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ABSTRACT

IP TRACEBACK WITH DETERMINISTIC PACKET MARKING
(DPM)

by
Andrey Belenky

In this dissertation, a novel approach to Internet Protocol (IP) Traceback - Deter-

ministic Packet Marking (DPM) is presented. The proposed approach is scalable,

simple to implement, and introduces no bandwidth and practically no processing

overhead on the network equipment. It is capable of tracing thousands of simultaneous

attackers during a Distributed Denial of Service (DDoS) attack. Given sufficient

deployment on the Internet, DPM is capable of tracing back to the slaves for DDoS

attacks which involve reflectors. Most of the processing is done at the victim. The

traceback process can be performed post-mortem, which allows for tracing the attacks

that may not have been noticed initially or the attacks which would deny service

to the victim, so that traceback is impossible in real time. Deterministic Packet

Marking does not introduce the errors for the reassembly errors usually associated

with other packet marking schemes. More than 99.99% of fragmented traffic will not

be affected by DPM. The involvement of the Internet service providers (ISP) is very

limited, and changes to the infrastructure and operation required to deploy DPM are

minimal. Deterministic Packet Marking performs the traceback without revealing the

internal topology of the provider's network, which is a desirable quality of a traceback

scheme.
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CHAPTER 1

INTRODUCTION

In recent years much interest and consideration has been paid to the topic of securing

the Internet infrastructure that continues to become a medium for a broad range of

transactions. Currently, Internet security attracts much attention from the industry,

academia and even United States (US) congress which held a number of congressional

hearings on the subject [1, 2]. A number of approaches to security have been proposed,

each attempting to mitigate a specific set of concerns. The specific threat, which is

the main focus of this work, is anonymous attacks. In anonymous attacks, the identity

of the attacker(s) is not immediately available to the victim since the Source Address

(SA) field in the attack packets is spoofed. (Distributed) Denial of Service ((D)DoS)

attacks are anonymous attacks, which are currently attract the most attention, since

there is no obvious way to prevent them or to trace them. The anatomy of DDoS

attacks is described by S. Gibson in [3], and his own experiences of being a victim of

one, in [4].

Currently, there are several ways of dealing with anonymous attacks. They

include source address filtering, SYN Flood Protection, and implementing a BlackHole

Router server. Source address filtering, introduced by P. Ferguson [5], prevents

packets with the values of the SA field outside preset appropriate range from entering

the Internet. If deployed on every ingress interface, this would drastically reduce the

number of anonymous packets in the Internet. Unfortunately, source address filtering

is associated with high overhead and administrative burden as noted by S. Savage,

1
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et al. [6] and is not widely deployed. SYN Flood protection monitors half-open TCP

connection and does not allow more than a certain number of them to exist simulta-

neously. SYN Flood protection prevents only SYN Flood type (D)DoS attacks and

is useless against other types of anonymous attacks. Finally, the ISPs can determine

the interface, where the packets of DoS attack entered its network, if the customer

reports the attack, by BlackHoling a router on its network as described by UUNET

engineers [7]. This method involves human interaction, works only for the backscatter

attacks, discussed by D. Moore, G. Voelker, and S. Savage [8], must be performed

while the attack is still in progress, and is limited to the boundaries of the given ISP.

The currently available methods for dealing with anonymous attacks are not

comprehensive. They either deal with a very limited set of the problems or are too

expensive to implement and enforce. While it may be simply impossible to prevent

attackers from attempting an attack, it might be possible to lessen, or even completely

eliminate, the effects of the attack by not allowing the packets to reach the victim(s).

This is the proactive approach discussed in detail by R. Chang [9]. The reality,

however, is that prevention of all attacks on the Internet is far from reality. When

prevention fails, a mechanism to identify the source(s) of the attack is needed to at

least insure accountability for these attacks. This is the motivation for designing IP

Traceback schemes.



CHAPTER 2

PREVIOUS WORKS

In this chapter, the current state-of-the-art on IP traceback is presented. The rising

threat of cyber attacks, especially DDoS, makes the IP Traceback problem very

relevant to today's Internet security. Each approach is evaluated in terms of its pros

and cons. Each approach is also related to practical deployment issues on the existing

Internet infrastructure. The functionality of each approach is discussed in detail, and

then evaluated. The chapter is concluded with a comprehensive comparison of the

discussed schemes.

2.1 Framework and Evaluation Metrics

The main objective of this chapter is the evaluation of proposed IP Traceback

techniques within a framework originally defined in [10] and presented later in this

section. It is worth mentioning that most of the schemes presented here remain

theoretical and have not been implemented in the industry, except in trials and

simulations. In addition, the following discussion of different traceback methods

provides insight for evaluating IP Traceback solutions, which may be proposed in the

future.

The following metrics are essential in comparing the IP traceback approaches:

• ISP Involvement. Tracking an anonymous attack is not a trivial task. An

individual or an organization would find this task difficult, if not impossible,

without involving their upstream ISPs. Today, tracing an anonymous attack

3
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even within a single ISP remains a manual task. ISPs and enterprise networks

do not have incentives to monitor for attack packets according to R. Chang [9].

The lack of incentives comes from the fact that monitoring for such packets has

no immediate benefits to ISP itself and its subscribers. Furthermore, partici-

pating in traceback may mean a disclosure of the internal topology, investment

in additional equipment, upgrades to the existing equipment, and additional

operational cost for the ISP. Consequently, IPA Traceback solutions should not

assume complete cooperation of ISPs. A desirable quality of an IP Traceback

scheme should be low ISP involvement, which implies that the scheme should

be easily built or inserted with little infrastructure or operational change. Most

schemes assume that ISPs will provide limited facility to enable IP traceback,

but the burden of the actual traceback process will either be shared between

the subscriber and the ISP or will be a sole responsibility of the victim. An

Ideal Traceback Scheme would have very low level of ISP involvement

• Number of Attacking Packets Needed for foraceback. The attacks can

consist of as few as one packet or alternatively can be composed of many

thousands of packets. An important evaluation criterion of an IP Traceback

scheme is the ability of the scheme to determine the source of the attack based

on as few packets as possible once the attack has been identified. This will

enable the scheme to successfully traceback more attacks. Ideally, the scheme

should be able to trace the attacker with a single packet.
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• Effect of Partial Deployment. Clearly, if any scheme is adopted on the

Internet, not all ISPs will simultaneously implement this function. Clearly, any

scheme can perform the traceback only within the ISPs, which deploy it. It is

expected that a given ISP would deploy the scheme on all of its routers; however,

it is important that the scheme can produce meaningful results when deployed

partially within a single ISP. This will allow for partial, gradual deployment

on the Internet and will make the scheme more practical. The effects caused

by partial deployment can vary from inability to perform tracing altogether to

producing meaningful traces limited to the range of deployment, which should

be the case for the Ideal Scheme.

• Processing Overhead. There are two considerations for processing overhead:

where it is incurred and when it is incurred. Additional processing associated

with the traceback scheme can occur on the devices of the ISP network and/or

at the subscribers, the potential victims of the attacks. For most methods,

additional processing will occur in both places. Processing overhead on the

ISP routers is especially undesirable since it may result in the need to upgrade

or buy more equipment. Therefore, a scheme with less processing overhead

incurred on the network will most likely be accepted by an ISP. For the

organizations, additional processing overhead is not so critical. Organizations

are usually concerned with the security and are usually willing to invest in

dedicated Intrusion Detection System (IDS) servers which would incur most of

the processing associated with IP traceback. Another consideration is when the
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processing overhead is incurred. Processing overhead can be incurred for every

packet and during traceback. Preferably it should be incurred only during

traceback, which hopefully will be a relatively infrequent operation. An Ideal

Scheme would incur minimal processing overhead during traceback only.

• Bandwidth Overhead. Additional traffic, which the network has to carry

for traceback, is considered as the bandwidth overhead. A large bandwidth

overhead is undesirable since it may exhaust the capacity of the links and

routers, forcing the ISP to introduce additional capacity and possibly upgrade

or purchase new devices. The scheme should not assume availability of infinite

bandwidth. As with the processing overhead, the bandwidth overhead can

be incurred either constantly, for every packet, or only during the process

of traceback, once the attack is identified. It would be preferable to incur

bandwidth overhead only during the traceback process, if at all.

• Memory Requirements. Additional memory may be required on the routers,

or dedicated traceback servers located either at the ISP network or at the client

site. Additional memory on the routers is highly undesirable since it may

result in upgrades. Additional memory on the dedicated servers is tolerable.

Therefore, the important metric of a traceback scheme is the amount of

additional memory required on the routers. An Ideal Scheme would have

limited amount of additional memory required at the dedicated server, and no

additional memory requirements on the network equipment.



7

• Ease of Evasion. The scheme is said to be easy to evade if the attacker,

who is aware of the scheme, can easily orchestrate an attack, which will be

untraceable. Clearly, this quality is not desirable in a traceback scheme, and

the ease of evasion should be as low as possible for an Ideal Scheme.

• Protection. Protection refers to the ability of the traceback scheme to

produce meaningful traces, if a limited number of network elements involved

in a traceback have been subverted. A traceback scheme with good protection

would be able to produce valid traces, even if this happens. Taking over a

router or a well protected server is an extremely difficult task, and can be

accomplished most often due to errors in configuration or improper patching

of the software. It is assumed that the devices involved in traceback will be

properly managed and protected, minimizing the chances of subversion. High

level of protection is preferred in a traceback scheme; however, it is assumed

that the probability of the attacker actually taking over a device is very small.

An Ideal Scheme should act as if that device was not part of the scheme when

a device becomes subverted.

• Scalability. Scalability relates to the amount of additional configuration on

other devices needed to add a single device to the scheme. It also measures the

ability of the scheme to perform as the network size increases. Features which

depend on configuration of other devices deteriorate scalability. If only "newly

added to the scheme" devices require configuration, the scalability is good. If, on

the other hand, introducing another device to the scheme requires configuration
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on other devices, the scalability is poor. Also, scalability measures how easy

the scheme can expand. An Ideal scheme should be scalable, and configuration

of the devices involved should be totally independent of each other.

• Number of Functions Needed to Implement. This metric reflects how

many different functions a vendor of the equipment needs to implement for a

given scheme. It is easier for the vendor to implement fewer functions. Ideally

only a single function should be required to be implemented. The amount

of effort required to implement each function is not discussed in this disser-

tation. Most of the functions described are straight forward to implement. It

is worth mentioning that historically vendors would implement features on the

equipment far ahead of their wide deployment.

• Ability to Handle Major DDoS Attacks. This is an extremely important

metric which reflects how well the scheme can perform the traceback of DDoS

attack under severe circumstances, such as a large number of attackers using

reflectors, random address spoofing, etc. Many schemes are not able to cope

with all types of attacks. Being able to trace any attack, especially DDoS

attacks, is a necessary quality of a traceback scheme. An Ideal Scheme would

be able to trace back all attacks.

• Ability to forace foransformed Packets. A packet transformation is a

modification of the packet during the forwarding process. Most common trans-

formations include Network Address Translation (NAT) specified by P. Srisuresh

[11], where Source IP Address and/or Destination IP Address are changed; and
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tunneling where a given packet is encapsulated inside another packet. Another

type of transformation is packet generation, most common examples of which

are Internet Control Message Protocol (ICMP) packets and duplications of the

packet in multicast. It is essential for a traceback scheme to handle trans-

formations; otherwise, the attacks, which use packet transformations, cannot

be traced. An Ideal Scheme would correctly trace back attacks consisting of

packets that undergo any number of transformation of any type.

2.2 Evaluation of Schemes

This section provides an overview on current state-of-the-art approaches to IP

traceback, and their evaluate against the metrics established in Section 2.1. The

traceback schemes discussed below fall into four general categories as follows:

1. End-host storage

• Probabilistic Packet Marking (PPM) and variations

• ICMP Traceback (iTrace)

2. Packet Logging

• Single-Packet IP Traceback

3. Specialized Routing

• Overlay Network

• IP Traceback with IP Security (IPSec)

4. State of the Network Inference

• Controlled Flooding
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2.2.1 Probabilistic Packet Marking (PPM)

This scheme is based on the idea that routers mark packets which pass through them

with their addresses or a part of their addresses. Packets for marking are selected at

random with some fixed probability of being selected. As the victim gets the marked

packets, it can reconstruct the full path, even though the IP address of the attacker

is spoofed. Originally proposed by S. Savage, et al. [6], this scheme was improved

in several different ways, among which D. Song and A. Perring introduced improved

coding methods and protection [12] and D. Dean, M. Franklin and A. Stubblefield

came up with algebraic coding methods for PPM [13]. Also T. Doeppner came up

independently with a very similar approach [14] at approximately the same time as

S. Savage, et al. This scheme is aimed primarily at DoS and DDoS attacks as it needs

many attack packets to reconstruct the full path.

Figure 2.1 depicts a schematic illustration of the approach. Attacker A

initiates an attack to victim V. Assume that the path, which the packets take is

R1-R2-R4-R9-R12. (This path will also be adopted for illustrating other schemes

in this chapter.) Each router implementing PPM accepts the stream of packets,

and then before routing them, probabilistically marks them with its partial address

information (i.e., put the router's partial address in the packet headers). Packets are

marked with a marking probability p, which is suggested to be 0.04 in the original

proposal [6]. When the victim receives enough of such packets, it can reconstruct the

addresses of all the PPM-enabled routers along the attack path. Clearly, in order to

reconstruct the full path the flow must contain a large number of packets.
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Figure 2.1 Probabilistic packet marking.

To deploy the scheme, the vendors need to implement two functions: marking

function and reconstruction function. Once the marking function is available, the

software on all routers would have to be upgraded. Upgrade of the software on the

routers is a straight-forward task. Once routers are upgraded, PPM would have to

be enabled, and that is the extent to which an ISP needs to get involved in the

scheme, and therefore the ISP involvement is low. Additional PPM-enabled routers

can be added independently, which is an indication of good scalability. The number of

packets required for the path reconstruction is measured in thousands for the original

proposal by S. Savage, et al. [6], and decreases to just under 1,000 packets for the

improved scheme described by D. Song, et al. [12]. For the partial deployment to
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be effective, the victim has to be aware of the network topology and routing on the

network. Processing overhead in network elements is incurred for every packet. For

every packet, the decision is made if it should be marked or not by generating a

random number. Additionally, if the packet is marked, more processing overhead will

be incurred associated with composing the mark and updating the Identification (ID)

field and Reserved Flag (RF) in that packet. The overhead associated with packet

marking is minimal, and should not require major upgrades to the router hardware. A

major processing overhead will be incurred at the destination during reconstruction.

Potentially, the victim would have to perform searches of data structures consisting

of billions of entries. Reconstruction data structures will require a large amount of

memory as well. However, as it was mentioned in Section 2.1, overhead and additional

memory required at the potential victim is not a major setback. Bandwidth overhead

for this scheme is zero since all the traceback information is scrambled in the IP packet

header and is completely inband. Finally, considering the improved version of PPM

described in [12], evasion of the scheme is difficult since marks are authenticated.

If a router, which marks the packets becomes subverted, it can be reconfigured to

incorrectly mark the packets and still be authenticated by the victim. That may

result in an incorrectly reconstructed path. Relying on the assumption made in

[12] that the victim is aware of the network topology, subversion of a small number

of routers will not be a major problem. Probabilistic packet marking can handle

packet modification transformations of the packets directed to the victim. However,

in the case of packet generation transformation by a reflector, the traceback will be

limited only to that reflector. Fragmented traffic will be corrupted by the scheme,
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but the traceback will not be affected. The ID field normally used for fragmentation

is used for the mark. If a single fragment of the original datagram is marked, then

the reassembly function would fail at the destination. The traceback would still

be possible since the mark would be processed before reassembly. This problem is

addressed by selecting a lower probability of marking for the fragmented traffic, but

this will raise the number of packets needed for the reconstruction. Also, tunneling

may create a problem for reconstruction if marks are extracted before the outer header

was removed. Carefully choosing the placement for the reconstruction function will

remedy this potential problem. All PPM-like schemes are unable to perform the

traceback for a major DDoS attacks with a large number of reflectors. The traceback

with PPM-like schemes is capable of tracing only a limited number of reflectors.

2.2.2 ICMP Traceback

ICMP Traceback takes a different approach in determining the full path of the attack.

This approach was originally introduced by S. Bellovin [15].

Figure 2.2 illustrates the ICMP Traceback scheme. Every router on the

network is configured to pick a packet statistically (1 in every 20,000 packets recom-

mended) and generate an ICMP traceback message or iTrace directed to the same

destination as the selected packet. The Trace message itself consists of the next and

the previous hop information, and timestamp. As many bytes of the traced packet

as possible are also copied in the payload of iTrace [15]. The Time To Live (TTL)

field is set to 255, and is then used in identifying the actual path of the attack. If

routers in the path of the attack from A to V implement the scheme, then the process



Figure 2.2 ICMP traceback.

illustrated in Figure 2.2 will happen. The routers on the path will generate a new

packet with an iTrace message. It is different from PPM where the traceback infor-

mation was completely in-band. By assuming the victim is under the (D)DoS attack,

and therefore the volume of packets going to it is large, the victim will eventually

get all the addresses of the routers on the attack path, which implement iTrace. By

using TTL fields, these addresses can be sorted to reconstruct the attack path. It

was shown by S. Wu [16, 17] that while this approach is efficient and reasonably

protected, the chance of receiving useful iTrace is small if the victim undergoes a

major DDoS attack, especially so if the attack was carefully orchestrated with the

goal of reducing the probability of these useful iTraces. The mechanism to resolve this

statistical problem is to associate a weight or value with every iTrace generated. The
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value is affected by the distance from the victim, frequency of iTraces being sent to

the victim, and the time since the attack has begun. Having these three contributors

to the value of iTrace, the original proposal [15] was augmented by the algorithm to

make a more educated choice of which packet to select for iTrace. While introducing

definite benefits, these augmentations somewhat complicate the algorithm and require

a change to the forwarding table on every router implementing this scheme.

The evaluation of this scheme is very similar to the evaluation of PPM

discussed in 2.2.1. To deploy the scheme, the vendors need to implement two

functions: iTrace function and reconstruction function. It is worth mentioning that

implementing value-based ICMP Traceback will require a change to the structure of

the routing tables on the routers. Once the Trace function is available, the software

on all routers would have to be upgraded. Upgrade of the software on the routers is

a straight-forward task. Once routers are upgraded, ICMP Traceback would have to

be enabled, and that is the extent that ISP needs to get involved with this scheme.

Additional ICMP Traceback enabled routers can be added completely independently,

which is indicative of good scalability. The number of attack packets required for

the path reconstruction is measured in thousands since the probability of generating

an ICMP traceback message is 1/20,000. For the partial deployment to be effective,

the victim has to be aware of the topology and routing on the network. Processing

overhead in network elements is incurred for every packet. As in the case of PPM,

for every packet the decision is made if it should be marked or not by generating

a random number. Additionally, if the packet is marked, more processing overhead

will be incurred associated with generating a new packet. The overhead associated
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with generating a new packet is minimal and should not require major upgrades

to the router hardware. A negligible amount of additional memory is necessary

on all the routers if value-based iTraces are implemented. A major processing

overhead will be incurred at the destination during reconstruction. Potentially, the

victim would have to perform searches of data structures consisting of thousands of

entries. Reconstruction data structures will also require a large amount of memory.

Bandwidth overhead for this scheme is minimal, and will be about 0.005% derived

from the fact that about 1 in every 20,000 packets will be traced. If authentication

mechanisms mentioned in [15] are implemented, the evasion of this scheme would

be difficult. However, the way the scheme is described, there is nothing which

prevents the attacker from generating fake iTraces. The DDoS attacks involve a

massive amount of traffic from many different sources; plausible-looking fake chains

could easily deceive a victim according to [15]. If a router, which marks the packets

becomes subverted, it can be reconfigured to generate incorrect iTraces resulting in

an incorrectly reconstructed path. Ability of handling of major DDoS attacks with

ICMP Traceback was addressed in [17], where few improvements, described earlier in

this section, were suggested to enable the scheme to trace DDoS attacks. However,

even with these improvements, ICMP Traceback scheme will not be able to perform

the traceback for a DDoS attack with a large number of reflectors. Therefore, the

ability to handle major DDoS attacks is poor. Ability to handle packet transfor-

mations is very similar to PPM. Transformation undergone by the stream of packets

to the victim is not an issue, but transformation caused by a reflector will limit the

traceback to the reflector only.
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2.2.3 Overlay Network

This solution to the traceback problem is introduced by R. Stone [18]. Logically, the

solution introduces a Tracking Router (TR) in the network, as seen in Figure 2.3.

This TR monitors all of the traffic which passes through the network. In order to

be able to monitor all of the traffic on the network, all packets have to be routed

through this TR. This is accomplished by building a Generic Route Encapsulation

(GRE) tunnel from every edge router to this TR. Once the appropriate routing has

been configured on the edge routers and the TR, all the traffic from an ingress edge

router would travel over the GRE tunnel to the TR, and then from the TR, over

another GRE tunnel, to the egress edge router. While core routers carry the traffic,

logically it is only one hop from an edge router directly to the TR. Shaded network

elements in Figure 2.3 are simply transport for the overlay network. This architecture

can be visualized as a star topology with the TR in the center, and all of the edge

routers on the network connecting to it with GRE tunnels. Since tunnels are built

over the existing topology and utilize existing routing protocols, this star-like logical

network is said to be an overlay network.

Figure 2.3 Overlay network.
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In reality, of course, a single TR will not be able to handle the load of packets

from the whole network. Therefore, it is physically a fully connected mesh of several

TRs, which can still be logically thought of as a single TR. The TR will utilize

signature based intrusion detection. That is different from all the other schemes where

the intrusion detection was a function of the victim. When an attack is detected,

meaning a single packet, or a sequence of packets, that constitutes an intrusive action,

the origin of the attack can be identified because it is only one hop away.

In order to deploy this scheme, no additional functionality needs to be

developed by the vendors. The scheme takes advantage of the features available on

most of the routers today. On the other hand, ISP involvement for this scheme is

large. The ISP has to perform a traceback as well as to identify the attack completely

on its own. Also, a number of TRs and IDS servers would have to be purchased

by the ISP. Internet service Provider involvement is therefore high. Adding another

edge router to the network would result in having to configure the TR in addition

to a newly added device to enable the traceback on them. The scheme has a severe

limitation. It will only function well within a single administrative domain. In

order for the Overlay Network to function well across ISPs, it would be necessary to

somehow connect all of the TRs into a single system and that was not proposed by

R. Stone [18]. This presents a big scalability issue and constitutes a major limitation

to this scheme. A single packet is necessary to traceback any attack, given, of course,

that the attack was identified. As soon as IDS on the TR identifies the attack, it can

be traced to the end point of the tunnel. Termination of the tunnel will be associated

with an interface which faces the network, not the customer. If the edge router has
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multiple interfaces facing the customers, it will be impossible to determine from which

of those interfaces the attack was initiated. This scheme has a trade-off between the

overhead and protection. In the originally proposed configuration with GRE tunnels,

the bandwidth is about 20 bytes for each packet. For the attack composed of really

short packets, this can be a significant bandwidth overhead. The protection of the

scheme is rather low since the tunnel packets can be forged by the attacker when

a router is subverted. However, if the tunnels are built with IPSec, the bandwidth

overhead is going to be even larger, but the level of protection of the scheme becomes

very high. Moreover, some processing overhead on both ends of the tunnel for every

packet is incurred. The scheme is able to handle major DDoS attacks in a sense that

the source of any packet can be traced to the edge of the network. Handling packet

transformations is not an issue for this scheme.

2.2.4 Single-Packet IP foraceback

This approach is introduced by A. Snoeren, et al. [19]. The scheme is officially called

Source Path Isolation Engine (SPIE). In hash-based traceback, every router captures

partial packet information of every packet, which passes through the router, to be

able in the future to determine if that packet passed through it. In this scheme

such routers are called Data Generation Agents (DGA). Data Generation Agent's

functionality is implemented on the routers. The network is logically divided into

regions. In every region SPIE Collection and Reduction Agents (SCARS) connect to

all DGAs, and are able to query them for necessary information. The SPIE Traceback
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Manager (STM) is a central management unit, which communicates to IDSs of the

victims and SCARS, as seen in Figure 2.4.

Figure 2.4 Single-packet IP traceback.

As packets traverse the network, the digest of the packets gets stored in the

DGAs. In this scheme, constant fields from the IP header and the first eight bytes of

the payload of each packet are hashed by several hash functions to produce several

digests. Digests are stored in a space efficient data structure, called Bloom Filter,

which reduces storage requirements by several orders of magnitude. When a given

Bloom Filter is about 70% full, it is archived for later querying, and another one

is used. The duration of using a single Bloom Filter is called a time period. Hash

functions also change for different time periods. Also, DGA is able to record any

of the transformations such as NAT, IPSec, etc., which may affect those fields. The

type of transformation and the data necessary to reconstruct the transformation are

stored in the Transform Lookup Table (TLT). Each Bloom Filter for a given time
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period has its own TLT associated with it. When the STM receives notification of

an attack from the victim's IDS (step 1), it sends the appropriate requests to SCAR

(step 2). SCAR in turn obtain copies of the digests and transformation tables from

DGAs for the appropriate time period (step 3). After analyzing and correlating the

tables, SCAR are able to figure out which routers in the region, if any, forwarded the

packet. The SCAR can then reconstruct the path along which the packet traversed

through the region, and reports it to the STM (step 4). Based on this information,

the STM is able to reconstruct the path through the network.

This scheme involves three functions that have to be implemented: STM,

SCAR, and DGA. Internet service provider involvement for this scheme is high. The

routers have to be upgraded to support the function of DGA, and the ISP has to

purchase equipment for SCAR and at least one STM. The scheme can perform a

traceback with a single attack packet. Effects of partial deployment are similar to the

case of PPM discussed in Section 2.2.1. If DGA functionality is implemented only on

some routers in the ISP network, it is possible to reconstruct the path by checking for

the digest at those nodes that implement DGA functionality and extrapolating paths

between DGAs that report a hit, provided the topology of the network and routing are

known to the STM. Inter-ISP tracing is possible provided there is a necessary degree

of cooperation and trust. This issue is briefly mentioned in [19]. Processing overhead

is incurred for every packet on every router to store its digests in the Bloom Filter.

During traceback, all three functional components incur additional processing. There

is no additional processing incurred at the client site. There is no bandwidth overhead

associated with every packet; however, there is some minimal bandwidth overhead
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incurred during traceback. Additional memory required at DGAs is minimal and is

0.5% of the link bandwidth per unit time, and can be incorporated in the router. A

more substantial amount of memory would be required by SCARS and the STM, but

these devices are dedicated to the traceback function, and a large amount of memory

required for those functions is not a problem. The scheme is extremely difficult to

evade. While the scheme is equipped to handle practically any packet transformation,

a combination of several packet transformations done in particular order coupled with

loss of particular packets may potentially make some transformations irreversible.

These conditions are not a major concern because they are unlikely to occur. A

subverted DGA can be potentially reconfigured to report that it has seen the packets,

which never passed through it, and vice versa. This will produce paths with one hop

in error. Subverting a DGA will not, however, allow the attacker to learn of any

packet content since nothing can be learned by examining the content of the Bloom

Filter. If SCAR becomes subverted, the whole segment of the path can be incorrect.

Finally, if STM becomes subverted, the traceback will not produce correct traceback

altogether. Reiterating the fact that taking control over a device is extremely difficult,

these considerations should not be the major factor. In order to add another DGA, a

SCAR needs to be reconfigured, and in order to add another domain to the hierarchy,

the STM would have to be reconfigured. Owing to the fact that configuration of other

devices is involved when adding another device, the scheme does not scale very well.

The scheme is able to handle massive DDoS attacks. The limitation of the scheme is

the timing issue. For the high rate interfaces, traceback has to be performed within

a very short period of time. The problem is magnified for the inter-domain case
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when time synchronization cannot be expected. Also, such strict timing constraint

on traceback prohibits "post-mortem" traceback, the traceback long after the attack

has finished. This becomes important, when the victim does not realize that it is

being attacked, or cannot contact the STM during the attack for some reasons.

A similar but inferior scheme was proposed by S. Matsuda and T. Baba [20, 21].

2.2.5 Controlled Flooding

Controlled Flooding approach to traceback is introduced by H. Burch and B. Cheswick

[22]. It is only valid for DoS attacks. It relies on the fact that during DoS attacks

the links of the attack path should be heavily loaded. This assumption may not hold

for modern backbone networks with abundant bandwidth available on the links. By

carefully measuring the incoming traffic to the attacked system and loading the links

of the suspected path even more, the drop in the rates of the attack packets should

be observed. The process can be repeated for the next hop, and so on until the source

of the attack is identified.

Figure 2.5 Controlled flooding.

This concept is illustrated in Figure 2.5. Once the DoS attack based on

flooding is identified by V, equipment, which measures the load on the link and

equipment, will be used to generate traffic on the network. Once this is accom-
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plashed, the traceback begins. Routers, which connect to R12, the router closest to

the victim, are determined. Then, the short burst of traffic is generated from R11

hoping that the rate of the attacking packets to the victim will drop. In this particular

case, it did not. So, this link, and all the paths, which may utilize it are excluded

from the set of possible paths. Second, the link from R10 to R12 is loaded. Again,

no drop in the rate of packets to the victim is observed, and therefore the link is also

excluded. When the link between R9 and R12 is loaded, the desired drop in the rate

is observed. It is thus concluded that the link between R9 and R12 belongs to the

attack path. The process is recursively repeated until the source of the attack, or the

nearest router to the source, is identified.

The way the links are suggested to be loaded is by using the chargen service

on the routers. The originator of the charge service opens connection to a device

on TCP or UDP port 19. In response, this device will generate a large amount of

data back to the originator. This outcome is not desirable since the task here is to

only load a single link. In order to avoid this, the source address of the equipment

is spoofed to be the next hop address with respect to this router. In order to load

the link between R2 and R4, Controlled Flooding Equipment would spoof its source

address to be the interface of R4 connecting to R2, and start the chargen service on

R2. The packets generated would be directed to R4, thus loading the link between

these two routers.

There are several limitations to this approach. First of all, contrary to the

claim in [22], most routers have chargen disabled. In fact, it comes disabled by

default now on most of the equipment. Secondly, the approach assumes accessability
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to routers on the ISP network. This is also a big assumption. Even if the routers

on the ISP network are publicly addressable, it is very unlikely that the customer

would be allowed to access them in any way. Such readily available access would be

constantly exploited by hackers. This method of denying service is easier. In addition,

the authors suggested to basically initiate DoS attacks on the network, although brief

ones, in order to determine the source of the similar attack.

On the positive side, however, this is the only method introduced so far that

does not rely on any ISP cooperation. This is an important and desirable quality of

an ideal traceback scheme. Only a single function must be created to perform Control

Flooding. The number of packets required for the scheme to successfully complete

a traceback is large. Processing overhead is incurred only during the traceback

and only at the equipment of the victim. The bandwidth overhead is extremely

high. Additional memory requirements are very limited and will be required only

at the victim's site. Partial deployment issue is not applicable here since equipment

needs to be deployed only when and where the attack is happening. Ease of evasion

and protection of this method are not an issue since there is no threat of compro-

mising the traceback data. The scheme is not sensitive to packet transformations.

Only DoS attacks can be traced with this scheme since traceback is limited to one

attacking stream. Therefore, this scheme is not able to trace large scale DDoS

attacks. Internet service providers, as mentioned above, are not involved with this

scheme. While Controlled Flooding can be automated, the authors made a point in

[22] that it is preferred to remain manual because of potentially severe consequences

of a programming error. For this reason alone, this approach is not feasible for its
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wide deployment in addition to the limitations mentioned above. Needless to say

that this scheme cannot trace the attack when it is over. It is possible that certain

customers may engage in controlled flooding; however, it is absolutely not feasible for

ISPs to encourage or support such efforts.

2.2.6 IPA foraceback with IPSec

This approach is introduced by a group of scientists headed by H. Chang [23, 24] as

part of a network based intrusion detection framework called DECIDUOUS. While

the framework itself is beyond the scope of this article, the mechanism of identifying

the source address of the attack is of interest.

The mechanism is based on an assumption that complete topology of the

network is known to the system. What follows is the underlying principle: if there

is an IPSec security association between an arbitrary router and the victim, and

the attack packets detected are authenticated by the association, then the attack is

originated on some device further than this router; if the packets of the attack were

not authenticated by this security association, then the attack is originated on some

device between this router and the victim. By establishing these security associations,

it is possible to identify a single router or a group of routers where the attack was

initiated from.

In Figure 2.6, when the attack is detected, an IPSec security association is

built between R4 and V. If A was in fact an attacker, then attack packets would

have to be authenticated since they will go through the tunnel. Next, the tunnel from

R1 to V is built. Note that from R4 to V there will be two tunnels encapsulating
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traffic from A. In reality, (this is not obvious from the figure,) the second tunnel will

be encapsulated in the first tunnel. Since the traffic is authenticated by two security

associations, it is clear that the attack had originated from somewhere behind Rib.

If, for example, the attack packets were only authenticated by the first tunnel, and

not the second, it would mean that the attack comes from somewhere between R1

and R4; in the case of Figure 2.6, it is R2.

There is a valid question on how the system determines which routers should

the victim build the IPSec associations with, if the source address is not known. The

answer is not simple. In short, the system goes through many iterations considering

every possible path. Interested readers can familiarize themselves with the intricacies

of those algorithms in [23, 24].

No new functionality needs to be developed by the vendors to enable this

scheme, since it uses IPSec which is available on most of the routers. An ISP has

to get involved in a sense that it must disclose its topology to all of its clients, so

they can build IPSec tunnels to all the routers. All the routers on the network

have to be configured to be able to build the IPSec tunnels with all the clients. The

scalability of the scheme is therefore low. If the "shared secret" type of authentication
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is used, all end systems would have to be notified of any change on any router in the

network resulting in unacceptable scalability. It is assumed that Digital Certificates

will be used for authentication of the Security Association. With the latter method

of authentication, the scalability is improved, but still not acceptable for wide inter

ISP-deployment. The number of packets necessary for traceback is low. The victim

has to build several IPSec tunnels and receive at least one packet after a given tunnel

is built in order to traceback the attack. While not discussed explicitly, there is no

reason why the scheme cannot be deployed partially only on some routers. Deploying

it on some routers would require, however, the knowledge of those routers to all

potential victims in advance. The processing overhead is high due to the processing

associated with setting up the tunnels with digital certificates in real time, both at the

victim's site and on the routers. This overhead will only be incurred during traceback.

Bandwidth overhead is potentially high, so is that of all schemes which involve IPSec.

This scheme is very difficult to evade because IPSec is very secure. Protection of this

scheme is high since the worst thing that can happen if a router becomes subverted is

that the IPSec tunnel between this router and the client would be impossible to build.

This is equivalent to the situation when this router was not involved in the scheme

to begin with. This scheme is not sensitive to most practical packet transformations.

Also, the scheme is capable of tracing major DDoS attacks by tracing paths one by

one; however, there is an issue with DDoS attacks. The routers can become the target

of the attack themselves. Recall that the routers in the ISP have to be open for clients

to setup IPSec tunnels. This can be easily exploited by the attackers. By attempting

to create IPSec tunnels to the router, the attacker can exhaust resources on the router.
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The tunnels will never be created because authentication will fail, but resources will

be allocated before the authentication failure occurs. One of the two things can

happen. The router will be so busy with opening new tunnels and authentication

that the forwarding of the packets will be degraded, which will constitute a denial of

service. Alternatively, if there is a set limit of the number of IPSec tunnels, which

the router can handle, this limit can be reached, and traceback will be impossible.

For this reason, this scheme is deemed as not being able to handle complex DDos

attacks.

2.3 IP foraceback State-Of-fohe-Art Evaluation

In this chapter, the state-of-the-art on IP traceback, along with proposed solutions to

this problem have been presented. Table 2.1 provides the summary of the evaluation

and offers comparison of IP traceback techniques.

As can be seen from Table 2.1, none of the methods possesses all of the

qualities of the ideal scheme. Solutions to a problem are rarely ideal. Very often

several solutions produce a useful taxonomy. For the problem of IP Traceback, several

solutions have been proposed. Each one of them has its own advantages and disad-

vantages. So far, none of the methods described in this article have been used on

the Internet. When economic or political incentives become strong enough to justify

deployment of IP Traceback, some new requirements and metrics for evaluation might

emerge.



foable 2.1 Comparison of Traceback Schemes
PPM iTrace Overlay Hash-based IP

Traceback
Controlled
Flooding

Traceback
with IPSec

ISP Involvement Low Low Large Fair None High
Scalability High High Poor Fair N/A Poor
Vendor Involvement
(# of functions to implement) 2 2 None 3 1 None

Number of Attack Packets
Required for Traceback Thousands 1 1 Huge FairThousands

Is Partial Deployment Within a
Single ISP Possible? Yes Yes Yes N/A Yes

Is Prior Knowledge of Topology
and Routing Required for
Traceback?

Yes, only if
deployed
partially

Yes, only if
deployed
partially

No
Yes, only if
deployed

 partially
Yes Yes

Is Inter-ISP Deployment Possible Yes Yes Yes Yes YesNo
Network
Processing
Overhead

Every Packet Low Low Low Low None None

During Traceback None None Low Low None High
Victim
Processing
Overhead

Every Packet None None None None None None

During Traceback High High None None Fair High
Bandwidth
Overhead

Every Packet None Low High None None None
During Traceback None None None Low Huge High

Memory
Requirements

Network None Low Low Fair None None
Victim High High None None Low None

Ease of Evasion Low High Low Low N/A Low
Protection High High Fair Fair N/A High
Ability to Handle Packet
Transformations Good Good Good Good Good Good

Ability to Handle Major DDoS
Attacks Poor Good Good Unable PoorPoor

Limitations DoS and DDoS
attacks only

DoS and DDoS
attacks only

Single ISP..
Single point of

failure.

Strict timing
constrains on

traceback
process.

Single Point of
Failure

DoS only.
Manual.
Unsafe.

Inconsistent.
Traceback is
possible only
while attack is

in progress

Single LISP.
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BASIC DPM

The basic DPM is a packet marking algorithm, first introduced in [25]. This section

provides the general principle behind DPM and discusses the most basic implemen-

tation of the proposed scheme.

3.1 Assumptions

The assumptions in this section were largely borrowed from the article by S. Savage,

et al. [6]. Some of them were, however, modified to reflect the fact that the scheme

is not designed merely for traceback of (D)DoS attacks.

• An attacker may generate any packet

• Attackers may be aware they are being traced

• Packets may be lost or reordered

• An attack may consist of just a few packets

• Packets of an attack may take different routes

• Routers are both Central Processing Unit (CPU) and memory limited

• Routers are not compromised

31
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3.2 DPM Principle

As mentioned above, DPM is a packet marking algorithm. The 16-bit packet ID field

and 1-bit RF in the IP header will be used to mark packets. Each packet is marked

when it enters the network. This mark remains unchanged for as long as the packet

traverses the network. This automatically removes the issue of mark spoofing which

other marking schemes have to account for. The packet is marked by the interface

closest to the source of the packet on an edge ingress router, as seen in Figure 3.1.

The routers with the red dot signify the routers with DPM enabled, and the rubber-

stamps signify the interfaces on these routers that actually perform the marking. The

mark contains the partial address information of this interface, and will be addressed

later in Section 3.3. The interface makes a distinction between incoming and outgoing

packets. Incoming packets are marked; outgoing packets are not marked. This ensures

that the egress router will not overwrite the mark in a packet placed by an ingress

router.
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For illustrative purposes, assume that the Internet is a network with a single

administration. In this case, only interfaces closest to the customers on the edge

routers will participate in packet marking. Every incoming packet will be marked.

Should an attacker attempt to spoof the mark in order to deceive the victim, this

spoofed mark will be overwritten with a correct mark by the very first router the

packet traverses.

3.3 Procedure

A 32-bit IP address needs to be passed to the victim. A total of 17 bits are available

to pass this information: 16-bit ID field and 1-bit RF. Clearly, a single packet would

not be enough to carry the whole IP address in the available 17 bits. Therefore, it

will take at least two packets to transport the whole IP address. An IP address will

be split into two segments, 16 bits each: segment 0 — bits 0 through 15, and segment

1 — bits 16 through 31. The marks are prepared in advance in order to decrease the

per packet processing. Each mark has two fields: Segment Number and Address bits.

With probability of 0.5, the 17-bit field comprised of the ID field and RF of each

incoming packet will be populated with either of those two marks.

At the victim, it is suggested that a table matching the source addresses to

the ingress addresses is maintained. When a marked packet arrives to the victim, the

victim will first determine if the given packet is an attack packet. If it is, the victim

would check to see if the table entry for the source address of this packet already

exists, and create it if it did not. Then, it would write address bits of the segment

into the corresponding bits of the ingress IP address value. After both segments
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corresponding to the same ingress address have arrived to the destination, the ingress

address for a given source address becomes available to the victim. The details of the

procedure are shown in Figure 3.2. Both marking and reconstruction procedures are

simplistic and are used in this chapter to illustrate functionality of DPM on a high

level.
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MULfoIPLE AfofoACKERS AND IP SOURCE ADDRESS
INCONSISfoENCY

The limitation of the basic DPM in handling a certain type of DDoS attacks lies in

the fact that the destination would associate segments of the ingress address with the

source address of the attacker. If it could be guaranteed that only one host partic-

ipating in the attack has a given source address, even though it might have been

spoofed, and that the attacker would not change its address during the attack, the

basic DPM is able to trace back. There are two situations when the reconstruction

procedure of the basic DPM will fail. First, consider the situation when two hosts

with the same SA attack the victim. The ingress addresses corresponding to these

two attackers are A0 and A 1 , respectively. The victim would receive four address

. The victim, not being equipped to handle

such attack would eventually reconstruct four ingress addresses, since four permu-

tations are ultimately possible:

where `.' denotes concatenation. Only two of the four would be valid.

A typical metric of evaluation of the traceback schemes for DDoS attacks is the

rate of false positives or false positive rate. In the context of DPM, a false positive

is defined as an incorrectly identified ingress address. The rate of false positives

refers to the ratio of the incorrectly identified ingress addresses to the total number

of identified ingress addresses. In the example described above, the false positive rate

for that particular attack is 50%. Clearly, the false positive rate would increase even

further if the number of attackers, with the same SA, was larger.

35
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Second, consider a (D)DoS attack, where the attackers change their source

addresses for every packet they send. The basic DPM will be unable to reconstruct

any valid ingress addresses since none of the entries in the IngressTbl would have a

complete ingress address.

4.1 General Principle of Handling DDoS Attacks

A general principle in handling (D)DoS attacks of these types is to rely only on the

information transferred in the DPM mark as was stated in [26]. The DPM Mark

can be used to not only transfer the bits of the ingress address but also some other

information. This additional information should enable the destination to determine

which ingress address segments belong to which ingress address.

The reconstruction procedure utilizes the data structure called Reconstruction

Table (Recall). The destination would first put the address segments in Recall, and

then only after correctly identifying the ingress address, out of many possible address

segments permutations, would transfer it to Ingressall.

4.2 Single Digest Modification to DPM

The scheme described in this section utilizes a hash function, H(x). To simplify the

performance analysis, the hash function is assumed to be ideal. It is also assumed

that the hash function is known to everybody including all DPM-enabled interfaces,

all destinations which intend to utilize DPM marks for traceback, and the attackers.

The constraint of 17 bits still remains, and so a longer digest would result in fewer

bits of the actual address transmitted in each mark, and consequently, the higher
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number of packets required for traceback. The shorter digest, on the other hand,

would result few packets required to transmit all the marks, but would repeat more

often for different ingress addresses.

4.2.1 Mark Encoding

Recall that in the basic DPM, the ingress address was divided into two segments. In

this modified scheme, the ingress address is divided into k segments. Also, more bits

would be required to identify the segment. Instead of a single bit required for two

segments in the basic DPM, log2 (k) would be required for this scheme. The remaining

bits would be used for the digest. Independently of which segment of the address is

being sent to the victim, the digest portion of the mark will always remain the same

for a given DPM interface. This would enable the victim to associate the segments

of the ingress address with each other to reconstruct the whole address.
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Figure 4.1 shows the schematics of the approach. The DPM mark consists of

three fields: a-bit address segment field, d-bit digest field, and s-bit segment number

field. Some padding may be required so that the address is split into segments of

equal length. For example, if the ingress address is divided in five segments, it would

be necessary to pad it with '000' to make it 35-bit long.

At startup the DPM-enabled interface prepares k marks for all segments of

the address. A d-bit hash value, or digest, of the ingress address is calculated once

and then inserted in the digest field of every mark. Each of k marks will have address

bits set to a different segment of the ingress address. The segment number field will

be set to the appropriate value. These operations are shown to the left of the bold

dotted line in Figure 4.1. The processing required for every packet will be limited

to generating a small random number from 0 to k — 1 and inserting a corresponding

mark into the packet header.

4.2.2 Reconstruction by the Victim

The reconstruction procedure of this scheme will consist of two separate processes:

Mark Recording and Ingress Address Recovery. The reason for separating these two

tasks is the fact that the attack packets may arrive to the destination faster than

they can be analyzed. The mark recording process will set the appropriate bits in

Recalls to indicate which marks have arrived to the destination. Address recovery

will check those bits, compose address segment permutations, and determine which

ones are valid ingress addresses.
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A reconstruction table Recalls is a 2 17 bit structure, where every possible mark

can be uniquely represented. It consists of 2 d areas. Each area consists of k segments,

and each segment consists of 2a bits. Figure 4.2 shows an example of Recalls, where

k, d, and a are 8, 10 and 4, respectively. When a mark becomes available to the mark

recording process, it sets the appropriate bit in the Recalls. For a given attacker, the

ingress address can possibly hashed into 2 d digest values. The digest is extracted from

the mark and the area where the bit will be set is determined. The segment number

field in the mark indicates the segment in the Recall area, where the appropriate bit

would be set. Finally, the value of the address bits in the mark indicates the actual

bit, which will be set to '1'. This process is repeated for every mark.

The address recovery process will be a part of a larger traceback procedure.

It will analyze each area of the Recall. Once again, it runs independently from the

mark recording process, thus allowing post-mortem traceback. The value of a certain
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bit in Recall indicates if the corresponding mark arrived to the victim. For example,

bit 12 in segment 3 of area 671 set to '1' means that there is an ingress address of

interest, with digest of 671 having segment 3 equal to '1100' 2 as shown in Figure

4.2. This segment has to be combined with other segments of this area in order to

create permutations of segments. Hash function, H(x), is applied to each of these

permutations. If the result matches the area number, which is actually the digest

embedded in the marks (in this example 671), then the recovery process concludes

that this permutation of segments is in fact a valid ingress address. The process

moves on to the other segments in this area of Recalls. The address recovery process

has to go through all permutations within a given area before moving on to another

area. H(x) is applied to every permutation, and only if the result matches the area

number, the permutation is transferred to the Ingressall. Additionally, if there is

a segment in the area, which has no bits asserted, then the process can immediately

move on to another area of Recalls. Details of the mark encoding procedure, the

mark recording and the address recovery processes for the single digest modification

are shown in Figure 4.3.

4.2.3 Analysis

In this section, the number of attackers, which this modified scheme can traceback,

with the false positive rate limited to 1%, is evaluated. Let us examine the origin

of false positives. If there is only one ingress address with a given digest, there will

be no false positives; however, as N increases, the chance of the digest repeated for

another address also increases. The expected number of digests for a certain number
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of N can be thought of as the expected number of the faces turning up on a 2 a-sided

die after N throws. This is a special case of a classical occupancy problem discussed

by W. Feller [27]. The expected number of different digests, E[H], is:

Therefore, the rate of false positives is 0 for the values of N, for which the expected

number of digests, E[H], equals to N, since every ingress address will have a unique

digest.

Since there may be more than one address resulting in the same digest, each

segment associated with a given digest would have a certain number of values. For

example, if two addresses have the same digest, segment 0 in the area of the Recalls

corresponding to this digest could have either one or two bits set to '1'. If segment 0

in these two addresses is the same, then there would be only one bit set to '1', and if

segment 0 of one address is different from segment 0 of the second address, then two

bits will be set to T. The expected number of values that a segment will assume can

also be thought of as the expected number of the faces turning up on a 2a-sided die

after Na throws, as shown in [27], where Na is the number of ingress addresses with

the same digest. The expected number of different values the segment will take is
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for those areas, which have segments of more than one ingress addresses, and 1 for

those which have segments of only a single ingress address. The expected number of

all permutations of address segments for a given digest is

Recall that after a permutation of segments is obtained, the hash function H(x) is

applied to it, and if the result does not match the original digest, that permutation

is not considered. The expected number of permutations that result in a given digest

for a given area of the Recalls is

The number of false positives for a given area would be the total number of permu-

tations, less the number of valid ingress addresses, which match the digest. For

this modification, just a few areas, which have segments of more than one ingress

addresses, will produce more than 0.01N of false positives. It is assumed that for all

those areas Na = 2. The number of those areas is N — E[H], and the number of valid

ingress addresses with segments in those areas is 2(N — E[H1]). The number of false

positives is given by

This number has to be less than 1% of N. Therefore, Eq. (4.3) has to be set to be less

or equal to 0.01N, and solved for N. Recall that a, d, and E[H] can be expressed in
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terms of k. The maximum N, which would satisfy this inequality, N mix , is difficult

to be expressed in terms of k. However, it is possible to find NMAX by substitution.

Table 4.1 provides the values of N MAX for selected values of k.

Another important consideration is the expected number of datagrams

required for the reconstruction. This number is related to k, the number of segments

that the ingress address was split. The larger the k, the more different packets

it would be required for the victim to receive in order to reconstruct the ingress

address. The expected number of datagrams, E{D], required to be marked by a

single DPM-enabled interface in order for the victim to be able to reconstruct its

ingress address is given by a Coupon Collector problem also described by W. Feller

{27]:
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4.3 Multiple Digest DDoS Modification to DPM

In the scheme described in Section 4.2, a single hash function, H(x), was used for

identifying the segments of the same ingress address. In this section, a modification,

requiring a family of hash functions, is introduced.
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4.3.1 Mark Encoding

In this scheme, the family of f hash functions, H0 (x) — Hf_l(x), will be used to

produce f digests of the ingress address. As in the single digest scheme described in

Section 4.2.1, the address segment and the segment number will be transferred in each

mark. Instead of the single digest, however, one of the several digests produced by

each of f hash functions concatenated with the function identifier will be embedded

in the mark. The d-bit field, which was used solely for the digest in the single-digest

scheme, would have to be split into two fields. One field, log2 (f)-bit long carrying

the identifier of the hash function, and d-bit field with the digest itself.

Figure 4.4 Mark encoding for multiple digest
DDoS modification.

Figure 4.4 illustrates the process of the mark encoding. The process is very

similar to the one described in 4.2.1, but differs in that for every ingress address, not

k, but f x k marks have to be created at startup and then randomly selected for every

packet. That does not affect the DPM-enabled interface per-packet overhead, since it
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will be limited to generating a small random number and overwriting 17 bits in the

header, just as for the single-digest or basic DPM schemes. The one-time penalty of

calculating the digests and producing the marks are is irrelevant.

4.3.2 Reconstruction by the Destination

Reconstruction by the destination is also similar to that described in Section 4.2.2.

The structure of Recall has to be changed slightly. The Recall will consist of f

smaller parts. Every one of those parts will have the structure identical to the Recall

described in Section 4.2.2 (2a areas, k segments in every area, and 2a bits in every

segment). The mark recording process first examines the hash function identifier

field. Then it proceeds to the corresponding part of the Recall. Having identified

the part in the Recalls, the area, and the segment, the appropriate bit is set to '1',

as in the single-digest scheme.

The address recovery process, shown in Figure 4.5, identifies the permutations

which match the digest in areas of Part of Recalls. Once a permutation is validated

by comparing its digest obtained by applying H0 (x) to the area number, the rest of

the hash functions, Hi (x) to Ilf_i (X), are applied to it to produce f —1 digests. These
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digests are used to verify the existence of this permutation in other parts of Recalls.

The process then checks these areas of the remaining parts for the permutation in

question. If the permutation is present in the appropriate area of every part of the

Recalls, it is concluded that the permutation is a valid ingress address. Notice that the

permutation does not have to be verified in every part. It is known that the digest

obtained by applying HZ (x) to the permutation being checked will match the area

number since the area was identified by this operation. Therefore, such verification

would be redundant and will always produce a positive outcome. The pseudo code in

Figure 4.6 provides the details of the mark encoding procedure, mark recording, and

address recovery processes.

4.3.3 Analysis

The purpose of the analysis of this scheme remains the same: to find NMAX, the

maximum number of simultaneous attackers, which can be traced back with the false

positive rate not exceeding 1%. For the multiple digest scheme, the number of false

positives in one area of Recall can be higher than in a single digest scheme because

the same false positive has to appear in the appropriate areas of all other parts of

Recalls in order to be identified as an ingress address.

Recall, from Section 4.2.3, that the expected number of permutations in a

given area is given by
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where N a is the number of ingress address with this digest. Since for the multiple

digest scheme, unlike the single digest scheme, the number of ingress addresses with

the same digest will be more than 2, the following analysis is more suitable. The

number of ingress addresses with the same digest is 1-—r - The number of permutations EH] •

in a single digest is then

in Part0 is

Once the permutation was identified as a possible ingress address in Part,

the remaining digests are calculated. Since the uniform distribution of addresses is

assumed, any permutation is as likely to appear as any other. The probability of
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any random permutation to appear is b-. The probability that a given permutation,

which is a false positive, will occur in the appropriate area of Partly is:

Note that this expression is not divided by 2 d since, if the permutation in question is

present in the identified areas of all other parts, it must match the appropriate digest

per discussion at the end of Section 4.3.2. The probability that a given permutation

will occur in the appropriate areas of all parts of Recalls is:

Multiplying this expression by the number of false positives in Part results in the

number of false positives after areas matching the digests 1 through f — 1 in all the

other parts of the Recall were checked. This is the total number of false positives

for the Recalls. Setting it not to exceed 1  results in the following inequality:

Recall that a, d, and E[H] can be expressed in terms of k. So the whole inequality

can be expressed in terms of k and f . Similar to the single-digest scheme, N minx can

be found by substitution.

The expected number of datagrams required to reconstruct the ingress address

is now given by
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Table 4.2 provides the values of Nix  and E{D] for selected combinations of f, a, k,

and d.

Multiple digest modification enables DPM to trace hundreds and even

thousands of simultaneous attackers with spoofed SAs, while the E{D] is either

slightly increased or not increased at all, depending on the value of f and k compared

to the single digest modification.
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CHAPfoER 5

ACCOMMODAfoING FRAGMENfoAfoION

Fragmented traffic constitutes, between 0.25% according to the article by S. Savage

et al. [6] and 0.5% of the total IP traffic according to the article by C. Shannon [28].

Though the amount of fragmented traffic is small, it does exist. The DPM scheme,

discussed so far, did not differentiate between fragmented and non-fragmented traffic.

The ID Field, which is used for fragmentation, and RF of the IP header are completely

replaced with one of f x k marks chosen at random in every packet.

In this chapter, the issue of why DPM is a poor way to handle fragmented

traffic is explored, and modifications to DPM to address fragmentation are presented.

5.1 IP Fragmentation Background and foerminology

Terminology used to describe different aspects of fragmentation is largely adopted

from [28].

Fragmentation is a feature of IP to enable transport of packets across the

networks with different Maximum Transfer Unit (MTU). Path MTU is the smallest

MTU of all the links on a path from a source host to a destination host as described

in Request for Comments (RFC) 1191 [29]. When a packet enters a network, whose

MTU is smaller than the packet length, the packet has to undergo a process of

fragmentation.

Figure 5.1 illustrates this process and introduces several important terms.

Original datagram is an IP datagram that will be fragmented because its size exceeds

the MTU of the next link. A Packet Fragment, or simply a fragment, refers to a packet

52
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containing a portion of the payload of an original datagram. While the datagram and

packet are synonymous, the terms, original datagram and packet fragment, will be

used for clarity. A fragment series, or simply a series, is an ordered collection of

fragments that results from a single original datagram.

When fragmentation occurs, each fragment becomes a valid IP packet. All

the fragments have their own IP header. Most of the fields of the IP header of the

fragments are inherited from the original datagram IP header. The fields of interest

are ID field, Flags, and Offset. ID field is copied from the original datagram to all

the fragments. The SA, Destination Address (DA), Protocol (P), and ID, are used

by the destination to distinguish the fragments of different series according to RFC

791 and 815 [30], [31]. The ID field of all the fragments, which resulted from a single

datagram, must have their ID field in the IP header set to the same value for proper

reassembly. More Fragments (MF) flag is set to '1' in every fragment except the last

one. This flag indicates that more fragments to follow. The last fragment has MF set

to '0' to indicate that it is the last fragment in the series. Finally, the offset field of
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the IPA header is set to the position of the data in the fragment with respect to the

beginning of data in the original datagram. The unit of offset is eight bytes.

For successful reassembly, the destination has to acquire all of the fragments of

the original datagram. A tuple (SA, DA, P, ID) is used to determine if the fragments

belong to the same original datagram, MF is used to indicate the number of fragments,

and Offset is used to determine the correct order of reassembly. Notice that the

fragments may come out of order but reassembly will still be successful because the

destination would be able to determine that the fragment belongs to a given series,

and its position relative to other fragments.

Since DPM uses the ID field for its purposes, the reassembly errors at the desti-

nation may occur. First the effects of the basic DPM on reassembly are examined and

then the techniques to avoid the undesirable effects are introduced. The performance

of the techniques is analyzed in terms of the probability of reassembly error.

5.2 Shortcomings of DPM related to Fragmentation

Fragmentation can happen upstream or downstream from the point of marking

according to S. Savage [6]. These two situations have to be considered separately.

5.2.1 Upstream Fragmentation

Upstream fragmentation is known to the DPM-enabled interface. The DPM-enabled

interface can identify a packet to be a fragment by examining its MF and Offset.

In the case of upstream fragmentation, a datagram is fragmented by a router

or a host before it reaches the DPM-enabled interface. When a series of fragments
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of the original datagram reaches the DPM-enabled interface the ID and RF fields of

all the fragments will be replaced with one of the f x k marks picked at random.

This will cause fragments to have different ID fields when they arrive to the desti-

nation. Fragments with different ID fields will be considered to be parts of different

datagrams. The reassembly will eventually timeout since the destination will never

get all the fragments necessary for the reassembly of what it considers to be two

separate series. The probability of all fragments in a series of two fragments having

the same ID field after marking is For a series of three packets, (fkl )2 , etc. For

f x k = 16, the probability of a series consisting of two fragments being correctly

reassembled is 6.25%, for a series of three fragments — 0.4%. Clearly, the rate of

reassembly errors caused by upstream fragmentation is unacceptable. The ability

of DPM-enabled interface to recognize upstream fragmentation results in a different

strategy for marking these packets described in Section 5.3.

5.2.2 Downstream Fragmentation

Downstream fragmentation is unknown to DPM. The DPM-enabled interface has no

knowledge if the marked datagrams, are being fragmented anywhere along the path.

Therefore, the datagrams, which will be fragmented after the marking cannot be

treated differently from the traffic, which is not fragmented.

Luckily, fragmentation downstream from the DPM-enabled interface does not

causes any problems for reassembly. The router, which is going to perform fragmen-

tation, will simply insert the content of the ID field of the original datagram into

every fragment. The value of RF will also be copied to every fragment as specified
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in RFC 1812 [32]. At the destination, reassembly will be successful since the ID field

will be the same for every fragment in the series. The fact that the ID field was set by

DPM, and replaced the original value set by the host is unknown to the destination,

and is irrelevant for the purpose of reassembly.

5.3 Fragment-Persistent DPM

In this section, the modification to the DPM marking procedure which would

eliminate most of the potential errors associated with upstream fragmentation is

introduced. The fundamental modification will be discussed first, followed by gradual

changes resulting in the final marking procedure.

5.3.1 Fundamentals of Handling Upstream Fragmentation with DPM

It is essential for proper reassembly that all of the fragments of the original datagram

have the same ID field. The basic DPM marks packets randomly choosing among

f x k marks. This randomness must be suspended when processing fragments. In

order to accomplish this task, DPM has to keep track of the fragments which pass

through. If a certain mark was inserted in the first fragment, that DPM-enabled

interface encounters (which does not have to be the fragment with offset 0), then

the same mark must be inserted into the rest of the fragments of this series. The

information about which mark is used for which series has to be stored in a table,

called Fragall, at the DPM enabled interface and checked every time a new fragment

arrives. To identify fragments belonging to the same original datagram, DPM should

check if the tuple of the four fields utilized by the reassembly function (SA, DA, P,
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ID) is the same as any other it marked within the maximum reassembly timeout of

120 seconds.

Figure 5.2 illustrates the fundamental changes to the DPM marking procedure

for fragmentation support. If the packet is not a fragment, there would be no changes

in handling it. If, however, the packet is a fragment, then DPM determines if it is

the first fragment in the series that it sees. If it is the first one, then the process

is identical to the non-fragment case, but, in addition, DPM stores the result of

the concatenated hash function number and segment number. This loge (f x k)-bit

pattern uniquely identifies every mark at this interface, and is arithmetically equal to

the index of the Marks array used in the procedure. This would allow to set the mark

of all the remaining fragments in this series to the same value as the first fragment.

When the packet is identified as a fragment and DPM marking procedure was able
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to find the hash function number and the segment number assigned to its series, the

corresponding mark is inserted. The reconstruction procedure at the victim will not

change and will be identical to the reconstruction procedure of the basic DPM.

5.3.2 Dealing with Infinite Series

Assuming that an attacker can generate any packet, it is possible that he will utilize

artificial fragmentation. That is sending packets with MF Flag set to '1' or non-

zero offset field when fragmentation is not necessary for the proper reason — the

datagram exceeding the MTU of a given link. With artificial fragmentation, the

attacker may generate infinitely many packets with the same SA, DA, P, and ID

fields, that would look like fragments of one very long series to the DPM-enable

interface or the destination. This is known as an infinite series. The invalid traffic

would be noticed only by the destination at the reassembly function, but for (D)DoS

attacks it would be enough that the invalid packets occupy the resources of the victim.

In this situation, the victim will never recover the full ingress address since only a

single mark would be available.

To remedy this situation, another simple modification in addition to fragment

persistence must be introduced. The modification is based on the findings in [28],

where it was determined from the real traffic traces that the longest series on the

Internet is 44 fragments. Deterministic Packet Marking should recognize the fact

that if the number of fragments in the series exceeds 44, it is, in all likelihood, an

attack, or a result of some errors. In either case, such traffic is not expected to

be properly reassembled. So, after DPM has persistently marked 44 fragments of a
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single series with the same mark, any additional fragments from the same series will

be marked randomly, as if it was not a fragment.

In order to implement this modification, the Fragall, which DPM uses to

account for fragments and where the segment value corresponding to (SA, DA, P,

ID) is kept, should also keep a counter, which should be incremented every time a

fragment with a given tuple is encountered. Once this counter exceeds 44, marking

persistence should be suspended and randomness should be reinstated. Figure 5.3

illustrates this concept with a pseudo code.
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5.3.3 Practical Compromise

The modification described in Section 5.3.2 will accommodate all of the valid

fragmented traffic. However, artificial fragmentation may still be used by the

attacker to generate bogus 44-fragment series directed to the victim. This will allow

the attacker to increase the expected number of packets required to be marked by a

DPM-enabled interface in order for the victim to be able to reconstruct its address,

E[Pkt], by the factor of 44. It is possible to modify the procedure outlined in Section

5.3.2 to significantly reduce this factor with the minimal trade-off.

According to C. Shannon [28], about 99% of series are only two or three

fragments long. This fact may be taken into consideration when resuming randomness.

It follows then that if the randomness in selecting the mark is resumed after only

three fragments have passed through the DPM-enabled interface, 99% of fragmented

datagrams will be unaffected and will reassemble successfully at the destination. To

the attacker, this will make sending series longer than three fragments to the victim

totally pointless. For example sending a series of 45 fragments will result in three

fragments marked with the same mark, and the remaining 42 fragments marked

randomly. The marks will be picked at random 43 times. Assuming f x k = 16,

approximately 15 different marks will be sent to the victim, according to the classical

occupancy problem discussed in [27]. The same number of packets may be sent to

the victim if the attacker sends 15 series, three fragments each. All three fragments

in every series will be marked with the same mark. Therefore, random mark will

be picked only 15 times, resulting in approximately 10 different marks sent to the

victim. Clearly, sending series of three fragments to the victim becomes the most
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sensible option for the attacker. While this approach will take care of all two and

three fragment series, which account for 99% of all series, the remaining 1% of valid

series, which contain more than three fragments will almost never get reassembled at

the destination.

The compromise approach to the fragmentation problem is now presented.

When the DPM-enabled interface encounters the first (not necessarily with offset 0)

fragment in a series, it decides if the randomness will be suspended for three fragments

or for 44 fragments in this series. The probability p, with which the randomness

is suspended for 44 fragments, should be selected in such a way that there is no

advantage to the attacker in sending series longer than three fragments.

Sending series of more than 44 fragments does not make any sense. It is

certain that the marks selected at random will be inserted in the fragments after the

44th. However, the attacker may send series of exactly 44 fragments hoping that

the number of packets sent to the victim would be greater than it were using three

fragment series for the same number of marks. If the attacker generates 44 fragment

series, the situation when only a single mark is inserted in all the fragments will occur

with probability p. The alternative is the situation when only the first thee fragments

will have the same mark, and the remaining 41 fragments will have randomly picked

marks inserted. Thus, 42 randomly picked marks would be transferred to the victim

in the fragments of this series. This situation will occur with probability (1 — p).

It is desired to find the value of p such that the expected number of packets per

randomly selected mark, C, is the same for both approaches. This would minimize

the undesirable effect the modification has on longer valid series without creating any
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benefit to the attacker of using the longer artificial series. Denote D as the number

of datagrams being sent. In case of sending series of three fragments, the expected

number of times marks are randomly picked (different from the number of marks

acquired by the victim) is D, and the number of packets sent to the victim is 3D. In

case of sending 44 fragment series, the expected number of randomly chosen marks is

D(42(1 — p) ± p) , and the number of packets sent to the victim is 44D. The ratio of

number of packets to the number of generated marks will be called a fragmentation

coefficient C. For the two options of using artificial fragmentation, C must be the

same.

Solving for p results in the value of -. It is important that the number of datagrams

sent by the given host does not affect the value of p. This means that DPM can

suspend randomness in mark selection for 44 fragments in two out of every three

datagrams. Approximately 33.3% of the datagrams fragmented into more than three

fragments upstream would fail to reassemble at the destination. The fragmented

traffic is only 0.5% of the overall traffic. Therefore about 0.0017% of the overall

traffic would be affected. The pseudo code of the encoding procedure reflecting the

practical compromise is depicted in Figure 5.4. Processing at the victim is not affected

by any of these modificatinos.
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In this section, the amount of memory required for the Fragall is analyzed. This is

an important issue since this memory overhead will be incurred by the routers, and as

was mentioned earlier the ISPs involvement for the scheme should be minimal. The

amount of memory required for the Fragall depends on the interface speed and will

vary for different interfaces. In this section, the estimation of the size of Fragall is

presented.
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The size of Fragall is directly proportional to the rate of the DPM enabled

interface, R. The interfaces with the higher rate are able to process more packets per

second. As mentioned earler, according to C. Shannon [28], approximately 0.5% of

IP packets are fragmented. For every series, 12 Bytes (4-Byte SA, 4-Byte DA, 2-Byte

ID, 1-Byte P, 4-bit fk value, and 1-bit required to store two values of threshold for

the number of fragments to resume randomness) are allocated in the Fragall and

every entry should be held in the Fragall for 120 seconds. Keeping the entry longer

than 120 seconds is unpractical since the reassembly process at the destination of the

fragments will timeout after 120 seconds according to RFC 1122 [33]. The average

packet size of 1000 bits is conservatively considered as it was by A. Snoeren [19]. The

recent traffic measurement studies suggest that the average packet size is, however

is closer to 400 to 600 Bytes according to S. McCreary and K. Claffy [34], and S.

Bhattacharyya [35]. It follows then that the size of the Fragall in Bytes is given by:

Table 5.1 summarizes memory requirements of Fragall for various commonly

used interfaces. The interfaces, which are likely to be on the edges of even a large

ISP, would not require more than 20MBytes of Random Access Memory (RAM).
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CHAPfoER 6

foRACEBACK

In this chapter, the different types of possible attacks to which the victim may

be subjected are discussed and the traceback procedure designed to perform the

traceback for all types of attacks is introduced. Then the conditions for traceability

for each attack type are discussed. Finally, the simulation results are presented and

discussed.

6.1 foypes of Cyber Attacks

E. Carter [36] divides the attack signatures into four classes: reconnaissance, infor-

mational, access, and denial of service. The first three classes can be combined into

one in the context of the DPM traceback and will be called intrusions. The last class

is the most challenging in terms of traceback, and will be discussed separately.

6.1.1 Intrusions

The important characteristic of an intrusion is that the attacker is interested to receive

some information from the victim. The attacker is thus restricted to use a stable IP

address in order to receive the replies from the victim. Even if the attacker engages

in an elaborate scheme when his/her address is spoofed, but he/she is still capable of

receiving the packets from the victim, and thus the traceback of such attacks is still

trivial.

66
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6.1.2 Denial of Service Attacks

Denial-of-service attacks have become very popular recently. Currently, there is no

complete comprehensive defense against these attacks. That is why the traceback

of these attacks becomes even more important. The common goal of all denial-of-

service attacks is to create a situation when the victim is unable to provide services

to the customers. This is usually accomplished by exhausting the physical or logical

resources on the victim's servers and networks or the ISP uplink.

A required attribute of any DDoS attack is a collection of slaves. The slaves

are the hosts on the Internet that the attacker compromises by using common vulner-

abilities and bugs of the operating systems as stated by V. Paxson in [37]. When the

attacker compromises a slave and gains full or partial control, the flood servers are

installed in them. Since the attacker controls the slaves, it is possible to have the slaves

generate any packet. Packets with the spoofed SA and artificial fragmentation are of

particular interest. The DDoS attack may also involve reflectors, the uncompromised

hosts with opened services (such as www), which are used to reflect the traffic from

the slaves to the victim. The mechanism of reflections works as follows. The slaves

forge the source address in the packet directed to the reflectors for the victim's IP

address. The result is that the victim is being flooded by the replies, which were

originated by the innocent servers. A feature of reflectors is that the attacker has

no control over the them, and therefore only valid packets may be generated by a

reflector. That means the SA field will have the reflector's address, and the artificial

fragmentation is not orchestrated by the reflectors.
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In the most general case of DDoS attack, called a mixed DDoS attack in this

dissertation, the attacker may instruct the slaves to flood the victim directly and send

the traffic to the reflectors, from which packets are reflected to the victim. In Figure

6.1, slave S sends packets 1 and 2 to reflectors R1 and R2, respectively. The SA of

these packets are spoofed for the address of the victim V. The generated replies 1 and

2 are then directed to V. Notice that SA fields of the replies 1 and 2 are not spoofed

and contain valid source addresses of R1 and R2. Also S sends packet 3, with a

spoofed SA for some random value R3, directly to V. The fact that S sends the

packets to both V and R's constitutes a mixed DDoS. A major attack would involve

hundreds or even thousands of slaves and may involve up to a million of reflectors

[37]. It is worth mentioning that the mixed DDoS attacks have neither been reported

nor described in literature, and at this time remain purely theoretical.

The popular DDoS attacks, which are currently exercised, are the special cases

of the mixed DDoS attack. One special case is what is known as a reflector-based
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DDoS attack in which slaves send packets only to reflectors, and the victim is flooded

by the replies from the reflectors only. The other special case is what is known as a

slave-based DDoS attack, in which the slaves send packets only to the victim. The

reflectors are not engaged in the slave-based attack. A special case of a slave-based

DDoS attack is a DoS attack, in which only a single slave participates in the attack.

6.2 foraceback Data Structures

The DPM traceback module has to be integrated with the Intrusion Detection System

(IDS) of the victim. The IDS will have to notify the DPM Traceback module on which

incoming packets constitute the attack.

As a stream of packets enters the victim's network, the SA field and the mark

of every packet must be logged, even if it is not considered an attack packet. The

logging must be done in order to be able to collect the marks of slaves' interfaces

from the reflectors in the reflector-based or mixed DDoS attacks, as will be discussed

in Section 6.4 and eventually reconstruct those ingress addresses, or to perform the

traceback post-mortem. The IDS has to recognize the attack. The IDS can employ
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signature-based detection, anomaly-based detection as defined by E. Carter in [36],

and J. McHugh in [38], or a combination of both as described by T. Bass in [39].

The techniques of recognizing the attack are beyond the scope of this work. The end

result of the IDS function is a collection of packets, constituting the attack. For every

attack, which IDS recognizes, DPM Traceback Procedure will create an instance of a

Traceall. The Traceall consists of a number of Recalls. Each Recall is associated

with a source address of one of the attack packets. In addition, there is a Statall,

a data structure identical to Tracheal, that is associated with the Tracheal and is

used solely for analysis of the marks. Finally, there is a common Recall where final

address reconstruction happens. The ingress addresses may be recovered in Statall

or the common Recall, so it can be copied to Ingress from either data structure.

Figure 6.2 illustrates the data structures involved.

6.3 foracing Slaves from Reflectors

Having identified potential reflectors in the reflector-based or the mixed DDoS attack,

it may be possible to determine the ingress addresses of the slaves. By examining the

DPM logs on the reflectors, if they were kept, it is possible to extract the marks from

the packets which caused the reflectors to send the attack packets to the victim, and

to use those marks in the tracing procedure on the victim. Recall that the attacker

engages a reflector in the attack by sending a packet to it from a slave with the SA

spoofed for the address of the victim. The reply to this packet, whatever it might

be, is directed to the victim. Even though the attacker may change the SA of the

packets, the DPM marks cannot be changed. Therefore, the marks of the packets to
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a reflector with the SA of the victim may be used to reconstruct the ingress address

of the slave(s), which sent the packets to this reflector.

The protocol of obtaining the logs is beyond the scope of this work. A given

reflector may have DPM logging enabled or disabled. When the victim makes a

request to the reflector for the marks from the logs, the victim's address and the

approximate time of packet arrival must be supplied. Three responses are possible:

• Error (or No Response), if the logging is not enabled on a given reflector.

• Positive Response, with the list of marks matching the specified parameters

returned to the requesting victim.

• Negative Response, if the logging on the reflector is enabled, but none of the

logged entries matched the specified parameters.

In Figure 6.3, three reflectors are shown. R2 and R3 have DPM logging

enabled and R1 does not. When V performs the traceback, the addresses of R1,

R2, R3 will be available to V. At this point, V has no knowledge that the packet



72

with SA of R3 was sent from a slave and SA was spoofed. V will send log requests

to each of these addresses. Figure 6.3 illustrates three possible responses to the log

requests. When the log request is sent to R1, error (or no response at all — depending

on implementation) is returned since the logging was not enabled. R2 had logging

enabled and had a record of packet with SA V. The marks (in this case only one) are

sent in the response to V. R3 also has logging enabled; however, it did not receive

any packets with SA V, and so the response is negative. Both positive and negative

responses are useful to the victim as will be seen in the next section.

6.4 Traceback Procedure

A single procedure must be able to handle all types of attacks discussed in Section

6.1. As the victim is being attacked, the attack packets will be identified. Every

attack packet which arrives to the destination will have a mark. The appropriate bit

of the Recall in the Tracheal associated with the SA address of the attack packet

will be set to '1' as described in Chapter 4.

Every T seconds or once the attack is over, the content of the Tracheal is

copied into Statall, which is used solely for the statistical analysis of the marks.

The recording of the marks is not performed in Statall, although while the Statall

is analyzed by the procedure, the incoming marks continue to be recorded in the

Tracheal. The Statall is used only to analyze the SAs and associated Recalls.

First, the traceback procedure makes log requests to potential reflectors. SAs

which have Recalls associated with them would be used to address those reflectors.

In case of a positive response from a reflector, the victim will obtain a list of marks
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from the slaves. It is certain that those marks are from the ingress interface of one

or more slaves, since they came in the packets that had the victim's SA, and so the

marks received in the response are copied to the common Recalls. It can be argued

that the reflector could perform the traceback based on this marks by itself. However,

the number of attack packets, which it would receive may not be enough for the IDS

to recognize the attack, and even if the attack was recognized, the marks, which a

single reflector would obtain, may not be enough for the traceback. In case of a

negative response, the traceback procedure on the victim concludes that every mark

in the Recall associated with that SA came from the ingress interface of one or more

slaves. After the marks from this Recalls are stored in the common Recalls, this

Recalls is removed from the Statall and is not considered for further analysis. Only

in the case of "no response", the procedure cannot make any conclusions and has to

move on to the next SA in the Statall. These alternatives and the corresponding

actions are depicted in Figure 6.4.

At this point, a proper Recall is defined as one where a single area of every

part will have exactly k bits set to '1'. Moreover, none of the bits set to '1' can be

within the same segment. If any of those conditions are violated, then a given RecTbl
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is not proper. In other words, a proper Recalls would have all marks necessary to

reconstruct a single ingress address, and no other marks.

The procedure applies address recovery process to every individual Recalls.

Any ingress addresses, which are reconstructed, are stored in the Ingressall.

Moreover, if the Recalls is proper, it is removed from the Statall. Refer to Sections

6.4.1 and 6.4.2 for further discussion on proper Recalls and mark deletion.

At this point, the procedure may have identified some marks from the ingress

addresses of the slaves by analyzing the responses from the reflectors and copying

them to the common Recall, and may have removed some reflector marks from the

Statall by deleting the proper Recalls.

The number of potential marks from slaves' ingress addresses identified by the

victim should not exceed MSL. MSL is the expected number of marks, which the

victim would collect if attacked by N minx attackers simultaneously. MSL equals to

the number of values a given segment in an area is expected to take, given by Eq.

(4.2) multiplied by the number of segments in an area, multiplied by the number of

areas in a part, and multiplied by the number of parts in a Recalls.

was also supported by the simulation. Keeping the number of marks under MSL will

ensure that the rate of false positives will not exceed 1%.
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Depending on the attack profile, some marks remaining in the Statall at this

point may be from the slaves' ingress addresses. A certain number of these remaining

marks should be selected to be copied to the common Recall. The total number of

already copied marks and the marks to be selected from the ones still remaining in

Statall should not exceed ESL. The mark occurrence is defined as the number of

Recalls in which that mark appears. In other words, if a given mark arrived multiple

times in the packets with the same SA, only one occurrence would be counted. The

remaining marks with the highest number of occurrence would be selected. Assuming

that the marks are distributed uniformly in the interval of [0, 2 17 ), the only reason

for a certain marks to have a higher number of occurrence is that the slaves have sent

packets to the victim with different SAs. This results in the situation when the same

marks appear in the Recalls associated with different SAs, and thus its number of

occurrence is increased. Therefore, marks with a higher number of occurrence are

more likely to be from the slaves' ingress addresses. The marks with the highest

number of occurrence are copied to the common Recalls. The number of marks

copied equals to ESL - n(com. RecTbl), where n(cam. Recalls) stands for the number

of marks in the common Recalls.

Finally, the address recovery process is applied on the common Recalls and

the ingress addresses are reconstructed. These can be the ingress addresses of slaves,

reflectors which did not have a proper Recall associated with their SA, and false

positives. A formal description of the procedure is presented in Figure 6.5.
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6.4.1 On Proper Recall and Hiding of the Marks

In this section, a concept of a proper Recalls is introduced. Recall that one of the

steps of the procedure discussed above was to remove the proper Recall from the

Statall. As part of the mixed DDoS, the attacker may attempt to send a packet

from a slave with the SA of the reflector, which sent enough packets for the victim

to collect a complete set of marks from its ingress interface. The attacker may try

to create a situation where the mark in this packet would duplicate one of the marks
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sent by the reflector. Thus, once it is established that this RecTbl is proper, this

mark will be deleted.

Intuitively, the chance of this situation occurring is very low. The attacker

may find few slaves' ingress addresses which have one or even two segments the same

as a targeted reflector. The probability that at least one of the digests is the same

multiplied by the probability that this digest and that segment are picked in the only

mark sent with this SA make this situation highly improbable.

6.4.2 On Deleting Marks from Recall

If the victim undergoes a mixed attack, the attacker could instruct the slaves to send

packets with the SA of the reflectors, thus making sure that the marks will be recorded

in a Recalls associated with some or all of the reflectors. By having additional marks

in those Recalls, the attacker ensures that the marks from reflectors do not get

deleted from the Statall. Why the marks which were used in reconstruction of a

valid ingress address are not removed in the presence of other marks in the Recalls?

If the attacker came into possession of many slaves, it is possible to select reflectors

in such a way that at least one out of f x k marks inserted by the DPM interface of

the reflector is the same as one of the marks inserted by the DPM interface of the

slave. The attacker may instruct the slave to send packets to the victim spoofing

the SA to the SA of the reflector. If the slave does not send enough packets for the

victim to collect all the marks in the Recalls associated with the SA of the reflector so

that the ingress address of that slave is reconstructed, then the ingress address of the

slave will never be reconstructed if one of its marks is deleted. Therefore, the marks
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may be deleted from the Statall only if the traceback procedure is certain with high

probability that only the marks from a single reflector's DPM interface are recorded

in the given Recall; in other words, the Recall is proper.

6.5 Conditions for foraceability and Untraceable Attacks

In this section, the attacks which can and cannot be traced back with the procedure

described in Section 6.4 are analyzed. All of the attacks will be analyzed from the

point of view of the victim traceback procedure. Denote S as the number of slaves

involved in the attack, L as a factor of hosts on the Internet with enabled DPM

logging, and C as the fragmentation coefficient.

Marginally traceable attacks are defined as the attacks during which the

number of packets received by the victim, falls below the expected number of packets

required for traceback. Yet, that number may be enough to collect all the marks

necessary for traceback. Untraceable attacks are defined as the attacks which can

never be traced. The difference between the two is that while marginally untraceable

can still be traced with the probability of success of less than 50%, the untraceable

attacks cannot be possibly traced. For the marginally traceable attacks with multiple

hosts involved, such as DDoS attacks, the victim may be able to trace back to some

of the hosts involved in the attack.
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6.5.1 Intrusions

The intrusion, as mentioned in section 6.1.1, cannot have packets with the spoofed SA,

and so theoretically a single packet identified by the IDS would be enough to perform

the traceback. However, if the intruder engages in some elaborate scheme where

his/her address is spoofed, but he/she is still capable of getting the desired infor-

mation, DPM tracing procedure would have to be used. As mentioned before, artificial

fragmentation will not provide any benefit to the attacker in terms of obstructing the

traceback process, and therefore will not be utilized. The expected number of packets

required for the traceback E[Pkt] is then ED]. Therefore, the marginally traceable

intrusion with the spoofed SA, which is rare, would be the one which contains up to

END] — 1 packets. The untraceable attack must consist of no more than f x k — 1

packets.

6.5.2 DoS Attacks

The DoS attacks come from a single source, most likely with spoofed SAs in the

attack packets, since the attacker is not interested in the replies from the victim. The

number of marks required to be received would be f x k as described in Chapter 4. The

artificial fragmentation could be used by the attacker to be able to send more packets

before the traceback becomes possible. In order for the victim to be able to trace

the ingress addresses of the slaves participating in a DoS attack, C x END] packets

must be received as mentioned in Chapter 5. Sending less datagrams than END] and

f x k would produce marginally traceable and untraceable attacks, respectively. The
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6.5.3 Slave-based DDoS Attacks

The slave-based DDoS attack can be considered as a number of DoS attacks executed

simultaneously. The victim for all of those attacks is the same. The expected number

of packets required to be able to trace any of the slaves' ingress addresses is C x ED],

as discussed in Section 6.5.2. Therefore, the marginally traceable slave-based DDoS

whole attack to be untraceable, every slave must be untraceable.

6.5.4 Reflector-based DDoS Attacks

The reflector-based DDoS attack currently causes the most concern. The reflectors

would be identified in the initial stage of the DPM tracing procedure. Identifying

the reflectors is not a goal of the traceback. The reflectors are just the innocent

servers with opened services used by the attacker to generate the traffic to the

victim. The number of packets, which the collection of slaves may send in order

to remain marginally traceable or untraceable, depends on the fraction of the hosts

6.5.5 Mixed DDoS Attacks

The point that the attacks described in this section have not been reported or

described yet, and are theoretical at this point is reemphasized. Yet, it is essential

that the traceback scheme is capable of handling the unknown as well as known

attacks.
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If L is sufficiently large, then using reflectors becomes detrimental to the

attacker's cause to have his slaves untraceable. The slave-based attack will allow the

attacker to send more packets while remaining marginally traceable or untraceable.

If, on the other hand, very few hosts on the Internet implement DPM logging, and L is

small, then the reflector-based attack will allow the attacker to attack the victim with

more packets while keeping slaves marginally traceable or untraceable. Notice that

reflector-based DDoS and slave-based DDoS attacks are both special cases of mixed

DDoS attacks. The number of packets which allows the attacker to wage marginally

traceable attack is

and the number of packets for the largest untraceable attack is

Two observations can be made. First, it observed that the number of reflectors

is irrelevant for traceability of the attack. Notice that it does not appear in any of the

expressions. Second, since C = 3, about 1/3 of hosts on the Internet must have DPM

logging enabled so that it becomes detrimental, in terms of the number of packets

required for traceability, to the attacker to engage reflectors. Table 6.1 summarizes

the findings of this section.
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6.5.6 Storage Requirements

16KByte (2'7 bits) of storage has to be allocated for every new SA involved in the

attack. This number should be doubled since all Recalls are copied to the Statall

for analysis. If millions of reflectors and slaves are involved in the attack, the storage

requirements may be large. This may be an issue if the storage facilities are not

properly sized. Currently the storage is a commodity and there are TByte hard

drives available commercially [40]. The organizations interested in DPM should plan

the storage capacity accordingly.

6.6 Simulation Results

Simulation results discussed in this section demonstrate the effectiveness of DPM

Traceback. Several figures of merit are introduced to evaluate the performance of

DPM which are affected by a number of independent variables. Several illustrative

attack profiles, which cover major attack types were designed and simulated. The

simulation results presented in this section should provide a good basis for the scheme

evaluation.
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6.6.1 Description of the Simulation

The following parameters were the inputs to the simulation:

• Number of Reflectors.

• Packets Sent by Each Reflector. The reflectors generate packets in response

to the packets from the slaves. It is assumed that for every packet from a slave

to a reflector, the reflector will generate a single packet.

• Number of Slaves. Even if the slaves do not attack the victim directly, such as

in reflector-based DDoS attack, slaves generate packets to the reflectors. Slaves

must participate in every type of attack.

• Packets per Slave to the Victim. Number of packets, sent by each slave

directly to the victim. This does not include the number of packets, which each

slave sends to reflectors.

• Use of Artificial Fragmentation by the Slaves. Artificial fragmentation

allows a slave to send several packets with the same mark to the victim. All of

these packets must have the same SA. So, on one hand, artificial fragmentation

decreases the number of marks received from the slave for a given number of

packets, which is undesirable, but, on the other hand, it decreases the number

of potential reflectors from which the logs must be requested, which is desirable.

• Percentage of Packets from the Slaves with Random SA. Sending

packets with the random SAs, not corresponding to the SAs of the reflectors has

certain pros and cons from the attacker's point of view. Sending more packets
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from the slaves with random SA will result in the increased number of negative

responses from the potential reflectors. While this makes traceback more time

consuming, it would have better chances of identifying the slave marks, and

then ingress addresses of the slaves. Sending packets with SAs of reflectors will

decrease the number of logs polled.

• Percentage of Hosts with DPM Logging Enabled, L. This parameter

indicates the number of hosts which will produce a response to a log request.

A configuration of the above parameters is called an attack profile. The first six

parameters would be controlled directly by the attacker. The last one, would not

be controlled by the attacker, but is a major contributing factor in traceback effec-

tiveness.

Some other data are directly related to the attack profile, yet are not explicitly

controlled by the attacker:

• Number of foraceable Slaves. Traffic from every slave will pass through a

DPM-enabled interface. If enough packets from a given slave pass through it,

then a complete set of marks will reach reflectors and/or victim. A slave that

sends enough packets to have its ingress interface traced, is called a traceable

slave.

• Total Number of Packets Sent to the Victim. This signifies the severity

of the attack. Usually, the more traffic is being sent to the victim the heavier

is the impact of the attack.
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• footal Number of Marks from All Slaves' Ingress Interfaces. This

quantity is used by the simulation to establish how good the traceback is. In

reality, the traceback procedure will never know how many marks were sent in

the packets from the slaves.

According to the procedure described in 6.4, the first step is to send log requests.

The simulation determines the following values:

• footal Logs Requested.

• Number of Positive Responses.

• Number of Negative Responses.

• Number of errors (or No Responses).

The respective percentages with respect to the total are also determined. After the

victim has polled the logs, the following statistics are calculated:

• Correctly Identified Marks from Slaves' Ingress Interfaces. These are

the marks identified, which indeed were inserted by the ingress DPM-enabled

interfaces of the slaves. The percentage with respect to the total number of

marks from all slaves is also calculated.

• Not Identified Marks from Slaves' Ingress Interfaces. These are marks,

which are not identified by requesting logs from reflectors.

• Incorrectly Identified Marks from Slaves' Ingress Interfaces. There

should be no incorrectly identified marks at this stage of the procedure.
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However, when this statistic is recalculated later on, it indicates the number of

marks, which were not inserted by slaves' ingress interfaces.

The number of correctly and not identified marks should equal to the number of marks

from all slaves' ingress addresses. The incorrectly identified marks are a separate

measure and refer to the amount of marks from reflectors' ingress addresses, which

the traceback mistakes for the slaves' ingress addresses marks.

Finally, the marks with the highest occurrence are added to the common

Recall as outlined in Section 6.4. (The simulation does not check if the RecTbls in

the StatTbl are proper. The output of the simulation, therefore, has a higher number

of incorrectly identified marks from the slaves ingress interfaces as compared to what

the actual procedure would have.) These steps are called additional processing at the

victim. At this point, three final values are recalculated.

The simulation using the multiple digest DPM configuration with f = 4 and

k = 4 is described in this section.

6.6.2 Description of Profiles

Seven representative profiles are presented here. The nature and voluminous amount

of the data prevents us from discussing additional profiles.

6.6.2.1 Profilel. 	 Profile 1 is a slave-based attack. 75% of hosts on the

Internet support logging. Consequently, about 75% of the slave marks are identified

by receiving negative responses to the log requests, which are sent to the spoofed

addresses, since 100% of packets from slaves had a random SA. The total number of
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logs requested is 166,666, which is approximately 1/3 of the total number of packets.

This can be explained by the fact that artificial fragmentation was used, and the

same mark was sent three times in the packets with the same SA. As expected, 75%

of requested hosts produce negative responses, and the rest return no responses.

The remaining marks are copied to the RecTbl by the victim when the

traceback procedure gets to the stage of selecting marks with the highest occurrence

number. Since there were not enough marks in the Statall remaining to make the

number of marks in common RecTbl to be Ea, all of the remaining marks were

copied to the common Recall. 100% of slave marks were identified and copied to the

common Recall by the end of the procedure, implying that all 1,000 slaves' ingress

addresses will be reconstructed.

6.6.2.2 Profile. Profile 2 is a reflector based attack. Notice that slaves do

not send packets directly to the victim. In this scenario, 100% of hosts on the Internet

have DPM logging enabled. This results in the full set of marks from slaves' ingress

interfaces be recovered by polling the logs of the reflectors. Further analysis by the

victim identifies 24,270 more marks to be copied to the Recall. Our simulation does

not implement checking for the proper Recall. This checking would likely result in

fewer incorrectly identified marks. When the reconstruction process is applied to the

common RecTbl, all of the slave ingress addresses will be reconstructed along with

some reflector ingress addresses and some false positives. Most importantly, all of the

marks from slaves' ingress addresses are identified.
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6.6.2.3 Profile. Profile 3 is identical to Profile 2 except that there are

no hosts on the Internet with DPM logging enabled. The outcome of the traceback

procedure is significant. As expected, none of the slave marks were identified by

requesting the logs since there was no response for any of the request. When the

victim attempted to select the marks with the highest number of occurrence, only

some marks were identified correctly. The reason for these correctly identified marks

from slaves' ingress interfaces is that reflectors have the same marks and those 1,882

had a higher number of occurrence. In other words, these were the reflector marks,

which coincided with the slave marks. The outcome of the traceback procedure on

Profile 3 attack is consistent with the conditions for traceability outlined in Section

6.5.4, namely that reflector-based DDoS attacks cannot be traced if logging is not

enabled on reflectors.

6.6.2.4 Profile. Profile 4 is a mixed DDoS attack. 50% of hosts on the

Internet have DPM logging enabled, and 50% of all packets from slaves have random

SA. About 64% of all slave marks are identified by reflector log requests; the rest

of them along with some other ones from the slaves are identified during the final

processing by the victim.

6.6.2.5 Profile. Profile 5 is similar to Profile 2 in that no hosts on the

Internet implement DPM logging. However, the attack of this profile is a mixed DDoS

attack, and the slaves send traffic to the victim as well. This allows the victim to

identify all of the marks from the slaves after the request of reflectors' logs produced
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no results. Also, notice that in this case, since slaves send a lot of packets to the

victim, and all of them have random SA, more than 3.75M requests to the reflectors

would have to be made.

6.6.2.6 Profile. Profile 6 is a marginally traceable attack. Recall from

Section 6.5 that in order to be marginally traceable a slave has to send between f x k

and E{D] datagrams during the attack. The slaves in this attack send 27 datagrams

(3 fragments each datagram) each since artificial fragmentation is used for the traffic

from the slaves to the victim. Most of the marks are identified by requesting the

logs. The rest are identified during the final victim processing. Even though all of

the marks are identified and copied to the common Recalls, only 432 out of 1,000

slaves' ingress addresses will be reconstructed since only 432 sent enough packets to

make a complete set of marks available.

6.6.2.7 Profile. Profile 7 is an untraceable mixed DDoS attack. Recall

from Section 6.5 that in order to be untraceable, a slave has to send less than f x k

datagrams. Every slave sends 12 datagrams in total. Even though all of the marks

from the slaves are identified and copied to the common Recall by the end of the

traceback procedure, none of the slaves' ingress addresses will be reconstructed since

none of them sent enough packets to have a complete set of marks for any of the

ingress interfaces available to the victim and reflectors.



foable 6.2 Simulation Results for Selected Attack Profiles
Profile 1 2 3 4 5 6 7

Attack Charac-
teristics
Controlled
Directly by
the Attacker

- Attack

r # of Reflector 0 10,000 10,000 10,000 3,000 1,000 1,000
Packets/Reflector 0 200 200 200 1,000 20 10
# of Slaves 1,000 500 500 1,000 2,250 1,000 1,500
Packets/Slave 500 0 0 500 5,000 80 20
Artificial Frag.
used by Slaves Yes No No Yes Yes Yes Yes

Packets from
Slaves with
random SA

100% 100% 100% 50% 100% 50% 0%

Profile
Attack
Characteristics
Indirectly
Controlled or not
Controlled by the
Attacker

Hosts with DPM
Logging Enabled 75% 100% 0% 50% 0% 100% 100%

Traceable Slaves 1,000 500 500 1,000 2,250 432 0
Packets sent to
Victim 500,000 2,000,000 2,000,000 2,500,000 14,250,000 100,000 40,000

Marks sent from
Slaves' Ingress
Interfaces

15,068 7,768 7,766 15,060 31,488 14,392 13,355

Outcome of
Requesting
Reflector Logs

Total Logs
requested 166,666 10,000 10,000 93,333 3,753,000 14,333 1,000

Positive
responses 0 0% 10,000 100% 0 0% 5,000 5% 0 0% 1,000 7% 1,000 100%

Negative
responses 125,000 75% 0 0% 0 0% 41,667 45% 0 0% 13,333 93% 0 0%

No responses 41,667 25% 0 0% 10,000 100% 46,667 50% 3,753,000 100% 0 0% 0 0%
After Reflector
Log Requests,
Marks from
Slaves' Ingress
Interfaces

Correctly
Identified 11,492 76% 7,768 100% 0 0% 9,635 64% 0 0% 12,763 89% 8,127 61%

Not Identified 3,576  24% 0 0% 7,766 100% 5,425 36% 31,488 100% 1,629 11% 5,228 39%
Incorrectly
Identified 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0%

After Additional
Processing at
Victim, Marks
from Slaves'
Ingress Interfaces

Correctly
Identified 15,068 100% 7,768 100% 1,882 24% 15,057 100% 31,488 100% 14,392 100% 13,355 100%

Not Identified 0 0% 0 0% 5,884 76% 3 0% 0 0% 0 0% 0 0%
Incorrectly
Identified 0 0% 24,270 76% 30,156 94% 16,981 53% 550 2% 9,887 41% 6,638 33%

Comments Slave-based
DDoS

Reflector-based
DDoS

Reflector-based
DDoS - no
logging

Mixed DD0S Mixed DDoS-no
logging

Marginally
Traceable
Mixed DDoS

Un-traceable
Mixed DDoS



CHAPfoER 7

DPM DEPLOYMENfo AND foOPOLOGICAL ISSUES

Up until now the Internet was considered to be a homogeneous network with a single

administration and perfect DPM deployment on the edges of the network. In reality,

the Internet is not, and has never been, a single homogeneous network according to

G. Huston [41], [42], and J. Rexford [43]. The Internet, from its very beginning,

was an interconnection of different networks. Over time the Internet became more

structured, but its heterogeneous nature still remains. In this section the structure

of the Internet is described and the relationships among the Autonomous Systems

(ASs) are explored. Then, the simple guidelines for deploying DPM are introduced

and analyzed.

7.1 Structure of the Internet

The Internet is a hierarchical structure [41], [42]. Several ISPs, so called tier 1 ISPs,

constitute the backbone of the Internet. Very few ISPs, such as UUNET, SprintLink,

AboveNet, GBLX, AT&T and a few others, have the status of tier 1. The recent

visualization of the Internet, where the hierarchy can be observed, is available on the

web site of CAIDA [44]. These ISPs have a large geographical presence to facilitate

a convenient connection of other ISPs. The ISPs of the second tier do not have the

geographical presence comparable to tier 1 ISPs. Therefore, in order to establish

connectivity to the other parts of the world, tier 2 ISPs have to buy transit services

from one or more tier 1 ISPs. The next tier of ISPs have even less geographical

presence. Yet, these ISPs are not at the lowest levels of hierarchy. These ISPs have to
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buy transit services from the upper tier ISPs in order to establish global connectivity.

These ISPs of medium tiers are often called regional ISPs. Finally, there are lowest

tier ISPs, which sell transit services only to the retail customers such as home users

and businesses. It is also suggested by A. Feldmann and J. Rexford [45] that the ISP's

IP networks themselves have a hierarchical structure with well defined core links and

edge links.

An administrative domain, such as an ISP or an enterprise network, may

consist of more than one AS according to L. Gao [46]. For example, when two

organizations, each with its own AS, merge, the resulting network will be a single

administrative domain encompassing two ASs. The connectivity among the ASs

is provided by the Border Gateway Protocol (BGP), version 4 [47]. BPG is used

for the exchange of routes and for the selection of routes based on the predefined

policies. Using BGP an AS advertises certain routes to its neighbors. The commercial

relationships between the ASs define the rules, also called policies, of route advertising.

In the rest of this section, relationships between ASs classified by L. Gao [48, 46],

which do not always fit the purely hierarchical structure will be examined. Figure 7.1

illustrates all of the relationships described later in this section.

7.1.1 Customer-to-Provider Relationship

In the customer-provider relationship, the provider, usually an AS of a higher tier

ISP, advertises all known routes to the customer, an AS of the lower tier ISP. The

customer pays for this transit service and advertises all of its known routes to the



Figure 7.1 Illustrations of inter AS relationships.

provider. The provider in one relationship may be a customer in another relationship,

and the customer in one relationship may be a provider in another relationship.

For increased availability, a given customer may enter a customer-provider

relationship with more than one provider. Such an arrangement is called multi-

homing. The end customer, such as a local ISP or an enterprise, that maintains

customer-provider relationship with a single provider is called a stub. In a multi-

homed arrangement, the customer does not advertise the providers' routes. Otherwise,

the customer's network may be used as a transit between its providers.

It should also be noted that the customers do not necessarily have to connect

only to the local, lowest tier, ISPs only. ISPs of high tiers offer retail services as well,

and the end customers may purchase transit services from them directly.
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7.1.2 Peer-to-Peer Relationship

Two ISPs may find it mutually beneficial to exchange the routes to its customers

directly. This is called a peering arrangement and is usually free of charge to both

parties since it usually provides equal benefits to both ISPs. In order to establish the

peering arrangement, the respective ASs have to enter a peer-to-peer relationship.

In the peer-to-peer relationship the routes to the ASs' own customers are usually

advertised to the peer AS. The peering arrangements are not associative, meaning

that two peers of a given AS are not peers of each other, unless they setup an explicit

peer-to-peer relationship between each other.

Peer-to-peer relationships are established usually for economic reasons.

Instead of sending traffic through the transit network, it is more efficient and cost

effective to send the traffic directly to the peer. This reduces the amount of traffic

which is sent to the provider, as well as offers better service between the customers

of the two peers.

There are several instances of peer-to-peer relationship in Figure 7.1. Autonomous

system A and B have a peer-to-peer relationship. Therefore, the customers of A

would be able to communicate with the customers of B without using the providers

of A and B (not shown in Figure 7.1). Autonomous system C has a peer-to-peer

relationships established with D, and with I. It means that the traffic from customers

of C will be able to reach the customers of D and I without traversing A. However,

the traffic from customers of AS I will have to traverse AS A in order to reach

customers of AS D, and vice-versa. There is also a peer-to-peer relationship between

ASs G and H.
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7.1.3 Sibling-to-sibling Relationship

In the sibling-to-sibling relationship, the two ASs exchange the routes to its customers,

peers and providers. In other words, the two sibling ASs share all routes. This

arrangement is usually used for the ASs, which belong to the single administrative

domain. Also, when two stubs cannot afford a transit service by themselves, they

may effectively combine their networks by entering the sibling-to-sibling relationship

and use a single connection to the provider, provided the bandwidth requirements are

met, in order to save money.

Autonomous systems F and G in Figure 7.1 have a sibling-to-sibling relationship.

Since they exchange all of their available routes, customers of G will have access to

the rest of the Internet. Similarly, although F does not have an explicit peer-to-peer

relationship with H, the peer-to-peer relationship between them will exist implicitly

since G would share routes to the F's customers with H, and H's routes with F.

7.1.4 Backup Relationship

Two ASs may have a backup relationship, given that they have different providers.

If the provider of one of the AS in the backup relationship fails, then this AS will use

its backup AS as a transit network to the Internet. The purpose of this arrangement

is similar to that of the multi-homing described in Section 7.1.1. However, instead

of actually purchasing transit service from two providers, the customer purchases

the transit service from one provider and enters a mutual backup relationship with

another AS, which is cheaper.
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Autonomous systems H and I in Figure 7.1 have a backup relationship. This

means that if for some reasons, AS B would become unavailable to H, it would

be able to maintain the connectivity to the rest of the Internet through ASs I and

A. Similarly, if AS I would loose its connectivity to A, it would still maintain the

connectivity to the rest of the Internet through ASs H and B. The customers do not

necessarily have to connect only to the local ISPs only. In reality, as seen in Figure

7.2, the customers may connect directly to the ISPs of the high tiers, where B has

two retail customers.

7.2 Ideal DPM Deployment

The ideal DPM deployment is a situation, where every interface connecting to the

customers of all ISPs in the Internet would be DPM enabled. This situation is

depicted in Figure 7.2.

Figure 7.2 Ideal DPM deployment.
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The collection of DPM-enabled interfaces is called a DPM perimeter. The

perimeter must not have any holes, the access points through which the traffic from

a customer may traverse the Internet unmarked. The DPM perimeter is shown in

Figure 7.2 as a thick dotted line with circular dots.

7.3 Guidelines for DPM Deployment

It cannot be expected that all ISPs will deploy DPM simultaneously, if at all. Also

even if that is to happen, DPM has to be disabled on some interfaces, as it is being

enabled on the others to maintain the DPM perimeter. Therefore some coordinated

effort on behalf of the ISPs is needed.

Neighboring ASs are defined as two ASs, which have at least one external

BGP (eBGP) session setup between them. It is possible to have more than one eBGP

session between a pair of ASs. Also, it is necessary to make a natural assumption that

an ISP is not acting maliciously. In other words, if the ISP claims to have deployed

DPM, then it can be trusted that DPM is in fact deployed and it is deployed according

to the guidelines described below.

Tier 1 ISPs must have DPM enabled on all edge interfaces of all their ASs,

except those which face other ASs of tier 1 ISPs. This can be accomplished by the

good will of these ISPs or by forcing them to do so. All of the tier 1 ISPs are US-based

companies, thus making application of some legal responsibilities possible.

After the Internet's core has been DPM enabled, the rest of the ISPs can join

the DPM scheme gradually. Only the ASs, whose providers have deployed DPM, may

enable DPM on its edges. Once the AS of the lower tier enabled DPM on its edges,
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this fact has to be communicated to the provider. The provider must then disable

DPM on the interface to this customer.

If there are two neighboring ASs, which are in either sibling-to-sibling, peer-to-

peer, or backup relationship and both of them have DPM enabled, then both should

disable DPM on the interfaces facing each other. This requires that ISPs share the

information about DPM deployment, but it is assumed that administrations of ASs,

which established any relationship would have means and incentives to communicate

this information to each other.

7.3.1 Illustrative Example

Consider the network introduced in Figure 7.1 discussed so far. For illustrative

purposes, it is assumed that ASs A and B are tier 1 ISPs and the rest of the ASs are

tier 2. As discussed earlier, A and B have to deploy DPM before the rest of the ASs,

then the following sequence of AS deployment is considered: F, H, C, E, D, I, and

G.

Autonomous systems belonging to the tier 1 ISPs must deploy DPM first on

their edge interfaces. Since AS A and AS B have a peer-to-peer relationship and both

of them have DPM enabled, the DPM must be disabled on the interfaces between

them, as can be seen in Figure 7.3.

Next, DPM is deployed on the edge interfaces of the first tier 2 ISP F as seen

in Figure 7.4. Autonomous system F has a single interface to B and since both of

them will have DPM enabled, B has to disable DPM on its interface to F. If B does

not disable DPM on the interface to F, then the attack traffic from the F's customers
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will be marked by the edge interface of F, and then those marks will be over-written

by the marks of B. So, effectively the traceback will be possible only to the edge of

B. Autonomous system F has a sibling-to-sibling relationship with AS G. Since G,

at this moment had not deployed DPM on its edges, F has to deploy DPM on the

interface to G.
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Next, AS H deploys DPM on its edges as shown in Figure 7.5. Since ASs I and

G, which have sibling-to-sibling and peer-to-peer relationships with H respectively,

do not support DPM yet, H has to deploy DPM on its edge interfaces to these ASs.

Autonomous System B has to disable DPM on its interface to H in order not to

over-write the marks by H's edge interfaces.

Next, AS C deploys DPM on its edge interfaces and A disables DPM on the

interface to C as shown in Figure 7.6. Since peers of C, I and D do not have DPM

deployed yet, C has to enable DPM on all of its edges, except for the interfaces to

AS A. A also has to disable DPM on the interface to C.
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Autonomous System E is multi-homed; it is a customer of both AS A and

AS B. This does not complicate the DPM deployment process. Since E does not

maintain any relationships with any other ASs other than A and B, DPM has to be

enabled on all of its edge interfaces, except the ones facing A and B. A and B have

to disable DPM on the interfaces to E as shown in Figure 7.7
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When AS D enables DPM on its edges, not only AS A, but also its peer, AS

C, has to disable DPM on the interfaces to D because at that point both C and D

will have DPM deployed as shown in Figure 7.8.

Similarly, when AS I enables DPM on its edge interfaces, the interfaces to C

and H would not need to have DPM enabled on them since the respective ASs have

DPM enabled. Also the DPM would have to be disabled on C's and H's interfaces

to I. The resulting DPM perimeter is shown in Figure 7.9.
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Finally, when DPM is enabled on the edges of AS G, it has to be disabled on

the interfaces of its peer H and of its sibling F, which provides connectivity to G as

shown in Figure 7.10.

If it is assumed for illustrative purposes that the network described so far is a

complete Internet, then ideal DPM deployment will result after AS G deploys DPM

on its edges.
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DISCUSSION AND CONCLUSIONS

Traditionally, all IP traceback schemes perform what is known as the full path

traceback, where a complete path of the attack packets through the Internet is

determined. Deterministic Packet Marking does not perform full path traceback.

Only the closest to the source interface which belongs to the DPM perimeter is

determined during the traceback. In this chapter, the advantages and the disad-

vantages of the DPM traceback versus the full path traceback will be addressed.

It can also be argued that the ingress address filtering, described by P. Ferguson

[5], is as effective as DPM if deployed around the same perimeter. This argument is

addressed in this chapter as well.

Finally, some concluding remarks on DPM and traceback in general are made.

8.1 Comparison of DPM to Full Path foraceback Schemes

Deterministic Packet Marking can be viewed as a special case of PPM described in

Section 2.2.1 and introduced by Savage, et al. [6]. The differences are that marking

happens only at the edges of the collection of the deployed networks and the proba-

bility of marking is 100%. So what is lost and what is gained by these changes?

Deterministic Packet Marking must be deployed according to the guidelines

outlined in Chapter 7. This requires the synchronization of efforts on behalf of the

ISPs. Probabilistic Packet Marking, on the other hand, can be deployed indepen-

dently on every ISP. Consider the situation depicted in Figure 8.1, where ISP 0 of

tier U does not deploy a traceback scheme, and ISPs P and R of tier U+ 1 do deploy
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the traceback scheme. Also, the attack path from the attacker A to the victim V

traverses the path P-O-R.

If a full-path traceback scheme is deployed, the partial path encompassing the

routers in P and R will be reconstructed. If DPM is deployed, the address of the

R's interface to 0 will be reconstructed. The marks of the ingress interface of P

inserted in the packets will be overwritten by the marks of the R's interface to 0.

That is exactly why this situation is not possible in DPM, if the deployment guidelines

described in Chapter 7 are followed.

Deterministic Packet Marking cannot trace the attacks which were initiated

from inside of the DPM perimeter, situation depicted in Figure 8.2. There is an unsub-

stantiated opinion that the attackers subvert one or more routers as a part of most

attacks. In reality, subverting a router is a difficult task, usually possible as a result

of an improper router configuration. To get a feel for how vulnerable is the network

equipment compared to the workstations, the Computer Emergency Response Team

(CERT) vulnerability notes database [49] was examined. A vulnerability is a flow in

the system that can be used to take full or partial control over the system, or just

bring it down. Vulnerability notes database is a collection of known vulnerabilities,



106

which have been reported so far. At the time of this writing, May 12th, 2003, there

were 825 known vulnerabilities in the database. Only 31 (under 4%) of them were

attributed to the ISP grade network equipment, the rest to various software packages

of different platforms, and some to home office or Local Area Network (LAN) network

equipment. Of these 31, only a handful were severe enough to allow an attacker to

take control over the device. The low percentage of ISP grade network equipment

vulnerabilities may serve as an indication of how difficult it is to accomplish the

situation depicted in Figure 8.2. It can also be concluded that in the vast majority

of the attacks, the attack packets are generated by the workstations, and therefore

are traceable by DPM.

There are many advantages of DPM over the full-path marking schemes.

Security issues of PPM-like schemes arise from the fact that an attacker can inject

a packet, which is marked with erroneous information. Such behavior is called mark

spoofing. Prevention of such behavior is accomplished by special coding techniques,

and is not 100% proof. Deterministic packet marking ensures that every packet, which

arrives to the victim is correctly marked, and thus the need in those complex and

processor intensive encoding techniques is unnecessary.
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The following observation about all full-path traceback schemes is made: in

a datagram packet network, the full-path traceback is as good as the address of an

ingress point in terms of identifying the attacker. By definition, each packet in a

datagram network is individually routed. Since every packet may take a different

path from the source to the destination, only the ingress interface on the router

closest to the source must be the same. Packets may take different routes even if

their source and destination are identical. This may happen for two reasons: due to

unwanted isolations of the network routing, or due to desired bandwidth management

techniques such as load balancing. The changes in route between the source of the

attack packets and the victim will be detrimental for the full-path traceback since

more than one path for the single source would be reconstructed. This, however,

does not affect DPM.

Internet service providers may only use public addresses for interfaces to

customers and other networks, and use private addressing plans within their own

networks. In this case, the usefulness of the full-path traceback becomes very low

since information produced for the most part cannot tell the victim much more than a

few IP addresses on the borders between ISPs. Even, if this is not the case, and public

addressing is used within ISPs' networks, ISPs generally feel reluctant to disclose their

topologies. Full path traceback schemes reveal topology of all networks by design.

To limit this undesirable behavior, only routers, whose addresses are already known,

should implement such schemes.
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8.2 Comparison of DPM to Ingress Address Filtering

Source address filtering is a mechanism of ensuring that only the packets with the

valid SAs are entering the Internet. The range of valid addresses is setup manually

on the ingress interface and usually corresponds to the range of IP addresses of the

hosts, which are expected to connect to the Internet through this interface.

Ingress address filtering is usually associated with high processing overhead.

It is usually a subset of a large filtering mechanism, which enables filtering of packets

by many other fields of layer 3 and 4 headers in the packets. To perform this

filtering, every packet has to be taken off the fast switching hardware-based path

and be analyzed by software, thus drastically increasing the processing overhead

incurred by the router for every packet. The processing overhead, however, is not

what precludes ingress address filtering from becoming an effective protection against

the DDoS attacks. Hardware based mechanism, which would filter packets based on

their SA only, would not be difficult to implement. In fact, the processing overhead

incurred for every packet on the routers would be comparable to DPM, and none of

the victim's processing would be necessary.

Unfortunately, ingress filtering is only effective in preventing DDoS attacks

unless carried out everywhere according to the article of K. Park and H. Lee [50].

In addition, the ingress filtering has to be constantly managed if it is not deployed

on the edges of the network, and its effectiveness is severely degraded. Consider

Figure 8.3 where ISP 0 of tier U does implements ingress address filtering, and ISPs

P and R of tier U + 1 do not. The customer network connects to ISP P. Assume

also that at some point in time ISP 0 is aware of the address ranges used by both
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lower tier ISPs and the customer. If the customer changes its provider from P to R,

then the ranges on the interface performing the ingress filtering on the edges of 0

have to be reconfigured to allow the traffic from the customer through 0. In case the

customer changes its IP address range, similar reconfiguration tasks would have to be

performed. If the customer is multihomed, then 0 would have to accept traffic from

customers with SAs of the interfaces from R and P. In other words, any workstation

could spoof the source address of their packets to the ones of this customer, and this

traffic would be allowed to pass.

Once the attacker finds a way for his or her packets with the spoofed SAs to

pass through the ingress filtering, the attack cannot be stopped. DPM, however, even

if deployed on the same networks as the ingress address filtering, would provide the

victim with concrete IP address, where the attack traffic entered the DPM perimeter.
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8.3 IP foraceback Implications and Challenges

In addition to the technical aspects of IP traceback, there are also legal and societal

aspects [51]. Several US federal laws that are relevant to traceback were not written

with computer networking in mind. Currently, an insufficient number of court cases

and precedents make it difficult to understand all implications of the traceback.

Collecting packet headers is generally not considered intrusion of privacy, and

is legal. Collecting payloads, on the other hand, is illegal. Collecting digests is

currently a gray area. Schemes like PPM, Overlay Network, Traceback with IPSec,

or Controlled Flooding discussed in Sections 2.2.1, 2.2.3, 2.2.6, 2.2.5, respectively, do

not collect any data from the payload, and the results of traceback may be admissible

in court. On the other hand, ICMP Traceback and Hash-based IP Traceback schemes

discussed in Sections 2.2.2 and 2.2.4 collect either digest or actual content of the

packet, and may not be admissible. The developers of IP Traceback schemes have to

be aware of legal implications, and that these methods can potentially intrude into

privacy of individuals and corporations. According to [51], privacy of information is

a higher priority than attack traceback even for organizations which may become a

target of the attack, and the incentive for implementing traceback schemes is minimal.

Policy implications are also very important. Legislation, which requires IP

Traceback, may be needed for ISPs to start implementing and deploying the schemes.

This is a big problem in itself. Resolving this problem may not be enough since

other countries do not have to comply with US laws. In case of non-compliance, any

traceback solution would be able to conduct traceback as far as to the edge of the
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compliant network. Non-compliant countries may become a safe-haven for attackers.

The attacks may initiate from them or go through them and will be untraceable.

The issues discussed here are only the tip of the iceberg of many legal, political

and societal issues which traceback may involve. The developers of the schemes should

keep in mind that even the best traceback solutions from a technical stand point may

be unsuitable for implementation and deployment for non-technical reasons.

8.4 Conclusions

Coping with computer attacks is a complex, multifaceted problem. There are different

philosophies in the academia and the industry on how to deal with them. The

combination of different methods in prevention, and traceback is what most likely

be ultimately used in dealing with computer crimes. In this dissertation, Deter-

ministic Packet Marking — an approach to IP traceback which effectively combines

packet marking mechanism with the ingress only processing — was presented. It has

better performance characteristics than other marking schemes. Most importantly, it

was demonstrated that it is possible to trace the slaves in the DDoS attacks involving

reflectors by DPM. This the first effort to a comprehensive traceback, which is capable

to trace beyond the reflectors.
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