4,395 research outputs found

    An iris based lungs pre-diagnostic system

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Human lungs are essential respiratory organs. Different Obstructive Lung Diseases (OLD) such as bronchitis, asthma, lungs cancer etc. affects the respiration. Diagnosing OLD in the initial stage is better than diagnosing and curing them later. The delay in diagnosing OLD is due to expensive diagnosing tool and experts requirement. Therefore, a non-invasive diagnosing tool for OLD is required that identifies dysfunctional lungs without the support of expert, complex and expensive diagnosing types of equipment. In this work, we design an Iris based Lungs Pre-diagnostic System (ILPS). The ILPS takes iris images as input and identifies dysfunctional Lungs based on iridology map. While testing with 50 lungs patients, the results confirm that the ILPS identifies dysfunctional lungs patients with the accuracy of 88%.The research leading to these results has received funding from the Higher Education Commission under NRPU 2017/18.Peer ReviewedPostprint (author's final draft

    Pupillometric analysis for assessment of gene therapy in Leber Congenital Amaurosis patients

    Get PDF
    Background: Objective techniques to assess the amelioration of vision in patients with impaired visual function are needed to standardize efficacy assessment in gene therapy trials for ocular diseases. Pupillometry has been investigated in several diseases in order to provide objective information about the visual reflex pathway and has been adopted to quantify visual impairment in patients with Leber Congenital Amaurosis (LCA). In this paper, we describe detailed methods of pupillometric analysis and a case study on three Italian patients affected by Leber Congenital Amaurosis (LCA) involved in a gene therapy clinical trial at two follow-up time-points: 1 year and 3 years after therapy administration. Methods: Pupillary light reflexes (PLR) were measured in patients who had received a unilateral subretinal injection in a clinical gene therapy trial. Pupil images were recorded simultaneously in both eyes with a commercial pupillometer and related software. A program was generated with MATLAB software in order to enable enhanced pupil detection with revision of the acquired images (correcting aberrations due to the inability of these severely visually impaired patients to fixate), and computation of the pupillometric parameters for each stimulus. Pupil detection was performed through Hough Transform and a non-parametric paired statistical test was adopted for comparison. Results: The developed program provided correct pupil detection also for frames in which the pupil is not totally visible. Moreover, it provided an automatic computation of the pupillometric parameters for each stimulus and enabled semi-automatic revision of computerized detection, eliminating the need for the user to manually check frame by frame. With reference to the case study, the amplitude of pupillary constriction and the constriction velocity were increased in the right (treated eye) compared to the left (untreated) eye at both follow-up time-points, showing stability of the improved PLR in the treated eye. Conclusions: Our method streamlined the pupillometric analyses and allowed rapid statistical analysis of a range of parameters associated with PLR. The results confirm that pupillometry is a useful objective measure for the assessment of therapeutic effect of gene therapy in patients with LCA

    Imaging the Pancreatic Beta Cell

    Get PDF

    A comparative analysis on diagnosis of diabetes mellitus using different approaches: A survey

    Get PDF
    Diabetes Mellitus is commonly known as diabetes. It is one of the most chronic diseases as the World Health Organization (WHO) report shows that the number of diabetes patients has risen from 108 million to 422 million in 2014. Early diagnosis of diabetes is important because it can cause different diseases that include kidney failure, stroke, blindness, heart attacks, and lower limb amputation. Different diabetes diagnosis models are found in literature, but there is still a need to perform a survey to analyze which model is best. This paper performs a literature review for diabetes diagnosis approaches using Artificial Intelligence (neural networks, machine learning, deep learning, hybrid methods, and/or stacked-integrated use of different machine learning algorithms). More than thirty-five papers have been shortlisted that focus on diabetes diagnosis approaches. Different datasets are available online for the diagnosis of diabetes. Pima Indian Diabetes Dataset (PIDD) is the most commonly used for diabetes prediction. In contrast with other datasets, it has key factors which play an important role in diabetes diagnosis. This survey also throws light on the weaknesses of the existing approaches that make them less appropriate for a diabetes diagnosis. In artificial intelligence techniques, deep learning is widespread and in medical research, heart rate is getting more attention. Deep learning combined with other algorithms can give better results in diabetes diagnosis and heart rate should be used for other cardiac disease diagnoses

    Imaging in Ophthalmology

    Get PDF

    Non-Invasive Early Diagnosis of Obstructive Lung Diseases Leveraging Machine Learning Algorithms

    Get PDF
    Lungs are a vital human body organ, and different Obstructive Lung Diseases (OLD) such as asthma, bronchitis, or lung cancer are caused by shortcomings within the lungs. Therefore, early diagnosis of OLD is crucial for such patients suffering from OLD since, after early diagnosis, breathing exercises and medical precautions can effectively improve their health state. A secure non-invasive early diagnosis of OLD is a primordial need, and in this context, digital image processing supported by Artificial Intelligence (AI) techniques is reliable and widely used in the medical field, especially for improving early disease diagnosis. Hence, this article presents an AI-based non-invasive and secured diagnosis for OLD using physiological and iris features. This research work implements different machine-learning-based techniques which classify various subjects, which are healthy and effective patients. The iris features include gray-level run-length matrix-based features, gray-level co-occurrence matrix, and statistical features. These features are extracted from iris images. Additionally, ten different classifiers and voting techniques, including hard and soft voting, are implemented and tested, and their performances are evaluated using several parameters, which are precision, accuracy, specificity, F-score, and sensitivity. Based on the statistical analysis, it is concluded that the proposed approach offers promising techniques for the non-invasive early diagnosis of OLD with an accuracy of 97.6%. Keywords: Obstructive lung disease; non-invasive diagnosis; machine learning; physiological features; voting technique

    A Trained Eye: Optometrists\u27 View Into Primary Care

    Get PDF
    The aim of this thesis is to explore and present the auxiliary responsibilities of doctors of optometry, particularly those involved with primary health care such as screening for serious diseases. This idea was approached by researching the technological capabilities of optometrists, the diseases and conditions they commonly detect, as well as the barriers preventing some people from receiving proper eye care. The importance of optometrists as primary care providers is steadily rising alongside their capabilities. There are many instances within a routine eye exam in which an optometrist is able to detect and recommend treatment of a serious disease. Also discussed is the need for this high level of care to become more readily available in underserved communities. Optometric care is a critical pillar within the realm of health care and is underrepresented in that it also serves as primary screening for patients unlikely to visit a physician

    Computer Vision Based Early Intraocular Pressure Assessment From Frontal Eye Images

    Get PDF
    Intraocular Pressure (IOP) in general, refers to the pressure in the eyes. Gradual increase of IOP and high IOP are conditions or symptoms that may lead to certain diseases such as glaucoma, and therefore, must be closely monitored. While the pressure in the eye increases, different parts of the eye may become affected until the eye parts are damaged. An effective way to prevent rise in eye pressure is by early detection. Exiting IOP monitoring tools include eye tests at clinical facilities and computer-aided techniques from fundus and optic nerves images. In this work, a new computer vision-based smart healthcare framework is presented to evaluate the intraocular pressure risk from frontal eye images early-on. The framework determines the status of IOP by analyzing frontal eye images using image processing and machine learning techniques. A database of images from the Princess Basma Hospital was used in this work. The database contains 400 eye images; 200 images with normal IOP and 200 high eye pressure case images. This study proposes novel features for IOP determination from two experiments. The first experiment extracts the sclera using circular hough transform, after which four features are extracted from the whole sclera. These features are mean redness level, red area percentage, contour area and contour height. The pupil/iris diameter ratio feature is also extracted from the frontal eye image after a series of pre-processing techniques. The second experiment extracts the sclera and iris segment using a fully conventional neural network technique, after which six features are extracted from only part of the segmented sclera and iris. The features include mean redness level, red area percentage, contour area, contour distance and contour angle along with the pupil/iris diameter ratio. Once the features are extracted, classification techniques are applied in order to train and test the images and features to obtain the status of the patients in terms of eye pressure. For the first experiment, neural network and support vector machine algorithms were adopted in order to detect the status of intraocular pressure. The second experiment adopted support vector machine and decision tree algorithms to detect the status of intraocular pressure. For both experiments, the framework detects the status of IOP (normal or high IOP) with high accuracies. This computer vison-based approach produces evidence of the relationship between the extracted frontal eye image features and IOP, which has not been previously investigated through automated image processing and machine learning techniques from frontal eye images

    Developments in Transduction, Connectivity and AI/Machine Learning for Point-of-Care Testing

    Get PDF
    We review some emerging trends in transduction, connectivity and data analytics for Point-of-Care Testing (POCT) of infectious and non-communicable diseases. The patient need for POCT is described along with developments in portable diagnostics, specifically in respect of Lab-on-chip and microfluidic systems. We describe some novel electrochemical and photonic systems and the use of mobile phones in terms of hardware components and device connectivity for POCT. Developments in data analytics that are applicable for POCT are described with an overview of data structures and recent AI/Machine learning trends. The most important methodologies of machine learning, including deep learning methods, are summarised. The potential value of trends within POCT systems for clinical diagnostics within Lower Middle Income Countries (LMICs) and the Least Developed Countries (LDCs) are highlighted
    corecore