73 research outputs found

    Non-intrusive IP Traceback for DDoS Attacks

    No full text
    The paper describes a Non-Intrusive IP traceback scheme which uses sampled traffic under non-attack conditions to build and maintains caches of the valid source addresses transiting network routers. Under attack conditions, route anomalies are detected by determining which routers have been used for unknown source addresses, in order to construct the attack graph. Results of simulation studies are presented. Our approach does not require changes to the Internet routers or protocols. Precise information regarding the attack is not required allowing a wide variety of DDoS attack detection techniques to be used. Our algorithm is simple and efficient, allowing for a fast traceback and the scheme is scalable due to the distribution of processing workload. Copyright 2007 ACM

    Adaptive response system for distributed denial-of-service attacks

    No full text
    Accepted versio

    Network domain entrypoint/path determination for DDoS attacks

    No full text
    Accepted versio

    Locating Network Domain Entry and Exit point/path for DDoS Attack Traffic

    No full text
    A method to determine entry and exit points or paths of DDoS attack traffic flows into and out of network domains is proposed. We observe valid source addresses seen by routers from sampled traffic under non-attack conditions. Under attack conditions, we detect route anomalies by determining which routers have been used for unknown source addresses, to construct the attack paths. We consider deployment issues and show results from simulations to prove the feasibility of our scheme. We then implement our Traceback mechanism in C++ and more realistic experiments are conducted. The experiments show that accurate results, with high traceback speed of a few seconds, are achieved. Compared to existing techniques, our approach is non-intrusive, not requiring any changes to the Internet routers and data packets. Precise information regarding the attack is not required allowing a wide variety of DDoS attack detection techniques to be used. The victim is also relieved from the traceback task during an attack. The scheme is simple and efficient, allowing for a fast traceback, and scalable due to the distribution of processing workload. © 2009 IEEE.Accepted versio

    Adaptive Response System for Distributed Denial-of-Service Attacks

    No full text
    The continued prevalence and severe damaging effects of the Distributed Denial of Service (DDoS) attacks in today’s Internet raise growing security concerns and call for an immediate response to come up with better solutions to tackle DDoS attacks. The current DDoS prevention mechanisms are usually inflexible and determined attackers with knowledge of these mechanisms, could work around them. Most existing detection and response mechanisms are standalone systems which do not rely on adaptive updates to mitigate attacks. As different responses vary in their “leniency” in treating detected attack traffic, there is a need for an Adaptive Response System. We designed and implemented our DDoS Adaptive ResponsE (DARE) System, which is a distributed DDoS mitigation system capable of executing appropriate detection and mitigation responses automatically and adaptively according to the attacks. It supports easy integrations for both signature-based and anomaly-based detection modules. Additionally, the design of DARE’s individual components takes into consideration the strengths and weaknesses of existing defence mechanisms, and the characteristics and possible future mutations of DDoS attacks. These components consist of an Enhanced TCP SYN Attack Detector and Bloom-based Filter, a DDoS Flooding Attack Detector and Flow Identifier, and a Non Intrusive IP Traceback mechanism. The components work together interactively to adapt the detections and responses in accordance to the attack types. Experiments conducted on DARE show that the attack detection and mitigation are successfully completed within seconds, with about 60% to 86% of the attack traffic being dropped, while availability for legitimate and new legitimate requests is maintained. DARE is able to detect and trigger appropriate responses in accordance to the attacks being launched with high accuracy, effectiveness and efficiency. We also designed and implemented a Traffic Redirection Attack Protection System (TRAPS), a stand-alone DDoS attack detection and mitigation system for IPv6 networks. In TRAPS, the victim under attack verifies the authenticity of the source by performing virtual relocations to differentiate the legitimate traffic from the attack traffic. TRAPS requires minimal deployment effort and does not require modifications to the Internet infrastructure due to its incorporation of the Mobile IPv6 protocol. Experiments to test the feasibility of TRAPS were carried out in a testbed environment to verify that it would work with the existing Mobile IPv6 implementation. It was observed that the operations of each module were functioning correctly and TRAPS was able to successfully mitigate an attack launched with spoofed source IP addresses

    IP traceback with deterministic packet marking DPM

    Get PDF
    In this dissertation, a novel approach to Internet Protocol (IP) Traceback - Deterministic Packet Marking (DPM) is presented. The proposed approach is scalable, simple to implement, and introduces no bandwidth and practically no processing overhead on the network equipment. It is capable of tracing thousands of simultaneous attackers during a Distributed Denial of Service (DDoS) attack. Given sufficient deployment on the Internet, DPM is capable of tracing back to the slaves for DDoS attacks which involve reflectors. Most of the processing is done at the victim. The traceback process can be performed post-mortem, which allows for tracing the attacks that may not have been noticed initially or the attacks which would deny service to the victim, so that traceback is impossible in real time. Deterministic Packet Marking does not introduce the errors for the reassembly errors usually associated with other packet marking schemes. More than 99.99% of fragmented traffic will not be affected by DPM. The involvement of the Internet service providers (ISP) is very limited, and changes to the infrastructure and operation required to deploy DPM are minimal. Deterministic Packet Marking performs the traceback without revealing the internal topology of the provider\u27s network, which is a desirable quality of a traceback scheme

    Wide spectrum attribution: Using deception for attribution intelligence in cyber attacks

    Get PDF
    Modern cyber attacks have evolved considerably. The skill level required to conduct a cyber attack is low. Computing power is cheap, targets are diverse and plentiful. Point-and-click crimeware kits are widely circulated in the underground economy, while source code for sophisticated malware such as Stuxnet is available for all to download and repurpose. Despite decades of research into defensive techniques, such as firewalls, intrusion detection systems, anti-virus, code auditing, etc, the quantity of successful cyber attacks continues to increase, as does the number of vulnerabilities identified. Measures to identify perpetrators, known as attribution, have existed for as long as there have been cyber attacks. The most actively researched technical attribution techniques involve the marking and logging of network packets. These techniques are performed by network devices along the packet journey, which most often requires modification of existing router hardware and/or software, or the inclusion of additional devices. These modifications require wide-scale infrastructure changes that are not only complex and costly, but invoke legal, ethical and governance issues. The usefulness of these techniques is also often questioned, as attack actors use multiple stepping stones, often innocent systems that have been compromised, to mask the true source. As such, this thesis identifies that no publicly known previous work has been deployed on a wide-scale basis in the Internet infrastructure. This research investigates the use of an often overlooked tool for attribution: cyber de- ception. The main contribution of this work is a significant advancement in the field of deception and honeypots as technical attribution techniques. Specifically, the design and implementation of two novel honeypot approaches; i) Deception Inside Credential Engine (DICE), that uses policy and honeytokens to identify adversaries returning from different origins and ii) Adaptive Honeynet Framework (AHFW), an introspection and adaptive honeynet framework that uses actor-dependent triggers to modify the honeynet envi- ronment, to engage the adversary, increasing the quantity and diversity of interactions. The two approaches are based on a systematic review of the technical attribution litera- ture that was used to derive a set of requirements for honeypots as technical attribution techniques. Both approaches lead the way for further research in this field

    Deteção de ataques de negação de serviços distribuídos na origem

    Get PDF
    From year to year new records of the amount of traffic in an attack are established, which demonstrate not only the constant presence of distributed denialof-service attacks, but also its evolution, demarcating itself from the other network threats. The increasing importance of resource availability alongside the security debate on network devices and infrastructures is continuous, given the preponderant role in both the home and corporate domains. In the face of the constant threat, the latest network security systems have been applying pattern recognition techniques to infer, detect, and react more quickly and assertively. This dissertation proposes methodologies to infer network activities patterns, based on their traffic: follows a behavior previously defined as normal, or if there are deviations that raise suspicions about the normality of the action in the network. It seems that the future of network defense systems continues in this direction, not only by increasing amount of traffic, but also by the diversity of actions, services and entities that reflect different patterns, thus contributing to the detection of anomalous activities on the network. The methodologies propose the collection of metadata, up to the transport layer of the osi model, which will then be processed by the machien learning algorithms in order to classify the underlying action. Intending to contribute beyond denial-of-service attacks and the network domain, the methodologies were described in a generic way, in order to be applied in other scenarios of greater or less complexity. The third chapter presents a proof of concept with attack vectors that marked the history and a few evaluation metrics that allows to compare the different classifiers as to their success rate, given the various activities in the network and inherent dynamics. The various tests show flexibility, speed and accuracy of the various classification algorithms, setting the bar between 90 and 99 percent.De ano para ano são estabelecidos novos recordes de quantidade de tráfego num ataque, que demonstram não só a presença constante de ataques de negação de serviço distribuídos, como também a sua evolução, demarcando-se das outras ameaças de rede. A crescente importância da disponibilidade de recursos a par do debate sobre a segurança nos dispositivos e infraestruturas de rede é contínuo, dado o papel preponderante tanto no dominio doméstico como no corporativo. Face à constante ameaça, os sistemas de segurança de rede mais recentes têm vindo a aplicar técnicas de reconhecimento de padrões para inferir, detetar e reagir de forma mais rápida e assertiva. Esta dissertação propõe metodologias para inferir padrões de atividades na rede, tendo por base o seu tráfego: se segue um comportamento previamente definido como normal, ou se existem desvios que levantam suspeitas sobre normalidade da ação na rede. Tudo indica que o futuro dos sistemas de defesa de rede continuará neste sentido, servindo-se não só do crescente aumento da quantidade de tráfego, como também da diversidade de ações, serviços e entidades que refletem padrões distintos contribuindo assim para a deteção de atividades anómalas na rede. As metodologias propõem a recolha de metadados, até á camada de transporte, que seguidamente serão processados pelos algoritmos de aprendizagem automática com o objectivo de classificar a ação subjacente. Pretendendo que o contributo fosse além dos ataques de negação de serviço e do dominio de rede, as metodologias foram descritas de forma tendencialmente genérica, de forma a serem aplicadas noutros cenários de maior ou menos complexidade. No quarto capítulo é apresentada uma prova de conceito com vetores de ataques que marcaram a história e, algumas métricas de avaliação que permitem comparar os diferentes classificadores quanto à sua taxa de sucesso, face às várias atividades na rede e inerentes dinâmicas. Os vários testes mostram flexibilidade, rapidez e precisão dos vários algoritmos de classificação, estabelecendo a fasquia entre os 90 e os 99 por cento.Mestrado em Engenharia de Computadores e Telemátic

    Defending against Distributed Denial of Service Attack Under Tunnel Based Forwarding

    Get PDF
    Today, attacks are a harmful element of the computer networks. Distributed Denial of Service (DDoS) attack is one of the most harmful attacks. Many defense mechanisms have been proposed to mitigate the effect of the attacks. 2In this thesis, we study two methods for defending against DDoS attacks. First, we identify the attack packets to detect a DDoS attack by checking the TTL value of incoming packets and monitoring the number of new source IP addresses of incoming packets. Second, we propose an algorithm to traceback the attack traffic to identify the source IP address of origin by deploying a tunneling based protocol. The tunneling based protocol is called the Locator/Identifier Separation Protocol (LISP) and it is deployed in a domain network to encapsulate all outgoing packets decapsulate all incoming packets. As a side-effect the tunneling protocol reveals the ingress point of attack traffic. We also analyzed the approach in a simulation environment and compare the results in the domain network when deploying the tunneling based protocol
    corecore