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Abstract7

Image registration is one important task in many image processing applications. It aims8

to align two or more images so that useful information can be extracted through comparison,9

combination or superposition. This is achieved by constructing an optimal transformation10

which ensures that the template image becomes similar to a given reference image. Although11

many models exist, designing a model capable of modelling large and smooth deformation12

field continues to pose a challenge. This paper proposes a novel variational model for im-13

age registration using the Gaussian curvature as a regulariser. The model is motivated by14

the surface restoration work in geometric processing [Elsey and Esedoglu, Multiscale Model.15

Simul., (2009), pp. 1549-1573]. An effective numerical solver is provided for the model using16

an augmented Lagrangian method. Numerical experiments can show that the new model17

outperforms three competing models based on, respectively, a linear curvature [Fischer and18

Modersitzki, J. Math. Imaging Vis., (2003), pp. 81-85], the mean curvature [Chumchob,19

Chen and Brito, Multiscale Model. Simul., (2011), pp. 89-128] and the diffeomorphic demon20

model [Vercauteren at al., NeuroImage, (2009), pp. 61-72] in terms of robustness and accu-21

racy.22

23

Key words: Image registration, Non-parametric image registration, Regularisation, Gaus-24

sian curvature, surface mapping.25

1 Introduction26

Image registration along with image segmentation are two of the most important tasks in imaging27

sciences problems. Here we focus on image registration. Much research work has been done; for28

an extensive overview of registration techniques see [28, 18, 20]. The methods can be classified29

into parametric and non-parametric image registration based on the geometric transformation.30

For the first category, the transformation is governed by a finite set of image features or by31

expanding a transformation in terms of basis functions. The second category (which is our main32

concern in this paper) of non-parametric image registration methods is not restricted to a certain33
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parametrisable set. The problem is modelled as a functional minimisation via the calculus of34

variations. Given two images, the reference R and template T , the functional consists of a35

distance measure D(T,R,u) and a regularisation term S(u) where u = (u1(x), u2(x)) is the36

sought displacement vector at pixel x ∈ Ω ⊂ R
2. The term S(u) removes the ill-posedness of37

the minimisation problem. We use the squared L2 norm of the distance measure to quantify the38

differences between T and R as follows39

D(T,R,u) =
1

2

∫

Ω

(T (x+ u(x))−R(x))2dΩ. (1)

The distance measure in equation (1) is the sum of the squared difference (SSD) which is com-40

monly used and optimal for mono-modal image registration with Gaussian noise. For multi-modal41

image registration where T,R cannot be compared directly, other distance measures must be used42

[8]. Generally, the regularisation terms are inspired by physical processes such as elasticity, dif-43

fusion and motion curvature. As such, elastic image registration was introduced in [1] which44

assumed that objects are deformed as a rubber band.45

In previous works, higher order regularisation models [7, 3] were found to be the most ro-46

bust while the diffeomorphic demon model [22] offers the most physical transform in terms of47

(nearly) bijective mapping. Diffusion and total variation regularisation models based on first48

order derivatives are less complicated to implement but are at a disadvantage compared to higher49

order regularisation models based on second order derivatives due to two reasons. First, the for-50

mer methods penalise rigid displacement. They cannot properly deal with transformations with51

translation and rotation. Second, low order regularisation is less effective than high order one in52

producing smooth transformations which are important in several applications including medical53

imaging. The work of [5, 6, 7] proposed a high order regularisation model named as a linear54

curvature, which is an approximation of the surface (mean) curvature and the model is invariant55

to affine registration. This work was later refined in [11, 9, 10] where a related approximation56

to the sum of the squares of the principal curvatures was suggested and higher order boundary57

conditions were recommended. Without any approximation to the mean curvature, the works in58

[3, 2] developed useful numerical algorithms for models based on the nonlinear mean curvature59

regularisation and observed advantages over the linear curvature models for image registration;60

however the effect of mesh folding (bijective maps) was not considered. The diffeomorphic de-61

mon model [23] is widely used due to its property of bijective maps; however the bijection is not62

precisely imposed. Another useful idea of enforcing bijection, beyond the framework we consider,63

is via minimising the Beltrami coefficient which measures the distortion of the quasi-conformal64

map of registration transforms [12].65

In this paper we propose a high order registration model based on Gaussian curvature and66

hope to achieve large and smooth deformation without mesh folding. Although the Gaussian67

curvature is closely related to the mean curvature, it turns out our new model based on the68

Gaussian curvature is much better. The motivation of the proposed model comes from two69

factors. Firstly, we are inspired by the work of Elsey and Esedoglu [4] in geometry processing70

where Gaussian curvature of the image surface is used in a variational formulation. The authors71

proposed the Gaussian curvature as a natural analogue of the total variation of Rudin, Osher72

and Fatemi (ROF) [19] model in geometry processing. Aiming to generalise the ROF model73

to surface fairing where the convex shapes in 3D have similar interpretation to the monotone74

functions in 1D problems for the ROF model, they showed that, based on the Gauss Bonnet75
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theorem, the complete analogy of the total variation regularisation for surface fairing is the energy76

functional of the Gaussian curvature. A very important fact pointed out in [4] stated that the77

mean curvature of the surface is not a suitable choice for surface fairing because the model is not78

effective for preserving important features such as creases and corners on the surface (although79

the model is still effective for removing noise). Their claims are also supported by the work of [13]80

where the authors illustrated several advantages of Gaussian curvature over mean curvature and81

total variation in removing noise in 2D images. First, Gaussian curvature preserves important82

structures such as edges and corners. Second, only Gaussian curvature can preserve structures83

with low gradient. Third, the model is effective in removing noise on small scale features. Thus,84

we believe that Gaussian curvature is a more natural physical quantity of the surface than mean85

curvature. Here we investigate the potential of using Gaussian curvature to construct a high86

order regularisation model for non-parametric image registration of mono-modal images.87

The outline of this paper is as follows. In §2 we review the existing models for non-parametric88

image registration with focus on the demon, linear and mean curvature models. In §3 we introduce89

the mathematical background of Gaussian curvature for surfaces. In §4 we introduce a Gaussian90

curvature model and a numerical solver to solve the resulting Euler-Lagrange equations. We show91

in §5 some numerical tests including comparisons. Finally, we discuss the parameters’ selection92

issue for our model in §6 and present our conclusions in §7.93

2 Review of Non-parametric Image Registration94

In image registration, given two images T and R (which are assumed to be compactly supported95

and bounded operators T,R : Ω ⊂ R
d → R

+), the task is to transform T to match R as closely96

as possible. Although we consider d = 2 throughout this paper, with some extra modifications,97

this work can be extended to d = 3. In non-parametric image registration, the transformation is98

denoted by ϕ where ϕ is a vector valued function99

ϕ(x) : R2 → R
2

where x = (x, y). To separate the overall mapping from the displacement field, we will define100

ϕ(x) = x+ u(x)

where u(x) is the displacement field. Thus, finding u(x) is equivalent to finding ϕ. A non-101

parametric image registration model takes the form102

min
u(x)

Jγ(u(x)) = D(T,R,u(x)) + γS(u(x)) (2)

where the distance measure D is given as in (1) and the choice of regulariser S(u(x)) differentiates103

different models. Here u(x) is searched over a set U of admissible functions that minimise Jγ in104

(2). Usually, the set U is a linear subspace of a Hilbert space with Euclidean scalar product.105

The force term f(u), to be used by all models, is the gradient of (1) with respect to the106

displacement field u(x)107

f(u) = (f1(u), f2(u))
T = (T (x+ u(x))−R(x))∇uT (x+ u(x)) (3)
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which is non-linear. Different regularisation terms S(u(x)) will lead to different non-parametric108

image registration models. Below we list three popular models selected for tests and comparisons.109

Model LC. The first one is the linear curvature model by [6, 7, 15, 5], where110

SFMC(u) =

∫

Ω

[
(∆u1)

2 + (∆u2)
2
]
dΩ. (4)

This term is an approximation of the surface curvature ι(ul) through the mapping (x, y) →111

(x, y, ul(x, y)), l = 1, 2 where112

ι(ul) = ∇ ·
∇ul√

|∇ul|2 + 1
≈ ∆ul (5)

when |∇ul| ≈ 0. The Euler Lagrange equation for (2) with SFMC as the regularisation term is113

given by a fourth order PDE114

γ∆2u+ f(u) = 0 (6)

with boundary conditions ∆ul = 0,∇∆ul ·n = 0, l = 1, 2 and n the unit outward normal vector.115

The model consists of the second order derivative information of the displacement field which116

results in smoother deformations compared to those obtained using first order models based on117

elastic and diffusion energies. It is refined in [11, 9, 10] with nonlinear boundary conditions. The118

affine linear transformation belongs to the kernel SFMC(u) which is not the case in elastic or119

diffusion registration.120

Model MC. Next is the mean curvature model [3, 2]121

SMC(u) =

∫

Ω

[
k(ι(u1)) + k(ι(u2))

]
dΩ

where k(s) = 1
2s

2 and ι is as defined in (5). The Euler Lagrange equation for (2) with SMC as122

the regularisation term is given by:123

γ∇ ·
( 1√

|∇ul|2 + 1
∇k

′(ι(ul))−
∇ul · ∇k

′(ι(ul))

(
√
|∇ul|2 + 1)3

∇ul

)
+ fl(u) = 0, l = 1, 2 (7)

with boundary condition ∇ul · n = ∇ι(ul) · n = 0, l = 1, 2. One can use the multigrid method124

to solve equation (7) as in [3]; refer also to [2] for multi-modality image registration work.125

Model D. Finally Thirion [21] introduced the so-called demon registration method where126

every pixel in the image acts as the demons that force a pulling and pushing action in a similar127

way to what Maxwell did for solving the Gibbs paradox in thermodynamics. The original demon128

registration model is a special case of diffusion registration but it has been much studied and129

improved since 1998; see [17, 15, 25, 14]. The energy functional for the basic demon method is130

given by131

S(u) = ‖R(x)− T (x+ ũ+ u)‖2 +
σ2
i

σ2
x

‖u‖2 (8)

where ũ is the current displacement field, σ2
i and σ2

x account for noise on the image intensity132

and the spatial uncertainty respectively. Equation (8) can be linearised using first order Taylor133

expansion,134

J (u) = ‖R(x)− T (x+ ũ) + Ju‖2 +
σ2
i

σ2
x

‖u‖2 (9)
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where J is given by135

J = −
∇R+∇T (x+ ũ)

2

for an efficient second order minimisation. The first order condition of (9) leads to the new update136

for ũ137

u = −
R(x)− T (x+ ũ)

‖J‖2 +
σ2
i

σ2
x

J.

The additional use of v for ϕ = exp(v) helps to achieve a nearly diffeormorphic transformation138

(mapping), where v is the stationary velocity field of the displacement field u; see [24]. It should139

be remarked that the three main steps of the model cannot be combined into a single energy140

functional.141

In a discrete setting, since the image domain Ω is a square, all variational models are discretised142

by finite differences on a uniform grid. Refer to [3, 15]. The vertex grid is defined by143

Ωh =
{
xi,j = (xi, yj)

∣∣ 0 ≤ i ≤ N1 − 1, 0 ≤ j ≤ N2 − 1
}

where we shall re-use the notation T and R for discrete images of size N1 ×N2.144

3 Mathematical Background of the Gaussian curvature145

In differential geometry, the Gaussian curvature problem seeks to identify a hypersurface of Rd+1
146

as a graph z = u(x) over x ∈ Ω ⊂ R
d so that, at each point of the surface, the Gaussian curvature147

is prescribed. Let κ(x) denote the Gaussian curvature which is a real valued function in Ω ⊂ R
d.148

The problem is modelled by the following equation149

det(D2u)− κ(x)(1 + |Du|2)(d+2)/2 = 0 (10)

where D is the first order derivative operator. Equation (10) is one of the Monge-Ampere equa-150

tions. For d = 2, we have151

κ(x) ≡ −κGC =
uxxuyy − uxyuyx

(1 + u2
x + u2

y)
2

. (11)

In [4], the authors define a regularisation term using the Gaussian curvature of a closed surface152

based on the Gauss-Bonnet theorem.153

Theorem 3.1 Gauss-Bonnet Theorem. For a compact C2 surface ∂Σ, we have154

∫

∂Σ

κGCdσ = 2πχ

where dσ is the length element to the surface and χ is the Euler characteristic of the surface.155

Using this Theorem, it was shown in [4] that the complete analogy of the total variation regu-156

larisation for surface fairing is the energy functional of the Gaussian curvature. The analogous157

term S, to the total variation of a function, that appears in the ROF model [19], is given by158

S =

∫

∂Σ

|κ(x)|dσ

where dσ is the length element to the surface ∂Σ.159
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Gaussian curvature is one of the fundamental second order geometric properties of a surface.160

According to the Gauss’s Theorema Egregium, Gaussian curvature is intrinsic. For a local iso-161

metric mapping f : ∂Σ → ∂Σ′ between two surfaces, Gaussian curvature remains invariant i.e. if162

p ∈ ∂Σ and p′ ∈ ∂Σ′, then κGC(p) = κGC(p′) and the mapping f is smooth and diffeomorphic.163

We can also use a level set function to define the Gaussian curvature. Denote by φ the zero level164

set of the surface generated through the mapping (x, y) :→ (x, y, u(x, y)). Then φ = u(x, y) − z165

and ∇φ = (ux, uy,−1)T where ux = ∂u
∂x and uy = ∂u

∂y . The Gaussian curvature of the level set is166

given by167

κGC =
∇φH∗(φ)∇φT

|∇φ|4
(12)

where ∇φ = (φx, φy, φz)
T , |∇φ| =

√
φ2
x + φ2

y + φ2
z , H(φ) is the Hessian matrix and H∗(φ) is the168

adjoint matrix for H(φ). We have169

H(φ) =




uxx uxy 0

uyx uyy 0

0 0 0


 , H∗(φ) =




0 0 0

0 0 0

0 0 uxxuyy − uyxuxy


 .

Then,170

κGC =
uyxuxy − uxxuyy

(u2
x + u2

y + 1)2
.

This is why we set κGC = −κ(x) in equation (11). We shall use |κGC | to measure the Gaus-171

sian curvature as in [4] for a monotonically increasing function (since the functional should be172

nonnegative).173

4 Image Registration based on Gaussian Curvature174

Before introducing our new image registration model, we first illustrate some facts to support the175

use of Gaussian curvature.176

4.1 Advantages of a Gaussian curvature177

The total variation and Gaussian curvature. We use the volume based analysis introduced178

in [13] to compare two denoising models, respectively based on Gaussian curvature and the total179

variation:180

∂u

∂t
= ∇ ·

(
κ
(∣∣∣

u2
xy − uxxuyy

(u2
x + u2

y + 1)2

∣∣∣
)
∇u
)
, (13)

181

∂u

∂t
= ∇ ·

∇u

|∇u|
. (14)

Consider, for each α > 0, the time change of the volume vt,α = {(x, y, z) | 0 < z < |u(x, y, t)−α|}182

which is enclosed by the surface z = u(x, y, t) and the plane z = α. Assume |u(x, y, t) − α| =183

(u(x, y, t) − α)s with s either positive (s = 1) or negative (s = −1) at all points. Denote by184

ct,α the closed curve defined by the level set u(x, y, t) = α and accordingly by dt,α the 2D region185

enclosed by ct,α. The volume change in vt,α in time is given by186

V =
∂

∂t

∫

vt,α

dzdA =
∂

∂t

∫

vt,α

∫ |u(x,y,t)−α|

0

dzdA =
∂

∂t

∫

dt,α

|u(x, y, t)− α|dA

6



where dA is the area element. We now consider how V changes from evolving (13) or (14).187

If u is the solution of equation (14), then from Gauss’ theorem188

V =
∂

∂t

∫

dt,α

|u(x, y, t)− α|dA = s

∫

dt,α

∂u

∂t
dA = s

∫

dt,α

∇ ·
∇u

|∇u|
dA = s

∫

ct,α

∇u

|∇u|
· ndσ

where dσ is the length element and n is the unit normal vector to the curve ct,α which is repre-189

sented as n = s ∇u
|∇u| . Then190

V = s2
∫

ct,α

∇u

|∇u|
·
∇u

|∇u|
dσ =

∫

ct,α

dσ = |ct,α|

where |ct,α| is the length of the curve ct,α. Furthermore, the volume variation in time is191

∫

dt+δt,α

|u(x, y, t+ δt)− α|dA ≈

∫

dt,α

|u− α|dA+ sδt

∫

dt,α

∂u

∂t
dA =

∫

dt,α

[
|u− α|+ δt

|ct,α|

|dt,α|

]
dA

where |dt,α| denotes the area of the region dt,α. We can see that the change in u from t to t+δt is192

proportional to the ratio
|ct,α|
|dt,α| . So, when this ratio is large (indicating possibly a noise presence),193

the total variation model reduces it and hence removes noise. However, important features of u194

which have a large level set ratio are removed also and so not preserved by the total variation195

model (14).196

Using similar calculations to before for the Gaussian curvature scheme (13), we have197

V =
∂

∂t

∫

dt,α

|u(x, y, t)− α|dA = s

∫

dt,α

∇ ·
(
κ
(∣∣∣

u2
xy − uxxuyy

(u2
x + u2

y + 1)2

∣∣∣
)
∇u
)
dA

= s

∫

ct,α

(
κ
(∣∣∣

u2
xy − uxxuyy

(u2
x + u2

y + 1)2

∣∣∣
)
∇u
)
· ndσ =

∫

ct,α

(
κ
(∣∣∣

u2
xy − uxxuyy

(u2
x + u2

y + 1)2

∣∣∣
))

|∇u|dσ.

(15)

From here, we observe that the quantity V for the subdomain vt,α is dependent on the product of198

the variation and the Gaussian curvature on the level curve. The function κ in (15) controls and199

scales the speed of the volume change in contrast to the total variation scheme where V depends200

only on the variation of the level curve. Consider a point p = (x0, y0, α) where α = u(x0, y0).201

Gaussian curvature κ = κ1κ2 based on two principal curvatures κ1 and κ2 where κ1 is the202

curvature of the level curve passing the point p and κ2 is the curvature of the path which passes203

the point and κ2 is orthogonal to the level curve. If the Gaussian curvature on one level curve is204

zero then there is no change in V regardless of variation on the level curves. In contrast, with the205

total variation, if there is a variation in the level curve, then there is a change in V . Based on206

this observation, we believe that the Gaussian curvature model is better than the total variation207

model for preserving features on surfaces.208

The mean curvature and Gaussian curvature. The mean curvature (MC) ι = (κ1+κ2)/2209

is also widely used. Next, we show that, though closely related, Gaussian curvature (GC) is better210

than mean curvature for surfaces in three ways.211

First, Gaussian curvature is invariant under rigid and isometric transformations. In contrast,212

mean curvature is invariant under rigid transformations but not under isometric transforma-213

tions. Rigid transformations preserve distance between two points while isometric transforma-214

tions preserve length along surfaces and preserve angles between curves on surfaces. To illustrate215
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invariance, consider a surface216

z1(x, y) = ax2 + by2,

whose Gaussian curvature and mean curvature are respectively217

κ =
0− (2a)(2b)

(1 + 4a2x2 + 4b2y2)2
, ι =

(1 + 4b2y2)(2a) + (1 + 4a2x2)(2b)

(1 + 4a2x2 + ab2y2)3/2
.

If we flip the surface upside down (isometric transformation) where z′1(x, y) = −ax2 − by2, we218

will have the same value for the Gaussian curvature and a different value for the mean curvature.219

Thus, Gaussian curvature is invariant under isometric transformation.220

Second, Gaussian curvature can be used to localise the tip of a surface better than mean221

curvature. Consider222

z2(x, y) = −
1

2
(x2 + y2)

as shown in Figure 1 (a). Then, we compute the mean and Gaussian curvature for the surface as223

depicted in Figures 1 (b) and (c) respectively. For Figure 1 (b), we display the negative of the224

mean curvature for better assessment and visualisation. For both figures, the maximal values are225

given at the center of the tip. The value given by the Gaussian curvature is sharper than that of226

the mean curvature. The highest point of the Gaussian curvature is better distinguished from its227

neighbourhood compared to the highest point of the mean curvature.
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(a) Surface z2(x, y)
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(b) Negative mean curvature
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(c) Gaussian curvature

Figure 1: Representation of a surface with GC and MC. (a) shows a surface model with a tip
point. (b) is the negative mean curvature and (c) is the Gaussian curvature. The highest point
in (c) is better localised than in (b).

228

Third, Gaussian curvature can locate saddle points better than mean curvature. Take229

z3(x, y) = −
1

2
(x2 − y2)

as one example. The surface along with its mean and Gaussian curvatures are given in Figures230

2 (a), (b) and (c) respectively. The mean curvature for this surface appears complex where the231

largest value is not at the saddle point and the saddle point cannot be easily located. However,232

Gaussian curvature gets its highest value at the saddle point and is therefore able to accurately233

identify the saddle point within its neighbourhood.234

In addition to these three examples and observations, a very important fact point out in [4]235

stated that the mean curvature of the surface is not a suitable choice for surface fairing because236

the model is not effective for preserving important features such as creases and corners on the237

surface (although the model is effective for removing noise). This is true when we are referring238
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(c) Negative Gaussian curvature

Figure 2: Location of a surface’s saddle point by GC and MC. (a) is the surface with a saddle
point. (b) is the negative mean curvature and (c) is the negative Gaussian curvature. The highest
point in (b) is not at the saddle point and for (c), the saddle point is better distinguishable from
its neighbourhood.

to surface fairing (surface denoising) but not necessarily true for 2D image denoising. From the239

recent works done in image denoising [4, 13], we observed several advantages of Gaussian curvature240

over total variation and mean curvature. Therefore, we might conjecture that Gaussian curvature241

may outperform existing models in image registration. To our knowledge there exists no previous242

work on this topic.243

4.2 The proposed registration model244

Now we return to the problem of how to align or register two image functions T (x), R(x). Let245

the desired and unknown displacement fields between T and R be the surface map (x, y) :→246

(x, y, ul(x, y)) where l = 1, 2 and with u = (u1, u2). We propose our Gaussian curvature based247

image registration model as248

min
u∈C2(Ω)

Jγ(u(x)) =
1

2

∫

Ω

(T (x+ u)−R(x))
2
dΩ + γSGC(u(x)) (16)

where249

SGC(u(x)) =

2∑

l=1

SGC(ul), SGC(ul) =

∫

Ω

∣∣∣∣∣
ul,xyul,yx − ul,xxul,yy

(u2
l,x + u2

l,y + 1)2

∣∣∣∣∣ dΩ.

The above model (16) leads to two Euler Lagrange equations:250






γ∇ ·

(
4|u1,xyu1,yx − u1,xxu1,yy|

N
3
1

∇u1

)
+ γ∇ ·B1,1 + γ∇ ·B1,2 + f1 = 0

γ∇ ·

(
4|u2,xyu2,yx − u2,xxu2,yy|

N
3
2

∇u2

)
+ γ∇ ·B2,1 + γ∇ ·B2,2 + f2 = 0

(17)

where251

N l = u2
l,x + u2

l,y + 1, Bl,1 =

((
−
Slul,yy

N l

)

x

,

(
Slul,xy

N l

)

x

)

Bl,2 =

((
Slul,yx

N l

)

y

,

(
−
Slul,xx

N l

)

y

)
, Sl = sign(ul,xyul,yx − ul,xxul,yy)

f = (f1, f2)
T = (T (x+ u)−R(x))∇uT (x+ u), l = 1, 2
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and boundary conditions ∇ul ·n = 0, l = 1, 2, where n is the normal vector at the boundary ∂Ω.252

Derivation of the resulting Euler-Lagrange equations for this model can be found in Appendix A.253

The equations are fourth order and nonlinear with anisotropic diffusion. Gradient descent type254

methods are not feasible and one way to solve them is by a geometric multigrid as in [3]. Here,255

instead, we present a fast and efficient way to solve the model (16) on a unilevel grid.256

4.3 Augmented Lagrangian Method257

The augmented Lagrangian method (ALM) is often used for solving constraint minimisation258

problems by replacing the original problem with an unconstrained problem. The method is259

similar to the penalty method where the constraints are incorporated in the objective functional260

and the problem is solved using alternating minimisation of each of the sub-problems. However,261

in ALM, there are additional terms in the objective functional known as Lagrange multiplier262

terms arising when incorporating the constraints. Similar works on the augmented Lagrangian263

method in image restoration can be found in [26, 27].264

To proceed, we introduce two new dual variables q1 and q2 where q1 = ∇u1(x) and q2 =265

∇u2(x). Consequently we obtain a system of second order PDEs which are more amendable to266

effective solution.267

We obtain the following refined model for Gaussian curvature image registration268

min
u1,u2,q1,q2

J (u1, u2, q1, q2) = D(T,R,u(x)) + γSGC(q1) + γSGC(q2)

s.t q1 = ∇u1(x), q2 = ∇u2(x)

and further reformulate J (u1, u2, q1, q2) to get the augmented Lagrangian functional269

LGC(u1, u2, q1, q2;µ1,µ2) =
1

2
‖T (x+ u(x))−R(x)‖22 + γSGC(q1) + γSGC(q2)

+ 〈µ1, q1 −∇u1〉+ 〈µ2, q2 −∇u2〉

+
r

2
‖q1 −∇u1‖

2
2 +

r

2
‖q2 −∇u2‖

2
2

(18)

where µ1,µ2 are the Lagrange multipliers, the inner products are defined via the usual integration270

in Ω and r is a positive constant. We use an alternating minimisation procedure to find the optimal271

values of u1, u2, q1, q2 and µ1,µ2 where the process involves only two main steps.272

Step 1. For the first step we need to update q1, q2 for any given u1, u2,µ1,µ2. The objective273

functional is given by274

min
q1,q2

γSGC(q1) + γSGC(q2) + 〈µ1, q1〉+ 〈µ2, q2〉+
r

2
‖q1 −∇u1‖

2 +
r

2
‖q2 −∇u2‖

2.

This sub-problem can be solved using the following Euler Lagrange equations:275






− γ
(( (−q1,1)y

Γ2
1

)

x
+
(−(q1,1)x

Γ2
1

)

y

)
− γ

4S1D1q1,2
Γ3
1

+ µ1,2 + r(q1,2 − (u1)y) = 0,

− γ
(( (q1,2)y

Γ2
1

)

x
+
(−(q1,2)x

Γ2
1

)

y

)
− γ

4S1D1q1,1
Γ3
1

+ µ1,1 + r(q1,1 − (u1)x) = 0

(19)

whereD1 = det(∇q1) = (q1,1)x(q1,2)y−(q1,1)y(q1,2)x, Γ1 = 1+u2
1,x+u2

1,y and S1 = sign
(

D1

(‖∇u1‖2+1)2

)
.276
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We have a closed form solution for this step, if solving alternatingly, where277

q1,1 =
Γ3
1

(
− γ

((
(q1,2)y

Γ2
1

)

x
+
(

−(q1,2)x
Γ2
1

)

y

)
+ µ1,1 − r(u1)x

)

−rΓ3
1 + γ4S1D1

,

q1,2 =
Γ3
1

(
− γ

((
(q1,1)y

Γ2
1

)

x
+
(

−(q1,1)x
Γ2
1

)

y

)
+ µ1,2 − r(u1)y

)

−rΓ3
1 + γ4S1D1

.

Similarly, we solve q2,1, q2,2 from278






− γ
(( (−q2,1)y

Γ2
2

)

x
+
(−(q2,1)x

Γ2
2

)

y

)
− γ

4S2D2q2,2
Γ3
2

+ µ2,1 + r(q2,2 − (u2)y) = 0,

− γ
(( (q2,2)y

Γ2
2

)

x
+
(−(q2,2)x

Γ2
2

)

y

)
− γ

4S2D2q2,1
Γ3
2

+ µ2,1 + r(q2,1 − (u2)x) = 0

(20)

whereD2 = det(∇q2) = (q2,1)x(q2,2)y−(q2,1)y(q2,2)x, Γ2 = 1+u2
2,x+u2

2,y and S2 = sign
(

D2

(‖∇u2‖2+1)2

)
.279

Step 2. For the second step we need to update u1, u2 for any given q1, q2 and µ1,µ2 with280

the following functional281

min
u1,u2

1

2
‖T (x+ u)−R(x)‖22 − 〈µ1,∇u1〉 − 〈µ2,∇u2〉+

r

2
‖q1 −∇u1‖

2 +
r

2
‖q2 −∇u2‖

2.

Thus, we have the following Euler Lagrange equations:282

{
− r∆u1 + f1 +∇ · µ1 + r∇ · q1 = 0

− r∆u2 + f2 +∇ · µ2 + r∇ · q2 = 0
(21)

with Neumann boundary conditions ∇ul ·n = 0, l = 1, 2. To solve equation (21), first, we linearise283

the force term f using Taylor expansion284

fl(u
(k+1)
1 , u

(k+1)
2 ) = fl(u

(k)
1 , u

(k)
2 ) + ∂u1

fl(u
(k)
1 , u

(k)
2 )δu

(k)
l + ∂u2

f1(u
(k)
1 , u

(k)
2 )δu

(k)
2 + . . .

≈ fl(u
(k)
1 , u

(k)
2 ) + σ

(k)
l,1 δu

(k)
1 + σl,2δu

(k)
2

where285

σ
(k)
l,1 = ∂u1

fl(u
(k)
1 , u

(k)
2 ), σl,2 = ∂u2

fl(u
(k)
1 , u

(k)
2 ), δu

(k)
1 = u

(k+1)
1 − u

(k)
1 , δu

(k)
2 = u

(k+1)
2 − u

(k)
2 .

Second, we approximate σ
(k)
l,1 and σ

(k)
l,2 with286

σ
(k)
l,1 =

(
∂ulT (x+ u(k))

)(
∂u1T (x+ u(k))

)

σ
(k)
l,2 =

(
∂ulT (x+ u(k))

)(
∂u2T (x+ u(k))

)
.

The discrete version of equation (21) is as follows287

Nh(uh,(k))uh,(k+1) = Bh(uh,(k)) (22)
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where288

Nh(u(k)) =
[ −rL+ σh

11(u
h,(k)) σh

12(u
h,(k))

σh
21(u

h,(k)) −rL+ σh
22(u

h,(k))

]
,

Bh(u(k)) =
[ −Gh

1 + fh
1 (u

(k)
1 , u

(k)
2 ) + σh

11(u
(k))u

h,(k)
1 + σh

12(u
h,(k))u

h,(k)
2

−Gh
2 + fh

2 (u
(k)
1 , u

(k)
2 ) + σh

21(u
(k))u

h,(k)
1 + σh

22(u
h,(k))u

h,(k)
2

]
,

L is the discrete version of the Laplace operator ∆ and Gh
l is the discrete version of289

∇ · µl + r∇ · ql, l = 1, 2.

Third, we solve the system of equation (22) using a weighted pointwise Gauss Siedel method290

uh,(k+1) = (1 − ω)uh,(k) + ω
(
Nh(u(k))

)−1

Bh(u(k))

where ω ∈ (0, 2) and we choose ω = 0.9725.291

The iterative algorithm to solve (18) is now summarised as follows.

Algorithm 1 Augmented Lagrangian method for the Gaussian Curvature Image Registration.

1. Initialise µ1 = µ2 = 0,u(x) = 0, γ, r.

2. For k = 0, 1, ..., IMAX

(a) Step 1: Solve (19-20) for (q
(k+1)
1 , q

(k+1)
2 ) with (u1, u2) = (u

(k)
1 , u

(k)
2 ).

(b) Step 2: Solve (21) for (u
(k+1)
1 , u

(k+1)
2 ) with (q1, q2) = (q

(k+1)
1 , q

(k+1)
2 ).

(c) Step 3: Update Lagrange multipliers.

µ
(k+1)
1 = µ

(k)
1 + r(q

(k+1)
1 −∇u

(k+1)
1 ), µ

(k+1)
2 = µ

(k)
2 + r(q

(k+1)
2 −∇u

(k+1)
2 )

3. End for.

292

5 Numerical Results293

We use two numerical experiments to examine the efficiency and robustness of the Algorithm294

1 on a variety of deformations. To judge the quality of the alignment we calculate the relative295

reduction of the similarity measure296

ε =
D(T,R,u)

D(T,R)

and the minimum value of the determinant of the Jacobian matrix J of the transformation,297

denoted as F298

J =

[
1 + u1,x u1,y

u2,x 1 + u2,y

]
, F = min (det(J)) . (23)

We can observe that when F > 0, the deformed grid is free from folding and cracking.299

All experiments were run on a single level. Experimentally, we found that r ∈ [0.02, 2] works300

well for several types of images. As for the stopping criterion, we use tol = 0.001 for the residual of301

the Euler-Lagrange equations (19)-(21) and the maximum number of iterations is 30. Experiments302

were carried out using Matlab R2014b with Intel(R) core (TM) i7-2600 processor and 16G RAM.303
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5.1 Test 1: A Pair of Smooth X-ray Images304

Images for Test 1 are taken from [16] where X-ray images of two hands of different individuals305

need to be aligned. The size of images are 128×128 and the recovered transformation is expected306

to be smooth. The scaled version of the transformation and the transformed template image is307

given in Figures 3 (d) and (e) respectively. The transformation is smooth and the model is able308

to solve such a problem. For comparison, the transformed template images for the diffeormorphic
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Figure 3: Test 1 (X-ray hand). Illustration of the effectiveness of Gaussian curvature with smooth
problems. On the top row, from left to right: (a) template, (b) reference and (c) the difference
before registration. On the bottom row, from left to right: (d) the transformation applied to a
regular grid, (e) the transformed template image and (f) the difference after registration. As can
be seen from the result (e) and the small difference after registration (f), Gaussian curvature is
able to solve smooth problems.

309

demon method, linear, mean and Gaussian curvatures are shown in Figures 4 (a), (b), (c) and310

(d) respectively. We can observe that there are some differences of these images inside the red311

boxes where only Gaussian curvature delivering the best result of the features inside the boxes.312

The enlargements of the red boxes in Figure 4 are shown in Figure 5 for all models where the313

best result is given by the Gaussian curvature for both parts of the hand.314

We summarised the results for Test 1 in Table 1 where ML and SL stand for multi and single315

level respectively. For all models, γ is chosen as small as possible such that F > 0. We can see316

that the fastest model is the diffeormorphic demon, followed by linear and mean curvature. The317

current implementation for Gaussian curvature is on single level and the model uses augmented318

Lagrangian method which has four dual variables and four lagrange multipliers terms. Thus, it319

requires more computational time than the other models.320
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Figure 4: Test 1 (X-ray hand). Comparison of Gaussian curvature with competing methods. The
transformed template image using (a) Model D, (b) Model LC, (c) Model MC and (d) Gaussian
curvature. Note the difference of these three images inside the red boxes.

Measure Model D Model LC Model MC GC
ML SL ML SL SL SL

γ 1.6 1.6 0.1 0.5 0.0001 0.0001
Time (s) 15.19 186.48 84.33 12.98 275.3 953.15

ε 0.1389 0.1229 0.0720 0.3780 0.0964 0.0582
F 0.0600 0.1082 0.3894 0.1973 0.6390 0.3264

Table 1: Quantitative measurements for all models for Test 1. ML and SL stand for multi and
single level respectively. γ is chosen as small as possible such that F > 0 for all methods. F > 0
indicates the deformation consists of no folding and cracking of the deformed grid. We can see
that the smallest value of ε is given by Gaussian curvature (GC).

5.2 Test 2: A Pair of Brain MR Images321

We take as Test 2 a pair of medical images of size 256×256 from the Internet Brain Segmentation322

Repository (IBSR) http://www.cma.mgh.harvard.edu/ibsr where 20 normal MR brain images323

and their manual segmentations are provided. We choose the particular pair of individuals with324

different sizes of ventricle to illustrate a large deformation problem. Figure 6 shows the test images325

and the registration results using Gaussian curvature model. We can see that the model is able326

to solve real medical problems involving large deformations, which is particularly important for327

atlas construction in medical applications. Figure 7 shows the transformed template images for328

all four methods. We can see that Gaussian curvature gives the best result inside the red boxes329

in comparison with the diffeomorphic demon, the linear and mean curvature models as depicted330
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Figure 5: Test 1 (X-ray hand). Comparison of transformed templates in zoomed-in boxes and
their local ε values: (a) Model D, (b) Model LC, (c) Model MC and (d) Gaussian curvature.
Gaussian curvature has the smallest ε value.

in Figure 7 (d). The enlargements of the red boxes in Figure 7 are shown in Figure 8 where we331

can observe that the Gaussian curvature gives better alignment for both parts of the brain.332

Measure Model D Model LC Model MC GC
ML SL ML SL SL SL

γ 1.2 1.4 0.16 2.0 0.0001 0.0001
Time (s) 23.89 209.00 275.04 35.70 830.22 1053.7

ε 0.2004 0.7580 0.1128 0.4283 0.1998 0.1062
F 0.0277 0.0387 0.3157 0.0148 0.8240 0.0138

Table 2: Quantitative measurements for all models for Test 2. ML and SL stand for multi and
single level respectively. γ is chosen to be as small as possible such that F > 0 for all models.
F > 0 indicates the deformation consists of no folding and cracking of the deformed grid. We
can see that the smallest value of ε is given by Gaussian curvature (GC).

The values of the quantitative measurements for Test 2 are recorded in Table 2 where the333

lowest values of ε are given by the Gaussian curvature model indicating higher similarity between334

the transformed template result and the reference image. However, our proposed model required335

more time than the other models since the model consists more variables than the others.336

6 Discussions337

Gaussian curvature has been proposed as a novel regulariser for a variational image registration338

model. We have presented an efficient numerical scheme using the augmented Lagrangian method339

to solve the model, though the scheme is not yet optimal in efficiency. All of the experimental340

results indicate that Gaussian curvature obtains improved results over mean curvature, linear341
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Figure 6: Test 2: A pair of Brain MR images. Illustration of the effectiveness of Gaussian cur-
vature with real medical images. On the top row, from left to right: (a) template, (b) reference
and (c) the difference before registration. On the bottom row, from left to right: (d) the trans-
formation applied to a regular grid, (e) the transformed template image and (f) the difference
after registration. As can be seen from the result (e) and the small difference after registration
(f), Gaussian curvature can be applied to real medical images and is able to obtain good results.

curvature and the demon method for mono-modal image registration. The model can be extended342

to multi-modality image registration by changing the distance measure; we show one such result343

for a pair of multi-modality images in Figure 11 for the Gaussian curvature model with mutual344

information [2, 18] as the distance measure. We now discuss briefly the two parameters γ and r.345

Parameter γ. The regularisation parameter γ controls the smoothness of the deformation346

field. As with all inverse problems, the choice of such a parameter is important. Noting that347

extremely large γ leads to smooth but yet little deformation and extremely small γ leads large348

but non-smooth deformation, our selection strategy is based on a continuation idea of starting349

from a large γ0 and reducing it till some prescribed value γ∗ and before F ≤ 0. To illustrate the350

idea, in Figure 9, we show experiments with varying values of γ with a fixed r = 0.02. From the351

figure, we observe that decreasing γ will decrease the value F and ε until at a value γ = γ∗ (in352

Figure 9, γ∗ = 0.0001). We also observe how the functional J in equation (16) evolving during353

the iteration. The results is shown in Figure 9 (c) for Test 1 using γ = 0.0001 and r = 0.02. The354

functional J and the fitting term D are decreasing and the regularisation term SGC is increasing355

indicating the convergence of the model. Decreasing γ beyond γ∗ leads slow reduction of F and356

ε in this example but for others, reduction of F may be fast and F ≤ 0 may be reached.357

Parameter r. The parameter r used in the ALM stabilises the minimisation problem in a358

quadratic energy term based on the distance between ∇ul and ql. A large value of r brings ∇ul359

and ql close together and produces a high level of dissimilarity between R and T as shown in360
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Figure 7: Test 2: A pair of Brain MR images. Comparison of Gaussian curvature with competing
methods. The transformed template image using (a) Model D, (b) Model LC, (c) Model MC,
and (d) Gaussian curvature. Notice the differences of these three images inside the red boxes.
Considerably more accurate results are obtained, particularly within these significant regions, by
employment of the Gaussian curvature model.
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Figure 8: Test 2: A pair of Brain MR images. Comparison of transformed templates in zoomed-
in boxes and their local ε values: (a) Model D, (b) Model LC, (c) Model MC and (d) Gaussian
curvature. Again Gaussian curvature has the smallest ε value.
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Figure 9: The effects on the values of F and ε for various values of γ are shown in (a) and (b).
We obtain these figures using r = 0.02 for Test 1 and it confirms that γ controls the smoothness
of the deformation field. The iteration history for Test 1 is shown in (c). Since the functional J
decreasing, it confirms the convergence of the proposed model.
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Figure 10: The effects on the value of F , n1, n2 and ε for various values of r. In (a), F decrease
with decreasing value of r. We should use the value of r, such that F > 0 to avoid mesh folding.
In (b), we can see that increasing the value of r will decrease the difference between q1, q2 and
∇u1,∇u2. From (c), with a large value of r, we have smaller residual indicated by n2. In (d),
although small r = 0.002, gives a very small ε, but since F < 0 for this value of r, we choose the
optimal value of r to be r = 0.02.

Figure 10. It also controls the smoothness of the deformation field. Define361

n1 =
1

|Ω|
mean (q1 −∇u1, q2 −∇u2) (24)

and n2 as the average residual of three equations (19), (20) and (21). With a very small r,362

the residual increases and could produce mesh folding even if the value of ε is small. Thus, an363
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optimal value of r to ensure that ε is small and F > 0 is necessary. Our selection idea is again364

continuation: start with a large value of r (for example r = 2) and check n2. If n2 is close to zero365

we reduce r by factor (e.g. 10). Otherwise we increase r. The procedure stops when a prescribed366

number of steps is reached. In Figure 10 for Test 1 (with a fixed γ = 0.008), we vary the value367

r ∈ [0.002, 2] and plot four quantities against r This procedure of selecting r was done on a coarse368

grid (here 16× 16), with a small number of iterations. Thus, the computational cost is low. For369

Tests 1-2, we obtain r = 0.02 through this procedure.370

A brief summary. The linear curvature model is relatively easy to solve, based on ap-371

proximation of the mean curvature. The mean curvature model for image registration is highly372

nonlinear, making it challenging to solve. The Gaussian curvature resembles the mean curvature373

in many ways, though different, but its model appears to deliver better quality than the mean374

curvature. The diffeormorphic demon model is equivalent to the second order gradient descent375

on the SSD as shown in [17]. The model is only limited to mono-modality images and it is not376

yet applicable to multi-modality images. Our Gaussian curvature model however can be easily377

modified to work with multi-modality images by replacing the SSD by a mutual information or378

normalised gradient fields based regularizer; an optimal solver is yet to be developed.
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Figure 11: Results of Gaussian curvature image registration for multi-modality images. The
model is able to register multi-modality images with mutual information as the distance measure.

379

7 Conclusions380

We have introduced a novel regularisation term for non-parametric image registration based on381

the Gaussian curvature of the surface induced by the displacement field. The model can be382
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effectively solved using the augmented Lagrangian and alternating minimisation methods. For383

comparison, we used three models: the linear curvature [6], the mean curvature [3] and the demon384

algorithm [24] for mono-modality images. Numerical experiments show that the proposed model385

delivers better results than the competing models.386

Appendix A – Derivation of the Euler-Lagrange Equations387

Let q1 = ux and q2 = uy; then we can write the Gaussian curvature regularisation term as388

SGC(q1, q2) =

∫

Ω

∣∣∣
q1,xq2,y − q1,yq2,x
(1 + q21 + q22)

2

∣∣∣dxdy.

From the optimality condition dSGC(q1,q2)
dq1

= dSGC(q1,q2)
dq2

= 0, then d
dǫ1

SGC(q1+ ǫ1ϕ1, q2)
∣∣∣
ǫ1=0

= 0389

and d
dǫ2

SGC(q1, q2 + ǫ2ϕ2)
∣∣∣
ǫ2=0

= 0. In details,390

d

dǫ1

∫

Ω

∣∣∣
(q1 + ǫ1ϕ1)xq2,y − (q1 + ǫ1ϕ1)yq2,x

(1 + (q1 + ǫ1ϕ1)2 + q22)
2

∣∣∣dxdy
∣∣∣
ǫ=0

=

∫

Ω

S
d

dǫ1

[
(q1 + ǫ1ϕ1)xq2,y − (q1 + ǫ1ϕ1)yq2,x

(1 + (q1 + ǫ1ϕ1)2 + q22)
2

]
dxdy

∣∣∣
ǫ=0

= 0

(25)

where S = sign
(

q1,xq2,y−q1,yq2,x
(1+q2

1
+q2

2
)2

)
. From (25),391

∫

Ω

S

[
ϕ1,xq2,y − ϕ1,yq2,x
(1 + q21 + q22)

2
+ (q1,xq2,y − q1,yq2,x)(−4ϕ1q1(1 + q21 + q22)

−3)

]
dxdy

=

∫

Ω

Sϕ1,xq2,y
Γ2

−
Sϕ1,yq2,x

Γ2
−

4SDq1ϕ1

Γ3
dxdy = 0,

where Γ = 1 + q21 + q22 , D = q1,xq2,y − q1,yq2,x.

Using the Green theorem
∫
∂Ω

φω · nds−
∫
Ω
φdiv(ω)dxdy =

∫
Ω
∇φ · ωdxdy, we have,392

∫

Ω

Sϕ1,xq2,y
Γ2

−
Sϕ1,yq2,x

Γ2
dxdy =

∫

∂Ω

ϕ1

(
Sq2,y
Γ2

,
Sq2,x
Γ2

)
· nds−

∫

Ω

ϕ1div

(
Sq2,y
Γ2

,
Sq2,x
Γ2

)
= 0

where φ = ϕ1,ω =
(

Sq2,y
Γ2 ,

Sq2,x
Γ2

)
. Setting the boundary integral to zero, then we derive393

∫

Ω

ϕ1div

(
Sq2,y
Γ2

,
Sq2,x
Γ2

)
= 0.

Finally, we use the fundamental lemma of calculus of variation to get:394

∇ ·

(
Sq2,y
Γ2

,
Sq2,x
Γ2

)
−

4SDq1
Γ3

= 0.

Similarly, for d
dǫ2

SGC(q1, q2 + ǫ2ϕ2)
∣∣∣
ǫ2=0

= 0, we finally obtain equation (17). �395
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