109 research outputs found

    Comparison of Queueing Data-Structures for Kinetic Monte Carlo Simulations of Heterogeneous Catalysts

    Get PDF
    On-lattice Kinetic Monte Carlo (KMC) is a computational method used to simulate (among others) physico-chemical processes on catalytic surfaces. The KMC algorithm propagates the system through discrete configurations by selecting (with the use of random numbers) the next elementary process to be simulated, e.g. adsorption, desorption, diffusion or reaction. An implementation of such a selection procedure is the first-reaction method in which all realizable elementary processes are identified and assigned a random occurrence time based on their rate constant. The next event to be executed will then be the one with the minimum inter-arrival time. Thus, a fast and efficient algorithm for selecting the most imminent process and performing all the necessary updates on the list of realizable processes post-execution, is of great importance. In the current work, we implement five data-structures to handle the elementary process queue during a KMC run: an unsorted list, a binary heap, a pairing heap, a 1-way skip list, and finally, a novel 2-way skip list with a mapping array specialized for KMC simulations. We also investigate the effect of compiler optimizations on the performance of these data-structures on three benchmark models, capturing CO-oxidation, a simplified water-gas shift mechanism, and a temperature programmed desorption run. Excluding the least efficient and impractical for large problems unsorted list, we observe a 3× speedup of the binary or pairing heaps (most efficient) compared to the 1-way skip list (least efficient). Compiler optimizations deliver a speedup of up to 1.8×. These benchmarks provide valuable insight on the importance of, often-overlooked, implementation-related aspects of KMC simulations, such as the queueing data-structures. Our results could be particularly useful in guiding the choice of data-structures and algorithms that would minimize the computational cost of large-scale simulations

    A Survey on the Contributions of Software-Defined Networking to Traffic Engineering

    Get PDF
    Since the appearance of OpenFlow back in 2008, software-defined networking (SDN) has gained momentum. Although there are some discrepancies between the standards developing organizations working with SDN about what SDN is and how it is defined, they all outline traffic engineering (TE) as a key application. One of the most common objectives of TE is the congestion minimization, where techniques such as traffic splitting among multiple paths or advanced reservation systems are used. In such a scenario, this manuscript surveys the role of a comprehensive list of SDN protocols in TE solutions, in order to assess how these protocols can benefit TE. The SDN protocols have been categorized using the SDN architecture proposed by the open networking foundation, which differentiates among data-controller plane interfaces, application-controller plane interfaces, and management interfaces, in order to state how the interface type in which they operate influences TE. In addition, the impact of the SDN protocols on TE has been evaluated by comparing them with the path computation element (PCE)-based architecture. The PCE-based architecture has been selected to measure the impact of SDN on TE because it is the most novel TE architecture until the date, and because it already defines a set of metrics to measure the performance of TE solutions. We conclude that using the three types of interfaces simultaneously will result in more powerful and enhanced TE solutions, since they benefit TE in complementary ways.European Commission through the Horizon 2020 Research and Innovation Programme (GN4) under Grant 691567 Spanish Ministry of Economy and Competitiveness under the Secure Deployment of Services Over SDN and NFV-based Networks Project S&NSEC under Grant TEC2013-47960-C4-3-

    Orchestration of IT/Cloud and Networks: From Inter-DC Interconnection to SDN/NFV 5G Services

    Get PDF
    The so-called 5G networks promise to be the foundations for the deployment of advanced services, conceived around the joint allocation and use of heterogeneous resources,including network, computing and storage. Resources are placed on remote locations constrained by the different service requirements, resulting in cloud infrastructures (as pool of resources) that need to be interconnected. The automation of the provisioning of such services relies on a generalized orchestra tion, defined as to the coherent coordination of heterogeneous systems, applied to common cases such as involving heterogeneous network domains in terms of control or data plane technologies, or cloud and network resources. Although cloud-computing platforms do take into account the need to interconnect remote virtual machine instances, mostly rely on managing L2 overlays over L3 (IP). The integration with transport networks is still not fully achieved, including leveraging the advances in software defined networks and transmission. We start with an overview of network orchestration, considering different models; we extend them to take into account cloud manage ment while mentioning relevant existing initiatives and conclude with the NFV architecture

    Message routing in level 1 of the wide-band all-optical network

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1995.Includes bibliographical references (p. 83).by Stan James Reiss.M.S

    Resource orchestration strategies with retrials for latency-sensitive network slicing over distributed telco clouds

    Get PDF
    The new radio technologies (i.e. 5G and beyond) will allow a new generation of innovative services operated by vertical industries (e.g. robotic cloud, autonomous vehicles, etc.) with more stringent QoS requirements, especially in terms of end-to-end latency. Other technological changes, such as Network Function Virtualization (NFV) and Software-Defined Networking (SDN), will bring unique service capabilities to networks by enabling flexible network slicing that can be tailored to the needs of vertical services. However, effective orchestration strategies need to be put in place to offer latency minimization while also maximizing resource utilization for telco providers to address vertical requirements and increase their revenue. Looking at this objective, this paper addresses a latency-sensitive orchestration problem by proposing different strategies for the coordinated selection of virtual resources (network, computational, and storage resources) in distributed DCs while meeting vertical requirements (e.g., bandwidth demand) for network slicing. Three orchestration strategies are presented to minimize latency or the blocking probability through effective resource utilization. To further reduce the slice request blocking, orchestration strategies also encompass a retrial mechanism applied to rejected slice requests. Regarding latency, two components were considered, namely processing and network latency. An extensive set of simulations was carried out over a wide and composite telco cloud infrastructure in which different types of data centers coexist characterized by a different network location, size, and processing capacity. The results compare the behavior of the strategies in addressing latency minimization and service request fulfillment, also considering the impact of the retrial mechanism.This work was supported in part by the Department of Excellence in Robotics and Artificial Intelligence by Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR) to Scuola Superiore Sant’Anna, and in part by the Project 5GROWTH under Agreement 856709

    Resource allocation and scalability in dynamic wavelength-routed optical networks.

    Get PDF
    This thesis investigates the potential benefits of dynamic operation of wavelength-routed optical networks (WRONs) compared to the static approach. It is widely believed that dynamic operation of WRONs would overcome the inefficiencies of the static allocation in improving resource use. By rapidly allocating resources only when and where required, dynamic networks could potentially provide the same service that static networks but at decreased cost, very attractive to network operators. This hypothesis, however, has not been verified. It is therefore the focus of this thesis to investigate whether dynamic operation of WRONs can save significant number of wavelengths compared to the static approach whilst maintaining acceptable levels of delay and scalability. Firstly, the wavelength-routed optical-burst-switching (WR-OBS) network architecture is selected as the dynamic architecture to be studied, due to its feasibility of implementation and its improved network performance. Then, the wavelength requirements of dynamic WR-OBS are evaluated by means of novel analysis and simulation and compared to that of static networks for uniform and non-uniform traffic demand. It is shown that dynamic WR-OBS saves wavelengths with respect to the static approach only at low loads and especially for sparsely connected networks and that wavelength conversion is a key capability to significantly increase the benefits of dynamic operation. The mean delay introduced by dynamic operation of WR-OBS is then assessed. The results show that the extra delay is not significant as to violate end-to-end limits of time-sensitive applications. Finally, the limiting scalability of WR-OBS as a function of the lightpath allocation algorithm computational complexity is studied. The trade-off between the request processing time and blocking probability is investigated and a new low-blocking and scalable lightpath allocation algorithm which improves the mentioned trade-off is proposed. The presented algorithms and results can be used in the analysis and design of dynamic WRONs

    Evaluation of data centre networks and future directions

    Get PDF
    Traffic forecasts predict a more than threefold increase in the global datacentre workload in coming years, caused by the increasing adoption of cloud and data-intensive applications. Consequently, there has been an unprecedented need for ultra-high throughput and minimal latency. Currently deployed hierarchical architectures using electronic packet switching technologies are costly and energy-inefficient. Very high capacity switches are required to satisfy the enormous bandwidth requirements of cloud datacentres and this limits the overall network scalability. With the maturity of photonic components, turning to optical switching in data centres is a viable option to accommodate greater bandwidth and network flexibility while potentially minimising the latency, cost and power consumption. Various DCN architectures have been proposed to date and this thesis includes a comparative analysis of such electronic and optical topologies to judge their suitability based on network performance parameters and cost/energy effectiveness, while identifying the challenges faced by recent DCN infrastructures. An analytical Layer 2 switching model is introduced that can alleviate the simulation scalability problem and evaluate the performance of the underlying DCN architecture. This model is also used to judge the variation in traffic arrival/offloading at the intermediate queueing stages and the findings are used to derive closed form expressions for traffic arrival rates and delay. The results from the simulated network demonstrate the impact of buffering and versubscription and reveal the potential bottlenecks and network design tradeoffs. TCP traffic forms the bulk of current DCN workload and so the designed network is further modified to include TCP flows generated from a realistic traffic generator for assessing the impact of Layer 4 congestion control on the DCN performance with standard TCP and datacentre specific TCP protocols (DCTCP). Optical DCN architectures mostly concentrate on core-tier switching. However, substantial energy saving is possible by introducing optics in the edge tiers. Hence, a new approach to optical switching is introduced using Optical ToR switches which can offer better delay performance than commodity switches of similiar size, while having far less power dissipation. An all-optical topology has been further outlined for the efficient implementation of the optical switch meeting the future scalability demands
    • 

    corecore