643 research outputs found

    Applications of Deep Learning Techniques for Automated Multiple Sclerosis Detection Using Magnetic Resonance Imaging: A Review

    Get PDF
    Multiple Sclerosis (MS) is a type of brain disease which causes visual, sensory, and motor problems for people with a detrimental effect on the functioning of the nervous system. In order to diagnose MS, multiple screening methods have been proposed so far; among them, magnetic resonance imaging (MRI) has received considerable attention among physicians. MRI modalities provide physicians with fundamental information about the structure and function of the brain, which is crucial for the rapid diagnosis of MS lesions. Diagnosing MS using MRI is time-consuming, tedious, and prone to manual errors. Research on the implementation of computer aided diagnosis system (CADS) based on artificial intelligence (AI) to diagnose MS involves conventional machine learning and deep learning (DL) methods. In conventional machine learning, feature extraction, feature selection, and classification steps are carried out by using trial and error; on the contrary, these steps in DL are based on deep layers whose values are automatically learn. In this paper, a complete review of automated MS diagnosis methods performed using DL techniques with MRI neuroimaging modalities is provided. Initially, the steps involved in various CADS proposed using MRI modalities and DL techniques for MS diagnosis are investigated. The important preprocessing techniques employed in various works are analyzed. Most of the published papers on MS diagnosis using MRI modalities and DL are presented. The most significant challenges facing and future direction of automated diagnosis of MS using MRI modalities and DL techniques are also provided

    Cancer diagnosis using deep learning: A bibliographic review

    Get PDF
    In this paper, we first describe the basics of the field of cancer diagnosis, which includes steps of cancer diagnosis followed by the typical classification methods used by doctors, providing a historical idea of cancer classification techniques to the readers. These methods include Asymmetry, Border, Color and Diameter (ABCD) method, seven-point detection method, Menzies method, and pattern analysis. They are used regularly by doctors for cancer diagnosis, although they are not considered very efficient for obtaining better performance. Moreover, considering all types of audience, the basic evaluation criteria are also discussed. The criteria include the receiver operating characteristic curve (ROC curve), Area under the ROC curve (AUC), F1 score, accuracy, specificity, sensitivity, precision, dice-coefficient, average accuracy, and Jaccard index. Previously used methods are considered inefficient, asking for better and smarter methods for cancer diagnosis. Artificial intelligence and cancer diagnosis are gaining attention as a way to define better diagnostic tools. In particular, deep neural networks can be successfully used for intelligent image analysis. The basic framework of how this machine learning works on medical imaging is provided in this study, i.e., pre-processing, image segmentation and post-processing. The second part of this manuscript describes the different deep learning techniques, such as convolutional neural networks (CNNs), generative adversarial models (GANs), deep autoencoders (DANs), restricted Boltzmann’s machine (RBM), stacked autoencoders (SAE), convolutional autoencoders (CAE), recurrent neural networks (RNNs), long short-term memory (LTSM), multi-scale convolutional neural network (M-CNN), multi-instance learning convolutional neural network (MIL-CNN). For each technique, we provide Python codes, to allow interested readers to experiment with the cited algorithms on their own diagnostic problems. The third part of this manuscript compiles the successfully applied deep learning models for different types of cancers. Considering the length of the manuscript, we restrict ourselves to the discussion of breast cancer, lung cancer, brain cancer, and skin cancer. The purpose of this bibliographic review is to provide researchers opting to work in implementing deep learning and artificial neural networks for cancer diagnosis a knowledge from scratch of the state-of-the-art achievements

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    CrossTransUnet: A new computationally inexpensive tumor segmentation model for brain MRI

    Get PDF
    Brain tumors are usually fatal diseases with low life expectancies due to the organs they affect, even if the tumors are benign. Diagnosis and treatment of these tumors are challenging tasks, even for experienced physicians and experts, due to the heterogeneity of tumor cells. In recent years, advances in deep learning (DL) methods have been integrated to aid in the diagnosis, detection, and segmentation of brain neoplasms. However, segmentation is a computationally expensive process, typically based on convolutional neural networks (CNNs) in the UNet framework. While UNet has shown promising results, new models and developments can be incorporated into the conventional architecture to improve performance. In this research, we propose three new, computationally inexpensive, segmentation networks inspired by Transformers. These networks are designed in a 4-stage deep encoder-decoder structure and implement our new cross-attention model, along with separable convolution layers, to avoid the loss of dimensionality of the activation maps and reduce the computational cost of the models while maintaining high segmentation performance. The new attention model is integrated in different configurations by modifying the transition layers, encoder, and decoder blocks. The proposed networks are evaluated against the classical UNet network, showing that our networks have differences of up to an order of magnitude in the number of training parameters. Additionally, one of the models outperforms UNet, achieving training in significantly less time and with a Dice Similarity Coefficient (DSC) of up to 94%, ensuring high effectiveness in brain tumor segmentation.publishedVersio

    Bridging generative models and Convolutional Neural Networks for domain-agnostic segmentation of brain MRI

    Get PDF
    Segmentation of brain MRI scans is paramount in neuroimaging, as it is a prerequisite for many subsequent analyses. Although manual segmentation is considered the gold standard, it suffers from severe reproducibility issues, and is extremely tedious, which limits its application to large datasets. Therefore, there is a clear need for automated tools that enable fast and accurate segmentation of brain MRI scans. Recent methods rely on convolutional neural networks (CNNs). While CNNs obtain accurate results on their training domain, they are highly sensitive to changes in resolution and MRI contrast. Although data augmentation and domain adaptation techniques can increase the generalisability of CNNs, these methods still need to be retrained for every new domain, which requires costly labelling of images. Here, we present a learning strategy to make CNNs agnostic to MRI contrast, resolution, and numerous artefacts. Specifically, we train a network with synthetic data sampled from a generative model conditioned on segmentations. Crucially, we adopt a domain randomisation approach where all generation parameters are drawn for each example from uniform priors. As a result, the network is forced to learn domain-agnostic features, and can segment real test scans without retraining. The proposed method almost achieves the accuracy of supervised CNNs on their training domain, and substantially outperforms state-of-the-art domain adaptation methods. Finally, based on this learning strategy, we present a segmentation suite for robust analysis of heterogeneous clinical scans. Overall, our approach unlocks the development of morphometry on millions of clinical scans, which ultimately has the potential to improve the diagnosis and characterisation of neurological disorders

    Role of deep learning in infant brain MRI analysis

    Get PDF
    Deep learning algorithms and in particular convolutional networks have shown tremendous success in medical image analysis applications, though relatively few methods have been applied to infant MRI data due numerous inherent challenges such as inhomogenous tissue appearance across the image, considerable image intensity variability across the first year of life, and a low signal to noise setting. This paper presents methods addressing these challenges in two selected applications, specifically infant brain tissue segmentation at the isointense stage and presymptomatic disease prediction in neurodevelopmental disorders. Corresponding methods are reviewed and compared, and open issues are identified, namely low data size restrictions, class imbalance problems, and lack of interpretation of the resulting deep learning solutions. We discuss how existing solutions can be adapted to approach these issues as well as how generative models seem to be a particularly strong contender to address them
    • …
    corecore