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Abstract—Deriving insights from high-dimensional data is one
of the core problems in data mining. The difficulty mainly
stems from the fact that there are exponentially many variable
combinations to potentially consider, and there are infinitely
many if we consider weighted combinations, even for linear
combinations. Hence, an obvious question is whether we can
automate the search for interesting patterns and visualizations.
In this paper, we consider the setting where a user wants to
learn as efficiently as possible about real-valued attributes. For
example, to understand the distribution of crime rates in different
geographic areas in terms of other (numerical, ordinal and/or cat-
egorical) variables that describe the areas. We introduce a method
to find subgroups in the data that are maximally informative (in
the formal Information Theoretic sense) with respect to a single or
set of real-valued target attributes. The subgroup descriptions are
in terms of a succinct set of arbitrarily-typed other attributes. The
approach is based on the Subjective Interestingness framework
FORSIED to enable the use of prior knowledge when finding
most informative non-redundant patterns, and hence the method
also supports iterative data mining.

I. INTRODUCTION

We introduce the central ideas by means of an example.
Consider the situation that a user want to learn about crime de-
mographics, based on the UCI Communities and Crime data1

[1]. This data contains violent crime rates for all (n = 1994)
districts in the US and over 120 other attributes describing
demographic statistics of those districts. One method to learn
about the relation between the ‘number of violent crimes’
attribute and the demographic attributes is to extract subgroup
patterns, which are sets of data points where violent crime
is surprisingly high (or low) and that share similar statistics
for one or several demographic attributes. A subgroup pattern
should be interpreted as ‘for data points that fall within the
specified statistics that describe the subgroup, violent crime is
surprisingly low/high’.

For example, the top subgroup pattern—identified through
the method introduced in this paper—states that there are
high violent crime rates in districts where many mothers

1http://archive.ics.uci.edu/ml/datasets/communities+and+crime
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Fig. 1. Distribution of violent crime over the full data (light blue area), part
covered by the subgroup ‘high rate of unmarried mothers’ (red area), and
distribution within the subgroup (red dotted line). Height of colored areas
given by Gaussian-kernel smoothed estimates. The subgroup clearly covers a
substantial amount of the data where the violent crime rate is relatively high.

are unmarried at the moment they give birth to their child
(condition PctIlleg >= 0.39; mean violent crime rate 0.53 in
subgroup vs. 0.24 overall). An illustration of the data coverage
for this pattern is given in Fig. 1. The subgroup covers 20.5%
of the data and may be interesting because the distribution of
crime rates within this subgroup deviates substantially from
the full data. If a user would have no prior expectations about
the data, this pattern is highly informative.

Indeed, we may quantify how informative/interesting it is,
in the Information Theoretic sense: the number of bits of
information we gain about the data by learning about this
pattern, which depends on the amount of data covered (more is
better) and how much the distribution in the subgroup differs
from our expectation (more is better; in this paper we consider
mean and variance statistics). Typically, we would like to
weight this against how complex the description of the pattern
is (number of attributes used to describe the subgroup plus the
number of statistics presented to the user, fewer is better), such
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that our aim is to provide a maximal information rate.
This is precisely the contribution of this paper. We quan-

tify the Information Content (IC; the amount of information
gained) and Description Length (DL; the complexity of the
description) for subgroup patterns. However, while the ex-
ample above has only one target attribute (the violent crime
rate), we also do this for multivariate real-valued targets, in
order to enable users to learn about multivariate distributions.
Besides, while the example above is about a surprisingly high
mean (violent crime rate), we quantify the IC and DL for both
mean and (co-)variance statistics.

As hinted at in the example, the IC of a pattern is inherently
subjective, i.e., particular to a user, because how much you
learn depends on your prior knowledge. We implement this
subjectivity by modeling a background distribution over the
data space that is a Maximum Entropy distribution subject
to constraints corresponding to the current knowledge of a
user. This approach is known as FORSIED [2], [3] and
also immediately enables iterative mining of non-redundant
patterns without much additional effort.

We have implemented an algorithm to iteratively mine
interesting patterns which is freely available as open source
code. We have not studied the algorithmic problem in detail,
but the implementation is based on beam search, a frequently
employed approach in subgroup discovery. That is, it maintains
a list of most interesting patterns of arity k, expands these
to arity k + 1 and selects the most interesting patterns again.
Ultimately, it outputs the most interesting pattern found. It han-
dles categorical, ordinal, and numerical description attributes
(the demographic attributes in the example) and supports
time constraints (e.g., stop after 1 minute of mining). The
implementation is based on Cortana [4].

In summary, this paper contributes the following:
– We define a new pattern syntax for subgroups with a

multivariate real-valued target distribution, called location
and spread patterns. (Sec. II-A)

– We introduce a method to quantify their interestingness in
a subjective manner. (Sec. II-C)

– Before that, we study how to incorporate prior knowledge
into the background model, including previously identified
patterns to enable iterative mining. (Sec. II-B)

– We present how to mine high-quality patterns using beam
search and gradient descent. (Sec. II-D)

– We provide empirical evidence on four datasets that we can
effectively find interesting patterns. (Sec. III)
Discussion of related work is presented in Sec. IV, direc-

tions for future work and conclusions are given in Sec. V. All
code, including code for repeating the experiments, and links
to the datasets are available at: https://www.dropbox.com/sh/
3m1cgt1mh15k8bu/AAAViZtu5aeSOA3ybCS5mi-ta?dl=0.

II. METHODS

Overview. The high-level problem addressed in this paper is:

Problem 1. Main Problem. Iteratively inform the user about
the mean and variance of subsets of data points that can be

described concisely in terms of the description attributes, such
that the rate of information gain of the user about the target
attributes is maximized at each iteration.

We first formalize the type of pattern shown to the user
(Sec. II-A). To explain how to find the most interesting
patterns of this type (Sec. II-D), we first need to formalize
the background distribution (Sec. II-B) and the interestingness
of patterns (Sec. II-C).

The formalization follows the FORSIED approach: we
formalize the user’s belief state about the target attributes by
means of a background distribution, and quantify the IC of
a pattern as the information (in its formal sense) the user
gains about the target attributes by seeing the pattern. The
Subjective Interestingness (SI) of a pattern is then formalized
as the (subjective) IC divided by the DL of the pattern.

Notation. The data consists of a set of n pairs (x̂i, ŷi), i ∈
[n] (where [n] is shorthand for {1, 2, . . . , n}), called the data
points. Here, the so-called description attributes of the ith data
point x̂i ∈

∏
j=1:dx

Xj is assumed to be a tuple of dx attributes
with domains Xj , and ŷi ∈ Rdy is a vector containing the
values for dy real-valued target attributes. We denote Ŷ =
(ŷ′1, ŷ

′
2, · · · , ŷ′n)

′. In our setup the user is interested in gaining
an understanding of the behavior of the target attributes in
terms of the descriptions.

For example, the target attributes could contain healthcare-
related attributes, whereas the description attributes could
describe lifestyle choices (e.g., smoking or not, sedentary or
active lifestyle, etc). Then, our method would yield insights
into the healthcare target attributes, in terms of the lifestyle
descriptions. In the example in Section I, there is one target
attribute (the violent crime rate) and over 120 description
attributes.

We use hatted symbols to indicate these are empirical
values. Non-hatted equivalents will be used to denote the
respective random variables, e.g., Y. They allow us to reason
about the amount of uncertainty the user has about the data
points. In general, standard face lower case symbols denote
scalars, bold face lower case symbols denote tuples or vectors,
upper case bold face symbols denote matrices, and upper case
calligraphic letters denote sets.

A. Location and spread patterns

Subgroups, intentions, and extensions. We define patterns
in terms of subgroups. A subgroup is defined by a set of
conditions on the description attributes (the value combination
is the subgroup intention) and by the set of data points for
which the description attributes satisfy these conditions (the
index set is the subgroup extension).

The intention is described in a pre-defined formal de-
scription language, such as in the form of a conjunction of
conditions on individual metadata attributes. For Xj = R,
such conditions are typically inequality conditions, and for
Xj categorical they can be set in-/exclusion conditions. The
extension is then specified by the index set I ⊆ [n] with i ∈ I
iff x̂i satisfies the conditions.

https://www.dropbox.com/sh/3m1cgt1mh15k8bu/AAAViZtu5aeSOA3ybCS5mi-ta?dl=0
https://www.dropbox.com/sh/3m1cgt1mh15k8bu/AAAViZtu5aeSOA3ybCS5mi-ta?dl=0
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Fig. 2. Patterns found in the synthetic data (§II-A,§III-A), (a) Data with the embedded patterns highlighted. (b)—(d) Top ranked pattern discovered in
iterations 1—3. Light green circles are random data points, darker colored crosses the three embedded clusters. The black star represents the mean of the full
data and the black lines are the angles of the most surprising variance direction. The two axes correspond to the only two target attributes.

Location and spread patterns. Subgroups tend to be informa-
tive if the target attribute values of data points in the extension
{ŷi|i ∈ I} are unusual in some sense. The way in which
this set is unusual will be quantified by means of statistics—
functions of this set of data points. For example, its empirical
mean could be unusually far from what the user would expect,
or its empirical variance around this mean could be unusually
small or large along a certain direction.

To be precise, let us define two statistics fI : Rn×dy 7→ Rdy

and gwI : Rn×dy 7→ R as follows:

fI(Y) =
∑

i∈I
yi/ |I| , and (1)

gwI (Y) =
∑

i∈I

(
(yi − ŷI)

′
w
)2
/ |I| , (2)

where ŷI =
∑

i∈I ŷi/ |I| and w ∈ Rk is a unit vector, i.e.,
w′w = 1. The first statistic (actually a set of dy statistics),
when evaluated on Ŷ, quantifies the average vector of the
data points in the extension (i.e., its average location), whereas
the second quantifies the spread around that location. Patterns
considered here are specified by an intention, which uniquely
determines the extension I ⊆ [n], a unit vector w, and the
specification of the empirical values of one or both of the
statistics fI(Ŷ) and gwI (Ŷ): we call it a location pattern when
the former is specified, and a spread pattern when the latter
is specified. We find that the spread of a subgroup cannot
be interpreted straightforwardly without knowing its location,
hence we only ever provide the user with spread patterns for
subgroups for which the location pattern has been provided
first. That is, we only explain the (co-)variance structure of
subgroups for which the user already knows the precise mean
value within the subgroup for all attributes.
Example. For the synthetic data shown in Fig 2a, a location
pattern is an intention, e.g., ‘Attribute3 = true’, along with
the mean of the subgroup, e.g., the dark red set of points. A
spread pattern is an intention, a direction (a weight vector of
unit length, as in Fig. 2b), and the magnitude of the variance
in that direction.

B. Modelling the user’s belief state

As we are interested in quantifying how informative a
pattern is to a particular user, we quantify its informativeness

(the IC) with respect to a model for the user’s belief state.
Patterns that contrast more strongly w.r.t. this belief state are
more surprising and thus carry more information for the user.
We model the user’s belief state by the means of a so-called
background distribution, represented by a density function p.
This is a distribution over the possible data values (here, a
distribution for Y), which assigns a higher probability density
to data values that are deemed more probable by the user. The
general form of this approach is known as FORSIED [2], [3].

The initial background distribution, with density function
p0, can be estimated as the distribution of Maximum En-
tropy (MaxEnt) subject to constraints that express the user’s
knowledge, aka. the prior beliefs. The reason to use the
MaxEnt distribution is that this is the only neutral choice,
i.e., the only distribution that contains no other information
[5]. Importantly, during the mining process the background
distribution evolves, as each pattern shown to the user changes
their belief state about the data. We first derive the initial
background distribution, and then show how it can be updated
to account for location and spread patterns.
Initial background distribution. To derive the initial back-
ground distribution, we need to assume what prior beliefs the
user may have. We consider the case where the user expects
the overall mean of Ŷ to be equal to a specified vector µ, and
its covariance to be equal to a specified matrix Σ. Notice that
these need not be equal to the empirical statistics; they may be
anything. The MaxEnt distribution subject to such expectations
is well-known to equal a multivariate Normal distribution with
µ and Σ as parameters:

p0(Y) ∝ exp
(
−
∑n

i=1
(yi − µ)

′
Σ−1 (yi − µ)/2

)
. (3)

The evolving background distribution. Given a pattern, the
background distribution has to be updated to reflect the user’s
acquired knowledge. This can be done by minimally altering
the background distribution while ensuring the statistic is (in
expectation) as specified by the pattern. Here, minimally is
naturally measured in terms of the Kullback-Leibler (KL) di-
vergence. This approach is known as the principle of minimum
discrimination information, a generalization of the MaxEnt
principle.



We postulate, for now, that through subsequent updates
in this way, the background distribution will continue to be
a product of multivariate Normal distributions, although the
means and covariances of the different data points may differ.
I.e., after t iterations, the density function of the background
distribution will be:

pt(Y) ∝ exp
(
−
∑n

i=1

(
yi − µt

i

)′
(Σt

i)
−1 (yi − µt

i

)
/2
)
,

(4)

where data points may have differing means µt
i and covariance

matrices Σt
i. This holds for t = 0 (when µ0

i = µ and Σ0
i = Σ

for all i), and the following shows that updating a distribution
to account for location and spread patterns merely changes the
parameter values, leaving the distribution’s parametric form
intact.

Background distribution updating for location patterns.
To update pt given a location pattern for a subgroup with
extension It+1, we must solve the following optimization
problem:

pt+1 = arg min
q
KL(q || pt) = Eq [log (q(Y)/pt(Y))] (5)

subject to Eq

[
fIt+1

(Y)
]

= ŷIt+1
, (6)

with the additional technical constraint Eq [1] = 1 that
guarantees that the distribution has a proper normalization.

Theorem 1. Let pt be a density function of the form of Eq. (4).
Then, pt+1 has the same parametric form, with:

µt+1
i = µt

i +
∑

i∈It+1

(ŷIt+1
− µi)/ |It+1| , (7)

for i ∈ It+1, and all other parameters unaltered.

Proof (outline only for brevity): Given the convexity
of the KL-divergence and the linearity of the constraints, the
optimization problem to be solved is convex and any stationary
point is a global minimum. The Karush-Kuhn-Tucker (KKT)
stationarity condition gives us the functional form of pt+1:

pt+1 ∝ pt exp

(
−λ′

∑
i∈It+1

yi

)
, (8)

for a vector of KKT multipliers λ. Manipulating this expres-
sion shows that pt+1 is still of the form of Eq. (4), with
µt+1

i = µt
i + Σt

iλ for i ∈ It+1 and all other parameters unal-
tered. The optimal value of λ can be found by ensuring primal
feasibility, yielding that λ =

∑
i∈It+1

(Σt
i)
−1(ŷIt+1

− µi).
Substituting this for λ in the expression for µt+1

i proves the
theorem.

Background distribution updating for spread patterns. To
update the background distribution given a spread pattern for
a subgroup with extension It+1, we need to use the constraint

Eq

[
gwIt+1

(Y)
]

= v̂wIt+1
, (9)

in the KL-minimization problem, where for conciseness we
denote the empirical variance as v̂wIt+1

, gwIt+1
(Ŷ).

Theorem 2. Let pt be a density function of the form of Eq. (4).
Then, pt+1, updated for a spread pattern with spread v̂wIt+1

,
has the same parametric form, with:

µt+1
i = µt

i + λw′(ŷIt+1
− µt

i)Σ
t
iw/

(
1 + λw′Σt

iw
)
, (10)

Σt+1
i = Σt

i − λΣt
iww′Σt

i/
(
1 + λw′Σt

iw
)
, (11)

for i ∈ It+1, and all other parameters unaltered. The optimal
value for λ is found as the (unique) zero of the following
equation:∑

i∈It+1

w′Σt
iw

1 + λw′Σt
iw

+
∑

i∈It+1

(
w′(ŷ − µt

i)

1 + λw′Σt
iw

)2

= |It+1|v̂wIt+1
.

(12)

The proof is omitted for brevity. It is more tedious but
analogous to the previous one.

Accounting for a set of location and spread patterns. If
we want to take into account a set of location and spread
patterns, the KL-divergence minimization problem needs to
be solved with a constraint for each of these patterns. The
problem remains convex, however, such that a coordinate-
descent approach converges to the global optimum. This means
iteratively updating the background distribution for each of the
patterns, until convergence. As long as the extensions of the
different patterns have limited overlaps, as is the case in our
experiments, convergence occurs very rapidly.

Implementation details. Rather than updating the parameters
µi and Σi, we actually update the natural parameters Σ−1i µi

and − 1
2Σ−1i of these multivariate Normal distributions. This

is numerically and computationally advantageous, but we feel
it provides more insight to discuss the updates to µi and Σi

above.
Also note that, maintaining and updating the background

distribution may be costly if implemented naively. Each µt
i

and Σt
i needs to be remembered and updating them involve

summations over It+1 terms. Yet, the number of distinct µt
i

and Σt
i remains limited.2

C. Subjective Interestingness

Given a background distribution, [2] proposed that the
Subjective Interestingness (SI) of a pattern can be computed as
a ratio of two quantities: (a) the Information Content (IC) of a
pattern, which is the negative log probability of the pattern
under the background distribution; and (b) the Description
Length (DL), which measures the effort a user has to make to
understand and internalize the pattern.

To describe location patterns, we have to inform the user
about the number of conditions in the pattern’s intention, the
conditions themselves, and the mean values for all attributes
(to sufficient accuracy). For spread patterns, instead of the
means, the vector w needs to be described, with its magnitude.
All these parts of the code have constant length, except for

2Indeed, µt
i = µt

j and Σt
i = Σt

j for all i and j such i, j ∈ Is or i, j 6∈ Is
for all s ∈ [t], since they will have been subjected to the same updates.



the set of conditions, which has a length proportional to the
number of conditions |C|. Thus:

DescriptionLength = γ|C|+ η (+1),

where the +1 applies to spread patterns only because they
have one more term then location patterns.

We discuss determining γ and η in Remark 1 below. Note
that it does not matter whether the DL is reflective of reality
in absolute terms, because the actual SI scores are irrelevant.
What matters is the ranking, hence it is desirable that γ is
chosen well relative to η.

As the IC (thus the SI) depends on the pattern type, we
derive it first for location patterns and subsequently for spread
patterns.
SI for location patterns. As the background distribution
(4) for the target values Y of a data record is a normal
distribution, the marginal distribution pfIof the mean fI(Y)
of a subgroup I is again a normal distribution, with mean
µI =

∑
i∈I µi/|I|, and covariance ΣI =

∑
i∈I Σi/|I|. The

IC of a location pattern with extension I is thus the negative
log probability of the pattern. Written in full:

ICf (I) =− log pfI (fI(Y)) = log
(
(2π)dy |ΣI |

)
/2

+ (fI(Ŷ)− µI)′Σ−1I (fI(Ŷ)− µI)/2.
(13)

The SI of a location pattern with extension I and statistic fI
reads:

SIf (I) = ICf (I)/ (γ|CI |+ η) . (14)

SI for spread patterns. While the SI of a location pattern can
be computed analytically, evaluating the SI for a spread pattern
is more complex. However, it can be approximated well.

If the patterns assimilated into the background so far do not
overlap (i.e., non-intersecting extensions)3, then after updating
the background distribution with location information of the
pattern, the parameter µi of the background model equals the
observed mean of subgroup ŷI . So we can derive:

(yi − ŷI)′w(w′Σiw)−1/2 ∼ N (0, I) (normal distr.), (15)

((yi − ŷI)′w)2/ (w′Σiw) ∼ χ2
1 (Chi-squared, 1 d.f.). (16)

Denote the chi-squared random variable derived above by
ci,1 = ((yi − ŷI)′w)2/(w′Σiw). Then, the variance statistic
(2) is a linear combination of chi-squared random variables:

gwI (Y) =
∑

i∈I
w′Σiw · ci,1/|I|. (17)

The probability density function of a linear combination
of chi-squared distributed random variables has been studied
extensively, but a closed form analytic solution is unknown.
Here we choose the state-of-art approximation proposed by
[6]: Writing ai for the coefficient w′Σiw/|I|, they prove that
the distribution of gwI (Y) can be accurately approximated by

3If the patterns used to update the background distribution do overlap, then
µi 6= ŷI even after the update. So the random variable in Eq. (16) follows
a non-central chi-squared distribution, hence the linear combination Eq. (17)
also changes. In this case, we approximate the SI with the same computation
for the non-overlapping situation.

an affine function of a chi-squared random variable cm with
m degrees of freedom:

gwI (Y) = αcm + β, where α =

∑
i∈Is a

3
i∑

i∈Is a
2
i

, (18)

β =
∑
i∈Is

ai −
(∑

i∈Is a
2
i

)2∑
i∈Is a

3
i

, m =

(∑
i∈Is a

2
i

)3(∑
i∈Is a

3
i

)2 .
Therefore the approximated probability density function reads:

pgw
I

(gwI (Y)) ≈ ((gwI (Y)− β) /α)
m
2 −1 e−

gwI (Y)−β
2α(

α · 2m2 Γ(m/2)
) .

Thus the IC for a spread pattern with extension I is given as:

ICw
g (I) =− log pgw

I
(gwI (Y)) ≈ log

(
2
m
2 Γ(m/2)

)
+ α− (m/2− 1) log ((gwI (Y)− β) /α)

+ (gwI (Y)− β) / (2α) . (19)

The SI is then given by

SIwg (I) = ICw
g (I)/ (γ|CI |+ η + 1) . (20)

Remark 1. In practice, the SI’s from Eqs. (14) and (20) are
only used for ranking the patterns, or even just for finding the
single most interesting pattern. The absolute value of the SI is
largely irrelevant in practice. Thus, we can set η = 1 without
losing generality, such that only γ remains as a parameter,
the value of which essentially depends on the ‘coding scheme’
used to present the pattern to the user.

We do know of any principled approach to choose γ well.
Notice that the problem here is not to do model selection in
the statistical sense, but rather the DL should be determined
based on aspects of human cognition. In this paper, we set
γ = 0.1 throughout all the experiments. However, tuning γ
biases the results toward more or fewer conditions to describe
the subgroup and hence tuning could be useful.

D. Search strategies

Overall approach. We have not studied the complexity for-
mally, but the optimization problem for either pattern type
appears to be very difficult. Tiling [7], a similar and easier-
appearing problem, is already NP-hard. The score function
here (the SI) is also not monotonic and, if the cardinality of
metadata attributes is large, pattern enumeration, which then
equals exhaustive search, is not a feasible strategy. For spread
patterns, the search problem is essentially a dimensionality
reduction problem. From empirical results, we learn that the
search problem can have many local optima. Besides, there is
no structure in the problem that struck us as easy to use.

Hence, we resort to optimization procedures that are com-
monly used in either scenario. In brief, to find location patterns
that maximize Eq. (14), we employ beam search. For spread
patterns, we first search for the best location pattern and after
updating the background distribution with the location, we use
gradient descent to find the weight vector w that maximizes
Eq. (20) for that subgroup. The procedures are outlined in
more detail below.



Location pattern. Beam search systematically explores the
conjunctions of conditions by expanding a limited set of
conjunctions that have the largest SI so far. It evaluates
conjunctions of conditions on metadata attributes in a level-
wise manner. On each level, a limited list (beam width) of
most promising combinations is maintained. On the next level,
the algorithm exhaustively grows the combinations from the
limited pattern list and maintains again the best. The mining
process stops when all possible conjunctions of conditions
are explored or a chosen stopping criterion is met, either a
maximum search depth or time spent. Then, the best pattern
found throughout the search is given as output.
Spread pattern. Finding the best spread pattern consists of
two steps: (1) find the best location pattern and update the
background distribution with that information, (2) for that
location pattern find the most interesting direction in the target
space. We have already described the first step; the second step
can be formularized in terms of the following optimization
problem:

max
w

SI(gwI (Y)) s.t. w′w = 1. (21)

Since the description length in SI is fixed for a specific
extension I, the problem (21) maximizes the entropy of a
χ2 distribution (19) over the unit sphere. To optimize w, we
apply the off-the-shelf manifold optimization tool Manopt [8]
with the unit sphere as the manifold, and solve it with the
gradient-based solver.4

III. EXPERIMENTS

In this section we evaluate whether our method is able
to find good location and spread patterns in terms of SI
and whether the model updates work as expected. We also
studied the pattern descriptions, to see whether the patterns
found appear to be interesting. We conducted experiments on
four datasets: one synthetic and three publicly available ones,
of widely varying nature. The results for each dataset are
described in the following subsections. The final subsection
considers the scalability of the methods.

We used the beam search available within the data mining
tool Cortana [4], using the following settings: descriptions on
numerical metadata are based on ≥ and ≤ relations with four
split points (1/5–4/5 percentiles). The beam width is set to 40
and the search depth is four conditions. The search logs the
best 150 subgroups, with a maximum run time of 5 minutes.

A. Synthetic data

Data. We generated a dataset of 620 data points with two
real-valued target attributes (attributes 1 and 2) and five binary
descriptive attributes. We first sample 500 target values from
the 2-D multivariate normal distribution N (0, I) and then
embed three subgroups each consisting of 40 points into the
data, see Fig. 2a. Each subgroup has distance 2 from the mean
but a different covariance structure: the variance along the

4We computed the gradient analytically, but details are omitted due to lack
of space.

TABLE I
CHANGE IN SI FOR THE TOP PATTERNS OVER FOUR ITERATIONS (§III-A).

ALL PATTERNS HAVE SIZE 40.

Intention SI Iter1 Iter 2 Iter 3 Iter 4
a3 = ‘1’ 48.35 -1.13 -1.13 -1.13
a5 = ‘1’ 47.49 47.49 -1.13 -1.13
a4 = ‘1’ 39.49 39.49 39.49 -1.13
a4 = ‘0’ ∧ a3 = ‘1’ 36.26 -0.85 -0.85 -0.85
a5 = ‘0’ ∧ a3 = ‘1’ 36.26 -0.85 -0.85 -0.85
a3 = ‘0’ ∧ a5 = ‘1’ 35.62 35.62 -0.85 -0.85
a4 = ‘0’ ∧ a5 = ‘1’ 35.62 35.62 -0.85 -0.85
a3 = ‘0’ ∧ a4 = ‘1’ 29.62 29.62 29.62 -0.85
a5 = ‘0’ ∧ a4 = ‘1’ 29.62 29.62 29.62 -0.85
a5 = ‘0’ ∧ a4 = ‘0’ ∧ a3 = ‘1’ 29.01 29.01 -0.68 -0.68
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Fig. 3. SI of subgroups in the synthetic data, (§III-A), corresponding to true
descriptions when adding and removing points randomly to the subgroups.

main eigenvector is much larger than the other. The first three
descriptive attributes (attributes 3–5) contain the true labels
for subgroups p1 to p3; the other two (attributes 6 and 7) take
values randomly sampled from a Bernoulli distribution with
p = 0.5.

Setup. We set the mean and covariance of the background
model equal to the empirical values of the full data. First,
we tested whether our method could retrieve the embedded
patterns. We performed the two-step spread pattern mining
process for three iterations, and at each iteration we selected
the top pattern to update the background distribution. Second,
we corrupted the descriptive attributes by randomly flipping
every 0 and 1 with a certain probability. Then, we checked up
to what noise level the subgroups can still be retrieved.

Results. Figures 2b—2d show the top patterns in the first
three iterations. Our method correctly found the embedded
subgroups in the first three iterations by their displaced loca-
tion from the expected center. It also retrieved the direction
along which each subgroup’s spread differs most from the full
data covariance. Of course this is not so surprising, because
for each embedded subgroup there is a description attribute
setting the subgroup apart from the rest of the data.

To study the mining process in more detail, Table I shows
the change in SI for the top 10 patterns from the first iteration
in subsequent iterations. We observe that the three embedded



subgroups were the highest-ranking patterns in the first three
iterations (indeed they were the top 3 immediately because
the subgroups induced by the true descriptions stand out so
clearly from the rest of the data).

Once they were selected and used to update the background
distribution, in the subsequent iterations the SI of the em-
bedded subgroup patterns, and the SI of the derived patterns,
dropped and remained low afterwards. Hence, updating the
background distribution and the influence that should have on
the IC scores of patterns worked as expected.

It can be observed also that the subgroups with more
complex descriptions (e.g., a4 = ‘0’ ∧ a3 = ‘1’) have lower SI,
even though the extensions are equivalent to the corresponding
ai = ‘1’ pattern. This is because their DL is higher, while
their extension is equivalent. Note that non-redundancy in the
description is indeed achieved naturally in a principled manner.
Also worth noting is that the SI can be negative. This is due
to that the IC is based on a probability density and not a mass.

The result of the retrieval experiment with noise added to
the description attributes is given in Fig. 3. We find that all
embedded patterns can still be recovered when the flipping
probability is up to 0.22, and partially retrieved up to 0.25.
These values correspond to adding a random set of points
that is roughly three and four times the size of the embedded
pattern (e.g., (1 − 0.25) · 40 = 30 vs. 0.25 · 480 = 120). We
conclude that the method is quite robust against noise.

B. Mammal data

Data. The mammal data encompasses data from The Atlas of
European Mammals and from WorldClim.org, as preprocessed
by Heikinheimo et al. [9]. It contains records about the
presence of species in 2220 cells located on a grid that covers
Europe. Each record contains the geolocation, binary labels for
the presence/absence of 124 mammals, as well as 67 climate
condition indicators.

Setup. We used the presence/absence indicators as target
attributes and climate indicators for descriptions. The location
information was used only for visualization and interpretation.
We again set the initial mean and covariance parameters of the
background model equal to the empirical values.

We found that for binary target attributes, spread patterns are
not truly interesting. This makes sense, because the variance
of a Bernoulli random variable is uniquely determined by the
mean. Hence, a spread pattern becomes a one dimensional
location pattern. That the attributes are binary is another
form of background knowledge that could in principle be
incorporated into the method, but it would lead to different
derivations and we did not study this. Instead, we studied only
location patterns on this data.

Results. The geographic locations of the data points part of the
subgroup for the top patterns found in the first three iterations
are visualized in Fig. 6. The subrgoup intentions (combination
of values that specifies the subrgoup) are given in the caption.
The top pattern corresponds to locations that are relatively cold
in late winter. In contrast, the second pattern covers locations

that have an extremely dry summer, while the third pattern
covers locations with a dry autumn and warm conditions in
the months when most rain falls (which is the summer in that
area).

We further investigated the distribution of the mammals
within the subgroups. Fig. 5 shows the mean values for the
first pattern, and the mean and 95% confidence interval for the
background model for the top five mammal species ranked
by SI. Figures 4a–c show the actual occurrences of the top
three species across Europe. The species ranked first is the
wood mouse, which is wide-spread in the middle and southern
Europe but not in the northern areas. The second species is
the mountain hare, whose habitat mostly coincides with the
area associated to the found location pattern. This indicates it
thrives under harsh temperature condition. The third species,
moose, is also wide-spread mostly in the same area.

By contrasting these ground-truth location maps for the
species (Figs. 4a–c) against the subgroup location map
(Fig. 6), we find that indeed this pattern could be highly
informative. However, while the description is concise, the
displacement in the target space does not appear to be sparse
(it covers many species). To comprehend the pattern in full,
one should look at all the attributes where the mean deviates
from the expectation, not just at the top five. This means fully
understanding the pattern is somewhat difficult.

Finally, notice that these three species correlate and the
background model already accounts for that. Hence, the IC of
the subgroup is much less than the sum over the three attributes
if they would be considered individually. Nonetheless, the IC
is very high.

Although not shown, we repeated this exercise for the
second and third pattern. The subgroup patterns appear to be
informative. For example, ranked by SI, the most surprising
species for the second pattern are the absence of the stoat
and the bank vole, who prefer a moist environment, and the
presence of the Iberian hare, who indeed lives exclusively in
the area of the pattern. Thus, our method appears to find
geographically meaningful location patterns that reveal the
relationship between climate conditions and sets of animals
that are absent/present in the corresponding area.

C. Socio-economics data case study

Data. The German socio-economic dataset [10] consists of
socio-economic records of 412 administrative districts in Ger-
many. The features are divided into three groups: election
voting counts, age distribution, and workforce distribution.
The voting percentages of the five largest political parties
(CDU/CSU, SPD, FDP, Greens, and Left) in the 2009 German
elections are also included. We added the geographic coordi-
nates of each district center ourselves.

Setup. We used the vote count attributes as targets and the age
and the work force attributes for the descriptions. Geolocations
were used only for interpretation. Again, we set the initial
mean and (co-)variance for the background distribution equal
to the empirical values. In this case, that means we assume a
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Fig. 4. Explanation of what makes the first location pattern (Fig. 6a) interesting (also see Fig. 5). Presence maps of the first three species in the full data:
(a) wood mouse, (b) mountain hare, and (c) moose.
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Fig. 5. Explanation of what makes the first location pattern (Fig. 6a)
interesting (also see Fig. 4). Observed and expected mean and 95% confidence
interval of the most surprising species as ranked by SI.

user initially knows the overall voting behavior of the 2009
German elections.

We again performed three iterations of the subgroup dis-
covery algorithm, but this time we studied both the location
and the associated spread pattern in each iteration. To increase
interpretability, we enforced a 2-sparsity constraint on w, by
optimizing it for each pair of target attributes separately and
then selecting the result with the highest SI.

Results. Fig. 7 shows the top location patterns found, and
Fig. 8 some explanation and the spread pattern for the top
location pattern. Comparing the distribution of the pattern
against the expected distribution under the model (Fig. 8a,
red and blue lines), we observe that the voting behavior in
the corresponding districts deviates substantially from the full
population: more votes for Left, fewer for all others. The
intention of the pattern corresponds to districts with relatively
few children; from the map we see the extension covers mainly

East Germany.

Once we update the background distribution with the lo-
cation pattern, the model mean of the pattern becomes the
observed mean, see Fig. 8b. Given the updated background
distribution, we find that the spread pattern with highest SI
is related to the covariance between the social democrats
(SPD) and Christian democrats (CDU), with weight vector
(0.5704, 0.8214) (see Fig. 8c).5 As visualized in Fig. 8d, the
variance in this direction is much smaller than expected. Of
course since the votes add up to a constant, under the model
we also expect negative correlations between the parties,
but for this subgroup the anti-correlation is much stronger
than expected. This indicates these parties really appear to
battle for the same voters. However, we are not sufficiently
knowledgeable of German politics to judge whether this is a
solid observation.

Fig. 7 also shows the extensions for the top patterns in the
second and third iterations. The second pattern has intention
“Middle-aged Pop. >= 26.9” and contains large cities. Within
those districts, the Green party has relatively high vote counts,
which comes at the expense of the Left party. The third pattern,
“Children Pop. >= 16.4”, is mostly a complementary pattern
to the first one (see Fig. 7a,c), except that many of the big cities
(Munich, Berlin, Cologne, etc.) fall exactly between the two
thresholds (> 14.1, < 16.4). The third pattern indeed covers
locations where Left is unpopular and all other parties receive
relatively many votes compared to the background model. In
both the second and third location pattern, the corresponding
spread pattern is a similar low-variance pattern as in Fig. 8.
In our subjective opinion, these patterns appear to convey
potentially highly interesting insights into this data.

5The 2d-contour plot of the subgroup is aggregated as the average pdf of
the background model for each data point in the subgroup. The mean and
covariance are the sub-vector and the sub-matrix that correspond to attributes
indicated by the weight vector. This visualization is not fully accurate, as
not all points have the same parameters. A single multivariate normal cannot
represent the background model accurately.
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Fig. 6. Extensions of the top three patterns found in the Mammal data (§III-B), (a) The first pattern covers northern Europe and part of the Alps. The
intention is ‘mean temperature in March ≤ −1.68 ◦C’. (b) The second pattern covers the very south of Europe. Its intention is ‘average monthly rainfall in
August ≤ 47.62 mm’. (c) The third pattern covers parts of eastern Europe. The intention is ‘average monthly rainfall in October ≤ 45.25 mm and mean
temperature of wettest quarter ≥ 16.32 ◦C’.
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Fig. 7. Geographic locations of data points covered by the top subgroup patterns found in the first three iterations on the Socio-economics data (§III-C):
(a) “Children Pop. <= 14.1”, (b) “Middle-aged Pop. >= 26.9”, (c) “Children Pop. >= 16.4”. The contents of these patterns is roughly as follows: (a) Low
numbers of children are present in Eastern Germany, as well as in three cities with a very high percentage of students (Heidelberg, Passau, Wuerzburg). Here
the Left party is popular is popular at the expense of all other parties (Fig. 8a). (b) These are larger cities with relatively many jobs. Here the Green party is
more popular at the expense of Left. (c) This subgroup is almost the complement of (a), but not quite (e.g., Saarland and smaller cities in the Ruhr area are
not covered). Here Left is impopular and all others are more popular than the country-wide averages.
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Fig. 8. Spread pattern corresponding to the top pattern in Socio-economics data (§III-C, Fig. 7a). (a) Expected vs. observed distribution of the subgroup.
the y-axis is ranked by SI, from top to bottom. (b) Expected vs. observed distribution for the pair of attributes with highest SI, after updating the background
model with the location pattern. The contour plot shows the found weight vector (black line) along which the spread of the subgroup (red dots) has largest
difference from the background model (contour lines). (c) The marginal CDF of background distribution and subgroup along w after updating location.
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Fig. 9. Top spread pattern found in the Water quality data (§III-D). (a) Subgroup vs. background distribution, along with the optimal projection vector w,
projected on the two axes with highest weights. (b) CDF of subgroup and model along w. (c) The weight vector w itself.
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Fig. 10. Observed and expected distribution of the top location pattern found
in the Water quality data (§III-D), before and after updating location.

D. Water quality data case study

Data. The River Water Quality dataset [11] consists of 1060
water quality records sampled from rivers in Slovenia. Each
record contains measured values for 16 physical/chemical pa-
rameters and 14 bioindicators (7 plants, 7 animals), including
a list of all taxa present and their density. The density of
each taxon is recorded by an expert biologist at three different
qualitative levels, where 1 means the taxon occurs incidentally,
3 frequently, and 5 abundantly.

Setup. We use the 16 physical/chemical parameters as tar-
gets and the 14 bioindicators as descriptors. Mean and
(co-)variance of the initial background distribution were set
to the empirical values.

Results. The top location pattern has intention “Amphipoda
Gammarus fossarum <= 0 AND Oligochaeta Tubifex >= 3”
and covers 91 records. Fig. 10a shows that the water samples
fulfilling the description have an above-average biological
oxygen demand (BOD), chlorine concentration (Cl), electrical

conductivity, as well as K2Cr2O7 and KMnO4 (indicating
chemical oxygen demand, COD).

In the second step our method finds, without enforcing it,
a sparse weight vector placing high weights on BOD and
KMnO4 (Fig. 10d). The contour plot (Fig. 10b) indicates that
along the most interesting spread direction, w, the variance
of the subgroup is much larger than expected. The CDF in
Fig. 10c also confirms this. The main conclusion here is that,
although the identified patterns are typically subgroups that
are displaced from the center of the data, which is typically
associated with having a smaller variance in comparison
to the full data, it is also possible to find spread patterns
corresponding to surprising higher-variance directions.

E. Scalability
We have not analyzed the algorithmic complexity of mining

optimal location and spread patterns in detail, nor have we
studied extensively how to find good solutions in practice.
The computation time of the beam search algorithm can be
controlled through the search parameters (number of solutions
kept at each iteration, discretization strategy for numerical
attributes, maximum number of conditions for the description)
and it employs a timer. Of course it may not find the optimal
pattern, but this strategy allows it to work on data of any size
and dimensionality. Likewise, the heuristic solution to mine
spread patterns typically outputs a pattern in very little time.

Notice that for both algorithms, the runtime is linear in
the number of data points (i.e., to do the exact same com-
putations on larger data is linear). One may add attributes
without affected the computation time at the mining stage
(background model discussed below), but of course to include
them in candidate descriptions leads to an exponential growth
in number of possible subgroup definitions. We feel it would
be pointless to include a runtime experiment for these steps,
as it is not feasible to compute the optimal solutions as a
comparison, except on very small data.

What we can analyze is the runtime of fitting the back-
ground distribution. For all four real-world datasets, we mined
location and spread patterns and measured the time it took to
find the new MaxEnt distribution incorporating both previous



TABLE II
RUNTIME MEASUREMENTS TO UPDATE THE BACKGROUND DISTRIBUTION
WITH IDENTIFIED PATTERNS. FIRST ROW SHOWS TIME (IN SECONDS) TO
FIT THE INITIAL DISTRIBUTION, CONSECUTIVE ROWS THE TIME UNTIL

CONVERGENCE WHEN INCORPORATING ADDITIONAL PATTERNS. AS THE
UPDATES FOR LOCATION AND SPREAD PATTERNS ARE DIFFERENT, THESE
ARE REPORTED INDEPENDENTLY (COLUMNS 2–5 AND 6–9). DATA SETS:

GERMAN SOCIO-ECONOMICS (GSE; n = 412, dx = 13, dy = 5), WATER
QUALITY (WQ; n = 1060, dx = 14, dy = 16), CRIME (CR; n = 1994,
dx = 122, dy = 1), MAMMALS (MA; n = 2220, dx = 67, dy = 124).

Location pattern Spread pattern
Iteration GSE WQ Cr Ma GSE WQ Cr
Init 9.167 8.640 9.714 8.453
1 0.13 0.16 0.12 13.72 0.10 0.10 0.11
2 0.09 0.16 0.08 33.09 0.08 0.05 0.08
3 0.12 0.31 0.09 62.61 0.06 0.12 0.09
4 0.25 0.52 0.11 120.44 0.11 0.13 0.13
5 0.33 0.92 0.16 184.33 0.14 0.18 0.20
6 0.49 1.41 0.19 250.23 0.19 0.19 0.27
7 0.68 1.94 0.30 399.90 0.26 0.32 0.44
8 0.91 2.57 0.41 602.54 0.37 0.36 0.50
9 1.16 3.07 0.56 796.38 0.38 0.37 0.65
10 1.49 4.00 0.80 1130.81 0.42 0.46 0.83
11 1.69 5.05 1.02 - 0.42 0.49 1.07
12 1.95 6.17 1.23 - 0.52 0.57 1.32
13 2.56 7.48 1.52 - 0.63 0.65 1.62
14 2.76 9.04 1.95 - 0.68 1.16 2.09
15 3.17 10.60 2.60 - 0.72 1.00 2.86
16 3.51 11.92 3.41 - 0.81 1.06 3.42
17 4.40 14.06 4.15 - 1.12 1.38 5.01
18 4.94 15.95 5.34 - 1.17 1.47 5.69
19 4.99 17.92 6.66 - 1.07 1.57 6.30
20 5.58 19.97 6.71 - 1.24 1.92 6.65

and the newly identified pattern, for 20 iterations. The results
are presented in II. We find that after insertion of 10–
20 location patterns, the time it takes to find the MaxEnt
distribution becomes noticeable. This may not be so surprising,
as there are at least dy new constraints every time we insert a
new location pattern. For the Mammals data, which has target
dimension 124, the time quickly grows to durations that cannot
be considered acceptable for interactive use. We also observe
that for spread patterns, this problem does not occur because
they are by definition of low rank (the weigth vector is not
necessarily sparse but it is only a one-dimensional projection).

IV. RELATED WORK

The pattern syntax introduced in this paper can be consid-
ered a type of Exceptional Model Mining (EMM) [12], [13].
EMM can be seen as a multi-target generalization of Subgroup
Discovery (SD) [14], which is a single-target supervised form
of Pattern Mining [15]: the broad subfield of data mining
where only a part of the data is described at a time, ignoring
the coherence of the remainder.

Tasks similar to SD are Contrast Set Mining [16] and
Emerging Pattern Mining [17]. Both these tasks have not
been considered for multiple target attributes simultaneously,
and hence differ from the current paper in that they do not
directly help in understanding interactions between variables.
The relationships between Contrast Set Mining, Emerging
Pattern Mining, and SD are extensively described in [18].

Distribution Rules [19] can be seen as an early instance of
EMM with only one target. Umek et al. [20] do consider SD

with multiple targets. They approach the attribute partition in
the reverse way of EMM: candidate subgroups are generated
by agglomerative clustering on the targets, and predictive mod-
eling on the descriptors strives to find matching descriptions.

Redescription Mining by Galbrun et al. [21] is the closest
related work to this paper. It considers the case where a dataset
contains two distinct parts, describing the same entities from
two different viewpoints. Redescription Mining treats these
two parts symmetrically: it seeks descriptions inducing the
same subgroup, resulting in a rule of the form A ' B.
In contrast, we consider the setting where the two parts
play distinct roles: one part contains description attributes on
which subgroups are defined, the other part forms the numeric
data which we aim to learn about and hence on which the
informativeness of subgroups is evaluated. This then results in
rules of the form A⇒ B.

Interestingly, Galbrun et al. [21, Fig. 8, Tab. 6, 7] also
considered the problem of ‘biological niche finding’ on the
Mammal data. However, none of the subgroups they report are
the same as ours. Their version of the data also encompasses a
slightly larger region, but it is anyway unsurprising that results
are quite different. The score function in Redescription Mining
is not based on how much the subgroups stand out from the
overall data, but only on the accuracy of the redescription and
its cover. Hence, we did not further compare the results of our
method with theirs.

‘Subjective Interestingness’ was first used in the context of
Association Rule Mining [22], [23]. These papers formalized
the prior belief of a user in a belief system, and sought
association rules that contrasted with these beliefs. We base
our approach on the more recent and systematic approach
named FORSIED [2], [3]. This framework has been applied
successfully to a variety of data mining problems, such as
mining relational patterns [24], community detection [25],
clustering [26], and dimensionality reduction [27]. Maximum
Entropy modeling for real-valued data has also been studied
before [28], in order to compute the significance of the
Weighted Relative Accuracy in SD. That method targets a
different pattern syntax than what is introduced here and does
not apply to EMM.

Finally, Boley et al. [29] recently introduced a score func-
tion for single-target SD where a reduction in variance adds to
the interestingness score of a subgroup. While their approach
is less general and the interestingsness score arguably less
principled, they do study the algorithmic complexity of the
problem in detail and derive a tight-optimistic-estimator-based
branch and bound algorithm to find the globally best subgroup
pattern very efficiently.

V. DISCUSSION AND CONCLUSION

Numerous unsupervised methods exist to make sense of
real-valued datasets, most notably methods for dimensionality
reduction and clustering. Labels (or more generally description
attributes as in this paper) associated with the data points are
then often used to interpret these results, e.g., by measuring
enrichment of certain labels within a cluster, or by coloring



data points in a scatter plot of a 2-D projection of the data with
a color depending on the labels of the points, for subsequent
visual inspection. However, whether such analyses provide
explanations or insights is a matter of coincidence: there is
no a priori reason that clusters should be enriched, and there
is no guarantee that equally colored points are grouped in a
scatter plot.

Here, we propose an alternative approach, in directly using
the description attributes to guide the search for surprising
multivariate relations in the data. Resulting subgroups are then
automatically explained well by the descriptions. Our approach
contrasts with traditional supervised methods in focusing on
local patterns: properties of the target attributes that apply only
to subsets of the data defined in terms of conditions on their
metadata. Arguably, with increasing amounts and resulting
inhomogeneity of datasets, the importance of local patterns
is bound to increase.

Our approach generalizes the literature on Subgroup Dis-
covery and Exceptional Model Mining in being applicable for
real-valued target attributes of arbitrary dimensionality, and in
searching for multivariate local patterns across all these dimen-
sions, including unusual covariance structures of subgroups
in the data. Moreover, the interestingness of the patterns of
this type is formalized in a rigorous manner, quantifying the
amount of information the user gains by observing them. We
have demonstrated that the resulting algorithms are effective
and efficient, in theory and in practice.

In further work, we plan to remove the dependency on third
party tools (Matlab and Cortana) and produce a standalone
version of the method for public dissemination. Furthermore,
it would be interesting to study similar pattern syntaxes for
binary, categorical, and mixed sets of target attributes. Besides,
although we have little hope to improve the search for optimal
spread patterns, it may be feasible to devise a branch-and-
bound approach to mine optimal location patterns efficiently.
Indeed this appears to be the most relevant question to be
addressed in the future. Finally, we aim to integrate this
method with SIDE [30], [31], our online tool for exploration
of numerical data, which currently does not use any labels or
description attributes.
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[18] P. Kralj Novak, N. Lavrač, and G. Webb, “Supervised descriptive rule
discovery: A unifying survey of contrast set, emerging pattern and
subgroup mining,” JMLR, vol. 10, pp. 377–403, 2009.

[19] A. Jorge, P. Azevedo, and F. Pereira, “Distribution rules with numeric
attributes of interest,” in Proc. of PKDD, 2006, pp. 247–258.

[20] L. Umek and B. Zupan, “Subgroup discovery in data sets with multi-
dimensional responses,” IDA, vol. 15, no. 4, pp. 533–549, 2011.

[21] E. Galbrun and P. Miettinen, “From black and white to full color:
extending redescription mining outside the boolean world,” SADM,
vol. 5, no. 4, pp. 284–303, 2012.

[22] B. Padmanabhan and A. Tuzhilin, “A belief-driven method for discov-
ering unexpected patterns,” in Proc. of KDD, 1998, pp. 94–100.

[23] A. Silberschatz and A. Tuzhilin, “On subjective measures of interest-
ingness in knowledge discovery,” in Proc. of KDD, 1996, pp. 275–281.

[24] J. Lijffijt, E. Spyropoulou, B. Kang, and T. De Bie, “P-n-rminer: A
generic framework for mining interesting structured relational patterns,”
IJDSA, vol. 1, no. 1, pp. 61–76, 2016.

[25] M. v. Leeuwen, T. De Bie, E. Spyropoulou, and C. Mesnage, “Subjective
interestingness of subgraph patterns,” Mach. Learn., vol. 105, no. 1, pp.
41–75, 2016.

[26] K.-N. Kontonasios and T. De Bie, “Subjectively interesting alternative
clusterings,” MLJ, vol. 98, no. 1, pp. 31–56, 2015.

[27] B. Kang, J. Lijffijt, R. Santos-Rodrı́guez, and T. De Bie, “Subjectively
interesting component analysis: Data projections that contrast with prior
expectations,” in Proc. of KDD, 2016, pp. 1615–1624.

[28] K.-N. Kontonasios, J. Vreeken, and T. De Bie, “Maximum entropy
modelling for assessing results on real-valued data,” in Proc. of ICDM,
2011, pp. 350–359.

[29] M. Boley, B. R. Goldsmith, L. M. Ghiringhelli, and J. Vreeken,
“Identifying consistent statements about numerical data with dispersion-
corrected subgroup discovery,” in Proc. of ECML-PKDD, 2017.
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