17,270 research outputs found

    Subjectively Interesting Subgroup Discovery on Real-valued Targets

    Get PDF
    Deriving insights from high-dimensional data is one of the core problems in data mining. The difficulty mainly stems from the fact that there are exponentially many variable combinations to potentially consider, and there are infinitely many if we consider weighted combinations, even for linear combinations. Hence, an obvious question is whether we can automate the search for interesting patterns and visualizations. In this paper, we consider the setting where a user wants to learn as efficiently as possible about real-valued attributes. For example, to understand the distribution of crime rates in different geographic areas in terms of other (numerical, ordinal and/or categorical) variables that describe the areas. We introduce a method to find subgroups in the data that are maximally informative (in the formal Information Theoretic sense) with respect to a single or set of real-valued target attributes. The subgroup descriptions are in terms of a succinct set of arbitrarily-typed other attributes. The approach is based on the Subjective Interestingness framework FORSIED to enable the use of prior knowledge when finding most informative non-redundant patterns, and hence the method also supports iterative data mining.Comment: 12 pages, 10 figures, 2 tables, conference submissio

    Evaluation and optimization of frequent association rule based classification

    Get PDF
    Deriving useful and interesting rules from a data mining system is an essential and important task. Problems such as the discovery of random and coincidental patterns or patterns with no significant values, and the generation of a large volume of rules from a database commonly occur. Works on sustaining the interestingness of rules generated by data mining algorithms are actively and constantly being examined and developed. In this paper, a systematic way to evaluate the association rules discovered from frequent itemset mining algorithms, combining common data mining and statistical interestingness measures, and outline an appropriated sequence of usage is presented. The experiments are performed using a number of real-world datasets that represent diverse characteristics of data/items, and detailed evaluation of rule sets is provided. Empirical results show that with a proper combination of data mining and statistical analysis, the framework is capable of eliminating a large number of non-significant, redundant and contradictive rules while preserving relatively valuable high accuracy and coverage rules when used in the classification problem. Moreover, the results reveal the important characteristics of mining frequent itemsets, and the impact of confidence measure for the classification task

    Menetelmiä mielenkiintoisten solmujen löytämiseen verkostoista

    Get PDF
    With the increasing amount of graph-structured data available, finding interesting objects, i.e., nodes in graphs, becomes more and more important. In this thesis we focus on finding interesting nodes and sets of nodes in graphs or networks. We propose several definitions of node interestingness as well as different methods to find such nodes. Specifically, we propose to consider nodes as interesting based on their relevance and non-redundancy or representativeness w.r.t. the graph topology, as well as based on their characterisation for a class, such as a given node attribute value. Identifying nodes that are relevant, but non-redundant to each other is motivated by the need to get an overview of different pieces of information related to a set of given nodes. Finding representative nodes is of interest, e.g. when the user needs or wants to select a few nodes that abstract the large set of nodes. Discovering nodes characteristic for a class helps to understand the causes behind that class. Next, four methods are proposed to find a representative set of interesting nodes. The first one incrementally picks one interesting node after another. The second iteratively changes the set of nodes to improve its overall interestingness. The third method clusters nodes and picks a medoid node as a representative for each cluster. Finally, the fourth method contrasts diverse sets of nodes in order to select nodes characteristic for their class, even if the classes are not identical across the selected nodes. The first three methods are relatively simple and are based on the graph topology and a similarity or distance function for nodes. For the second and third, the user needs to specify one parameter, either an initial set of k nodes or k, the size of the set. The fourth method assumes attributes and class attributes for each node, a class-related interesting measure, and possible sets of nodes which the user wants to contrast, such as sets of nodes that represent different time points. All four methods are flexible and generic. They can, in principle, be applied on any weighted graph or network regardless of what nodes, edges, weights, or attributes represent. Application areas for the methods developed in this thesis include word co-occurrence networks, biological networks, social networks, data traffic networks, and the World Wide Web. As an illustrating example, consider a word co-occurrence network. There, finding terms (nodes in the graph) that are relevant to some given nodes, e.g. branch and root, may help to identify different, shared contexts such as botanics, mathematics, and linguistics. A real life application lies in biology where finding nodes (biological entities, e.g. biological processes or pathways) that are relevant to other, given nodes (e.g. some genes or proteins) may help in identifying biological mechanisms that are possibly shared by both the genes and proteins.Väitöskirja käsittelee verkostojen louhinnan menetelmiä. Sen tavoitteena on löytää mielenkiintoisia tietoja painotetuista verkoista. Painotettuna verkkona voi tarkastella esim. tekstiainestoja, biologisia ainestoja, ihmisten välisiä yhteyksiä tai internettiä. Tällaisissa verkoissa solmut edustavat käsitteitä (esim. sanoja, geenejä, ihmisiä tai internetsivuja) ja kaaret niiden välisiä suhteita (esim. kaksi sanaa esiintyy samassa lauseessa, geeni koodaa proteiinia, ihmisten ystävyyksiä tai internetsivu viittaa toiseen internetsivuun). Kaarten painot voivat vastata esimerkiksi yhteyden voimakuutta tai luotettavuutta. Väitöskirjassa esitetään erilaisia verkon rakenteeseen tai solmujen attribuutteihin perustuvia määritelmiä solmujen mielenkiintoisuudelle sekä useita menetelmiä mielenkiintoisten solmujen löytämiseksi. Mielenkiintoisuuden voi määritellä esim. merkityksellisyytenä suhteessa joihinkin annettuihin solmuihin ja toisaalta mielenkiintoisten solmujen keskinäisenä erilaisuutena. Esimerkiksi ns. ahneella menetelmällä voidaan löytää keskenään erilaisia solmuja yksi kerrallaan. Väitöskirjan tuloksia voidaan soveltaa esimerkiksi tekstiaineistoa käsittelemällä saatuun sanojen väliseen verkostoon, jossa kahden sanan välillä on sitä voimakkaampi yhteys mitä useammin ne tapaavat esiintyä keskenään samoissa lauseissa. Sanojen erilaisia käyttöyhteyksiä ja jopa merkityksiä voidaan nyt löytää automaattisesti. Jos kohdesanaksi otetaan vaikkapa "juuri", niin siihen liittyviä mutta keskenään toisiinsa liittymättömiä sanoja ovat "puu" (biologinen merkitys: kasvin juuri), "yhtälö" (matemaattinen merkitys: yhtälön ratkaisu eli juuri) sekä "indoeurooppalainen" (kielitieteellinen merkitys: sanan vartalo eli juuri). Tällaisia menetelmiä voidaan soveltaa esimerkiksi hakukoneessa: sanalla "juuri" tehtyihin hakutuloksiin sisällytetään tuloksia mahdollisimman erilaisista käyttöyhteyksistä, jotta käyttäjän tarkoittama merkitys tulisi todennäköisemmin katetuksi hakutuloksissa. Merkittävä sovelluskohde väitöskirjan menetelmille ovat biologiset verkot, joissa solmut edustavat biologisia käsitteitä (esim. geenejä, proteiineja tai sairauksia) ja kaaret niiden välisiä suhteita (esim. geeni koodaa proteiinia tai proteiini on aktiivinen tietyssä sairauksessa). Menetelmillä voidaan etsiä esimerkiksi sairauksiin vaikuttavia biologisia mekanismeja paikantamalla edustava joukko sairauteen ja siihen mahdollisesti liittyviin geeneihin verkostossa kytkeytyviä muita solmuja. Nämä voivat auttaa biologeja ymmärtämään geenien ja sairauden mahdollisia kytköksiä ja siten kohdentamaan jatkotutkimustaan lupaavimpiin geeneihin, proteiineihin tms. Väitöskirjassa esitetyt solmujen mielenkiintoisuuden määritelmät sekä niiden löytämiseen ehdotetut menetelmät ovat yleispäteviä ja niitä voi soveltaa periaatteessa mihin tahansa verkkoon riippumatta siitä, mitä solmut, kaaret tai painot edustavat. Kokeet erilaisilla verkoilla osoittavat että ne löytävät mielenkiintoisia solmuja

    Statistical data mining for symbol associations in genomic databases

    Full text link
    A methodology is proposed to automatically detect significant symbol associations in genomic databases. A new statistical test is proposed to assess the significance of a group of symbols when found in several genesets of a given database. Applied to symbol pairs, the thresholded p-values of the test define a graph structure on the set of symbols. The cliques of that graph are significant symbol associations, linked to a set of genesets where they can be found. The method can be applied to any database, and is illustrated MSigDB C2 database. Many of the symbol associations detected in C2 or in non-specific selections did correspond to already known interactions. On more specific selections of C2, many previously unkown symbol associations have been detected. These associations unveal new candidates for gene or protein interactions, needing further investigation for biological evidence

    Explainable subgraphs with surprising densities : a subgroup discovery approach

    Get PDF
    The connectivity structure of graphs is typically related to the attributes of the nodes. In social networks for example, the probability of a friendship between any pair of people depends on a range of attributes, such as their age, residence location, workplace, and hobbies. The high-level structure of a graph can thus possibly be described well by means of patterns of the form `the subgroup of all individuals with a certain properties X are often (or rarely) friends with individuals in another subgroup defined by properties Y', in comparison to what is expected. Such rules present potentially actionable and generalizable insight into the graph. We present a method that finds node subgroup pairs between which the edge density is interestingly high or low, using an information-theoretic definition of interestingness. Additionally, the interestingness is quantified subjectively, to contrast with prior information an analyst may have about the connectivity. This view immediatly enables iterative mining of such patterns. This is the first method aimed at graph connectivity relations between different subgroups. Our method generalizes prior work on dense subgraphs induced by a subgroup description. Although this setting has been studied already, we demonstrate for this special case considerable practical advantages of our subjective interestingness measure with respect to a wide range of (objective) interestingness measures
    corecore