used with Gaussian

Mixture Model dictionaries. Furthermore, we also perform experiments on the encoding

framework using three different datasets and report the results. We commence by fitting

local descriptors by Gaussian Mixture Models using the EM algorithm.

4.4.1 GMM dictionaries and spectral descriptors

In this section, we perform an empirical analysis on spectral shape descriptors to determine

whether they can fit a GMM. We plotted many descriptor frequencies to analyse their shapes.

Each descriptor frequency is used as a feature at a certain scale. We show in Figure 4.3 five

different randomly-selected descriptor frequencies for each spectral signature (HKS, SIHKS,

WKS, IWKS) computed from the shape LBO.

In every example we fit a GMM with five components using the iterative EM-algorithm

to show that is possible to approximate every shape feature histogram, even with a small

number of components. This enables the use of GMM dictionaries with spectral signatures

since features can be described by Gaussian Mixture Models and suggests, by extension, that

it is possible to use FV and SV encodings schemes with spectral descriptors.
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Figure 4.3: Histograms of randomly-chosen shape features plotted with the respective learned
GMM with 5 components for different LBO signatures. Each row represents features from
HKS, SIHKS, WKS and IWKS, respectively, from the first model of the database. The better
it is possible to approximate these features the more precise will be the shape encoding.

The residuals R from the approximation are computed by summing all errors for each

bin and normalizing by the signal size

R =

h∑
i=1

|δi|
v
, (4.13)

where h is the number of histogram bins, δi is the difference from the histogram i-th bin

value to the GMM sampled in the x-axis at bin’s midpoint and v is the number of vertices in

the model. Therefore, we analyze and plot the residuals by fitting feature histograms with

different number of components for the LBO in Figure 4.4. The residual plots show that the

error decreases as we increase the number of GMM components, stabilizing the error at a

very small value, approximately 0.002.
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Figure 4.4: Residuals of the GMM fitting on the five feature histograms of Figure 4.3 for
each LBO signature. The black line represents the average loss of the five histograms and
coloured curves represent the individual errors of the five randomly chosen features. As can
be seen, the error stabilizes in most of cases when are used in average 5 components or more.
As the error converges to a very small value, it is possible to use GMMs to present shape
features, once the error approximation of features will be very small.

4.4.2 Benchmark experiments

In this section, we perform an exhaustive evaluation of the encoding framework on three

different datasets (SHREC’10, SHREC’11 and SHREC’15). We compare the use of different

spectral descriptors (the Heat Kernel Signature (HKS) [Sun et al., 2009], the Scale-invariant

Heat Kernel Signature (SI-HKS) [Bronstein and Kokkinos, 2010], the Wave Kernel Signature

(WKS) [Aubry et al., 2011b]) and the Improved Wave Kernel Signature (IWKS) [Limberger

and Wilson, 2015] in recent benchmarks by encoding them using the Fisher Vector and Super

Vector paradigms.

In the following, we also perform an evaluation to compare the performance of Euclidean

distance (EUC) and Manifold Ranking (MR) to compute descriptor dissimilarities. For this,

we show six different statistics computed for each descriptor. These statistics are Nearest
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Neighbour (NN), First Tier (FT), Second Tier (ST), E-measure (E), Discounted Cumulative

Gain (DCG) and mean Average Precision (mAP). These are default statistics proposed by

Shilane et al. [Shilane et al., 2004] to evaluate shape retrieval problems.

The NN statistic refers to the percentage of closest matches that belongs to the same

class as the query. The highest score is 1.0 when every model in the database retrieves at

first a model of the same class. The FT and ST give the percentage of models that belongs

to query’s class that appear within the top K matches. For FT, K = |C| − 1 and for ST

K = 2 ∗ (|C| − 1), where |C| is the number of members of the query’s class. Thus, FT has

only the highest score of 1.0 whether, for every query, it retrieves all the remaining models

of the same class at first. On the other hand, ST looks at twice the number of matches,

therefore, it usually gives a higher value than FT, since it has more space to find correct

matches. The e-Measure statistic is given by the precision and recall of the first 32 retrieved

models (first page). If classes contain 32 or more models, the maximum value to e-Measure

is 1.0, otherwise, it will have a lower upper bound. In the datasets used in this thesis the

number of models within classes are smaller than 32 so the maximum score for e-Measure

is lower than 1.0. DCG is a statistic which weights correct matches logarithmically based

on their position on the retrieval list. The more in the front of the list the more it will

score, thus giving more importance to the first results. The maximum score for DCG is 1.0.

Finally, mAP is given by the area below the precision and recall curve. Considering the plot

as a square 1×1, the maximum value is 1.0 when the result produces a horizontal line across

the top of the plot.

In Tables 4.1, 4.3 and 4.5 are shown the retrieval performances of spectral descriptors

in the three benchmarks. We use the Laplace-Beltrami operator computed using Meyer’s

approach [Meyer et al., 2003]. Then, we compute local spectral descriptors and use FV

and SV to encode them to shape signatures. In these tables, dissimilarities are computed

using Euclidean distance after reducing the dimensionality of the feature vector to 50 using

Principal Component Analysis. Analogously, in Tables 4.2, 4.4 and 4.6 are shown retrieval

statistics of the same descriptors, however, when dissimilarities are now computed using

EMR. EMR is a powerful tool to describe the differences of feature vector because it takes

into consideration all objects when computing the difference between two objects. It uses a
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graph, where the nodes are the objects. To compute the dissimilarity between two models,

it walks over the edges of this graph to determine the distance between the two nodes.

Alongside every table, we show Precision and Recall curves of all descriptors on the three

datasets using Euclidean distance in Tables 4.5, 4.7 and 4.9 and using Efficient Manifold

Ranking distances in Tables 4.6, 4.8 and 4.10, to compute signature dissimilarities. On this

graphs, the bigger is the volume of the curve the better is the performance of the method.

In all three datasets, we clearly see an overall improvement of the descriptors when using

EMR instead of EUC by looking at the curve of the graphs.

Tables 4.1 and 4.2 and Figures 4.5 and 4.6 show the performance of the spectral framework

in SHREC’10. The method that performs the best in this benchmark is the WKS, achieving

always the best scores. The IWKS does not perform quite well here because of the differences

of same-class shapes. More discussion about this can be find in the next Chapter.

On the other hand, Tables 4.3 and 4.4 and Figures 4.7 and 4.8 show the performance of

our spectral framework in SHREC’11. We can see that by using EMR we have significantly

improved the performance of the best approach (FV-IWKS) which now performs almost

perfectly (mAP 0.997). In the same way, in Tables 4.5 and 4.6 and Figures 4.9 and 4.10,

FV-IWKS also performs the best, also improving its performance when using EMR.

In general, by analyzing the performance of all methods, it is possible to state that

wave-based methods have a clear dominance over heat-based methods for the computation

of spectral signatures for non-rigid shape retrieval when using Fisher Vector or Super Vector

encoding schemes. Comparing encoding schemes, SV and FV seem to perform similarly

when computing spectral signatures, alternating between the best method.

A full comparison with the state-of-the-art methods will be given in the next Chapter

when we introduce the Kinetic Laplace-Beltrami operator, which is a new way for computing

the shape spectra for non-rigid shape retrieval.

To summarize, we show in Table 4.7 the improvements of the MR over Euclidean distance

when applied to the three datasets using DCG as retrieval score. We can see that, in the

majority of the cases (except one), EMR improves the retrieval performance of the benchmark

over Euclidean distance, by computing more reliable distances between the shape descriptors.
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Table 4.1: Retrieval performance comparison of the different spectral signatures computed
with the LBO combined with FV and SV applied to the SHREC’10 benchmark. Dissim-
ilarities are computed using Euclidean distance. Bold values represent the best retrieval
performance for each evaluation measure.

Method NN FT ST E DCG mAP

FV-HKS 0.9863 0.8029 0.9043 0.6570 0.9530 0.868

FV-SIHKS 0.9863 0.7157 0.8512 0.6173 0.9280 0.812

FV-WKS 0.9925 0.8194 0.9279 0.6738 0.9631 0.886

FV-IWKS 0.9888 0.6686 0.8112 0.5793 0.9161 0.775

SV-HKS 0.9425 0.7294 0.8278 0.6017 0.9147 0.815

SV-SIHKS 0.9750 0.7341 0.8747 0.6313 0.9337 0.818

SV-WKS 0.9925 0.7819 0.8889 0.6455 0.9497 0.848

SV-IWKS 0.9813 0.6960 0.8326 0.5957 0.9213 0.800
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Figure 4.5: Precision and Recall plot of spectral signatures (HKS, SIHKS, WKS and IWKS)
tested with FV and SV encoding methods applied to the SHREC’10 benchmark. The shape
spectra is computed by the LBO. Distances are computed using Euclidean distance. Equal
colours represent the same local descriptor. As shown above, the best performance in this
benchmark is EUC-FVWKS.
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Table 4.2: Retrieval performance comparison of the different spectral signatures computed
with the LBO combined with FV and SV applied to the SHREC’10 benchmark. Dis-
similarities are computed using Efficient Manifold Ranking. Bold values represent the
best retrieval performance for each evaluation measure.

Method NN FT ST E DCG mAP

FV-HKS 0.9638 0.8462 0.9350 0.6796 0.9570 0.885

FV-SIHKS 0.9400 0.7975 0.9152 0.6594 0.9403 0.841

FV-WKS 0.9813 0.8802 0.9369 0.6912 0.9679 0.894

FV-IWKS 0.9525 0.7676 0.8866 0.6439 0.9359 0.856

SV-HKS 0.9525 0.8291 0.8988 0.6583 0.9438 0.896

SV-SIHKS 0.9638 0.8157 0.9220 0.6714 0.9479 0.846

SV-WKS 0.9900 0.8924 0.9629 0.7053 0.9773 0.920

SV-IWKS 0.9638 0.8137 0.9010 0.6558 0.9489 0.901
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Figure 4.6: Precision and Recall plot of spectral signatures (HKS, SIHKS, WKS and IWKS)
tested with FV and SV encoding methods applied to the SHREC’10 benchmark. The
shape spectra is computed by the LBO. Distances are computed using Efficient Manifold
Ranking. Equal colours represent the same local descriptor. As shown above, the best
performance in this benchmark is MR-SVWKS.
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Table 4.3: Retrieval performance comparison of the different spectral signatures computed
with the LBO combined with FV and SV applied to the SHREC’11 benchmark. Dissim-
ilarities are computed using Euclidean distance. Bold values represent the best retrieval
performance for each evaluation measure.

Method NN FT ST E DCG mAP

FV-HKS 0.9867 0.8743 0.9530 0.6996 0.9697 0.923

FV-SIHKS 0.9967 0.9314 0.9800 0.7229 0.9870 0.963

FV-WKS 0.9967 0.9398 0.9749 0.7210 0.9870 0.964

FV-IWKS 0.9996 0.9672 0.9842 0.7318 0.9937 0.980

SV-HKS 0.9717 0.7949 0.8936 0.6523 0.9419 0.858

SV-SIHKS 1.0000 0.9239 0.9747 0.7189 0.9840 0.955

SV-WKS 0.9967 0.9189 0.9632 0.7129 0.9822 0.951

SV-IWKS 0.9988 0.9536 0.9803 0.7283 0.9899 0.975
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Figure 4.7: Precision and Recall plot of spectral signatures (HKS, SIHKS, WKS and IWKS)
tested with FV and SV encoding methods applied to the SHREC’11 benchmark. The shape
spectra is computed by the LBO. Distances are computed using Euclidean distance. Equal
colours represent the same local descriptor. As shown above, the two best performances in
this benchmark (EUC-FVIWKS and EUC-SVIWKS) use our proposed descriptor.
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Table 4.4: Retrieval performance comparison of the different spectral signatures computed
with the LBO combined with FV and SV applied to the SHREC’11 benchmark. Dis-
similarities are computed using Efficient Manifold Ranking. Bold values represent the
best retrieval performance for each evaluation measure.

Method NN FT ST E DCG mAP

FV-HKS 0.9683 0.9118 0.9839 0.7175 0.9764 0.949

FV-SIHKS 0.9900 0.9762 0.9982 0.7377 0.9943 0.989

FV-WKS 0.9983 0.9710 0.9982 0.7413 0.9967 0.990

FV-IWKS 0.9983 0.9852 0.9999 0.7446 0.9976 0.997

SV-HKS 0.9250 0.8661 0.9567 0.6963 0.9498 0.906

SV-SIHKS 0.9967 0.9545 0.9953 0.7327 0.9889 0.973

SV-WKS 0.9967 0.9777 0.9944 0.7367 0.9949 0.988

SV-IWKS 0.9600 0.9554 0.9926 0.7303 0.9798 0.971
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Figure 4.8: Precision and Recall plot of spectral signatures (HKS, SIHKS, WKS and IWKS)
tested with FV and SV encoding methods applied to the SHREC’11 benchmark. The
shape specta is computed by the LBO. Distances are computed using Efficient Manifold
Ranking. Equal colours represent the same local descriptor. As shown above, the best
performance in this benchmark (MR-FVIWKS) use our proposed descriptor.
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Table 4.5: Retrieval performance comparison of the different spectral signatures computed
with the LBO combined with FV and SV applied to the SHREC’15 benchmark. Dissim-
ilarities are computed using Euclidean distance. Bold values represent the best retrieval
performance for each evaluation measure.

Method NN FT ST E DCG mAP

FV-HKS 0.9567 0.7489 0.8292 0.6661 0.9134 0.807

FV-SIHKS 0.9658 0.8104 0.8770 0.7102 0.9382 0.919

FV-WKS 0.9725 0.8628 0.9183 0.7511 0.9553 0.924

FV-IWKS 0.9975 0.9463 0.9801 0.8102 0.9884 0.969

SV-HKS 0.9217 0.6168 0.7061 0.5564 0.8539 0.724

SV-SIHKS 0.9642 0.7559 0.8371 0.6698 0.9222 0.906

SV-WKS 0.9600 0.7685 0.8520 0.6842 0.9243 0.872

SV-IWKS 0.9867 0.8748 0.9387 0.7649 0.9683 0.924
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Figure 4.9: Precision and Recall plot of spectral signatures (HKS, SIHKS, WKS and IWKS)
tested with FV and SV encoding methods applied to the SHREC’15 benchmark. The shape
spectra is computed by the LBO. Distances are computed using Euclidean distance. Equal
colours represent the same local descriptor. As shown above, the two best performance in
this benchmark (MR-FVIWKS and MR-SVIWKS) use our proposed descriptor.
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Table 4.6: Retrieval performance comparison of the different spectral signatures computed
with the LBO combined with FV and SV applied to the SHREC’15 benchmark. Dis-
similarities are computed using Efficient Manifold Ranking. Bold values represent the
best retrieval performance for each evaluation measure.

Method NN FT ST E DCG mAP

FV-HKS 0.9394 0.8356 0.8858 0.7210 0.9373 0.876

FV-SIHKS 0.9850 0.9371 0.9622 0.7944 0.9795 0.957

FV-WKS 0.9771 0.9241 0.9487 0.7820 0.9725 0.937

FV-IWKS 0.9936 0.9736 0.9922 0.8211 0.9933 0.979

SV-HKS 0.9107 0.7579 0.8268 0.6645 0.9039 0.805

SV-SIHKS 0.9779 0.9188 0.9553 0.7823 0.9734 0.940

SV-WKS 0.9640 0.8960 0.9275 0.7620 0.9611 0.912

SV-IWKS 0.9821 0.9475 0.9722 0.8029 0.9820 0.957
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Figure 4.10: Precision and Recall plot of spectral signatures (HKS, SIHKS, WKS and IWKS)
tested with FV and SV encoding methods applied to the SHREC’15 benchmark. The
shape spectra is computed by the LBO. Distances are computed using Efficient Manifold
Ranking. Equal colours represent the same local descriptor. As shown above, the two
best performance in this benchmark (MR-FVIWKS and MR-SVIWKS) use our proposed
descriptor.
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Table 4.7: Performance improvements of EMR over EUC using DCG as retrieval score.

Method SHREC’10 SHREC’11 SHREC’15

FV-HKS 0.42% 0.69% 2.62%

FV-SIHKS 1.33% 0.74% 4.40%

FV-WKS 0.49% 0.98% 1.80%

FV-IWKS 2.16% 0.39% 0.50%

SV-HKS 3.19% 0.84% 5.85%

SV-SIHKS 1.52% 0.50% 5.55%

SV-WKS 2.91% 1.29% 3.98%

SV-IWKS 3.00% -1.02% 1.41%

4.5 Summary

In this chapter, we have shown how to encode local spectral descriptors using the Fisher Vec-

tor or the Super Vector. These, compute discriminative measurements of similarity between

a statistical model, which is represented by a dictionary of features, and the respective shape

descriptors. These measurements of correlation give the shape a unique signature which is

based on its local characteristics. Furthermore, by computing enhanced distances with the

Efficient Manifold Ranking algorithm, we improve shape retrieval performance of classical

spectral features, e.g. the HKS, SIHKS, WKS and IWKS.

We can also examine the performance of our new proposed descriptor. As can be seen

in the previous experiments, the IWKS achieves state-of-the-art performance comparing

to other spectral signatures on SHREC’11 and SHREC’15. This is due to the fact that

the IWKS aggregates more information than other descriptors thus being able to better

differentiate from other classes of objects.



Chapter 5

Kinetic Laplace-Beltrami Operator

To fully benefit from the power of the shape spectra it is necessary to learn the class-specific

features of the spectrum that are more important to the problem at hand since the shape

spectra has a lot of information and it is hard to code all the important information into a

signature. On the other hand, we decided to take a step back and modify the shape spectra

itself so it can be more robust to non-rigid deformations. This way, the potential of shape

spectra can be fully exploited for the desirable application.

In this chapter, we deal with the problem of creating robust spectral signatures for

meshes. Point-cloud models will be addressed later in this thesis. Thus, we present a

new method for non-rigid 3D shape retrieval by computing enhanced spectral signatures

from meshes. Therefore, we introduce the Kinetic Laplace-Beltrami Operator (KLBO), a

method for computing spectral components which is intrinsically less variant to non-rigid

deformations. The KLBO downweights joint regions by a curvature-based kinetic term,

removing the influence of shape’s articulations on shape descriptors. The weighting is small

in areas on the shape where articulations are likely to occur and also stable to rigid and non-

rigid motions. This weighting changes the diffusion speed on the surface where articulations

are likely to occur decreasing their influence in the final descriptor.

The KLBO has participated in a shape retrieval contest in the SHREC’17 track: Retrieval

of surfaces with similar relief patterns [Biasotti et al., 2017], where it achieves the best

performance. This chapter is organized in the following way: we discuss and propose our

method in Section 5.1. Then, we show how it performs on recent non-rigid benchmarks

67
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in Section 5.2. We analyse its time complexity in Section 5.3. Finally, we summarize the

benefits of our method in Section 5.4.

5.1 Method

The family of spectral methods, exemplified by Sun et al. [Sun et al., 2009] and Aubry et

al. [Aubry et al., 2011b], are very attractive for 3D shape representation because they are

isometrically invariant, easy to make scale invariant, partly resistant to shape deformations,

and easy to calculate even for large meshes. They are also resistant to some types of noise,

which appears in the high-frequency part of the shape spectrum and can be downweighted.

The essence of these methods is to define a dynamic equation on the surface of the shape (for

example, the heat equation or the wave equation) and use the solution to extract information

about the shape.

To be clear, differently from a weighted manifold [Grigor’yan, 2006], we start by defining

the Lagrangian of the dynamics using classical field theory. Thus, we weight the physical field

using a smooth positive kinetic density. Both methods share some functional similarities,

however, our formulation for the problem is completely different. We begin by defining the

Lagrangian density of the system

L(φ,5φ, φ̇,x, t) = T − V (5.1)

where T is the kinetic energy (K.E.) and V is the potential energy, and φ represents a field

defined over the space (i.e. over the surface of the object). The action of the system is given

by the integral of the Lagrangian density:

S(L) =

∫
Ldxdt (5.2)

The dynamics of the system can be recovered from Hamilton’s principle, which states that

the action should be stationary for the true dynamic evolution of the system. This leads to
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the Euler-Lagrange equation for the dynamics:

∂L
∂φ
−5 · ∂L

∂ 5 φ
− ∂

∂t

(
∂L
∂φ̇

)
= 0 (5.3)

By defining an appropriate Lagrangian and solving the resulting Euler-Lagrange equations,

we can find a shape signature that weights kinetic energy differently across the field. The

kinetic energy is generated by different forms of motions. The movement of joint regions

can be physically interpreted as translational (when one part is moved from one place to

another), rotational (when the joint is rotated) and/or vibrational (when part of the shape

is also deformed by the motion), depending on the type of articulation and deformation.

Thus, we weight the kinetic energy to remove joint-articulation’s effect on shape signatures.

In the general scaled Lagrangian:

L =
1

2
φ̇φ̇∗ +

1

2
(φφ̇∗ − φ∗φ̇)− 1

2
∇φ · ∇φ∗ − φ∗V φ (5.4)

φ is a (possibly) complex field, so there are in fact two “fields” corresponding to the real

part and the imaginary part. In practice it is easier to consider the field φ and its complex-

conjugate φ∗ which are linear combinations of the real and imaginary parts and so do not

affect the calculations. The first two terms are kinetic energy terms, the first corresponding to

a standard K.E. proportional to the square of the velocity. The second is a K.E. term where

the energy increases with the size of the field. The second two terms are field potentials, the

first related to the gradient and the second to some external potential field V .

From this point, we can define the shape descriptor by choosing appropriate terms from

(5.4). To define the heat equation we choose second and third terms

L =
1

2
(φφ̇∗ − φ∗φ̇)− 1

2
∇φ · ∇φ∗ (5.5)

which applied to (5.3) gives dynamics

∇2φ = φ̇. (5.6)
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This is the heat equation and, ultimately, leads to the definition of the family of Heat Kernel

Signatures. In the same way, to define the wave equation we choose first and third terms

L =
1

2
φ̇φ̇∗ − 1

2
∇φ · ∇φ∗ (5.7)

which gives dynamics

∇2φ = φ̈. (5.8)

which is the wave equation and ultimately leads to the Wave Kernel Signature of Aubry

et al. [Aubry et al., 2011b].

To reduce the effect of object articulations, we introduce a kinetic energy weighting term

(first to the wave equation) into the Lagrangian

L =
k

2
C(x)φ̇φ̇∗ −∇φ · ∇φ∗ (5.9)

By applying this time (5.9) to (5.3) we get

52φ = kC(x)φ̈ (5.10)

where k is a normalization term and C(x) is a spatially varying weighting function which is

small in areas on the shape where articulations are likely to occur and also stable to non-rigid

motions. Standard separation of variables and discretization gives

Lφx = λKφx (5.11)

where K is a diagonal matrix where its diagonal elements are C(x). Putting these elements

together, following a standard discretization procedure from (2.2), the eigenvectors associated

with the signature are solutions of the generalized eigenproblem

Wφ = λAKφ. (5.12)
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The kinetic term can be modified in the heat Lagrangian in the same way:

L =
k

2
C(x)(φφ̇∗ − φ∗φ̇)−∇φ · ∇φ∗ (5.13)

and this leads to exactly the same spatial eigenvectors of (5.12), although the solution is

different due to difference in the time derivatives. To derive a descriptor which is less variant

to non-rigid motions we merely need to choose an appropriate function C(x) which is smaller

in articulated points than in rigid areas of the shape.

The weighting function C(x) needs to reduce the effect of areas which are most different

when comparing non-rigid shapes. When a human model moves its arm, what happens is that

the arm joint region changes its curvature. At one side it becomes smaller (more negative)

and at the other side it becomes bigger (more positive). After analyzing the structure of

shapes we found a relation between the positive volume of the local surface patches and

their joints. By using this analysis, joint regions are consistently less weighted than other

regions. We compute the volume of a surface patch by integrating a quadric patch, which is

a representation of this surface in the local coordinate system

∫∫
x2+y2<R2

(k1x
2 + k2y

2 − z)dxdy (5.14)

Here k1 and k2 are the principal curvatures of the surface patch since they are the eigenvalues

of the symmetric matrix in the second fundamental form

II =

 k1 0

0 k2

 (5.15)

After integrations of (5.14), the volume inside the circle with radius R centered at the

respective vertex vi is defined as

πR4

2

k1 + k2
2

− πzR2 (5.16)

where (k1 + k2)/2 is the mean curvature (H), πR4/2 is a scaling factor and z dictates
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Figure 5.1: Pipeline proposed for the non-rigid shape retrieval problem for triangle meshes.
By weighting the kinetic energy on the Euler-Lagrangian equation we reduce the effect of
shape articulations, causing same-class shapes’ signatures to be closer to each other. Then,
by encoding the kinetic signatures using either Fisher Vector (Section 2.5.6) or Super Vector
(Section 2.5.7) we are able to compare shapes efficiently using Manifold Ranking technique.

the position of the reference plane defined by the surface patch’s normal. By removing the

scaling factor and taking z = 0 we find that the volume is proportional to the mean curvature

thus we define the weighting function C(x) as

C(x) = max(ε,H(x)), (5.17)

where H(x) is the mean curvature of the surface patch at position x and ε a very small

number (e.g. 10−8). The scaling factor is not significant because a scaling normalization is

performed after this stage. To facilitate computations, we extract directly mean curvatures

from shapes by computing a curvature tensor at each vertex, according to [Rusinkiewicz,

2004].

With these ingredients, Equation (5.11) can be solved as a generalized eigenvalue prob-

lem. The resulting eigensystem is then used to construct a shape signature following the

appropriate method for the particular Lagrangian, i.e. using Equation (5.9) for either the

WKS or IWKS or (5.13) for either the HKS or SIHKS.
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Therefore, we call these methods, using modified kinetic energy terms in the Lagrangian,

Kinetic Laplace-Beltrami operator or KLBO methods. Fig. 5.1 summarizes the main steps

of the KLBO pipeline.

This method has similarities with the curvature aggregation (Section 3.3) in the way

both reduce the influence of shape motions, however, each method does that in a different

way and therefore they can be used with each other. The KLBO reduces the influence of

articulations by changing the diffusion speed on the surface where articulations are likely to

occur, i.e., changing the shape spectrum, while the curvature aggregation only downweights

joint regions after the signatures have been computed.

5.2 Experiments

In this section, we present detailed experiments on the shape retrieval performance and

speed of our algorithm. For that, we use three non-rigid databases: SHREC’10 [Lian et al.,

2010], SHREC’11 [Lian et al., 2011] and SHREC’15 [Lian et al., 2015]. However, we start

by showing that the KLBO features can be approximated by Gaussian Mixture models and

therefore can be used with Fisher Vector and Super Vector encoding schemes.

Figure 5.2 shows 5 randomly chosen shape features computed with the KLBO and their

respective GMMs approximated using the Expectation-maximization algorithm. Figure 5.3

shows errors generated by these respective approximations. We can see that errors stabilize

around 0.002 for all signatures (HKS, SIHKS, WKS and IWKS). The low error generated

by the approximation tells us that GMM is also a good way to represent KLBO features.

From now, we present retrieval performance of our KLBO descriptor. First, we show

detailed statistics of our framework for spectral signatures when using the KLBO instead

of the LBO. Thus, we use the shape spectra computed from the KLBO to construct spec-

tral descriptors (HKS, SIHKS, WKS and IWKS). Then, we encode these descriptors either

with FV or SV. Finally, we perform shape retrieval on benchmarks by computing Efficient

Manifold Ranking distances between signatures.

The detailed results of these experiments can be seen in Tables 5.1, 5.2 and 5.3, applied

respectively in SHREC’10, SHREC’11 and SHREC’15. See that, IWKS is ranked first for
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Figure 5.2: Histograms of randomly-chosen shape features plotted with the respective learned
GMM with 5 components for different KLBO signatures. Each row represents features
from HKS, SIHKS, WKS and IWKS, respectively, from the first model of the database.

SHREC’11 and SHREC’15, while WKS is ranked first for SHREC’10 and SHREC’11.

The reason for the IWKS be ranked low in SHREC’10 is because models are sometimes

quite different, i.e., the models are not the same. This aspect can be seen in figure 5.4.

While other spectral methods rely most of their features on gross topological structures, the

IWKS is more sensitive to changes on the shape of the model.

For comparing other mesh descriptors with our KLBO, we took state-of-the-art descrip-

tors from the literature and the algorithms that performed better on each dataset. All these

results were taken from the respective author’s papers.

Table 5.5 shows a comparison of our best run on SHREC’10 (KLBO-SVWKS, see Table

5.1) against best descriptors taken from SHREC’10 benchmark (MR-BF-DSIFT-E, DMEVD run1,

CF) and other state-of-the-art techniques, where referenced. Our descriptor exhibit the best

retrieval score when compared to all other methods. It is worth noting that the SHREC’10

models are substantially different in nature to the others and also very challenging because
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each KLBO signature. The black line represents the average loss of the five histograms and
coloured curves represent the individual errors of the five randomly chosen features. As can
be seen, the error stabilizes in most of cases when are used in average 5 components or more.

sometimes classes are very similar (octopuses, crabs and spiders have similar shapes and

other times shapes can be deformed instead of only articulated, as shown in Figure 5.4).

This dataset also contains some noise which is naturally most handled by spectral signa-

tures.

Table 5.6 compares the performance of KLBO-FVWKS, KLBO-SVIWKS and KLBO-

SVSIHKS against the best methods on SHREC’11 benchmark (SD-GDM-meshSIFT, MDS-

CM-BOF, OrigM-n12-nrmA, FOG+MRR, BOGH, LSF) and other state-of-the-art tech-

niques, where referenced. As shown, our methods clearly outperforms all others, achieving

a perfect retrieval score (mAP 100.0%). It is important to note that this result is achieved

without any training or learning method during the local descriptor computation, which
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means that the algorithm inspects models only once for computing local descriptors. Fi-

nally, our methods are capable of retrieving all 19 correct matches for the 30 classes, i.e. if

any object from these classes is taken as query it will retrieve all remaining shapes from the

same class at first.

On SHREC’15 datasets, our method is the second best (see Table 5.7), performing only

marginally below the best. Although it does not achieve the first position it is interesting

to note the stability of the results on the three non-rigid benchmarks. Other methods, for

example SV-LSF kpaca50 achieves an excellent retrieval score on SHREC’15, however, its

performance on SHREC’11 is not among the top tier.

(a) (b)

(c) (d)

Figure 5.4: Models from SHREC’10 showing that they are substantially distinct even be-
longing to the same class. (a) shows Octopuses that differ in thickness. (b), (c) and (d) show
respectively Hands, Humans and Spectacles that differ in shape. Thumbnail images taken
from the track website [Lian et al., 2010].

We also tested the KLBO on the SHREC’14 dataset [Pickup et al., 2014b]. Tables 5.8

and 5.9 show performance statistics on the Synthetic and Real dataset, respectively, and

Figures 5.8 and 5.9 show the respective Precision and Recall curves.
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Table 5.1: Retrieval performance comparison of the different spectral signatures computed
with the KLBO combined with FV and SV applied to the SHREC’10 benchmark. Dis-
similarities are computed using Efficient Manifold Ranking. Bold values represent the
best retrieval performance for each evaluation measure.

Method NN FT ST E DCG mAP

FV-HKS 0.9850 0.9088 0.9567 0.7043 0.9774 0.945

FV-SIHKS 0.9788 0.8764 0.9630 0.7045 0.9706 0.909

FV-WKS 0.9888 0.9266 0.9787 0.7148 0.9811 0.963

FV-IWKS 0.9425 0.8047 0.9361 0.6767 0.9444 0.846

SV-HKS 0.9650 0.8761 0.9433 0.6878 0.9645 0.919

SV-SIHKS 0.9888 0.8665 0.9601 0.7052 0.9722 0.922

SV-WKS 0.9950 0.9656 0.9952 0.7328 0.9938 0.991

SV-IWKS 0.9650 0.8682 0.9755 0.7129 0.9676 0.907
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Figure 5.5: Precision and Recall plot of different spectral signatures (HKS, SIHKS, WKS and
IWKS) tested with FV and SV encoding methods applied to the SHREC’10 benchmark.
The shape spectra is computed by the KLBO. Distances are computed using Efficient
Manifold Ranking. Equal colours represent the same local descriptor. The best perfor-
mances are MR-FVWKS and MR-SVWKS.
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Table 5.2: Retrieval performance comparison of the different spectral signatures computed
with the KLBO combined with FV and SV applied to the SHREC’11 benchmark. Dis-
similarities are computed using Efficient Manifold Ranking. Bold values represent the
best retrieval performance for each evaluation measure.

Method NN FT ST E DCG mAP

FV-HKS 0.9983 0.9967 0.9967 0.7426 0.9985 0.997

FV-SIHKS 1.0000 0.9864 1.0000 0.7425 0.9986 0.995

FV-WKS 1.0000 1.0000 1.0000 0.7451 1.0000 1.000

FV-IWKS 1.0000 0.9966 0.9999 0.7441 0.9996 0.999

SV-HKS 0.9933 0.9792 0.9932 0.7361 0.9946 0.989

SV-SIHKS 1.0000 1.0000 1.0000 0.7451 1.0000 1.000

SV-WKS 1.0000 0.9983 0.9983 0.7439 0.9998 0.999

SV-IWKS 1.0000 1.0000 1.0000 0.7451 1.0000 1.000
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Figure 5.6: Precision and Recall plot of different spectral signatures (HKS, SIHKS, WKS
and IWKS) tested with FV and SV encoding methods applied to the SHREC’11 bench-
mark. The shape spectra is computed by the KLBO. Distances are computed using Ef-
ficient Manifold Ranking. Equal colours represent the same local descriptor. The best
performances are MR-FVWKS, MR-SVSIHKS and MR-SVIWKS with 100% of retrieval
performance.
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Table 5.3: Retrieval performance comparison of the different spectral signatures computed
with the KLBO combined with FV and SV applied to the SHREC’15 benchmark. Dis-
similarities are computed using Efficient Manifold Ranking. Bold values represent the
best retrieval performance for each evaluation measure.

Method NN FT ST E DCG mAP

FV-HKS 0.9465 0.8492 0.8792 0.7225 0.9391 0.877

FV-SIHKS 0.9852 0.9473 0.9604 0.7988 0.9790 0.956

FV-WKS 0.9823 0.9382 0.9559 0.7925 0.9770 0.957

FV-IWKS 0.9992 0.9859 0.9933 0.8269 0.9959 0.992

SV-HKS 0.9367 0.8050 0.8487 0.6918 0.9221 0.852

SV-SIHKS 0.9867 0.9527 0.9621 0.8019 0.9813 0.963

SV-WKS 0.9800 0.9297 0.9464 0.7858 0.9744 0.945

SV-IWKS 0.9969 0.9792 0.9886 0.8232 0.9943 0.986
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Figure 5.7: Precision and Recall plot of different spectral signatures (HKS, SIHKS, WKS and
IWKS) tested with FV and SV encoding methods applied to the SHREC’15 benchmark.
The shape spectra is computed by the KLBO. Distances are computed using Efficient
Manifold Ranking. Equal colours represent the same local descriptor. As shown above,
the two best performance in this benchmark are MR-FVIWKS and MR-SVIWKS, which use
our proposed descriptor.
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Table 5.4: Performance improvements of the KLBO over the LBO using DCG as retrieval
score. Dissimilarities are computed using Efficient Manifold Ranking.

Method SHREC’10 SHREC’11 SHREC’15

FV-HKS 2.14% 2.26% 0.19%

FV-SIHKS 3.22% 0.43% -0.05%

FV-WKS 1.37% 0.33% 0.47%

FV-IWKS 0.91% 0.20% 0.26%

SV-HKS 2.19% 4.72% 2.01%

SV-SIHKS 2.56% 1.12% 0.82%

SV-WKS 1.68% 0.49% 1.38%

SV-IWKS 1.97% 2.06% 1.26%

Table 5.5: Retrieval performance comparison with state-of-the-art signatures on SHREC’10.
We show best runs from the three groups that performed better in SHREC’10 (MR-BF-
DSIFT-E, DMEVD run1, CF) and other recent descriptors that outperformed those, against
our descriptor (KLBO-SVWKS). In bold are highlighted the best performances for each
retrieval measure.

Descriptor e-Measure mAP [%]

KLBO-SVWKS 0.7328 99.1

ConTopo++ [Sfikas et al., 2011] 0.7140 97.6

MR-BF-DSIFT-E 0.7055 95.4

DMEVD run1 0.7012 94.1

MDS-ZFDR [Li et al., 2014a] - 94.1

MR-SVWKS 0.7053 92.0

EUC-SVIWKS [Limberger and Wilson, 2015] 0.5957 80.0

CF 0.5527 75.2

KLBO does not perform very well in these datasets because they are substantially dif-

ferent from the others in terms of class similarity. Both the Synthetic and Real dataset from

SHREC’14 feature only human models, where the difference between classes are sometime

minimal. Unfortunately, the KLBO fails in describing these small differences. It is interest-

ing to note that the SIHKS performs the best considering the spectral descriptors. Further

research is still needed to identify the reasons this is happening.
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Table 5.6: Retrieval performance comparison with state-of-the-art signatures on SHREC’11.
We show best runs from the six groups that performed better in SHREC’11 (SD GDM-
meshSIFT, MDS-CM-BOF, OrigM-n12-normA, FOG+MRR, BOGH, LSF) and other recent
descriptors that outperformed those, against our descriptor (KLBO-FVWKS). In bold are
highlighted the best performances for each retrieval measure.

Descriptor e-Measure mAP [%]

KLBO-FVWKS/KLBO-SVIWKS/KLBO-SVSIHKS 0.7451 100.0

MR-FVIWKS 0.7446 99.7

3DVFF [Furuya and Ohbuchi, 2014] - 99.1

SD-GDM-meshSIFT 0.7358 98.5

EUC-FVIWKS [Limberger and Wilson, 2015] 0.7318 98.0

MDS-ZFDR [Li et al., 2014a] - 97.5

SV-DSIFT [Takahiko Furuya, 2015] - 97.2

R-BiHDM-L23 [Ye and Yu, 2015] 0.7300 -

SGWC-BoF [Masoumi et al., 2016] 0.7290 -

SV-LSF kpaca50 [Takahiko Furuya, 2015] - 96.2

Geodesic Distances (LS) [Pickup et al., 2015] 0.7170 -

MDS-CM-BOF 0.7166 95.0

OrigM-n12-normA 0.7047 94.4

FOG+MRR 0.6958 91.8

ConTopo++ [Sfikas et al., 2011] 0.6950 94.7

BOGH 0.6469 86.7

LSF 0.6327 85.1

5.3 Timing analysis

The KLBO has the same computational complexity of the LBO. It is comprises the compu-

tation of the matrices A, K and W , which have complexities O(|V |), O(|V |) and O(|V |2),

respectively, and the eigendecomposition of the generalized eigenproblem. However, the

computation of the matrices are dominated by the eigendecomposition of the LBO. Using

SVD, the worst case scenario for computing the eigenfunctions is O(|V |3). On the other

hand, using eigs function on Matlab can accelerate this process. This is because the LBO is

sparse and there are specific methods to solve eigendecomposition when we do not need to

compute all the |V | eigenfunctions. For example, in our case we only need to compute the

first 300 eigenvalues and eigenfunctions.

We show in Table 5.13 detailed running times to compute KLBO. In the table, we show
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Table 5.7: Retrieval performance comparison with state-of-the-art signatures on SHREC’15.
We show best runs from the six groups that performed better in SHREC’15 (SV-
LSF kpaca50, HAPT run1, SPH SparseCoding 1024, CompactBoHHKS10D, FV-WKS, ED-
BCF NW) and other recent descriptors in the literature against our descriptor (MR-KLBO-
FVIWKS). In bold are highlighted the best performances for each retrieval measure.

Descriptor e-Measure mAP [%]

SV-LSF kpaca50 [Takahiko Furuya, 2015] 0.8357 99.8

KLBO-FVIWKS 0.8269 99.2

MR-FVIWKS 0.8211 97.9

HAPT run1 0.8150 97.7

EUC-FVIWKS [Limberger and Wilson, 2015] 0.8102 96.9

SPH SparseCoding 1024 0.8047 96.8

SGWC-BoF [Masoumi et al., 2016] 0.7470 -

CompactBoHHKS10D 0.7465 90.1

SRG [Mohamed and Hamza, 2016] 0.7390 -

FV-WKS 0.7242 87.5

EDBCF NW 0.7076 85.0

Table 5.8: Retrieval performance comparison of the different spectral signatures computed
with the KLBO combined with FV and SV applied to the SHREC’14 Synthetic bench-
mark. Dissimilarities are computed using Efficient Manifold Ranking. Bold values
represent the best retrieval performance for each evaluation measure.

Method NN FT ST E DCG mAP

FV-HKS 0.7333 0.4677 0.6250 0.4332 0.7761 0.5506

FV-SIHKS 0.8883 0.8158 0.9512 0.6887 0.9403 0.8622

FV-WKS 0.6342 0.4656 0.6708 0.4622 0.7609 0.5504

FV-IWKS 0.6475 0.5176 0.7638 0.5214 0.7977 0.6009

SV-HKS 0.7267 0.4296 0.5865 0.4081 0.7436 0.4943

SV-SIHKS 0.8667 0.7232 0.8402 0.6034 0.8975 0.6972

SV-WKS 0.6742 0.4636 0.6462 0.4474 0.7598 0.6344

SV-IWKS 0.6892 0.5023 0.7501 0.5056 0.7900 0.5347

average times to compute one model from each database. At the last two columns it is shown

the total time to compute each of the benchmarks, using either FV or SV. The average

computation times of Fisher Vector approach is considerably lower because we use VLfeat

implementation [Vedaldi and Fulkerson, 2008], while Super Vector is completely implemented

on Matlab. Complexities of FV and SV are similar, thus SV would have similar computation
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Table 5.9: Retrieval performance comparison of the different spectral signatures computed
with the KLBO combined with FV and SV applied to the SHREC’14 Real benchmark.
Dissimilarities are computed using Efficient Manifold Ranking. Bold values represent
the best retrieval performance for each evaluation measure.

Method NN FT ST E DCG mAP

FV-HKS 0.0381 0.0359 0.0682 0.0461 0.2888 0.136

FV-SIHKS 0.1019 0.1130 0.2280 0.1543 0.3806 0.222

FV-WKS 0.0681 0.0616 0.1289 0.0916 0.3284 0.165

FV-IWKS 0.0738 0.0784 0.1586 0.1068 0.3430 0.192

SV-HKS 0.0625 0.0572 0.0961 0.0605 0.3060 0.149

SV-SIHKS 0.1125 0.1163 0.2242 0.1509 0.3830 0.221

SV-WKS 0.0725 0.0781 0.1596 0.1010 0.3410 0.173

SV-IWKS 0.0888 0.0894 0.1765 0.1154 0.3567 0.195
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Figure 5.8: Precision and Recall plot of different spectral signatures (HKS, SIHKS, WKS and
IWKS) tested with FV and SV encoding methods applied to the SHREC’14 Synthetic
benchmark. The shape spectra is computed by the KLBO. Distances are computed using
Efficient Manifold Ranking. Equal colours represent the same local descriptor.



84 CHAPTER 5. KINETIC LAPLACE-BELTRAMI OPERATOR

P
re

ci
si

on

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1
MR-FVHKS
MR-FVIWKS
MR-FVSIHKS
MR-FVWKS
MR-SVHKS
MR-SVIWKS
MR-SVSIHKS
MR-SVWKS

Recall

Figure 5.9: Precision and Recall plot of different spectral signatures (HKS, SIHKS, WKS
and IWKS) tested with FV and SV encoding methods applied to the SHREC’14 Real
benchmark. The shape spectra is computed by the KLBO. Distances are computed using
Efficient Manifold Ranking. Equal colours represent the same local descriptor.

Table 5.10: Retrieval performance comparison of state-of-the-art descriptors for the
SHREC’14 Synthetic benchmark [Pickup et al., 2014b]. Results were taken from the
respective papers.

Method E DCG mAP

supDLtrainS [Litman et al., 2014] 0.721 0.975 0.954

NPSR [Gasparetto et al., 2015] - - 0.950

Spectral Geometry [Li, 2013] 0.706 0.971 -

KLBO-FVSIHKS 0.689 0.940 0.862

Surface Area [Pickup et al., 2014b] 0.691 0.901 -

HAPT [Giachetti and Lovato, 2012] 0.655 0.936 0.817

time if it was implemented in like manner.
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Table 5.11: Retrieval performance comparison of state-of-the-art descriptors for the
SHREC’14 Real benchmark [Pickup et al., 2014b]. Results were taken from the re-
spective papers.

Method E DCG mAP

supDLtrainR [Litman et al., 2014] 0.432 0.891 0.791

NPSR [Gasparetto et al., 2015] - - 0.790

R-BiHDM-s [Ye et al., 2013] 0.387 0.781 0.640

HAPT [Giachetti and Lovato, 2012] 0.355 0.795 0.637

Surface Area [Pickup et al., 2014b] 0.326 0.571 -

KLBO-FVSIHKS 0.119 0.353 0.203

Table 5.12: Retrieval performance comparison of state-of-the-art descriptors for the
SHREC’17 Relief Patterns benchmark [Biasotti et al., 2017]. Results were taken from
the respective paper. There can be found more details about the other methods.

Method E DCG mAP

KLBO-FVIWKS (Limberger) 0.332 0.759 0.339

LBPI (Tatsuma) 0.232 0.697 0.283

CMC-2 (Velasco-Forero) 0.261 0.686 0.271

IDAH-1 (Sun) 0.145 0.578 0.174

Table 5.13: Average computation times (in seconds) for computing one mesh signature for
an average-sized model from each dataset. KLBO stands for computation of curvatures,
eigenvectors and eigenvalues. HKS, SIHKS, WKS and IWKS stand for time to compute
respective signatures. SHIFT stands for the shifting described in [Limberger and Wilson,
2015]. FV and SV stand for computation times of Fisher Vector and Super Vector. EMR
represents the time to perform retrieval of one model. Total times to compute signatures
and retrieve all models using either FV or SV are shown in Total-FV and Total-SV columns.

Benchmark KBLO HKS SIHKS WKS IWKS SHIFT FV SV EMR Total-FV Total-SV

SHREC’10 24.74 0.10 5.39 0.05 0.06 0.04 6.03 28.89 0.07 6,390 7,533

SHREC’11 12.73 0.06 3.62 0.04 0.06 0.03 3.93 16.97 0.27 10,668 12,625

SHREC’15 15.24 0.07 3.77 0.04 0.05 0.03 5.02 34.91 0.58 25,239 34,205

5.4 Summary

In this chapter, we have presented a more fundamental approach to deal with the problem

of non-rigid shape retrieval for meshes. We begun by defining 3D models in physical terms

using classical field theory. With this approach, we are able to weight the physical field

by a curvature term that reduces the effect of object articulation on the shape descriptors.
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Therefore, in this case the shape spectra is naturally less variant to non-rigid deformations.

We have shown through several experiments that the KLBO improves the performance over

the classic LBO of spectral signatures in 3D non-rigid shape retrieval. We also showed

that the KLBO can be used with the Fisher Vector and the Super Vector, state-of-the-art

encoding schemes, which also improve retrieval performance. Furthermore, we verified that

the KLBO and the LBO present similar computation time.



Chapter 6

Non-Rigid Point-Cloud Shape

Retrieval Benchmark

In this chapter, we detail the creation of a point-cloud benchmark for non-rigid shape re-

trieval. The non-rigid shape retrieval area is concerned with retrieving models that are

somehow deformed by its joints. The importance of shape retrieval is evidenced by the 11

years of the SHREC. In this thesis, we have been extensively addressing this problem for 3D

meshes, however, 3D shapes can be also represented by three-dimensional point clouds, which

are the immediate result of 3D scans of real 3D objects. Although some methods available in

the literature use the point set data to create their shape signatures, we have not seen these

methods being used directly to address the non-rigid point-cloud shape-retrieval problem

since there are no specific point-cloud datasets available for this purpose. We have included

our own method in this evaluation (the Mesh-Free Laplace-Beltami Operator), however, it

will be fully explained only in the next chapter.

This chapter was published in [Limberger et al., 2017] as a SHREC’17 benchmark track,

therefore, there were other researchers that submitted their algorithm results to be compared

on this data. The rest of this chapter is organized in the following way. We introduce the

subject of point-cloud shape retrieval and motivate the reader in Section 6.1. Then, we

discuss peculiarities about the dataset and how it was constructed in Section 6.2. In Section

6.3, we discuss our evaluation methodology and in Section 6.4 we list the participants of the

87
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SHREC’17 track: PRoNTo benchmark. In Section 6.5, we show many experiments on the

dataset and analyze carefully poses and classes. Finally, Section 6.6 summarizes the chapter

and points possible research directions.

6.1 Introduction

With the rapid development of virtual reality (VR) and augmented reality (AR), especially

in gaming, 3D data has become part of our everyday lives. Since the creation of 3D models

is essential to these applications, we have been experiencing a large growth in the number of

3D models available on the Internet in the past years. The problem now has been organizing

and retrieving these models from databases. Researchers from all over the world are trying

to create shape descriptors in a way to organize this huge amount of models, making use

of many mathematical tools to create discriminative and efficient signatures to describe 3D

shapes.

There are two distinct areas which concern shape retrieval: The first, non-rigid shape

retrieval, which deals with the problem of articulations of the same shape [Lian et al., 2010,

Lian et al., 2011, Lian et al., 2015], and second, comprehensive shape retrieval [Bronstein

et al., 2010b, Li et al., 2014c, Savva et al., 2016], which deals with any type of deformation,

for example, scaling, stretching and even differences in topology. While comprehensive shape

retrieval is more general, non-rigid shape retrieval is as important when it is necessary to

carefully classify similar objects that are in distinct classes [Pickup et al., 2016b].

Three-dimensional point clouds are the immediate result of scans of 3D objects. Although

there are efficient methods to create meshes from point clouds, sometimes this task can be

complex, particularly when point-cloud data present missing parts or noisy surfaces, for

example, fur or hair. In this chapter, we are once more interested in the non-rigid shape

retrieval task. This way, we created a non-rigid point-cloud shape retrieval benchmark

(PRoNTo: Point-Cloud Shape Retrieval of Non-Rigid Toys), which was produced given the

necessity of testing non-rigid shape signatures computed directly from unorganized point

clouds, i.e., without any connectivity information. This is the first benchmark ever created

to test, specifically, the performance of non-rigid point-cloud models.
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This benchmark is important given the need to compare 3D non-rigid shapes based

directly on a rough 3D scan of the object, which is a more difficult task than comparing

signatures computed from well-formed 3D meshes. Also because real-time interaction with

3D scanners and 3D objects are expected to be part of our everyday lives in the near future as

suggested by the growth of VR and AR and the new 3D platform from Microsoft, which will

include many 3D features in its products, and, consequentially, will take the third dimension

to everyone’s houses.

Scanning problems can occur when the laser hits first one part of the model leaving

another part of the model unseen (in the same direction pointed by the scan head). Other

problems can also be caused by object’s specular materials and inner-reflections of the object

and can lead to the insertion of outliers in the model. Objects with missing parts are intended

to test signatures robustness against scanning problems since precise 3D-object scanning is a

very time-consuming task. In the future, people will not spend hours capturing 3D objects.

Object recognition and description methods need to be robust to an uncomplicated scan,

and be able to classify objects created from a rough model examination.

6.2 Dataset

In this section we explain the dataset characteristics, information about models and the

reasons we chose each one of the poses. Our dataset consists of 100 models that are derived

from 10 different real objects. Each real object was scanned in 10 distinct poses by articu-

lating them around their joints. The real objects can be seen in Figure 6.1 and the different

poses can be seen in Figure 6.3, using the object Monster as example. The point clouds

acquired by these scans suffer from common scanning problems like holes and missing parts

resulted from self-occlusions of the shapes. Objects were scanned using the Head & Face

Color 3D Scanner of Cyberware. This scanner makes a 360 degrees scan around the object

estimating x, y, and z coordinates of a vertical patch. The scanning process captures an

array of digitized points and also the respective RGB colours.

In the end, after all models being scanned, the point clouds were randomly rotated across

the three axis X, Y and Z to test descriptors robustness against rigid transformations. Each
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Bear Fox Rat Sheep Teddy

Tiger Dog Monster Monkey Einstein

Figure 6.1: Different toys used to create the PRoNTo dataset.

point cloud was also resampled to, in average, 4K points each using Poisson-disk sampling

(PDS) algorithm [Corsini et al., 2012]. The resampling step is important because it sets

a standard size to the models and it makes the dataset less susceptible to be classified by

trivial methods.

Although 3D points have being scanned with colours, this is not the benchmark purpose,

thus colours were removed and only the point positions are made available. The file format

was chosen as the ASCII Object File Format (.off), which, in this case, contains only vertex

information. Figure 6.2 shows the entire framework to create the point-cloud models. First,

we scan the model and get the rough object’s scan (a). Then, we manually clean the supports

and some outliers left from the scanning process (b). We perform an undersampling of the

model using PDS algorithm (c). Finally, we remove colours (d). The orientation of the

model is not relevant since we perform an arbitrary rotation of the model at last.
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(a) (b) (c) (d)

Figure 6.2: Framework for creating point-cloud models using model Dog as an example. In
(a) we show the rough object’s scan. In (b), it is shown the model cleaned from outliers and
supporting wires. In (c), we show the undersampled version of (b) and, finally, in (d) we
show the uncoloured model used in the benchmark with approximately 4K points.

6.2.1 Poses

Different poses have been captured to test different characteristics of descriptor’s potential.

They are: Celebrating, Dance move, Default, Hands front, Open, Seated, Seated hands front,

Straight, Walking and Tilted. These can be seen in Figure 6.3 . In order to scan these poses,

we implanted wires inside the objects. To position each object in the scanning area we also

hang the object by a wire, which can be seen in Figure 6.4. Therefore, after all scans being

made we had to manually remove the wire supporting the object from the scans. Each 3D

point cloud is the result of one 360-degree sweep of the scanner around each toy.

Some poses feature a small deformation, for example: Default, Open and Celebrating ;

Seated, Seated hands front and Hands front. These are exactly the same poses across all

classes, i.e., it means the deformation of the models are the same. These poses hamper the

correct model classification since they appear to be more similar than the intrinsic object’s

shape itself. Others were created to test the object’s asymmetry: Dance move and Walking.

These poses can vary depending on object’s class, i.e., the feet and arms can be either to

the front or to the back depending on each class. Tilted has the intention of testing a tilted

scan of the model, i.e., different parts appear in the object scan when the object is set up

in a different slope, since the scanner is not able to capture surfaces that are in the same

orientation of the laser or occluded from the scan head. Finally, the pose Straight has the
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Celebrating Dance move Default Hands front Open

Seated Seated hands front Straight Walking Tilted

Figure 6.3: Different poses captured of the objects, showing model Monster as an example.
Point clouds were coloured by Y and Z coordinates.

intention of testing major topology changes, since feet and arm points are very close to the

body, leaving an uncertainty about their meaning in the scan as there is no connectivity

information.

While different poses hamper the recognition of shape classes, some models are also very

similar to each other like Dog and Fox ; or Teddy, Monkey and Sheep (see Figure 6.1). Some

are also quite distinct like Rat, Tiger, Einstein and Monster. Typically, these should be

easier to retrieve since the discrepancies are greater.

It is also our intention to investigate what are the poses which are easier to retrieve

and which are the more difficult to identify. This will give us an understanding of what

deformations are the most difficult to detect and therefore we will be able point future

research topics in shape retrieval to be investigated.

6.3 Evaluation

In this section, we detail our evaluation methodology used to rank algorithm performances.

The result of a shape retrieval problem is a dissimilarity matrix which gives the difference

between every model in the database. A dissimilarity matrix is a matrix of size N × N ,
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(a) (b)

Figure 6.4: Object scanning. In (a) is shown the model Dog being scanned. See that the
scanner captures distances over the red line and it captures all the object by sweeping the
scan head over the 360 degrees. In (b) is shown the scanner of Cyberware doing the sweep
and capturing the model Monster.

where N is the number of models of the dataset, where the position (i, j) in the matrix gives

the difference between models i and j. Similarly to past SHREC benchmark contests, stan-

dard evaluation measures were computed to test the retrieval accuracy of the algorithms:

Precision-and-Recall (PR) curve , mean Average Precision (mAP), E-Measure (E), Dis-

counted Cumulative Gain (DCG), Nearest Neighbor (NN), First-Tier (FT) and Second-Tier

(ST). These measures are described in detail in Section 4.4.2.

To summarize, mAP is given by the area below the PR curve. E-measure is given by

the precision and recall of the first 32 retrieved models, even when classes have less than 32

models. NN gives a percentage of correct matches within all closest matches for each model.

FT is given by the percentage of correct matches that appear within the top K matches,

where K = |C| − 1 and |C| is the number of models of each class. For ST, K = 2 ∗ (|C| − 1).

DCG is a logarithmic statistic which weights correct matches based on their position on the

retrieval list. More details of each evaluation measure can be find in Section 4.4.2.
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6.4 List of the participant methods

In this section, we include the list of the participant methods that have been submitted

to the PRoNTo benchmark in the SHREC’17. In total, 8 groups have participated in the

contest with 31 valid submissions. The 31 submissions divided per group were:

1. MFLO-FV-IWKS, MFLO-SV-IWKS, PCDL-FV-IWKS, PCDL-SV-IWKS, GL-FV-IWKS

and GL-SV-IWKS submitted by Frederico A. Limberger and Richard C. Wilson.

2. BoW-RoPS-1, BoW-RoPS-2, BoW-RoPS-DMF-3, BoW-RoPS-DMF-4, BoW-RoPS-

DMF-5 and BoW-RoPS-DMF-6 submitted by Minh-Triet Tran, Viet-Khoi Pham, Hai-

Dang Nguyen and Vinh-Tiep Nguyen.

3. POHAPT and BPHAPT submitted by Andrea Giachetti.

4. CDSPF submitted by Atsushi Tatsuma and Masaki Aono.

5. SQFD(HKS), SQFD(WKS), SQFD(SIHKS), SQFD(WKS-SIHKS) and SQFD(HKS-

WKS-SIHKS) submitted by Benjamin Bustos and Ivan Sipiran.

6. SnapNet submitted by Bertrand Le Saux, Nicolas Audebert and Alexandre Boulch.

7. AlphaVol1, AlphaVol2, AlphaVol3 and AlphaVol4 submitted by Santiago Velasco-Forero.

8. m3DSH-1, m3DSH-2, m3DSH-3, m3DSH-4, m3DSH-5 and m3DSH-6 submitted by

Bo Li, Yijuan Lu and Afzal Godil.

To a more detailed explanation of the methods that participated in the PRoNTo contest

we refer the reader to the SHREC’17 - PRoNTo paper [Limberger et al., 2017] or to the

website [Limberger and Wilson, 2017] where you will find all the relevant information related

to the track and the dataset.

6.5 Experiments

In this section, we perform an exhaustive evaluation of the participant’s methods on the

SHREC’17 - PRoNTo dataset. For this, we show evaluation performances highlighted by
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the previous section. As mentioned previously, 8 groups participated with 31 dissimilarity

matrices. The retrieval scores computed from these matrices represent the overall retrieval

performance of each method, i.e., how well they perform on retrieving all models from the

same class when querying every model in the database.

It is worth pointing that these are preliminarily results since we do not have full knowledge

of the participant algorithms. This means it would be cumbersome to implement and validate

them. These algorithms can be considered undocumented until the time that this document

was written. More information about each algorithm can be find in the benchmark paper

[Limberger et al., 2017], however, for more precise information about them we recommend

the reader to contact the algorithm’s authors.

Table 6.1 shows the method performances of all 31 runs and Figure 6.5 shows the

Precision-and-Recall curves of all participant methods. It is worth pointing out that some

methods perform quite well on this database. By analysing particularly DCG, which is a very

good and stable measure for evaluating shape retrieval methods [Lian et al., 2015], we can

see that three methods have DCG greater than 0.900 (BoW-RoPS-DMF-3, BPHAPT and

MFLO-FV-IWKS). Surprisingly, Tran’s methods have DCG values greater than 0.990. The

method clearly outperforms all other methods in the contest as evidenced by the Precision-

and-Recall plot in Figure 6.6. BoW-RoPS can definitely capture the differences between

classes and it seems robust to most of the non-rigid deformations presented in this database.

Curiously, Tran’s method uses asymmetric distance computation between descriptors, which

leads to distances between models i and j being different from the distances between models

j and i. This is clearly evidenced by their dissimilarity matrices.

Considering all groups that have participated in this contest, half of them (4) computes

local features (MFLO-FV-IWKS, SQFD(WKS), CDSPF and BoW-RoPS-DMF-3) and the

other half (4) computes global features (BPHAPT, SnapNet, m3DSH-3 and AlphaVol1).

Our first guess was that local features would be more popular to represent non-rigid shapes,

as evidenced by [Lian et al., 2015]. Our guess was based on the fact that ideally local

features should be more similar than global features because same-class shapes were captured

originally from the same 3D object, and locally they should be more similar than globally.

For example, while a shape can be in a totally different pose, locally only joint regions are
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Table 6.1: Six standard quantitative evaluation measures of all 31 runs computed for the
PRoNTo dataset.

Participant Method NN FT ST E DCG mAP

Boulch SnapNet 0.8800 0.6633 0.8011 0.3985 0.8663 0.771

Giachetti POHAPT 0.9400 0.8300 0.9144 0.4156 0.9419 0.900

BPHAPT 0.9800 0.9111 0.9544 0.4273 0.9743 0.953

Li m3DSH-1 0.4000 0.1656 0.2778 0.1824 0.4802 0.297

m3DSH-2 0.4400 0.1867 0.2856 0.1932 0.4997 0.313

m3DSH-3 0.4400 0.1767 0.2878 0.1917 0.5039 0.314

m3DSH-4 0.4000 0.1511 0.2511 0.1712 0.4659 0.286

m3DSH-5 0.4200 0.1722 0.2767 0.1815 0.4930 0.304

m3DSH-6 0.4100 0.1700 0.2678 0.1712 0.4848 0.300

Limberger GL-FV-IWKS 0.8200 0.5756 0.7244 0.3595 0.8046 0.702

GL-SV-IWKS 0.7000 0.5267 0.6678 0.3327 0.7562 0.651

MFLO-FV-IWKS 0.8900 0.7911 0.8589 0.4024 0.9038 0.858

MFLO-SV-IWKS 0.9000 0.7100 0.7933 0.3702 0.8765 0.800

PCDL-FV-IWKS 0.8200 0.6656 0.7978 0.3976 0.8447 0.764

PCDL-SV-IWKS 0.8900 0.6656 0.7911 0.3732 0.8613 0.781

Sipiran SQFD(HKS) 0.2900 0.2244 0.3322 0.2176 0.5226 0.344

SQFD(WKS) 0.5400 0.3111 0.4467 0.2507 0.6032 0.427

SQFD(SIHKS) 0.2900 0.2533 0.4133 0.2590 0.5441 0.377

SQFD(WKS-SIHKS) 0.5000 0.3100 0.4500 0.2634 0.6000 0.425

SQFD(HKS-WKS-SIHKS) 0.3900 0.2844 0.4389 0.2624 0.5722 0.403

Tatsuma CDSPF 0.9200 0.6744 0.8156 0.4005 0.8851 0.794

Tran BoW-RoPS-1 1.0000 0.9744 0.9967 0.4390 0.9979 0.995

BoW-RoPS-2 1.0000 0.9778 0.9933 0.4385 0.9973 0.993

BoW-RoPS-DMF-3 1.0000 0.9778 0.9978 0.4390 0.9979 0.995

BoW-RoPS-DMF-4 1.0000 0.9778 0.9978 0.4390 0.9979 0.995

BoW-RoPS-DMF-5 1.0000 0.9733 0.9978 0.4390 0.9979 0.995

BoW-RoPS-DMF-6 1.0000 0.9733 0.9978 0.4390 0.9979 0.995

Velasco AlphaVol1 0.7900 0.5878 0.7578 0.3980 0.8145 0.707

AlphaVol2 0.7800 0.5122 0.6844 0.3751 0.7673 0.643

AlphaVol3 0.7700 0.4567 0.6467 0.3629 0.7364 0.600

AlphaVol4 0.7000 0.4356 0.6111 0.3454 0.7148 0.571
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Figure 6.5: Precision-and-Recall curves of all methods that participated in the PRoNTo
contest evaluated for the PRoNTo dataset.

deformed. However, we also need to consider local noise in the formula, which does not affect

global methods in the same level.

Tran’s method is in the first place and uses local features. Clearly, in the second place

is Giachetti’s method, which is based on global features from 3D meshes created from the

point clouds. In total, 3 groups use meshing procedures before computing the descriptors

(BPHAPT, SQFD(WKS) and SnapNet). Interestingly, two methods use quadratic form dis-

tance to compute dissimilarities between descriptors, one from a global descriptor (m3DSH-3)

and other from a local descriptor SQFD(WKS).

Even though no training set was available in this track, Boulch’s method uses a Con-

volutional Neural Network by employing an unsupervised learning architecture where every

model is considered belonging to a different class. On the other hand, more methods also

adopt unsupervised learning algorithms to create dictionaries using the Bag of Words en-

coding paradigm (BoW-RoPS-DMF-3 and MFLO-FV-IWKS) being these ranked first and
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Figure 6.6: Precision-and-recall curves of the best runs of each group that participated in
the PRoNTo contest evaluated for the PRoNTo dataset.

third on this contest, respectively, and showing that the BoW model is a good way of rep-

resenting local features. Furthermore, two other methods use histogram encoding (vector

quantization) to create a unique descriptor for each point cloud (BPHAPT and CDSPF).

We also observed a couple of new other ideas applied to PRoNTo dataset. For instance,

Velasco uses alpha-shapes to represent point clouds; by varying the alpha-shape radius he

compares models given their alpha-shape volume curve. Limberger’s method uses a new

formulation to compute the Laplace-Beltrami operator of point clouds, which leads to better

results than the standard Graph Laplacian. Tatsuma computes additional statistics of point

features in addition to the geometric feature proposed by [Wahl et al., 2003]. Two groups use

matrix-fusion methods with different weights to improve the performance of their methods

(Tran and Sipiran), however, these methods did not show a substantial improvement from

the performance of the original descriptors.
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Figure 6.7: Histograms of rankings of each pose of the best methods submitted by each
group that participated in the PRoNTo contest. The higher the histogram bins the further
is the pose in the retrieving page, which means that, for example, for Tran’s method the
Tilted pose was the most difficult to retrieve.

Regarding spectral signatures, which is the focus of this thesis, we can observe that the

MFLO submitted by us presents an improvement over the GL and the PCDL, which are

methods to compute the Laplace-Beltrami operator of point clouds. Sipiran’s methods also

use spectral descriptors to represent local features on the shapes, however, they have used

meshing procedures to compute the LBO. Although Sipirian claims that it is necessary to

reconstruct the surface of the shape to guarantee the proper computation of the LBO, we

have shown that the point cloud Laplace operators perform better on these experiments.
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Figure 6.8: Histograms of rankings of each pose when we accumulate all the histograms
from Figure 6.7. The higher is the histogram bin the more difficult is to retrieve that pose
in general for all participant methods.

We also analyze the performance of each method in respect to the poses, i.e., which poses

are the easiest and hardest to retrieve. For this, we took the sum of the differences from one

pose to the other poses in the same class and sorted them from in ascending order to analyze

the pose ranking. Then, we gave a score from 1, to the closest pose, to 10, to the furthest

pose. Doing this for all classes, we accumulate the scores on the entire dataset. Figure 6.7

shows the total numbers for each participant method. The higher the histogram bin the

more difficult is to retrieve that pose, since it usually appears further in the retrieving page.

By analyzing the poses from all methods, it is possible to say that clearly the easiest

pose to retrieve was the Default pose. Hands Front and Seated poses also had low scores for

some methods (Boulch, Tran and Velasco). Furthermore, we accumulate all the poses from

all methods to better visualize which poses are the easiest and the hardest to retrieve. The

result of this experiment can be seen in Figure 6.8. As already mentioned, the Default pose
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was the easiest pose to retrieve by far. The most difficult poses to retrieve were Tilted and

Straight, which is evidenced by the majority of histograms from Figure 6.7. Both poses were

expected to be difficult to retrieve since they have the most different topologies compared to

the other poses. It is important to mention that these histograms (from Figure 6.7) do not

say anything about how good these methods perform, since, in total, all poses receive the

same number of scores ((1 + 2 + 3 + . . .+ 10)× 10 = 550).

In addition to poses, we looked into classes. Figure 6.9 shows the Precision-and-Recall

plots of the participant methods separated by classes. Some methods are able to retrieve some

classes perfectly, however, there are clearly some classes that are more difficult to retrieve

than others. In Figure 6.10, we show the errors of all methods for each class, thus we can

rank the easiest and hardest classes to retrieve. As mentioned before (Section 6.2.1), Sheep,

Teddy and Monkey classes have quite similar models. The results reflect this (ranked in 1st,

3rd and 5th) and show that these classes have larger errors than other classes. Furthermore,

Dog and Fox also were mentioned as similar classes. Thus we can infer that, probably Fox

is more seen as Dog than Dog is seen as Fox since the class Fox presents larger errors.

Differently from what we expected, Rat is a very difficult class to retrieve. We believe that

it is because of its thin legs and arms, which sometimes do not appear in the scans, therefore

changing the topology of the shape. It is interesting to note that, the analysis of the classes

in Section 6.2.1 was made before any sort of experiment using the participant methods.

For more information about the PRoNTo dataset, please refer to the official website

[Limberger and Wilson, 2017] where the database, the corresponding evaluation code and

classification file are available for academic use.

6.6 Summary

In this chapter, we have shown how we created a non-rigid point cloud dataset which is

derived from real toy objects. In the beginning, we discussed the importance of this data to

future researchers. Then, we explained the dataset characteristics and we showed how the

evaluation was carried out. Afterwards, we introduced each one of the 8 groups and their

methods which competed on the PRoNTo contest. In the end, we presented quantitative
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Figure 6.9: Precision-and-Recall curves per class of the best methods from each group.

measures of the 31 runs submitted by the contest participants and analysed their results.

The interest in non-rigid shape retrieval is overwhelming and evident by the previous

SHREC tracks. The track created for this dataset was not different. It has attracted a large
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Figure 6.10: Histograms of errors from the Precision-and-Recall plots of all participant
methods that competed in the PRoNTo contest. The higher is the histogram bin the more
difficult is to retrieve that specific class for the participant methods in general.

number of participants (8 groups and 31 runs) given that it is the first time that a non-rigid

point-cloud dataset is used in the SHREC contest. We believe that the organization of the

track is just a beginning and it will encourage other researchers to further investigate this

important research topic.

Several research directions in point-cloud shape retrieval can be pursuit from this work

and are listed as follows: (1) Create a larger dataset which contains more types of objects (not

only human shaped toys) to better evaluate shape signatures. (2) Create more discriminative

local or global signatures for 3D point clouds. (3) Employ state-of-the-art Deep Learning

techniques which do not depend on large training datasets. (4) Investigate signatures which

are less variant to topology changes.





Chapter 7

Mesh-Free Point-Cloud Laplace

Operator

This chapter describes the Mesh-Free Point-Cloud Laplace Operator (MFLO), which is a

framework to compute the shape spectrum of point clouds, which do not have connectivity. It

is able to approximate the Laplace-Beltrami operator without the need of creating a tangent

space approximation around each point. For this, the point cloud must be sufficiently dense

to estimate the underlying manifold around a local neighboring region. Our intention with

this operator is to create a faster and more robust method to compute the spectrum of the

Laplace-Beltrami operator on the underlying manifold, which is described discretely by a

point cloud. With the shape spectrum, we can create spectral signatures for shape retrieval

without the need of creating a triangle mesh.

The MFLO has participated in a shape retrieval contest in the SHREC’17 track: Point-

Cloud Shape Retrieval of Non-Rigid Toys [Limberger et al., 2017], which we described in

the previous Chapter. This chapter is organized in the following way: we discuss standard

methods that aim to compute the discrete Laplace operator for point clouds in Section 7.1.

Then, we show how to construct the Mesh-Free Laplace operator in Section 7.2. We show

how to create spectral signatures from the eigendecomposition of the MFLO in Section 7.3.

Finally, we show experiments of the new Laplace operator applied to non-rigid point-cloud

shape retrieval benchmarks in Section 7.4.

105
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7.1 Related Methods

The standard way to compute the Laplace operator of graphs is using the Graph Laplacian

(GL). The GL matrix for a finite, simple and undirected graph G, with node set V =

{v1, v2, . . . , vn} and edge set E, is given by

L = D −A, (7.1)

where A is the adjacency matrix

Aij =


1 if (i, j) ∈ E,

0 otherwise,

(7.2)

and D is the degree matrix

Dij =


deg(xi) if i = j,

0 otherwise.

(7.3)

If we consider the graph edges with some weight, it is possible to compute the weighted

graph Laplacian of G [Belkin and Niyogi, 2008]

L(G) = D(G)−W (G) (7.4)

where W(G) is the weighting adjacency matrix of G

W (G)ij =


wij if (i, j) ∈ E,

0 otherwise,

(7.5)

where wij is commonly chosen as the isotropic kernel [Coifman and Lafon, 2006]

wij = e−
||xi−xj ||

2

t (7.6)

for some carefully chosen parameter t which depends on point density. D(G) is a diagonal
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matrix where the i-th diagonal entry is the total edge weight of node i

Di =
∑
j

Wij (7.7)

There are two problems with constructing this operator for a point cloud; firstly we do

not have a mesh and therefore we need to produce a connection scheme for the points to

construct a graph. Secondly, some arbitrary connection scheme will not faithfully reproduce

the LBO of the underlying surface. Although there exist efficient algorithms to deal with

the problem of converting a point cloud to a surface in the 3-dimensional space [Amenta and

Bern, 1998, Amenta et al., 2000], these algorithms can fail in recovering the entire object

surface when this is not fully sampled by the point cloud. Furthermore, when the problem is

not embedded in the three-dimensional space but in higher dimensions, the solution becomes

much more difficult.

Other methods were proposed in the literature to deal with these problems. Belkin

et al. [Belkin et al., 2008] created an algorithm for approximating the LBO for arbitrary

point clouds embedded in a d-dimensional space. Their algorithm computes a tangent space

approximation around each point pi from the point cloud, followed by a local mesh con-

struction using Delaunay triangulation. Finally, to approximate the LBO they compute an

integral approximation around pi. They show that their method converges to the LBO using

a sufficiently dense point cloud.

Liu et al. [Liu et al., 2012] compute an approximation of the LBO in a similar way

to [Belkin et al., 2008]. Their method, called PB-MHT, is also divided into three steps:

first a tangent plane is approximated around each point; then, they approximate a Voronoi

diagram and compute the area of the Voronoi cell; finally an integral approximation is

computed to approximate the LBO on the respective location. The main difference to Belkin

et al. ’s method is that Liu et al. ’s operator is symmetrizable, therefore it can be written

as L = A−1W and generates only real eigenvalues.

In the next section, we detail the steps to construct our Point-Cloud Laplace-Beltrami

opearator. It was designed to give an elegant solution to the problems of the Graph Laplacian

while being at the same time simple to compute and mathematically accurate.
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7.2 Constructing the Laplace operator

In this section, we introduce the framework to compute the Mesh-Free Laplace Operator

(MFLO). Based on the problems mentioned in the previous section, we need to construct

an edge connection scheme and a faithful weighting scheme to reproduce the underlying

unknown manifold to compute accurate distances in this space.

To address these two problems, we begin by adopting weighted edge connections between

the points and construct the corresponding Laplacian as in Equation 7.4. Our goal is to find

an edge-weighting scheme which properly approximates the LBO and is easy to compute.

For this reason, we look for a weighting scheme, that is different from Equation 7.6, which

also only depends on inter-point distance

lij = ||xi − xj|| (7.8)

and is able to properly approximate the underlying manifold.

Let f(.) be some function of interest on the manifold, and let xi be the manifold coordi-

nates of point i. The discrete Laplacian on the graph formed from these points gives

Lf(xi) =
∑

j,(i,j)∈E

Wij [f(xi)− f(xj)]. (7.9)

Using the Taylor series of the function on the manifold in normal co-ordinates at point

xi we can find an expression for f(xi)− f(xj) assuming xi − xj is small

Lf = −
∑
j

W (lij)∇f · (xj − xi)−
∑
j

W (lij)
1

2
(xj − xi)′H(xj − xi) (7.10)

where we have assumed wij is only dependent on lij . If the point sampling is isotropic, then

we expect the first term, dependent on a sum over xj − xi, to be small, and similarly the

off-diagonal elements of the Hessian H will be small. This allows us to identify the graph

Laplacian with the LBO (up to a constant) if

∑
j

W (lij)l
2
ij = const. (7.11)
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This result depends on a local approximation and so the connection scheme must be

localized so it can preserve accuracy. For the connection scheme, we use a k-nearest neighbor

graph (k-NNG). Since the Laplacian should be symmetric, we symmetrize the NNG by

including edge (i, j) if j is a k-NN of i or i is a k-NN of j. In order to obtain a set of weights

satisfying (7.11), we perform Sinkhorn-Knopp normalization on the adjacency matrix A of

this graph to obtain a weight matrix W ′ which has constant row and column sums. Thus,

we can find the weights

W (G)ij =


W ′ij/l

2
ij if (i, j) ∈ E,

0 otherwise,

(7.12)

which satisfy (7.11).

Proof. We begin by employing normal coordinates (u, v) at point xi on the object where we

wish to compute the LBO. This gives us a simple form for both the LBO and Taylor series

around this point (see a 2D diagram in Figure 7.1):

∆xif = −∂2uf − ∂2vf (7.13)

f(xj)− f(xi) ' δu∂uf + δv∂vf +
1

2
δu2∂2uf +

1

2
δv2∂2vf + δuδv∂u∂vf + . . . (7.14)

xi

lij
xj

lhixh

Taylor approximationUnknown underlying manifoldCurrent point

u

Figure 7.1: 2D diagram of Taylor series’ approximation for the local point xi. Taylor expan-
sion gives a better approximation to the underlying manifold than just using an exponential
distance (Equation 7.6).

If the graph Laplacian is sufficiently local, substituting 7.14 in 7.9 with the Taylor ex-

pansion we obtain

Lf ' −
∑
j

Wij

[
δuj∂uf + δvj∂vf +

1

2
δu2j∂

2
uf +

1

2
δv2j∂

2
vf + δuiδvj∂u∂vf

]
(7.15)
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Here Wij = W (lij), i.e. it is a function of distance between the points but not direction.

We now assume that our points are isotropically sampled from the manifold and sufficiently

dense so that the expectation

E[δu] u E[δv] u E[δuδv] u 0. (7.16)

Similarly, E[δu2] ∝ l2. Then we can identify the graph Laplacian with the LBO up to some

multiplying constant if ∑
j

Wijl
2
ij = 2 (7.17)

Finally, we set W ′ij = Wijl
2
ij so that

∑
jW

′
ij = 2. If the graph is regular this is easily

satisfied, but since we symmetrize the k-NNG, the resulting graph is only approximately

regular. To obtain a more approximate solution, Sinkhorn normalization can be applied to

obtain a doubly-stochastic matrix for W ′ from the adjacency A.

The Sinkhorn-Knopp algorithm [Sinkhorn and Knopp, 1967] normalizes the rows and

columns of a nonnegative matrix up to a constant. It takes a matrix W and finds diagonal

matrices L and R such that W ′ = LWR is a matrix where the sum of each row and column

is equal to 1 (constant). The term “doubly stochastic” comes from the fact that all rows

and columns of the matrix sum to unity. These doubly stochastic matrices have interesting

properties and many other applications, for example in communication theory or for page

rankings.

By using Taylor series expansion, it is not necessary to have a very high resolution point

cloud, since Taylor approximation will try to approximate the real surface instead of simply

connecting dots based on their distance. Our method assumes a nearly isotropic sampling of

the point cloud, which can be easily and quickly achieved by using, for example, Poisson-disk

sampling [Corsini et al., 2012].

A summarized pipeline of the MFLO can be seen in Fig. 7.2. It starts with a point cloud,

although it can also be sampled from meshes in a previous step. This is important because

meshes are not always well shaped and the KLBO or other mesh Laplacians can fail on

the correct estimation. In the second step, the k-NNG is computed. Then, we compute the
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Figure 7.2: Pipeline proposed for the non-rigid shape retrieval problem for point clouds. By
weighting the kinetic energy on the Euler-Lagrangian equation we reduce the effect of shape
articulations, causing same-class shapes’ signatures to be closer to each other. Then, by
encoding the local kinetic signatures using either Fisher Vector or Super Vector we are able
to compare shapes efficiently using Manifold Ranking technique.

Laplacian and its eigendecomposition to find the eigenvalues and eigenfunctions. From there,

we compute local point-cloud signatures (third column). More details about the computation

of spectral descriptors can be found in the next section. Finally, we encode the normalized

descriptors into shape signatures (fourth column).

7.3 Creating signatures

After computing the shape spectra, we can create spectral descriptors using the same frame-

work proposed in Section 4.2. We compute spectral descriptors using the same parameters

described in Section 4.2.1. However, it was empirically observed that spectral descriptors,

generated by the MFLO, produce values in a logarithmic distribution, differently from the

LBO or the KLBO. In order to control this effect, we apply log normalization to the MFLO

descriptors. Log normalization is a process that rescales values from a particular interval

(usually close to zero when data is log normally distributed). In log normalization, maxi-

mums and minimums are maintained. This normalization is also applied to many other areas

where data generated is in log space, for example, gamma ray logs, earthquake strength,
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sound loudness, light intensity, etc. We show in Figure 7.3 the effect of applying log normal-

ization to the spectral signatures. The SIHKS is the only signature where this effect is not

observed thus we do not apply any normalization to the SIHKS.

HKS WKS IWKS

beforenormalizing

afternormalizing

HKS WKS IWKS
Figure 7.3: Histograms of the MFLO spectral descriptors before the log-normalization (first
row) and after log-normalization (second row).

By first computing a log-normalization of the descriptors, the FV and the SV benefit from

it. These encoding methods are able to construct better dictionaries using Gaussian mixture

models and they are able to properly compute descriptor deviations from the vocabulary

that are more discriminative since dictionary words are now more distinct than before.

Therefore, we encode the normalized descriptors using either the Fisher Vector or the Su-

per Vector, according to Section 4.2.2. Following, we compute distances between descriptors

using Efficient Manifold Ranking as described in Section 4.3.

7.4 Experiments

In this section, we show many experiments about the MFLO. First, we show that the MFLO

converges to the Laplace-Beltrami operator on standard shapes like a rectangle and a sphere,

where the manifold Laplacian can be computed explicitly and compared with the MFLO
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eigenfunctions.

Secondly, we show experiments applied to the non-rigid point-cloud shape retrieval prob-

lem. In the same way that the KLBO is used to compute the Laplacian from meshes,

we use the our framework to compute spectral descriptors from point clouds by using the

MFLO instead. Therefore, we show that the MFLO descriptors can also be approximated

by GMMs. To test signature performance, we tested the MFLO in the PRoNTo benchmark

and compare against all other shape signatures. We also sampled three mesh datasets [Lian

et al., 2010, Lian et al., 2011, Lian et al., 2015] into point clouds and compare against other

point-cloud signatures and also mesh signatures.

7.4.1 Experiments on standard shapes

We begin by showing experiments on standard shapes to analyze the convergence behavior

of the MFLO. We created 5 rectangles and 5 spheres with different samplings to compare

the manifold Laplacian, which is explicitly computed from these shapes, with the MFLO

eigenfunctions. Both the rectangle and the sphere were sampled using Poisson-disk sampling

algorithm which tries to create an isotropic sampling of the manifold. Figure 7.4 shows the

point clouds of the rectangle and sphere with 500 samples used to compute these errors.

Figure 7.4: Rectangle and sphere with 500 points used to compute the manifold Laplacian
errors. Only the front part of the sphere is shown above.

The rectangles were sampled in the range (x, y) ∈ ([0, 1], [0, 1]) with the respective number

of samples described in Table 7.1. We compare the MFLO eigenfunctions errors with the

respective PCDLaplace [Belkin et al., 2009] and the WGL [Lafon, 2004] eigenfunctions errors



114 CHAPTER 7. MESH-FREE POINT-CLOUD LAPLACE OPERATOR

on the shapes. To compute the errors we evaluate the manifold Laplacian ∆ of the rectangle

with side a and b using Neumann boundary conditions

ψm,n = cos
(mπ
a
x
)
∗ cos

(nπ
b
y
)

m,n ∈ {0, 1, 2, . . .}. (7.18)

We compute the different Laplacian methods ∆̃ and measure the difference between their

eigenfunctions Φ̃ to the manifold Laplacian eigenfunctions Φ using the normalized L2 error

E2 =
||Φt − Φ̃t||2
||Φt||2

(7.19)

which in this case Φ = ψm,n. Then, we average the errors of the 2nd, 3rd and 4th eigenfunc-

tions and show in Table 7.1 the Laplacian errors for the rectangle with different number of

samples.

Table 7.1: Laplacian errors for the rectangle with different number of samples.

Methdod 500 1000 2000 4000 5000

MFLO 0.0500 0.0566 0.0342 0.0214 0.0182

WGL 0.0691 0.0628 0.0417 0.0284 0.0235

PCDL 0.3495 0.3450 0.3495 0.3486 0.3448

We do the same thing for the sphere, however, the exact solutions of the manifold Lapla-

cian on the sphere are given by the spherical harmonics of degree l and order m

Y m
l (θ, φ) = NeimφPml (cos(θ)) (7.20)

where N is a normalization weight and Pml is a Legendre function. Again, we average the

errors of the 2nd, 3rd and 4th eigenfunctions and show in Table 7.2 the Laplacian errors

for the sphere with different number of samples. We use the same error function (Equation

7.19) where this time Φ = Y m
l (θ, φ). Figure 7.5 shows the errors in plots to help visualizing

the data values and the convergence of the methods.

It is possible to observe that in both the rectangle and the sphere, using isotropic sam-

pling, the MFLO converges to the manifold Laplacian as we increase the number of samples
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Table 7.2: Laplacian errors for the sphere with different number of samples.

Methdod 500 1000 2000 4000 5000

MFLO 0.0559 0.0424 0.0294 0.0378 0.0198

WGL 0.0594 0.0414 0.0278 0.0278 0.0214

PCDL 0.5139 0.0143 0.0060 0.0203 0.0178
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Figure 7.5: Laplacian errors on the rectangles (left) and on the spheres (right).

in the experiments. In the sphere case, PCDLaplace converge faster than the WGL and

MFLO. The large error in the sphere case (point cloud with 500 points) for PCDLaplace

is because it only generated two distinct functions on the 2nd 3rd and 4th eigenfunctions

when it should generate three (f = x, f = y and f = z). It is also interesting to note that

the PCDLaplace does not work properly in the rectangle surface, giving large errors, while

it looks like the PCDLaplace is specifically tailored for the sphere. This analysis was not

investigated by Belkin et al. in their paper [Belkin et al., 2009], where they only test their

algorithm against shapes without boundaries. This phenomenon is much more noticeable

after the 4th eigenfunction (see Figure 7.6), those which we do not compare on the error

experiments of Table 7.2. Perhaps, PCDLaplace does not work well on point clouds with

boundaries but this is still a topic for further research. The same effect of Figure 7.6, where

PCDLaplace shows eigenfunctions with many outlier values on the boundaries also occurs

in the majority of models from PRoNTo, since they also have boundaries (holes and missing

parts).
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LBO WGL

MFLO PCDLaplace

Figure 7.6: Eigenfunctions on the rectangle with 2K samples. Top left, the eigenfunctions
computed analytically (LBO), top right, the WGL, bottom left, the MFLO and, bottom
right, PCDLaplace. Note that the eigenfunctions of MFLO, WGL and PCDLaplace can
be a linear combination of eigenfunctions of the LBO. These linear combinations are also
valid solutions and they can happen in any higher dimensional eigenspaces than 1 dimension.
These solution have been taken into account when computing the respective errors. It can
be seen that, the WGL and the MFLO can successfully compute the eigenfunctions for the
shape rectangle, while the PCDL fails in computing eigenfunctions, mainly after the 4th
frequency.

Furthermore, the convergence of the MFLO seems to be similar to the convergence of the

WGL. This happens because when the sampling is very dense the WGL and the MFLO are

almost identical. On the other hand, when sampling is sparse MFLO shows a bigger advan-

tage over the WGL in approximating the manifold Laplacian. We make another experiment

(see Table 7.3) using the vertices of a regular icosahedron with 42, 162, 642 and 2562 samples

to show that when the sampling is sparse the MFLO shows a smaller error compared to WGL

when approximating the Laplacian of a sphere. The respective icosahedron point clouds are

shown in Figure 7.7. Another time, the PCDLaplace failed in generating all eigenfunctions

to the icosahedron with 162 samples.
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Table 7.3: Laplacian errors for a regular icosahedron approximating a sphere with different
number of samples.

Methdod 42 162 642 2562

MFLO 0.1108 0.0667 0.0663 0.0617

WGL 0.1468 0.0798 0.0739 0.0621

PCDL 0.1112 0.5068 0.0068 0.0315

Figure 7.7: Regular icosahedron point clouds with number of samples 42, 162, 642 and 2562
used in the experiments of Table 7.3.

7.4.2 GMM dictionaries and MFLO descriptors

After showing experiments comparing the theoretical Laplacian on standard surfaces, we

show that the MFLO descriptors can be also used with GMMs dictionaries and thus create

signatures for non-rigid shape retrieval. Figure 7.8 shows 5 randomly chosen shape features

computed with the MFLO and their respective GMMs approximated using the Expectation-

maximization algorithm. Figure 7.9 shows the errors generated by the respective approxi-

mations. We can see that errors stabilize around 0.006 for three signatures (SIHKS, WKS

and IWKS), while the HKS present the largest error, around 0.008.

7.4.3 Benchmark experiments

Secondly, we present experiments on the PRoNTo, PC-SHREC’10, PC-SHREC’11 and PC-

SHREC’15 benchmarks. In this part, we show the same retrieval statistics as before in this

thesis (NN, FT, ST, E, DCG, mAP).

In the PRoNTo benchmark, we compute MFLO signatures using different parameters to

test signatures performance against different sample rates. We created a second dataset with

models averaging 10K points each (PRoNTo 10K). Then, we compute the MFLO with the

same number of nearest neighbours for constructing the k -NN graph that we used for the
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Figure 7.8: Histograms of randomly-chosen shape features plotted with the respective learned
GMM with 5 components using EM algorithm for different MFLO signatures. Each row
represent features from HKS, SIHKS, WKS and IWKS, respectively, from the first model of
the database.

original dataset (PRoNTo 4K). Later, we increased the number of nearest neighbours up to

40 and computed the retrieval performance again in PRoNTo 10K.

In Table 7.4, we show the retrieval performance of the MFLO-15 (using 15 nearest neigh-

bours) on the PRoNTo 4K. Results on the PRoNTo 4K can vary slightly to the results of

previous chapter because here we average the results over 4 runs. Then, in Table 7.5, we

show the performances of MFLO-15 on the PRoNTo 10K. Finally, in Table 7.6, we show the

results of MFLO-40 on the PRoNTo 10K. In the following, Figures 7.10, 7.11 and 7.12 show

the respective precision and recall plots of the previous experiments.

From these experiments, we see that, to achieve similar retrieval performance, the number

of nearest neighbours chosen to construct the k -NN graph has to increase with the number

of point-cloud samples. This has to be with the fact that the neighbourhood needs to have

the same size to estimate a similar descriptor. In a denser point cloud, it is necessary to pick
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Figure 7.9: Residuals of the GMM fitting on the five feature histograms of Fig. 7.8 for each
MFLO signature. The black line represents the average loss of the five histograms. As can
be seen, the error stabilizes around 0.006 in most of cases when are used in average again 5
components or more.

more neighbour points to cover the same area that in a less dense point cloud. Therefore, it

can be seen that the results of the MFLO-15 on PRonTo 4K are similar with the results of

MFLO-40 on PRoNTo 10K, while the results of MFLO-15 on PRoNTo 10K are slightly worse.

Figure 7.13 shows the plot of DCG for each spectral signature in the three tests mentioned

above (MFLO-15 PRoNTo 4K; MFLO-15 PRoNTo 10K; MFLO-40 PRoNTo 10K).

In the next experiments, we compute point-cloud versions of SHREC’10, SHREC’11 and

SHREC’15 using Poisson-disk algorithm [Corsini et al., 2012]. Then, we sampled all models

to point clouds with in average 3K points each and computed spectral signatures from the

models using the MFLO-15. Tables 7.7, 7.8 and 7.9 show the retrieval statistics of different

spectral signatures using the MFLO-15 to compute the shape spectra. We can see from
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Table 7.4: Retrieval performances of the spectral signatures computed with the MFLO
combined with FV or SV applied to PRoNTo 4K benchmark using the 15 nearest
neighbours for constructing the k -NN graph. Dissimilarities are computed using Manifold
Ranking. Bold values represent best retrieval performances for each evaluation measure.

Method NN FT ST E DCG mAP

FV-HKS 0.6825 0.4570 0.5653 0.2867 0.7195 0.543

FV-SIHKS 0.8550 0.6386 0.7561 0.3662 0.8412 0.780

FV-WKS 0.8175 0.6450 0.7242 0.3526 0.8374 0.743

FV-IWKS 0.9050 0.7919 0.8578 0.3867 0.9086 0.858

SV-HKS 0.6425 0.3722 0.4756 0.2557 0.6645 0.482

SV-SIHKS 0.7850 0.5850 0.7222 0.3644 0.8066 0.696

SV-WKS 0.7450 0.6086 0.7278 0.3501 0.8079 0.681

SV-IWKS 0.8900 0.7256 0.8108 0.3798 0.8860 0.800
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Figure 7.10: Precision and Recall plot of the spectral signatures (HKS, SIHKS, WKS and
IWKS) tested with FV or SV encoding methods applied to the PRoNTo 4K benchmark.
The shape spectra is computed by the MFLO using 15 nearest neighbours for construc-
tion of the kNN graph. Distances are computed using Manifold Ranking. Equal colours
represent the same local descriptor. As shown above, the two best performance in this
benchmark (MR-FVIWKS and MR-SVIWKS) use our proposed descriptor.
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Table 7.5: Retrieval performances of the spectral signatures computed with the MFLO
combined with FV or SV applied to PRoNTo 10K benchmark using the 15 nearest
neighbours for constructing the k -NN graph. Dissimilarities are computed using Manifold
Ranking. Bold values represent best retrieval performances for each evaluation measure.

Method NN FT ST E DCG mAP

FV-HKS 0.6000 0.3492 0.4511 0.2476 0.6465 0.513

FV-SIHKS 0.7475 0.5578 0.6586 0.3325 0.7819 0.677

FV-WKS 0.7725 0.6092 0.7056 0.3443 0.8135 0.715

FV-IWKS 0.8500 0.7147 0.8028 0.3732 0.8670 0.817

SV-HKS 0.5650 0.3095 0.4036 0.2311 0.6100 0.438

SV-SIHKS 0.7225 0.5345 0.6309 0.3194 0.7566 0.634

SV-WKS 0.7425 0.5514 0.6539 0.3282 0.7828 0.647

SV-IWKS 0.8625 0.7078 0.8175 0.3850 0.8670 0.795
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Figure 7.11: Precision and Recall plot of the spectral signatures (HKS, SIHKS, WKS and
IWKS) tested with FV or SV encoding methods applied to the PRoNTo 10K benchmark.
The shape spectra is computed by the MFLO using the 15 nearest neighbours for con-
struction of the kNN graph. Distances are computed using Manifold Ranking. Equal
colours represent the same local descriptor. As shown above, the two best performance in
this benchmark (MR-FVIWKS and MR-SVIWKS) use our proposed descriptor.
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Table 7.6: Retrieval performances of spectral signatures computed with the MFLO com-
bined with FV or SV applied to PRoNTo 10K benchmark using the 40 nearest neigh-
bours for constructing the k -NN graph. Dissimilarities are computed using Manifold
Ranking. Bold values represent best retrieval performances for each evaluation measure.

Method NN FT ST E DCG mAP

FV-HKS 0.6575 0.4056 0.5225 0.2786 0.6933 0.536

FV-SIHKS 0.8000 0.5981 0.6958 0.3449 0.8065 0.701

FV-WKS 0.7775 0.6153 0.7203 0.3538 0.8221 0.735

FV-IWKS 0.9150 0.8223 0.9109 0.4142 0.9292 0.884

SV-HKS 0.6275 0.3683 0.4667 0.2500 0.6515 0.496

SV-SIHKS 0.7875 0.5686 0.6967 0.3530 0.7972 0.698

SV-WKS 0.7350 0.5672 0.6639 0.3271 0.7883 0.672

SV-IWKS 0.9100 0.7972 0.8744 0.4038 0.9162 0.872
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Figure 7.12: Precision and Recall plot of different spectral signatures (HKS, SIHKS, WKS
and IWKS) tested with FV and SV encoding methods applied to the PRoNTo 10K bench-
mark. The shape spectra is computed by the MFLO using the 40 nearest neighbours for
construction of the kNN graph. Distances are computed using Manifold Ranking. Equal
colours represent the same local descriptor. As shown above, the two best performance in
this benchmark (MR-FVIWKS and MR-SVIWKS) use our proposed descriptor.
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Figure 7.13: Comparison of different sampling rates for MFLO spectral descriptors. We
show results of DCG over different spectral signatures of MFLO-15 applied to PRoNTo 4K
and PRoNTo 10K and MFLO-40 applied to PRoNTo 10K.

these experiments that the MFLO-15 can compute a very discriminative shape spectra since

descriptors achieve very high retrieval performances on all these datasets.

Table 7.7: Retrieval performances of spectral signatures computed with the MFLO-15
combined with FV and SV applied to the PC-SHREC’10 benchmark. Dissimilarities
are computed using Efficient Manifold Ranking. Bold values represent best retrieval
performances for each evaluation measure.

Method NN FT ST E DCG mAP

FV-HKS 0.9638 0.8712 0.9138 0.6728 0.9584 0.910

FV-SIHKS 0.9538 0.7950 0.9124 0.6639 0.9427 0.858

FV-WKS 0.9688 0.9085 0.9613 0.7090 0.9712 0.954

FV-IWKS 0.9900 0.9667 0.9919 0.7360 0.9912 0.997

SV-HKS 0.9500 0.8415 0.9120 0.6712 0.9472 0.888

SV-SIHKS 0.9438 0.7790 0.9155 0.6560 0.9385 0.874

SV-WKS 0.9838 0.9091 0.9525 0.7049 0.9755 0.938

SV-IWKS 0.9650 0.8724 0.9369 0.6865 0.9622 0.909

We also make comparisons with other Laplace operators. We compare our MFLO with

the PCDLaplce [Belkin et al., 2009], the PB-MHT [Liu et al., 2012], the standard graph

Laplacian and the weighted graph Laplacian [Belkin and Niyogi, 2008]. We compute de-

scriptors in the same way we did in Chapter 4 for the LBO, but only changing the way we
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Figure 7.14: Precision and Recall plot of spectral signatures (HKS, SIHKS, WKS and IWKS)
tested with FV and SV encoding methods applied to the PC-SHREC’10 benchmark.
The shape spectra is computed by the MFLO-15. Distances are computed using Efficient
Manifold Ranking. Equal colours represent the same local descriptor. As shown above,
the best performance in this benchmark is MR-FVIWKS.

Table 7.8: Retrieval performances of spectral signatures computed with the MFLO-15
combined with FV and SV applied to the PC-SHREC’11 benchmark. Dissimilarities
are computed using Efficient Manifold Ranking. Bold values represent best retrieval
performances for each evaluation measure.

Method NN FT ST E DCG mAP

FV-HKS 0.9458 0.8494 0.9108 0.6655 0.9447 0.904

FV-SIHKS 0.9621 0.9042 0.9585 0.7022 0.9649 0.929

FV-WKS 0.9892 0.9682 0.9874 0.7307 0.9910 0.969

FV-IWKS 0.9904 0.9735 0.9838 0.7310 0.9902 0.982

SV-HKS 0.9329 0.8079 0.8931 0.6464 0.9310 0.863

SV-SIHKS 0.9629 0.8992 0.9602 0.6991 0.9674 0.946

SV-WKS 0.9867 0.9645 0.9820 0.7272 0.9881 0.983

SV-IWKS 0.9979 0.9929 0.9985 0.7425 0.9984 0.997
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Figure 7.15: Precision and Recall plot of spectral signatures (HKS, SIHKS, WKS and IWKS)
tested with FV and SV encoding methods applied to the PC-SHREC’11 benchmark.
The shape spectra is computed by the MFLO-15. Distances are computed using Efficient
Manifold Ranking. Equal colours represent the same local descriptor. As shown above,
the best performance in this benchmark is MR-SVIWKS.

Table 7.9: Retrieval performances of spectral signatures computed with the MFLO-15
combined with FV and SV applied to the PC-SHREC’15 benchmark. Dissimilarities
are computed using Efficient Manifold Ranking. Bold values represent best retrieval
performances for each evaluation measure.

Method NN FT ST E DCG mAP

FV-HKS 0.9288 0.7804 0.8382 0.6759 0.9140 0.825

FV-SIHKS 0.9533 0.8674 0.9130 0.7456 0.9488 0.895

FV-WKS 0.9852 0.9431 0.9593 0.7967 0.9795 0.953

FV-IWKS 0.9946 0.9797 0.9862 0.8221 0.9929 0.988

SV-HKS 0.9194 0.7470 0.8110 0.6525 0.8992 0.780

SV-SIHKS 0.9496 0.8542 0.9014 0.7348 0.9439 0.877

SV-WKS 0.9785 0.9225 0.9468 0.7814 0.9723 0.941

SV-IWKS 0.9911 0.9724 0.9819 0.8177 0.9904 0.972
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Figure 7.16: Precision and Recall plot of spectral signatures (HKS, SIHKS, WKS and IWKS)
tested with FV and SV encoding methods applied to the PC-SHREC’15 benchmark.
The shape spectra is computed by the MFLO-15. Distances are computed using Efficient
Manifold Ranking. Equal colours represent the same local descriptor. As shown above,
the two best performances in this benchmark are MR-FVIWKS and MR-SVIWKS.

compute the Laplace operator for each case. Thus, we generate spectral signatures using

these three methods. For all Laplacian methods we use the same parameters and we also

apply log normalization. Therefore, we use the 15 nearest neighbors to compute the respec-

tive Laplacian matrix. In Table 7.10, we show this comparison using e-measure as retrieval

comparison score.

Finally, Tables 7.11, 7.13 and 7.14 show a full comparison of all point-cloud and mesh

descriptors on the three non-rigid SHREC benchmarks. To make it clear, we used MFLO,

PCDLaplace, GL and WGL to compute the spectrum of the point-cloud datasets, and the

other results are computed from the original mesh datasets. We indicate, in the respective

point-cloud descriptors, that they were computed using the point-cloud version of the dataset.

The respective signatures presented in these tables were the best combinations of all spectral

descriptors for each Laplace operator.



7.5. TIMING ANALYSIS 127

Table 7.10: Comparison of the MFLO, PCDLaplace and Graph Laplacian applied to different
spectral descriptors on different point-cloud benchmarks. In bold are highlighted the best
retrieval performances for each benchmark and method. All methods use Efficient Manifold
Ranking to compute dissimilarities.

Benchmark Descriptor
PCDL-15

(E)
GL-15

(E)
WGL-15

(E)
PBMHT

(E)

MFLO-15
(E)

PC-SHREC’10 FVHKS 0.5274 0.6774 0.6679 0.3231 0.6728

FVSIHKS 0.4865 0.7044 0.6955 0.3147 0.6639

FVWKS 0.6374 0.7072 0.7126 0.4438 0.7090

FVIWKS 0.6205 0.7053 0.7089 0.5106 0.7360

SVHKS 0.5478 0.6573 0.6637 0.3265 0.6712

SVSIHKS 0.4731 0.7061 0.7171 0.3403 0.6560

SVWKS 0.6277 0.7110 0.7057 0.4553 0.7049

SVIWKS 0.6128 0.7038 0.7128 0.4525 0.6865

PC-SHREC’11 FVHKS 0.4584 0.6245 0.6552 0.2337 0.6655

FVSIHKS 0.5090 0.6775 0.7226 0.2242 0.7022

FVWKS 0.6523 0.7145 0.7259 0.3426 0.7307

FVIWKS 0.6734 0.7339 0.7365 0.4682 0.7310

SVHKS 0.4584 0.6098 0.6403 0.2670 0.6464

SVSIHKS 0.4963 0.6481 0.7106 0.2214 0.6991

SVWKS 0.6491 0.7110 0.7223 0.3302 0.7272

SVIWKS 0.6844 0.7352 0.7402 0.4421 0.7425

PC-SHREC’15 FVHKS 0.4407 0.5971 0.6713 0.1607 0.6759

FVSIHKS 0.5027 0.6830 0.7747 0.1991 0.7456

FVWKS 0.7121 0.7623 0.7943 0.3635 0.7967

FVIWKS 0.7664 0.8149 0.8224 0.4706 0.8221

SVHKS 0.4213 0.5720 0.6344 0.1690 0.6525

SVSIHKS 0.4678 0.6811 0.7672 0.2125 0.7348

SVWKS 0.6951 0.7585 0.7779 0.3293 0.7814

SVIWKS 0.7702 0.8159 0.8230 0.4156 0.8177

7.5 Timing analysis

The MFLO has similar computational complexity to the LBO. It is comprises the compu-

tation of the matrix L(G) and its eigendecomposition. We also have to compute Sinkhorn-

Knopp normalization to compute L(G). This step in linear in the number of matrix com-

ponents. Like before, the computational complexity of computing L(G) is dominated by its
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Table 7.11: Retrieval performance comparison with state-of-the-art signatures on SHREC’10
sorted by mAP. We show best runs from the three groups that performed better in SHREC’10
(MR-BF-DSIFT-E, DMEVD run1, CF) and other descriptors that outperformed those,
against our descriptors. In bold are highlighted the best performances for each retrieval
measure.

Descriptor e-Measure mAP [%]

MFLO-FVIWKS (point-cloud dataset) 0.7360 99.7

KLBO-SVWKS 0.7328 99.1

ConTopo++ [Sfikas et al., 2011] 0.7140 97.6

GL-SVWKS (point-cloud dataset) 0.7110 96.3

WGL-SVSIHKS (point-cloud dataset) 0.7171 94.7

MR-BF-DSIFT-E 0.7055 95.4

DMEVD run1 0.7012 94.1

MDS-ZFDR [Li et al., 2014a] - 94.1

PCDLaplace-FVWKS (point-cloud dataset) 0.6374 86.6

SV-IWKS [Limberger and Wilson, 2015] 0.5957 80.0

CF 0.5527 75.2

PBMHT-FVIWKS (point-cloud dataset) 0.5106 60.5

own eigendecomposition.

Table 7.12: Average computation times (in seconds) for computing one point-cloud signature
for models with 3K vertices from each dataset. MFLO stands for computing the Laplace
matrix and their eigenvalues and eigenfunctions. HKS, SIHKS, WKS and IWKS stand for
time to compute respective signatures. FV and SV stand for computation times of Fisher
Vector and Super Vector. EMR represents the time to perform retrieval of one model. Total
times to compute signatures and retrieve all models using either FV or SV are shown in
Total-FV and Total-SV columns. All values represent the average computational times for
computing one point-cloud shape signature with 3K vertices.

Benchmark MFLO HKS SIHKS WKS IWKS FV SV EMR Total-FV Total-SV

PC-SHREC’10 4.12 0.02 1.34 0.01 0.01 0.11 1.41 0.01 1,122 1,382

PC-SHREC’11 4.12 0.02 1.34 0.01 0.01 0.10 1.61 0.01 3,360 4,266

PC-SHREC’15 4.12 0.02 1.34 0.01 0.01 0.23 1.72 0.02 6,876 8,664

The worst case scenario for computing the eigenfunctions is O(|V |3). Here, the MFLO is

also sparse and it can take advantage of specific methods to solve this special eigendecompo-

sition. Also, we only compute the first 100 eigenvalues and eigenfunctions which decreases

even more the computation time. We show in Table 7.12 detailed running times to compute

MFLO. In the table, we show average times to compute one model from each database.
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Table 7.13: Retrieval performance comparison with state-of-the-art signatures on SHREC’11
sorted by mAP. We show the best runs from the six groups that performed better in
SHREC’11 (SD GDM-meshSIFT, MDS-CM-BOF, OrigM-n12-normA, FOG+MRR, BOGH,
LSF) and other descriptors that outperformed those, against our descriptors. In bold are
highlighted the best performances for each retrieval measure.

Descriptor e-Measure mAP [%]

KLBO-FVWKS/KLBO-SVIWKS/KLBO-SVSIHKS 0.7451 100.0

MFLO-SVIWKS (point-cloud dataset) 0.7425 99.7

WGL-SVIWKS (point-cloud dataset) 0.7402 99.3

3DVFF [Furuya and Ohbuchi, 2014] - 99.1

GL-SVIWKS (point-cloud dataset) 0.7352 98.6

SD-GDM-meshSIFT 0.7358 98.5

FV-IWKS [Limberger and Wilson, 2015] 0.7318 98.0

MDS-ZFDR [Li et al., 2014a] - 97.5

SV-DSIFT [Takahiko Furuya, 2015] - 97.2

R-BiHDM-L23 [Ye and Yu, 2015] 0.7300 -

SGWC-BoF [Masoumi et al., 2016] 0.7290 -

SV-LSF kpaca50 [Takahiko Furuya, 2015] - 96.2

Geodesic Distances (LS) [Pickup et al., 2015] 0.7170 -

MDS-CM-BOF 0.7166 95.0

OrigM-n12-normA 0.7047 94.4

FOG+MRR 0.6958 91.8

ConTopo++ [Sfikas et al., 2011] 0.6950 94.7

PCDLaplace-SVIWKS (point-cloud dataset) 0.6844 90.1

BOGH 0.6469 86.7

LSF 0.6327 85.1

PBMHT-FVIWKS (point-cloud dataset) 0.4682 67.5

At the last two columns it is shown the total time to compute each of the benchmarks,

using either FV or SV. As already said, FV is only faster than SV because we use VLfeat

implementation [Vedaldi and Fulkerson, 2008] while SV is implemented in Matlab.

7.6 Summary

In this chapter, we have presented a new method for computing the Laplacian function of the

underlying manifold of a point cloud shape. The Mesh-Free Laplace Operator is a method
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Table 7.14: Retrieval performance comparison with state-of-the-art signatures on SHREC’15
sorted by mAP. We show best runs from the six groups that performed better in SHREC’15
(SV-LSF kpaca50, HAPT run1, SPH SparseCoding 1024, CompactBoHHKS10D, FV-WKS,
EDBCF NW) and other descriptors in the literature against our descriptors. In bold are
highlighted the best performances for each retrieval measure.

Descriptor e-Measure mAP [%]

SV-LSF kpaca50 [Takahiko Furuya, 2015] 0.8357 99.8

KLBO-FVIWKS 0.8269 99.2

MFLO-FVIWKS (point-cloud dataset) 0.8221 98.8

WGL-FVIWKS (point-cloud dataset) 0.8224 98.6

GL-SVIWKS (point-cloud dataset) 0.8159 97.9

HAPT run1 0.8150 97.7

FV-IWKS [Limberger and Wilson, 2015] 0.8102 96.9

SPH SparseCoding 1024 0.8047 96.8

PCDLaplace-SVIWKS (point-cloud dataset) 0.7702 93.2

SGWC-BoF [Masoumi et al., 2016] 0.7470 -

CompactBoHHKS10D 0.7465 90.1

SRG [Mohamed and Hamza, 2016] 0.7390 -

FV-WKS 0.7242 87.5

EDBCF NW 0.7076 85.0

PBMHT-FVIWKS (point-cloud dataset) 0.4706 57.8

which can describe precisely the characteristics of shapes, therefore it is useful for creating

signatures for 3D models represented by point clouds. It is based in a robust weighting

scheme and a localized edge connection scheme which preserves accuracy. The weighting is

considered robust because it works in different sorts of standard shapes as showed in the

course of this Chapter.

Convergence experiments show that the MFLO converges to the Laplace-Beltrami op-

erator as we increase the number of samples of the models. This is true at least for the

rectangle and sphere point clouds tested in this thesis with isotropic sampling.

We have also made experiments that show the gain in performance in most recent point-

cloud benchmarks by using the MFLO instead of other Laplacian methods. In most of the

benchmarks, the MFLO performs better than GL, WGL, PCDLaplace and PBMHT, using

the same parameters for all methods in all benchmarks. We have also identified that its is

necessary to create more challenging benchmarks since the best methods are already receiving
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very good scores. The performance of the WGL is close to the MFLO for retrieving non-rigid

shapes because when the sampling is dense enough to represent the underlying manifold both

methods have similar errors, as stated in Section 7.4.1.

Furthermore, we have shown experiments on shapes by varying the number of samples

of the point clouds. We show that, as long we increase the number of nearest neighbors

of the k -NNG while we increase the number of samples, the performance of the MFLO is

preserved, since more connections are necessary to cover the same area.





Chapter 8

Conclusion

This chapter summarizes the main contributions of this thesis as well as it discusses limita-

tions and possible directions for future research.

8.1 Contributions

Our goal in this thesis was to construct state-of-the-art spectral descriptors for non-rigid

shape retrieval. We begun by proposing an improved version of the wave kernel signature

which is more informative and discriminative. We have also presented a framework for

computing global signatures from local spectral descriptors. Then, we presented improved

Laplace operators for both shape representations: meshes and point clouds. Furthermore,

we proposed a non-rigid point-cloud benchmark which aims in evaluating point-cloud de-

scriptors. We now summarize each of the contributions separately.

In this thesis, we first proposed a new spectral descriptor which is based on the WKS

but has some advantages for non-rigid shape retrieval. We proposed a new power scaling,

replacing the logarithmic scale, which better balance the eigenfunctions of the Laplace-

Beltrami operator and creates a more informative descriptor. Moreover, we also aggregate

principal curvatures to the descriptor in order to differentiate peculiar topologies of the

shape, creating this time a more discriminative descriptor.

After, we proposed to use state-of-the-art encoding schemes with spectral signatures.

We have shown that it is possible to use these methods since we can approximate local

133
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spectral features with Gaussian mixture models even when represented by a few components.

By describing these features with probabilistic distribution functions and also creating a

dictionary of features, we were able to generate a set of statistics that represent the global

shape signature by computing gradients of the local features in respect to the vocabulary. In

the end, we show that the Fisher Vector and the Super Vector can increase the performance

of shape retrieval combined with a meaningful distance computation.

Next, we decided to take a step forward and create an even better descriptor for non-rigid

shape retrieval by undertaken a more fundamental approach. This way, we focused in the

computation of the shape spectra to propose the Kinetic Laplace-Beltrami operator. It is

based on a modification to the dynamic systems on the mesh (kinetic energy). By introduc-

ing a new curvature-based kinetic term, we were able to improve significantly the retrieval

performance of spectral descriptors. This term naturally downweights the importance of

joints in the descriptor and consequently improves non-rigid shape retrieval performance.

From this point, we started working with point-cloud shape representations. First, we

identified a lack of benchmarks in this area. Therefore, to close this gap, we created a non-

rigid point-cloud shape benchmark for shape retrieval. This benchmark aims testing shape

signatures that are computed directly and efficiently from point clouds. The dataset was

released in the 3D Object Retrieval Workshop in Eurographics 2017 with participation of 8

groups. Shape retrieval statistics were computed for each dissimilarity matrix submitted by

the participants. In total 31 dissimilarity matrices were submitted. The evaluation results

shown by this work suggest that researchers are moving in the right direction towards shape

descriptors which can capture the main characteristics of 3D models, however, more tests

still need to be made, since this was the first time we compared directly non-rigid signatures

for point-cloud shape retrieval.

Our final contribution in this thesis was the the Mesh-Free Laplace operator (MFLO).

The novelty here is the new way we compute the Laplace-Beltrami operator of point clouds.

By using an isotropic edge-weighting scheme that takes into account the underlying mani-

fold structure, we are able to characterize features on the shape more precisely in respect

to the unknown manifold. Then, by computing spectral descriptors using the eigenvalues

and eigenfunctions of the MFLO, we were able to achieve better performances than shape
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descriptors that use other Laplacian-matrix formulations.

By combining either the KLBO or the MFLO with spectral signatures and computing ro-

bust distances between descriptors we clearly outperform the state-of-the-art in three recent

non-rigid benchmarks [Lian et al., 2011, Lian et al., 2015, Biasotti et al., 2017]. We show

that our methods are consistent over different kinds of data since they achieve good overall

retrieval performances in all recent non-rigid databases. They are also as fast to compute as

any other spectral method and straightforward to implement.

8.2 Limitations and future work

Although the methods proposed in this thesis outperform the state-of-the-art methods, they

still have some limitations that need to be taken into consideration. In this section, we

discuss these limitations and point possible directions for future research that can overcome

some of these drawbacks.

The first limitation is related to all spectral analysis methods. Spectral descriptors, which

depend on the computation of the eigendecomposition of the Laplace-Beltrami operator, can

be very time consuming tasks once the size of the meshes or point clouds increase. The

eigendecomposition is performed on a V × V matrix (L), where V is the number of vertices

of the model. In the worst case scenario, the method has a cubic time complexity (O(n3)).

As the number of vertices hit the five digits (10,000) the computation time starts to increase

considerably. However, this limitation is not an exclusivity of our methods. All spectral

methods share this drawback. Possible ways of overcoming this situation include downsam-

pling the model into fewer vertices and computing a more efficient eigendecomposition of the

LBO (taking advantage of the fact that L is sparse).

One advantage of the Improved Wave Kernel Signature is that it was proposed to be

more informative, i.e., having more information about high spectrum frequencies. However,

we have observed that when shapes are not actually the same, like mentioned in Chapter 5

about SHREC’10 [Lian et al., 2010], our signature fails in identifying shape classes because it

gives more importance to fine details than the HKS and the WKS. Nonetheless, when models

are the same and preserve fine details like in SHREC’11 [Lian et al., 2011] and SHREC’15
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[Lian et al., 2015] our method can accurately distinguish shape classes. As future work, it

would be interesting to create a spectral shape descriptor which can adaptively modifies the

scaling of the spectrum filters for creating specific signatures for the problem at hand, similar

to the method of [Litman and Bronstein, 2014] for shape correspondences. Also, it would be

interesting to investigate how to compute spectral signatures for the comprehensive shape

retrieval task.

Since the spectral descriptors are based on smooth filters of the shape spectra, some

important information can be lost in order to account for the possible noisy surface. However,

when the differences between classes being analyzed are very small, like on SHREC’14 [Pickup

et al., 2014b], where all classes consist of human models, the spectral signatures are not very

good at detecting the crucial differences between these classes. In this scenario, methods that

learn from the data will perform better since it is very hard to code these small differences

without prior knowledge of the classes.

In respect to the MFLO, it would be interesting to aggregate some of the KLBO ideas

in its formulation, like the curvature weighting for improving the retrieval performance of

non-rigid models. Analogously, computing the KLBO for point clouds is another possible

direction of research.

Generally, in spectral shape retrieval, it should be interesting to test machine learning

techniques, like it has been done in [Litman and Bronstein, 2014] and [Aflalo et al., 2012]

where shape correspondences were the focus of these researches. By using the shape spec-

tra to create global signatures the training can be very costly, depending on the encoding

framework. This way, one has to design an efficient and discriminative framework to deal

with this problem.

Furthermore, we have identified a lack of challenging benchmarks in the area of non-rigid

shape retrieval (meshes and point clouds). We have created a new challenging benchmark

for point-cloud non-rigid shape retrieval, however, one method had a very good performance

on the data. We will continue our efforts to inspire others to create even more challenging

benchmarks in the future for non-rigid shape retrieval.

Finally, the methodologies developed in this thesis can be applied to other fields of

research. The KLBO can be modified to define other weightings on the graph and emphasize
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other characteristics for a number of graph problems, for example in the fields of biology

(brain, molecules), sociology (social networks) or communication (computer networks).
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1SIFT One Scale-Invariant Feature Transform

3D Three-dimensional

BoF Bag-of-Feature

DCG Discounted cumulative gain

DSIFT Dense Scale Invariant Feature Transform
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EM Expectation Maximization
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FV Fisher Vector
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KLBO Kinetic Laplace-Beltrami operator
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MR Manifold Ranking
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NN Nearest neighbour

PB-MHT Point-based Manifold Harmonic Transform

PR Precision and Recall

PCDLaplace Point-Cloud Data Laplace
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SIFT Scale-Invariant Feature Transform

SIHKS Scale-invariant Heat Kernel Signature
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