12,821 research outputs found

    Learning how to be robust: Deep polynomial regression

    Get PDF
    Polynomial regression is a recurrent problem with a large number of applications. In computer vision it often appears in motion analysis. Whatever the application, standard methods for regression of polynomial models tend to deliver biased results when the input data is heavily contaminated by outliers. Moreover, the problem is even harder when outliers have strong structure. Departing from problem-tailored heuristics for robust estimation of parametric models, we explore deep convolutional neural networks. Our work aims to find a generic approach for training deep regression models without the explicit need of supervised annotation. We bypass the need for a tailored loss function on the regression parameters by attaching to our model a differentiable hard-wired decoder corresponding to the polynomial operation at hand. We demonstrate the value of our findings by comparing with standard robust regression methods. Furthermore, we demonstrate how to use such models for a real computer vision problem, i.e., video stabilization. The qualitative and quantitative experiments show that neural networks are able to learn robustness for general polynomial regression, with results that well overpass scores of traditional robust estimation methods.Comment: 18 pages, conferenc

    Parametric high resolution techniques for radio astronomical imaging

    Full text link
    The increased sensitivity of future radio telescopes will result in requirements for higher dynamic range within the image as well as better resolution and immunity to interference. In this paper we propose a new matrix formulation of the imaging equation in the cases of non co-planar arrays and polarimetric measurements. Then we improve our parametric imaging techniques in terms of resolution and estimation accuracy. This is done by enhancing both the MVDR parametric imaging, introducing alternative dirty images and by introducing better power estimates based on least squares, with positive semi-definite constraints. We also discuss the use of robust Capon beamforming and semi-definite programming for solving the self-calibration problem. Additionally we provide statistical analysis of the bias of the MVDR beamformer for the case of moving array, which serves as a first step in analyzing iterative approaches such as CLEAN and the techniques proposed in this paper. Finally we demonstrate a full deconvolution process based on the parametric imaging techniques and show its improved resolution and sensitivity compared to the CLEAN method.Comment: To appear in IEEE Journal of Selected Topics in Signal Processing, Special issue on Signal Processing for Astronomy and space research. 30 page

    Solving Inverse Problems with Piecewise Linear Estimators: From Gaussian Mixture Models to Structured Sparsity

    Full text link
    A general framework for solving image inverse problems is introduced in this paper. The approach is based on Gaussian mixture models, estimated via a computationally efficient MAP-EM algorithm. A dual mathematical interpretation of the proposed framework with structured sparse estimation is described, which shows that the resulting piecewise linear estimate stabilizes the estimation when compared to traditional sparse inverse problem techniques. This interpretation also suggests an effective dictionary motivated initialization for the MAP-EM algorithm. We demonstrate that in a number of image inverse problems, including inpainting, zooming, and deblurring, the same algorithm produces either equal, often significantly better, or very small margin worse results than the best published ones, at a lower computational cost.Comment: 30 page

    Stable Feature Selection from Brain sMRI

    Full text link
    Neuroimage analysis usually involves learning thousands or even millions of variables using only a limited number of samples. In this regard, sparse models, e.g. the lasso, are applied to select the optimal features and achieve high diagnosis accuracy. The lasso, however, usually results in independent unstable features. Stability, a manifest of reproducibility of statistical results subject to reasonable perturbations to data and the model, is an important focus in statistics, especially in the analysis of high dimensional data. In this paper, we explore a nonnegative generalized fused lasso model for stable feature selection in the diagnosis of Alzheimer's disease. In addition to sparsity, our model incorporates two important pathological priors: the spatial cohesion of lesion voxels and the positive correlation between the features and the disease labels. To optimize the model, we propose an efficient algorithm by proving a novel link between total variation and fast network flow algorithms via conic duality. Experiments show that the proposed nonnegative model performs much better in exploring the intrinsic structure of data via selecting stable features compared with other state-of-the-arts

    Adaptive stochastic Galerkin FEM for lognormal coefficients in hierarchical tensor representations

    Get PDF
    Stochastic Galerkin methods for non-affine coefficient representations are known to cause major difficulties from theoretical and numerical points of view. In this work, an adaptive Galerkin FE method for linear parametric PDEs with lognormal coefficients discretized in Hermite chaos polynomials is derived. It employs problem-adapted function spaces to ensure solvability of the variational formulation. The inherently high computational complexity of the parametric operator is made tractable by using hierarchical tensor representations. For this, a new tensor train format of the lognormal coefficient is derived and verified numerically. The central novelty is the derivation of a reliable residual-based a posteriori error estimator. This can be regarded as a unique feature of stochastic Galerkin methods. It allows for an adaptive algorithm to steer the refinements of the physical mesh and the anisotropic Wiener chaos polynomial degrees. For the evaluation of the error estimator to become feasible, a numerically efficient tensor format discretization is developed. Benchmark examples with unbounded lognormal coefficient fields illustrate the performance of the proposed Galerkin discretization and the fully adaptive algorithm

    On boosting kernel regression

    No full text
    In this paper we propose a simple multistep regression smoother which is constructed in an iterative manner, by learning the Nadaraya-Watson estimator with L-2 boosting. We find, in both theoretical analysis and simulation experiments, that the bias converges exponentially fast. and the variance diverges exponentially slow. The first boosting step is analysed in more detail, giving asymptotic expressions as functions of the smoothing parameter, and relationships with previous work are explored. Practical performance is illustrated by both simulated and real data
    • …
    corecore