144,711 research outputs found

    A novel variational model for image registration using Gaussian curvature

    Get PDF
    Image registration is one important task in many image processing applications. It aims to align two or more images so that useful information can be extracted through comparison, combination or superposition. This is achieved by constructing an optimal trans- formation which ensures that the template image becomes similar to a given reference image. Although many models exist, designing a model capable of modelling large and smooth deformation field continues to pose a challenge. This paper proposes a novel variational model for image registration using the Gaussian curvature as a regulariser. The model is motivated by the surface restoration work in geometric processing [Elsey and Esedoglu, Multiscale Model. Simul., (2009), pp. 1549-1573]. An effective numerical solver is provided for the model using an augmented Lagrangian method. Numerical experiments can show that the new model outperforms three competing models based on, respectively, a linear curvature [Fischer and Modersitzki, J. Math. Imaging Vis., (2003), pp. 81- 85], the mean curvature [Chumchob, Chen and Brito, Multiscale Model. Simul., (2011), pp. 89-128] and the diffeomorphic demon model [Vercauteren at al., NeuroImage, (2009), pp. 61-72] in terms of robustness and accuracy.Comment: 23 pages, 5 figures. Key words: Image registration, Non-parametric image registration, Regularisation, Gaussian curvature, surface mappin

    Image registration in intra-oral radiography

    Get PDF
    Image registration is one of the image processing methods which is widely used in computer vision, pattern recognition, and medical imaging. In digital subtraction radiography, image registration is one of the important prerequisites to match the reference and subsequent images. In this paper, we propose an automatic non-rigid registration method namely curvature-based registration that relies on a curvature based penalizing term and its application on dental radiography. The regularizing term of this intensity-based registration approach provides affine linear transformation so that pre-registration step is no longer necessary. This leads to faster and more reliable solutions. The implementation of this approach is based on the numerical solution of the underlying Euler-Lagrange equations. In addition, a comparison between this algorithm and Linear Alignment Method (LAM) with 20 image pairs is presented. © 2005 IEEE.published_or_final_versio

    Non-Rigid Registration via Global to Local Transformation

    Get PDF
    Non-rigid point set and image registration are key problems in plenty of computer vision and pattern recognition tasks. Typically, the non-rigid registration can be formulated as an optimization problem. However, registration accuracy is limited by local optimum. To solve this problem, we propose a method with global to local transformation for non-rigid point sets registration and it also can be used to infrared (IR) and visible (VIS) image registration. Firstly, an objective function based on Gaussian fields is designed to make a problem of non-rigid registration transform into an optimization problem. A global transformation model, which can describe the regular pattern of non-linear deformation between point sets, is then proposed to achieve coarse registration in global scale. Finally, with the results of coarse registration as initial value, a local transformation model is employed to implement fine registration by using local feature. Meanwhile, the optimal global and local transformation models estimated from edge points of IR and VIS image pairs are used to achieve non-rigid image registration. The qualitative and quantitative comparisons demonstrate that the proposed method has good performance under various types of distortions. Moreover, our method can also produce accurate results of IR and VIS image registration

    Privacy Preserving Image Registration

    Full text link
    Image registration is a key task in medical imaging applications, allowing to represent medical images in a common spatial reference frame. Current literature on image registration is generally based on the assumption that images are usually accessible to the researcher, from which the spatial transformation is subsequently estimated. This common assumption may not be met in current practical applications, since the sensitive nature of medical images may ultimately require their analysis under privacy constraints, preventing to share the image content in clear form. In this work, we formulate the problem of image registration under a privacy preserving regime, where images are assumed to be confidential and cannot be disclosed in clear. We derive our privacy preserving image registration framework by extending classical registration paradigms to account for advanced cryptographic tools, such as secure multi-party computation and homomorphic encryption, that enable the execution of operations without leaking the underlying data. To overcome the problem of performance and scalability of cryptographic tools in high dimensions, we first propose to optimize the underlying image registration operations using gradient approximations. We further revisit the use of homomorphic encryption and use a packing method to allow the encryption and multiplication of large matrices more efficiently. We demonstrate our privacy preserving framework in linear and non-linear registration problems, evaluating its accuracy and scalability with respect to standard image registration. Our results show that privacy preserving image registration is feasible and can be adopted in sensitive medical imaging applications

    Impact of PCA-based preprocessing and different CNN structures on deformable registration of sonograms

    Full text link
    Central venous catheters (CVC) are commonly inserted into the large veins of the neck, e.g. the internal jugular vein (IJV). CVC insertion may cause serious complications like misplacement into an artery or perforation of cervical vessels. Placing a CVC under sonographic guidance is an appropriate method to reduce such adverse events, if anatomical landmarks like venous and arterial vessels can be detected reliably. This task shall be solved by registration of patient individual images vs. an anatomically labelled reference image. In this work, a linear, affine transformation is performed on cervical sonograms, followed by a non-linear transformation to achieve a more precise registration. Voxelmorph (VM), a learning-based library for deformable image registration using a convolutional neural network (CNN) with U-Net structure was used for non-linear transformation. The impact of principal component analysis (PCA)-based pre-denoising of patient individual images, as well as the impact of modified net structures with differing complexities on registration results were examined visually and quantitatively, the latter using metrics for deformation and image similarity. Using the PCA-approximated cervical sonograms resulted in decreased mean deformation lengths between 18% and 66% compared to their original image counterparts, depending on net structure. In addition, reducing the number of convolutional layers led to improved image similarity with PCA images, while worsening in original images. Despite a large reduction of network parameters, no overall decrease in registration quality was observed, leading to the conclusion that the original net structure is oversized for the task at hand.Comment: 8 pages, 7 figures Presented at WSCG 202

    Probabilistic Atlas Based Segmentation Using Affine Moment Descriptors and Graph-Cuts

    Get PDF
    We show a procedure for constructing a probabilistic atlas based on affine moment descriptors. It uses a normalization procedure over the labeled atlas. The proposed linear registration is defined by closed-form expressions involving only geometric moments. This procedure applies both to atlas construction as atlas-based segmentation. We model the likelihood term for each voxel and each label using parametric or nonparametric distributions and the prior term is determined by applying the vote-rule. The probabilistic atlas is built with the variability of our linear registration. We have two segmentation strategy: a) it applies the proposed affine registration to bring the target image into the coordinate frame of the atlas or b) the probabilistic atlas is non-rigidly aligning with the target image, where the probabilistic atlas is previously aligned to the target image with our affine registration. Finally, we adopt a graph cut - Bayesian framework for implementing the atlas-based segmentation

    Automatic motion compensation of free breathing acquired myocardial perfusion data by using independent component analysis

    Full text link
    Images acquired during free breathing using first-pass gadolinium-enhanced myocardial perfusion magnetic resonance imaging (MRI) exhibit a quasiperiodic motion pattern that needs to be compensated for if a further automatic analysis of the perfusion is to be executed. In this work, we present a method to compensate this movement by combining independent component analysis (ICA) and image registration: First, we use ICA and a time?frequency analysis to identify the motion and separate it from the intensity change induced by the contrast agent. Then, synthetic reference images are created by recombining all the independent components but the one related to the motion. Therefore, the resulting image series does not exhibit motion and its images have intensities similar to those of their original counterparts. Motion compensation is then achieved by using a multi-pass image registration procedure. We tested our method on 39 image series acquired from 13 patients, covering the basal, mid and apical areas of the left heart ventricle and consisting of 58 perfusion images each. We validated our method by comparing manually tracked intensity profiles of the myocardial sections to automatically generated ones before and after registration of 13 patient data sets (39 distinct slices). We compared linear, non-linear, and combined ICA based registration approaches and previously published motion compensation schemes. Considering run-time and accuracy, a two-step ICA based motion compensation scheme that first optimizes a translation and then for non-linear transformation performed best and achieves registration of the whole series in 32 ± 12 s on a recent workstation. The proposed scheme improves the Pearsons correlation coefficient between manually and automatically obtained time?intensity curves from .84 ± .19 before registration to .96 ± .06 after registratio

    Regularized Surface and Point Landmarks Based Efficient Non-Rigid Medical Image Registration

    Get PDF
    Medical image registration is one of the fundamental tasks in medical image processing. It has various applications in field of image guided surgery (IGS) and computer assisted diagnosis (CAD). A set of non-linear methods have been already developed for inter-subject and intra-subject 3D medical image registration. However, efficient registration in terms of accuracy and speed is one of the most demanded of today surgical navigation (SN) systems. This paper is a result of a series of experiments which utilizes Fast Radial Basis Function (RBF) technique to register one or more medical images non-rigidly. Initially, a set of curves are extracted using a combined watershed and active contours algorithm and then tiled and converted to a regular surface using a global parameterization algorithm. It is shown that the registration accuracy improves when higher number of salient features (i.e. anatomical point landmarks and surfaces) are used and it also has no impact on the speed of the algorithm. The results show that the target registration error is less than 2 mm and has sub-second performance on intra-subject registration of MR image real datasets. It is observed that the Fast RBF algorithm is relatively insensitive to the increasing number of point landmarks used as compared with the competing feature based algorithms
    corecore