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Abstract. We show a procedure for constructing a probabilistic atlas 
based on affine moment descriptors. It uses a normalization procedure 
over the labeled atlas. The proposed linear registration is defined by 
closed-form expressions involving only geometric moments. This proce­
dure applies both to atlas construction as atlas-based segmentation. We 
model the likelihood term for each voxel and each label using parame­
tric or nonparametric distributions and the prior term is determined by 
applying the vote-rule. The probabilistic atlas is built with the variabili­
ty of our linear registration. We have two segmentation strategy: a) it 
applies the proposed affine registration to bring the target image into 
the coordinate frame of the atlas or b) the probabilistic atlas is non-
rigidly aligning with the target image, where the probabilistic atlas is 
previously aligned to the target image with our affine registration. Fi­
nally, we adopt a graph cut - Bayesian framework for implementing the 
atlas-based segmentation. 
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1 Introduction 

Much research has been developed to integrate prior knowledge into the seg­
mentat ion task. We focus on prior knowledge of shape and appearance of the 
object of interest. These approaches requiere a modeling or training step before 
the actual segmentation takes place. These ideas find their root in the active 
shape models first introduced by Cootes et al [1] based on matching a shape 
model to an unseen image using landmarks. Later, there has been increasing 
interest in using level set-based representation for shape priors [2,3,4], which 
avoids landmarks. However, segmentation techniques tha t rely on the optimiza­
tion of the complex functionals require the adjustment of multiple parameters . 
Consequently, these methods suffer from sensitivity to the tuning process. 

In medical images there is sometimes a weak relation between voxel da ta 
and the label assignment. In such cases, spatial information must be taken into 
account in the segmentation process. One well-validated approach relies on com­
bining the segmentations obtained from non-rigid aligning multiple manually 
labeled atlas with the target image [5]. This method makes no use of the in­
tensity information. Considering such information could improves the quality of 

mailto:carlos.platero@upm.es


the atlas segmentation. The probabilistic atlas is commonly used in the analysis 
of medical images, since it integrates a priori knowledge of the shape and the 
appearance. 

To combine prior knowledge and some type of regularization based on the 
framework of a Markov random field (MRF) is a well established technique for 
the medical image segmentation [6]. In these approaches spatial information 
in terms of a probabilistic atlas and the contextual information are used to 
formulate a maximum a posteriori probability (MAP-MRF). Since Grey et al 
[7] proposed graph cuts as a generic method for estimating the maximum a 
posteriori, it has been widely used for optimization in this area. For the case of 
two labels, Greig constructed a graph with two terminal vertices such that the 
minimum cut provides a global optimal labeling. For the multi-label problem, 
Ishikawa [8] solved the minimization problem for energy functions with pairwise 
terms that are convex in the linearly ordered labels. Therefore, we adopt a graph 
cut - Bayesian framework for implementing the atlas-based segmentation. 

The paper is organized as follows: in Section 2, we show the problem of the 
linear registration and our approach based on the image normalization. Section 3 
describes the method for constructing a probabilistic atlas. Section 4 presents our 
framework for segmentation using the atlas information and the graph cuts for 
optimizing the posterior probability. Finally, in Section 5, we apply our procedure 
to liver segmentation from CT images. 

2 Linear Registration Using Afflne Moment Descriptors 

We present a procedure for generating a probabilistic atlas based on affine mo­
ment descriptors. It captures the variability of learning samples and tries to 
generalize for the segmentation task. Our first step is to align the training sam­
ples, in order to avoid artifacts due to different pose. Traditionally, the pose 
parameters have been estimated minimizing a energy functional, via gradient 
descent [3,9]. 

Our approach considers a training set consisting of N binary images 
{Si}i=i,...,N : fí C M" ̂  {0,1}, n = 2 or 3. For the multi-label problem, 
manual segmentation images have to be converted to binary images. All images 
in the database are aligned with a single binary image as reference, Sref. The 
new aligned images are defined as Si = Si o T^1, where T¿ is an affine trans­
formation, given by the composition of a rotation, a scaling transformation and 
a translation. Equivalently, <S¿ = Si o Ti. We propose a criterion for alignment 
based on a shape normalization algorithm [11]. It is only necessary to compute 
the first and second order moments. The first-order moments locate the centroid 
of the shape and the second-order moments characterize the size and orientation 
of the image. Given a binary image Si, we compute the second-order moments 
matrix, and the image is rotated using the eigenvectors and it is scaled along the 
eigenvectors according to the eigenvalues of the second-order moment matrix of 
Si and Sref, where Sref is a normalized shape. Then, it is translated by the cen­
troid. We do not consider the problem of reflection (for this see [10]). If we only 



consider moments up to order two, S\ is approximated to an ellipse/ ellipsoid 
centered at the image centroid. The rotate angles and the axes are determined 
by the eigenvalues and the eigenvectors of the second-order moment matrix [11]. 
Let Ri be the rotation matrix. 

Let {A^ }j=i_.._„ be the eigenvalues of the reference image Sre¡. We consider 

one of the following scale matrices: a) W¿ = \ / ^ p - • I where Ac = (]T/=i Aj)1^™, 
c = {ref, i} and I is the identity matrix or b) W¿ is a diagonal matrix where 

/ Xref 

Wjj = \ -h- • In the first case it is a homothety, while in the second case 

the size fits in each principal the reference. The first option is used for 
shape priors without privileged directions otherwise the second case is chosen. 
Finally, the affine transformation translates the origin of the coordinate system 
to the reference centroid xref. We denote the «—shape centroid as x¿. The affine 
transformation is then defined as follows: 

Tr1(x) = Ri-Wi-(x-xi) + xref. (1) 

This affine transformation aligns from S\ to Sref. Of course, it is a bijection if 
det(Ri • Wj) T¿ 0. If we use a scaling identical in all directions, Sref will be only a 
numeric artifact for the pose algorithm. The alignment error does not depend on 
the reference, Sref. But when each principal axis is adjusted to the reference, the 
alignment error depends on the choice of the reference. We can not guarantee the 
optimal pose for any shape. But neither the gradient descent method guaranteed 
to find the optimum because there is not evidence that the proposed functionals 
are convex. Our procedure is fast and optimum if the shapes are closed to ellipses 
or ellipsoids. 

3 Construction of the Probabilistic Atlas 

Our framework is based on the Bayesian decision theory. Given the target image 
to be segmented, I : Í2 G Kn —> K, and the probabilistic atlas, it assigns the 
label that maximizes the posterior probability: 

Fx = F(x) = a,Tgmax.p(Ix\lj)p(x,lj), 
IjEL 

where F : Q G Mn —> L = {Zi, Z2, ...,/&} is a labeling of the voxels of Í2, p(Ix \lj) 
represents the likelihood term of the voxel appearance at x corresponding to the 
label lj and p(x,lj) is the prior term at x, which models the shape variability. 
Therefore, these terms represent the appearance and shape models and they 
are constructed using the aligned training images. The appearance and shape 
models are built with the variability of our linear registration. 

3.1 Appearance Prior Modeling 

The appearance model is obtained from the intensities of the voxels belonging 
to the set of aligned training images. Before building the appearance model, the 



training images in intensity are normalized using histogram matching. We de­
note the normalized and aligned training images as {5¿}¿=II..JV : tl C Rn —> L 
and {Ii}i=ii..N '• & C Rn —> R. Gaussian mixture models are used intensively 
for distribution estimation and their parameters are tuned by using expectation-
maximization based method [6], which provides a global view of the whole object 
appearance. In this work we model the probabilistic appearance for each voxel 
and each label using parametric or nonparametric distributions. We have imple­
mented two options: i) each voxel on the aligned learning set follows a normal 
distribution for each label, ./V(/x(x,/¿),<7Q(X,/¿)): 

, s = T,{i\s,(x)=i3}
 TÁX) 2 , s = E{¿|^(g;)=;3-}(/¿(a;) ~ KxJj)f 

3 #{i\Si(x)=lj}
 G[,3> #{i\Si(x) = l¿} 

ii) It follows a nonparametric distribution, considering the probabilistic atlas 
and the target image into the same coordinate frame (see next section): 

p(i\i.) = I v K(K*)-U*)\ 
^ Xl " #{z\Si(x)=l3}aw(x,l3) f- V *w{x,li) ) ' 

where K(z) = -4=exp(—-L^-) and 

°w{*,h) = #{ils'(x)=h} ^ÍP\sp(x)=h}mÍn"^1^ ~1"^2-

3.2 Shape Prior Modeling 

To capture the variability of the shape, the set of aligned manually segmented 
images are used. In [2,3,4], principal component analysis (PCA) of the signed 
distance functions of training data is used to capture it. However, PCA provides 
a global view of the shape variability. Saad et al [12] introduce a modification of 
the idea of a probabilistic atlas by incorporating additional information derived 
from the distance transform. However, we have observed that a local estimation 
over our aligned training data provides robust results. It defines the prior term 
at x applying the vote-rule as 

4 Image Segmentation Strategy 

The appearance and shape models are built with the variability of our linear 
registration, without learning based on non-rigid registration as in [5]. The draw­
back is the need of an initial solution for the segmentation. However, this initial 
solution does not need to be robust because the proposed affine transformation 
uses only the first and second order moments. 

Given a new image to be segmented, / , and an initial binary solution, S : 
Q C Mn —> {0,1}, we have two procedures: a) we apply the proposed affine 



registration to bring this image into the coordinate frame of the atlas S = SoT^1 

and I = IoT^1, where T _ 1 is calculated as (1) or b) the probabilistic atlas is non-
rigidly aligning with the target image, where the probabilistic atlas is previously 
aligned to the target image with our affine registration, Sref = Sref oT. In both 
cases, the posterior probability is calculated for the unseen image. 

Optimizing the posterior probability is not an easy task, especially because 
there are so many realizations of the MRF model and the optimization is prone 
to be caught in local maximums. Greig et al. [7] were the first to discover that 
powerful min-cut/max-flow algorithms from combinatorial optimization can be 
used to minimize certain important energy functions in computer vision. In par­
ticular, they showed that graph cuts can be used for restoration binary images. 
The problem was formulated as a maximum a posterior estimation with a MRF 
regularization that required the minimization of the following energy: 

E{F)=YJVÁFX)+ J2 Vxy(Fx,Fy), (2) 
xGS2 {x,y} 

x: y G 0: x ^ y 

where for the case of two labels L = {h,h}, VX(FX) = < * ., J? _ , , Xx = 

l°g (gz l iSSi i ) ^ d Vxy(Fx, Fy) ={^V>0XFXÍFV- G r d g constructed 

a graph with two terminal vertices {s,t}, such that the minimum cut provides 
a global optimal labeling. There is a directed edge {s, x} from s to the voxel 
x with weight UJSX = Xx if Xx > 0; otherwise, there is a directed edge {x,t} 
from x to t with weight ujxt = —Xx- There is an undirected edge {x, y} between 
two internal vertices with weight ujxy = ¡3xy. It is a smoothness term based on 
intensities {/(#), I(y)}, which represents the realizations of the MRF model. For 
the multi-label problem, if each Vxy defines a metric, then minimizing (2) is 
known as the metric labeling problem and can be optimized effectively with the 
a-expansion algorithm [13]. 

5 Validation, Experiments and Results 

The experimental validation is performed using the problem of liver segmen­
tation from 3D CT images. Algorithms relying solely on image intensities or 
derived features usually fail. To deal with missing or ambiguous low-level in­
formation, shape and appearance prior information has to be employed. The 
proposed method has been considered on 20 patients CT slice set and tested on 
another 10 specified CT dataseis. 

In a first step we align the training data by the proposed procedure. In this 
case, each principal axis is adjusted to the reference. Experimentally, Sref was 

chosen by minimizing the Similarity Index, ÍSI=jj ^ ¿ . *°*i. - r e / ), over the 

training set. We compare our approach with other techniques. Table 1 lists the 
mean (usi) and standard deviation (asi) values of the SI metric over the train­
ing data set. Given a CT abdominal image as target image, our approach starts 



Table 1 . Results of the affine registration: ¡JLSJ and a si values of the SI 

Type 

(J-SI 

VSI 

SSD 

0.54 
0.10 

[3] MI [9] 

0.63 
0.07 

Our 

0.68 
0.05 

the source s and sink t, is proposed to: Xx = log This proposal is 

with an initial solution. It is obtained filtering the image by a nonlinear diffusion 
filter with selection of the optimal stopping time. Then, region growing and 3D 
edge detector are applied to the filtered image. Morphological post-processing 
merges the previous steps, giving the initial solution. Next, the probabilistic at­
las and the target image are placed into the same coordinate frame using our 
affine transformation. The non-rigid registration between the probabilistic atlas 
and the target image was performed with ElastiX [14]. We use the min-cu t /max 
flow algorithm of Boykov-Kolmogorov for energy minimization [15]. In our im­
plementation, the da ta term, defines the edge weights connecting each node to 

t r ( s , ¿ 2 ) 
PJIx 1̂ 1 )p(x,l± ) 

&(x, I J ) 

based on the more reliable of the probability estimations if there are less disper­
sion in the samples. We have experimentally observed tha t normal distribution 
model for probabilistic appearance prior is more robust than the non-parametric 
one. We think tha t it is due to less dependence on the initial solution. The pa­
rameters of Vxy were tuned using the leave-one-out technique from training da ta 
according to the segmentation scores. In our case, a 6 neighborhood relation is 
used to save memory. 

Fig. 1 shows slices from two cases, drawing the result of the method (in blue) 
and the reference (in red). The quality of the segmentation and its scores are 
based on the five metrics [16]. Each metric was converted to a score where 0 is 
the minimum and 100 is the maximum. Using this scoring system one can loosely 
say tha t 75 points for a liver segmentation is comparable to human performance. 

Table 2. Average values of the metrics and scores for all ten test case: volumetric 
overlap error (mi), relative absolute volume difference (TO2), average symmetric sur­
face distance (1713), root mean square symmetric surface distance {rrn) and maximum 
symmetric surface distance {m¿) 

Type 

ATI [5] 

Affine 

Nonrigid 

metrics 
scores 

metrics 
scores 

metrics 
scores 

mi 

12.5% 
51 

12.1% 
53 

9.69% 
62 

TO2 

3.5% 
80 

2.5% 
87 

3.9% 
79 

m:i 

2.41 mm 
40 

1.71 mm 
57 

1.12 mm 
72 

ni4 

4.40 mm 
40 

2.96 mm 
59 

2.03 mm 
72 

m5 

32.4 mm 
57 

26.1 mm 
66 

22.1 mm 
71 



Fig. 1. From left to right, a sagittal, coronal and transversal slice for an easy case (a) 
and a difficult one (b). The outline of the reference standard segmentation is in red, 
the outline of the segmentation of the method described in this paper is in blue. 

Table 2 lists the average values of the metrics and their scores over the test da ta 
set. It shows the performances for the three segmentation strategies: a) atlas 
matching b) probabilistic atlas with only linear registration and b) probabilistic 
atlas with nonrigid techniques. The average computat ion times for the liver 
segmentation task are 203.4 s., 25.3 s. and 211.7 s. respectively ([Dual CPU] 
Intel Xeon E5520 @ 2.27GHz). 

6 Conclusion 

We have presented two main contributions. Firs t ly the linear registration has 
been solved using an image normalization procedure applied to the labeled atlas. 
An advantage is tha t the proposed affine transformation is deñned by closed-form 
expressions involving only geometric moments. No additional optimization over 
pose parameters is necessary. This procedure has been applied both to atlas 
construction as atlas-based segmentation. Secondly we model the probabilistic 
appearance for each voxel and each label using parametric or nonparametric 
distributions and the prior term is determined by applying the vote-rule. The 
appearance and shape models are built with the variability of proposed linear 
registration. We adopt a graph cut - Bayesian framework for implementing the 
atlas-based segmentation. Finally we illustrate the benefits of our approach on 
the liver segmentation from CT images. 
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