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Abstract

We consider the middle hierarchical level of an All-Optical Network and develop the
theories and algorithms that enable maximum utilization of its resources. We develop a
method for optimally configuring the network, vis-a-vis the use of two routing devices, in
order to maximize throughput. The method is applicable to arbitrary traffic patterns. We
show that when the network is configured according to this method network delay is
minimized at heavy traffic loads. We further show, using simulation, that under light loads
the same network configuration results in average delay that approaches the minimum
possible. Finally, we address the problem of dynamically scheduling network resources in
order to minimize average delay. We use simulation to compare the performance of
several scheduling algorithms.
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Chapter 1

Introduction

This chapter provides a general introduction to Optical Networks, and in particular to the

network being constructed by the Wide-Band All-Optical Network Consortium. It also

introduces the problem that is addressed in this thesis.

1.1 Optical Networks

In this thesis, we concern ourselves with high-speed optical communication networks.

Modern high-speed networks almost always consist of nodes and optical links. The

nodes, in addition to originating and receiving messages, perform functions such as

scheduling and routing. The actual sources and destinations of messages are in general

electronic and typically data is converted between electrical and optical signals within the

network whenever it leaves or enters an optical fiber.

There are two general classes of optical networks: Electro-Optical Networks (EONs) and

All-Optical Networks (AONs) [Bar93]. EONs are the conventional networks in which

nodes convert a signal from optical to electronic form, route the message, and then

re-convert it into an optical signal for transmission. EONs are also referred to as Multi-

Hop Networks [Aca93] and Second Generation Optical Networks [Gre93]. In contrast to

the EON, an optical signal in an AON is not converted back into electronic form until it

leaves the network. All routing functions are performed in the optical domain. AONs are

also called Third Generation Optical Networks [Gre93] and Single-Hop Networks.



1.1.1 Electro-Optical Networks

Virtually all modem high-speed communication networks, ranging from private FDDI

rings to the long distance telephone networks, are EONs. EONs also support electronic

store and forward routing, a substantial advantage over AONs where storing optical

signals is problematic. Routing technology using electronic digital computers is

commonplace and, for low data rates, inexpensive. However, electronic routing runs into

problems at high data rates as electronic devices are limited to speeds that are low in

comparison to those supported by optical fibers.

Using multiple electronic devices in parallel can compensate for their limited speed.

However, because the potential data rate through an optical fiber is orders of magnitude

higher than the maximum rate of an electronic device, a very large number of these devices

would have to be set up to run in parallel in order to exploit the potential fiber bandwidth.

The resulting cost/throughput tradeoff [Bar93] limits the maximum data rate achievable

practically in an EON to one that is significantly lower than the capacity of an optical fiber.

1.1.2 All-Optical Networks

All-Optical Networks seek to improve the cost/throughput tradeoff. Since electronic

routing is not used, the costs associated with numerous electronic components disappear

and the entire fiber may be economically exploited. However, message routing must now

be accomplished using only optical components -- a difficult technological challenge.

Optical packet switching requires optical memory and lasers with very short tuning times.

Optical circuit switching, while simpler than packet switching, still requires optical logic

more complex than what is currently available.



Two alternatives for routing exist in an AON. The first involves using a broadcast star, a

device which combines wavelengths from all origins and subsequently broadcasts them to

all the destinations. The second, called wavelength routing, allows a node to select a

destination by tuning to the appropriate wavelength and sending the message through a

device called a X-router. Wavelength routing allows for bandwidth re-use in different

parts of the network but is less flexible than broadcast routing since individual

wavelengths are assigned to specific routes through the network.

Networks using only X-routers and transmissive stars as routing mechanisms have been

shown to be unscalable, i.e., they can support only a limited amount of traffic, regardless

of the ingenuity of the routing algorithm [Bar93]. Thus, until optical switching becomes

practically and economically feasible, throughput in wavelength routed optical networks is

limited.

1.2 AON Consortium

In 1993, AT&T, the Digital Equipment Corporation (DEC), and the Massachusetts

Institute of Technology (MIT) formed a pre-competitive consortium to study all-optical

networks. The goal of the consortium is to "address the challenges of utilizing the

evolving terahertz bandwidth capability of optical fiber technology to develop a national

information infrastructure capable of providing flexible transport, common conventions

and common servers" [A+93]. Towards this end, the consortium is buliding a test-bed

All-Optical Network (AON) at the members' sites in Massachusetts and New Jersey. The

test-bed consists of small sub-networks (called Level 0 networks) at each of the members'

sites. Eventually, the networks will be connected together in a hierarchical manner to

form a large Wide Area Network. The AON will incorporate advanced optical and



opto-electronic technology to enable the utilization of the low-loss wavelength window of

the single-mode optical fiber and the 4-5 THz passband of the erbium doped fiber

amplifier.

1.3 AON Architecture

The AON architecture is based on a combination of wavelength division multiplexing

(WDM) and time division multiplexing (TDM) technologies. The architecture provides

for wavelength re-use within the AON. The AON is being designed with careful attention

to scalability, modularity, and flexibility. Because current technological limitations make

all-optical packet switching impractical, the test-bed AON is based on scheduled circuit-

switching data services and unscheduled datagram control services. The AON currently

uses broadcasting and wavelength routing to direct messages to their destinations.

Level.2 ................................
Level 2

•" Level 1 ' i

:- -, e \ /" """-

Figure 1.1: AON Structure

The AON is divided into three hierarchical levels: Level 0 (LO), Level 1 (LI), and Level 2

(L2). Figure 1.1 illustrates the network hierarchy.



1.3.1 Level 0

The LO's, which are analogous to Local Area Networks, lie at the lowest level of the

AON. Figure 1.2 illustrates a Level 0 network. This is the level where Optical Terminals

(OTs), or the network's users, attach to the network through an Access Point (AP). Each

LO has a set of wavelengths (X's) used specifically for intra LO communication. These X's

can be reused among different LO's since they are blocked from entering into the next

hierarchical AON level, the L1. They are broadcast within each individual LO, thus

eliminating any need for intra-LO routing. The remaining X's in each LO are sent to the L1

and used for inter-LO and inter-L1 communication.

.- ........ Level ......

Figure 1.2: AON Level 0 Structure

1.3.2 Level 1

The L1 is the middle hierarchical level of the AON and may be viewed as a Metropolitan

Area Network (MAN). This work mainly addresses the L network level of the AON.

An L1 connects a number of LO networks within a geographically limited area. It employs

a device called a X-router to route wavelengths between individual LOs and a device called

a transmissive star to broadcast selected wavelengths to all the LOs connected to that L

[A+93]. A %-router is an optical device capable of receiving wavelengths from an

I

I
I
I



incoming fiber and sending different wavelengths to different output fibers. A transmissive

star broadcasts all the incoming signals to all the outgoing fibers. A wavelength is either

split off before reaching the X-router and sent through the transmissive star or it is sent to

the %-router. Figure 1.3 illustrates the L1 X-router/transmissive star combination. The

X-router operates identically over several sets of wavelengths referred to as Free Spectral

Ranges (FSR's) so that, for example, the first wavelength in each FSR goes from LOi to

LOi+1, the second goes from LOi to LOi+2, etc.

rl.A ,- IA

Filter
Star
.oupler

Figure 1.3: L I-router/Transmissive Star Combination

A problem with the X-router is that it allows for no bandwidth steering. Each LO has a

fixed number of X's available for communication with each other LO in the X-router and a

heavy user can not "borrow" bandwidth from a user that is idle. The L1 transmissive star

seeks to address this problem. Since anyone may use the star, a heavy user is able to

utilize the star's bandwidth while others are idle. In addition, a transmissive star has

multicast advantages. Any message transmitted over the star is received by all the LOs in

the L1. In short, the star has potential advantages for asymmetric (some channels

requiring more bandwidth) point-to-point traffic as well as for both symmetric and

asymmetric multicast traffic.



A problem with the transmissive star is that it decreases available point-to-point

bandwidth. While the total point-to-point bandwidth through the %-router is proportional

to WM, where M is the number of LOs attached to the L1, the point-to-point bandwidth

through the star is proportional to M. Therefore use of the star can be inefficient for

symmetric point-to-point traffic when the aim is to maximize throughput. In short, the use

of the star increases flexibility while decreasing total available point-to-point network

bandwidth [Ale92].

1.3.3 Level 2

The AON Level 2 is the Wide Area Network connecting the individual Level 1 networks.

The Level 2 network contains the expensive long-haul fibers and it is important that its

resources are used efficiently. Many of the problems associated with routing and

scheduling within the Level 2 are unique to that network level [Fin92].

1.4 Thesis Problem

In this thesis we develop the theories and algorithms that enable the AON Level 1 to

maximize the utilization of its network resources. The resources available in the L1 are

the %-router and the transmissive star. Bandwidth can be dynamically allocated between

the two devices resulting in a X-router/transmissive star configuration (or network

configuration). Due to current technological limitations, this configuration can only only

be changed slowly. We address the problem of configuring the L1 network in order to

maximize throughput and minimize average delay. Furthermore, we develop an algorithm

that allows for the efficient use of the network resources with stochastic traffic when the

network is optimally configured.



1.5 Thesis Organization

We divide the problem of routing in the Level 1 of the AON into three seperate

sub-problems and address them sequentially. In Chapter 3, we use a constant flow model

to maximize throughput in the Level 1 assuming a fixed traffic shape'. This section of the

thesis results in an algorithm that can be used to optimally divide the available bandwidth

between the %-router and the transmissive star for any given traffic pattern. In Chapter 4,

we analyze the L from the standpoint of queueing delay. We search for a

X-router/transmissive star combination that will minimize average queueing delay paying

particular attention to the configuration resulting in maximum throughput. Last, in

Chapter 5 we tackle the problem of dynamically allocating the bandwidth of the broadcast

star between the LOs in order to minimize the average delay. We use both analytical and

simulation techniques to solve the problems addressed in this thesis.

'The notion of"traffic shape" will be formally defined in Chapter 2.
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Chapter 2

Level 1 Network Model

The purpose of this chapter is to introduce the level 1 network model and to formally

define the problem to be solved. We begin by introducing the model and the notation that

is used in this thesis. We follow by formulating several sub problems and finish by

providing a brief problem summary.

2.1 X-Router/Transmissive Star Configuration

We consider each Level 0 network to be a single node attached to the Li. Recall that all

data is broadcast within an LO. The individual Optical Terminals that are the actual origins

and destinations of calls have no impact on L1 routing, and their repective host LOs may

be treated as the origin and destination nodes. Thus, though the L1 is really a network of

networks, it is justifiable to model it as a network with "black box" nodes. We assume

that each message or call has a single origin and a single destination node. The Origin-

Destination (O-D) addresses are used to identify traffic.

In the AON, there are F wavelength channels available in each fiber and each node (LO)

has an input fiber and an output fiber. The F wavelength channels are divided into R sets

of wavelengths called Free Spectral Ranges (FSRs)2. A channel is defined to be a single

wavelength3.

2Recall from Chapter 1 that each FSR behaves identically in the X-router.
3In an AON with Time Division Multiplexing (TDM) capability, the actual number of channels would be
T * F, where T is the number of TDM slots per channel (wavelength).



Let A be the number of wavelengths available for inter-LO communication in each FSR

and R be the number of FSRs. The total number of channels available for inter-LO

communication is:

F=A*R (2.1)

We require that the filter which routes wavelengths to the transmissive star is identical at

each input fiber. This is necessary in order to prevent a transmissive star signal from

colliding with a X-router signal when the two sets of frequencies are coupled after routing.

We assume that each LO has one wavelength in each FSR dedicated to every other LO.

Then, if the total number of nodes ( LOs ) is M, the number of wavelengths in each FSR,

A, must be equal to M.

A = M (2.2)

Since the k-router can be used to send a wavelength between every pair of nodes over R

spectral ranges, each node has R potential channels over which it can communicate with

every other LO through the X-router. Note that any number of FSRs can be filtered off

before the X-router and sent directly to the broadcast star. Let r be the number of FSRs

sent to the star, and, without loss of generality, let them be the first r FSRs (see

Figure 2.1). Since each FSR contains A = M wavelengths, the total number of channels

available in the transmissive star is M r. Let r" be the number ofFSRs left to go through

the X-router (last r" FSRs). Then the number of channels each node has available for

communicating with each other node through the %-router is equal to rx.



L Frequency

Transmissive Star
(r' =1 FSR)

%-router
(r =2 FSRs)

R=3 FSRs

1

I
--- ,

I
I

I
I
I

Figure 2.1: Illustrative Division of FSRs Between the X-router and the Transmissive Star

In order to simplify the calculations, we from here on

integer valued. The relationship between r1 and r" is:

ignore the fact that r1 and r" must be

R = r- + r1

r"', ro E 9

(2.3)

Note that each node has one wavelength in each FSR that simply returns to the same node

(Figure 1.3). Also note that this wavelength is the same for all nodes. Since it is wasteful

to send an inter-LO wavelength back inside the original node, it is logical that this

wavelength should be filtered off and sent through the broadcast star. These "self-loop"

wavelengths make up 1 / M of each FSR, and there are R FSRs. We have,

r R R / M

]- "A=5 Wavelengths / FSR

Ir

(2.4)



Furthermore, all the FSRs that were filtered off before the %-router end up in the star, so:

r =R/M+((M-l)/M)(R- r)

=R-(1-1/M)rx (2.5)

and

R=r + ( 1- 1/M)r (2.6)

Combining (2.4) with the physical bounds, we get,

R/Msr<R (2.7)

0O r~ s R

While equations (2.6) and (2.7) give the exact relationships between r- and r, in order to

simplify the math we will use the relationships described in (2.3), keeping in mind that we

are ignoring some of the physical structure of the problem. As M gets large, the

difference between the two becomes small.

2.2 Traffic Patterns

Let M be the number of nodes, or LOs, within the L1. We define a traffic matrix H, where

n is an MxM matrix whose rows correspond to the origins and columns correspond to the

destinations of traffic flow. The entries of f corresoond to the amount of traffic between

corresponding O-D pairs, i.e. IHij is the amount of traffic flow from node i to node j. Hij is

referred to as the traffic intensity on the O-D pair ij. Traffic flow is measured in data per

unit time. The traffic flow is initially assumed to be constant, i.e., node i is constantly

sending -ij data units/time unit to node j. Later this assumption will be relaxed and pi



will be interpreted to be the average number of data units or calls per unit time on the O-D

pair ij. Figure 2.2 shows a sample network and Figure 2.3 shows its associated traffic

matrix.

The arrows in Figure 2.2 represent the direction of the traffic, their labels represent the

traffic's intensity. Note that each entry in H corresponds to an edge connecting two of the

nodes in Figure 2.2.

Figure 2.2: A Sample Server Network

We consider H to be the product of a fixed "shape matrix" A with a variable scale factor

a,

H=Aa (2.8)

It is the entries of A that determine the optimum network configuration. We assign each

element of A to a value ki, i = 1, ... , m where m is equal to the number of different

numerical values in A (see Figure 2.3). We will consider all O-D pairs corresponding to



entries of A with value ki to be the ith class, and we will consider this class to have

intensity kia.

Destination
1 2 3 4

1I

Source 2
3

4

0 k,a 0 0
kp2a 0 ka k
kp 0 0 0
kp 0 0 0

Figure 2.3: The Traffic Matrix for the Network of Figure 2.2

Figures 2.2 and 2.3 depict a case where all nodes send traffic to node 1 which is

presumably a server of some type. Node 1 then performs some calculations and sends a

large amount of traffic to node 2, which distributes "responses" to all other nodes. The

values of ki are arbitrary, but from their definition klq kj for i # j.



Chapter 3

Maximum Throughput Analysis

This chapter involves the search for the values of r" and r" which allow maximum network

throughput for a given traffic shape (the maximum value of a for a given A matrix). We

assume that the traffic flow is constant, i.e., node i is constantly sending 1ij units of traffic

to node j. We also assume that message flow is fluid and any fraction of it can be split off

and sent through the transmissive star, leaving the remainder to be transmitted using the

X-router. These assumptions enable us to ignore the stochastics of the traffic and to focus

solely on a single parameter for each O-D pair: the traffic intensity. The calculations are

greatly simplified while the large-scale behavior characteristics are retained, leading to a

simple and intuitive solution.

The analysis discussed above is based on a constant-shape traffic pattern. Real traffic

generally changes with time. For example, the demands on a telephone network decrease

and shift from the cities to the suburbs after the work day is over. In the last section of

this chapter we discuss ways the network can dynamically adjust the value of r' in order to

adapt to changing demands. We propose the use of a network controller to collect traffic

data and discuss ways rx may be changed while the network is in use.

3.1 Constraints

Consider the general case with m classes of traffic intensity. Each class, i, has N1 member

Origin-Destination (O-D) pairs and has intensity ka. In Figure 2.3, for example, m = 4,



N, = 1, N, = 1, N, = 2, and N, = 2. We choose to number the classes so that

ki > > k, > ... > ,km

We will temporarily ignore the special structure of the traffic shape matrix A, and treat all

O-D pairs independently.

A fraction of the traffic from each O-D pair is sent through the transmissive star. Let this

fraction be x , ij =1, 2, ..., m. The remainder, 1 - x,,, goes to the ,-router. In order to

maximize throughput, the sum of the traffic through the star and the ,-router must be

maximized:

M

max A, a
a.,ri,rj= I

Subject to the constraints:

M

A •~ j a <_ Mr'
i,j= 1

Ai,.(1- x,. )a< r'

0 < rA _ R

(star - bound)

(%-router bound)

(bandwidth constraint)

i,j= 1, 2,...,M

i,j= 1, 2, ..., M

(routing constraint)

When one of the constraints (bounds) is satisfied with equality, we say that this bound is

tight.

Equation (2.3) can be used to eliminate r" from the above inequalities. Then, after some

algebraic manipulation, the star bound reduces to



MR - Mr O
a< M

Z AijXi,j
i,j= 1

and the X-router bound reduces to
r

Ai (1- x,•)

The optimization problem is to maximize the traffic flow, which is proportional to a, by

finding the optimal values of a, rX, and x,, ij = 1, ..., M, for a given traffic shape matrix A.

Note that O-D pairs of the same class satisfy the same %-router bound. If the fraction of

traffic sent to the star is different for two O-D pairs belonging to the same class, at least

one of the X-router bounds is not tight. Then extra traffic belonging to that O-D pair

could be taken from the transmissive star and sent through the X-router. The space made

available in the transmissive star could be used by all nodes and a could be increased,

contradicting the optimality of the original configuration. Therefore, for optimal traffic

flow, it is necessary to send the same fraction of traffic from each O-D pair belonging to a

class to the star.

We can exploit the structure of the A matrix and reduce the dimension of the problem by

using the above result. Since all x 's corresponding to O-D pairs of the same class are

required to be the same in an optimal solution, we will assign a variable xi to each class i.

As with x, previously, x1 corresponds to the amount of class i's traffic that will be sent to

the transmissive star. The problem becomes:

max N k a (3.1)
a, 2, rx , i 1



Subject to the constraints:

MR- MrX
a 5 ·----- -

i N,k,x,
i= 1

a _.k,(1- x,)

0 _ r. _ R

0 • x, _ 1

(star - bound)

(X-router bound)

(bandwidth constraint)

i= 1, 2, ..., m

i= 1, 2, ..., m

(routing constraint)

Note that a is the only variable term in (3.1). Thus the optimization problem is equivalent

to maximizing a such that (3.2a) - (3.2d) are satisfied. We will refer to the maximum

value of a as a x.

3.2 Necessary Conditions for Optimality

We will show that the following conditions are necessary for optimality:

1. The star bound (3.2a) is tight.

2. For each i E [1, ..., m], if the X-router bound (3.2b) is not tight then x, = 0.

3. If x = 0 for somej e [1, ..., m] then xi = 0 for all i > j.

Corollary:

Let I be the minimum value of i such that xY = 0. Then at the optimum solution xi = 0

if and only if i 2 1.

(3.2a)

(3.2b)

(3.2c)

(3.2d)



Proof of necessary condition 1:

We prove necessary condition 1 by contradiction. Assume the star bound is not tight and

a = a.. Let a' = a + s, where 0 < e << 1. Now send all the new (e) traffic to the star.

None of the ,-router bounds change since we have not added any traffic there.

if Nkix,a < MR - Mr"
i= 1

then I Nikxa+ Niki . E< MR- Mr'
i= 1 i= 1

for e small enough

We just added traffic to the star. Because the star bound was not tight, for small enough 8

it is still not violated. Thus the network can handle a' = a + s > a.. This is a

contradiction of the definition of a. which proves the star bound must be tight at

a= am.

Proof of necessary condition 2:

Proof of necessary condition 2 is also accomplished by contradiction. Assume that the

X-router bound is not tight and xi > 0 for some i. Now take e' of this class' traffic from the

star and put it in the X-router. This makes the star bound not tight, and for e' small

enough, the X-router bound is not violated. By necessary condition 1, this configuration

can not be optimal.



Proof of necessary condition 3:

To prove necessary condition 3, recall that by definition,

k, > kl> k,>>... >km

Each wavelength channel must satisfy the %-router bound. Ifxi = 0, all the channel's traffic

goes to the X-router. Therefore, the flow must satisfy

kNow recall thatforallij We then have

Now recall that for all i > j, ki < kj. We then have

k a,• < r" all i>j

and the X-router bound is not tight for i > j. From 2 we know that if the %-router bound is

not tight for some i e [1, ..., m] then xi must equal 0. Thus, 3 is necessary for optimality.

Corollary to necessary condition 3:

Let I be the minimum value of i such that xi = 0. Note that 0 1 < m+1. We know from

condition 3 that xi = 0 for all i > 1. By hypothesis, xi > 0 for j < 1. Thus x, = 0 if and only if

i I1 and I is the index of the heaviest traffic class that does not use the star. Figure 3. 1

illustrates the result proven by the corollary through an example optimal solution. All

optimal solutions must have the form of the solution illustrated in Figure 3.1.
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Figure 3.1: Example Optimal Solution as Dictated by Necessary Condition 3

3.3 Optimum Configuration

We use necessary conditions 1 - 3 to reduce the dimension of the feasible space. While

the initial feasible space was parametrized by r, and xi for i = [1, ..., m], the set satisfying

the necessary conditions is fully parametrized by rX and the index 1. We optimize over this

two dimensional set and find the values of r" and I that allow for the largest value of a, and

thus the maximum throughput.

Note that the following are consequences of the necessary conditions:

1. xi = 0 for all i 2 1 (necessary condition 3).

2. The X-router bound must be tight for each class that sends traffic to the star (i <1),

and thus only ka - r' traffic from each O-D pair in each of these classes uses the star

(necessary condition 2).
I- I

3. The star traffic is y (k,a - r )N , (implied by I and 2 above).
i= 1

1

n

)

IJ
J



The star's capacity is Mr = MR - Mr.. The star's traffic cannot exceed capacity, so by 3

above, the following star bound holds:

1- 1

E (k,a- r )N, 5 MR- Mr
i= 1

Solving for a,we find

MR+ r' iN , - M

a t-1 (3.3)
k, N,

i= 1

Inequality (3.3) summarizes necessary conditions 1 - 3 as well as bounds (3.2a), (3.2b),

and (3.2d). Because (3.3) arises from conditions necessary for optimality, together with

bound (3.2c) and the limits on 1 (0 1• m+1), it fully specifies the set of solutions that

may achieve the optimum. Note that (3.3) is the star bound, and from necessary condition

1 we know that at the maximum value of a this bound is tight. Therefore, by maximizing

the right hand side of (3.3) we also maximize a. The right hand side of (3.3) is

parametrized only by rý and 1, so the search for an optimum solution involves only varying

r" and 1.

We define
0

S= 0

and consider three cases of 1:

i-I

MN,- M< 0 (Case 1)
i= I



1- 1

i= 1

1- 1

j=N,-
i= 1

M> 0

M= 0

(Case 2)

(Case 3)

Case 1:

If
i- 1

N, - M< o
i= I

(3.4)

then, from (3.3), a is maximized when r" is minimized.

From the X-router bound and the fact that by definition x, = 0 we have

r• 2 k,a

which implies

r'm = ki a (3.5)

and the X-router bound is tight for i = 1. Substituting (3.5) into (3.3), we get the relation

MR
tl<

i -1

(k,
i= 1

- k,)N, + k,M



The objective is to maximize this bound on a by varying I. The right hand side is

maximized when its denominator is minimized. Consider decreasing I by 1. As long as I is

positive (3.4) remains valid. The change in the denominator is

1-2 1-I

A denominator = (ki - k,_,) N, +k,-_M-_ (k, - k,) N, - k,M
i= 1 i= 1

= k;-(,_- k,) M - 1 N,
i= 1

From (3.4) and the fact that k,, > k, we see that the above quantity is positive. Therefore

decreasing I increases the value of the denominator of the bound and thus decreases the

maximum throughput. Conversely, as long as (3.4) holds, increasing I increases

throughput. We conclude that I should be made as large as possible while (3.4) remains

valid.

Case 2:

When
1- 1

N, - M> 0
i= 1

(3.6)

then, from (3.3), a is maximized when r" is maximized. But because, by the definition of 1,

x,, > 0 the X-router bound is tight for i = 1 -1 (necessary condition 2) and

r=( 1 - x,, ) k,_ a

r < k,., a

(necessary condition 2 and (3.2b))

(x,., > 0)

Again, using (3.3) and solving for a gives



MR MR
a< -2

~k, - k, )N, + k, _M 1(k,- k, _)N,+ k, ,M
i= 1 i= 1

Note that the upper bound on a here is strictly less than the one obtained by letting

t = 1 -1. In this case we decrease I and get a higher upper bound on a. We repeat this

process until (3.6) no longer holds, (3.4) holds, and it ceases to be optimal to decrease 1.

Therefore if (3.6) holds, for optimality it is necessary to decrease 1 until (3.6) no longer

holds. Putting this together with the situation where (3.4) holds, we see that when (3.4)

can not be satisfied with equality, the optimal value of I is the maximum integer that

satisfies (3.4). There is only one value of rt that maximizes (3.3), and thus the value of rt

at a = am. is unique.

Case 3:

It remains necessary to treat the final case:

1- 1

IN,- M= 0 (3.7)
i= 1

If I is increased, (3.6) will be satisfied -- a non-optimal situation. If it is decreased, (3.4)

will be satisfied and the appropriate relations will hold. Ifl is not changed, (3.3) is

optimized for any value of r, satisfying

r >_ k, a

and

r" < k,- a



The bound on a then is, from (3.3),

MRa MR (3.8)1-I

Sk N3
i= 1

If I is decreased, the bound on a is

a < 2 (3.9)

C (k - k,_ . N, +k,_,M

and

r = k, a

When (3.7) is true (3.8) and (3.9) are equal. Thus, when (3.7) holds, optimum throughput

is achieved when

k, a < ra•_ k,, a

And in particular, if

r = k, a

Therefore, if there exists an I that satisfies (3.7), a tight X-router bound at i = I yields one

of many optimal values of r", all of which allow a to reach am. The index I has two

optimal values in this case: one satisfies (3.7), and one is the maximum integer satisfying

(3.4).

We conclude that the following relation, when satisfied, yields the optimum value of rL and

a corresponding optimum value of a:

maMR (3.10)

(ki- k,. ) N + k1,.M
1= 1



rk = kr amax (3.11)

for some P. From the discussion of cases 1-3 it is clear that if P is the maximum value of I

satisfying

1-1

N, < M (3.12)
i= 1

then maximum throughput will be achieved. If/ is one then the optimum configuration

involves a pure X-router. Likewise, if/ > m then the optimum configuration involves a

pure transmissive star.

3.4 Application to an Example

The following example illustrates how the use of a transmissive star/X-router combination

increases throughput of the L1 network for asymmetric traffic patterns over the use of

either the star or the X-router alone. Consider the simple example where m = 2, M = 4,

R = 3, N, = 1, and N 2 = 7. Thus / = 2 and

MR

Z(k - k2 )N + k2 M
i=l

r. = k2 aa x

r= 3 - r

The maximum throughput is
2

SN,kia,
i= 1



Figure 3.2 compares the maximum throughput allowed in the network using the star only,

the X-router only, and an optimal combination of the two as a function of k, for k2 = 1 and

R = 3. Note that the case when k, = 1 is equivalent to having one class of intensity 1 with

N, = 8.

20

15

0

- star only

router only

- combination

8 100 2

I I I

Figure 3.2: Maximum throughput allowed in a network using the star only, the X-router

only, and an optimal combination of the two.

(M = 4, R = 3, k2= 1, N, = 1, N2 = 7)

3.5 Collection of Traffic Data and Configuration
Changes

The maximum throughput configuration is based on a constant traffic pattern. Real traffic

patterns change with time. It is therefore necessary to address the problem of dynamically

adapting the L1 to real traffic changes. Changing the network configuration requires that

a wavelength (or a number of wavelengths) be moved from the %-router to the

01C

I



transmissive star or vice versa. In order for this to be accomplished, all calls on this

wavelength (or wavelengths) must be terminated. While the network is waiting for such

calls to terminate it can not use these wavelengths and thus changes to the configuration

carry with them an overhead efficiency loss. In order to minimize this overhead, frequent

changes to the network configuration should be avoided.

One possible approach to collecting traffic data is to implement a network controller to

monitor traffic. Because network configuration changes should be infrequent, a network

controller should have sufficient time between changes to collect traffic data and update

the traffic shape matrix. Thus it is reasonable for traffic shape data to be collected by

polling the individual LOs about the number of call requests received since the previous

poll. The actual method for collecting traffic data and the protocol for network

configuration updates are left as an open problem for further research.





Chapter 4

Minimum Delay Analysis

An AON operating at loads approaching capacity will have finite queues only if rý is

chosen to maximize throughput. Networks operating at lower loads can handle the traffic

at multiple values of rx and other performance measures must be used to determine the

optimum rx . In this chapter we analyze the use of two stochastically-based performance

measures, blocking probability and queueing delay, and show queueing delay is the more

appropriate measure. We then use analysis and simulation to find the value of r, that will

result in minimum average queueing delay. We pay particular attention to the value of rx

that results in maximum throughput using the model developed in Chapter 3.

4.1 Minimum Delay vs. Blocking Probability

Communication networks usually operate at loads that are below their capacity. This will

be especially true for the All-Optical Network, as its capacity will eventually be measured

in terabits and few applications require that much bandwidth. Therefore, in most instances

the L1 will be able to support its traffic at many values of r. It makes sense to set r" to

optimize the network performance vis-a-vis some performance measures, such as blocking

probability or delay.

Blocking probability is the probability that a call request is denied, i.e., the probability that

the O-D pair that requests bandwidth finds no resources available. The common

simplifying assumption used when analyzing networks from the standpoint of blocking



probability is that blocked calls are lost. A request that has been denied disappears as if it

never happened. This assumption significantly simplifies the models used.

The delay is the time a call waits in queue before it is serviced. Delay is measured from

the time the LO node requests bandwidth for a call until the time the call is given access to

a server (either in the transmissive star or in the X-router). Calls that can not be served are

queued and wait for a server. We assume that calls are served using a First Come First

Serve (FIFO) discipline throughout this work, but since we model all call service times as

independent and identically distributed random variables, the service discipline does not

affect average delay [BG92]. Each O-D pair has its own queue that is independent of the

queues of all other O-D pairs. Average delay is calculated by averaging the delay

experienced by all calls in the network, so each O-D pair's delay is effectively weighted by

its arrival rate.

X-router transimissive star
......................................... ...............................................................................................................................................

.................................... .................................................................. .

O-D pair 2.......................................... . . ................. --
O-D pair3 *3* * ,. ... ........................................

O-D pair M2

Figure 4.1: Network Model Using Independent Servers (rx = 4, Mr = 4)

First, we analyze blocking probability as a performance measure. To simplify calculations

assume that arrivals to the network are Poisson and that hold times are exponential. The

network can then be modeled as groups of independent servers (X-router channels) and a



group of shared overflow servers (transmissive star channels). Each O-D pair has access

to r" proprietary servers and to Mr" common servers that it shares with all O-D pairs (see

Figure 4.1).

Even with these simplifying assumptions the blocking probability calculations turn out to

be intractable [Wo189]. Fortunately, a recursive method developed by R. Wilkinson to

model telephone traffic called the Equivalent Queue Random Method (EQRM) [Wil56]

gives a reliable approximation for blocking delay. Wilkinson notes that calls are blocked

only when the transmissive star (which, in his analysis, is a group of secondary servers) is

full and a call request is made. He models the first group of independent servers (primary

servers) as a single random server which behaves similarly to the aggregate group of

primary servers. He is then able to generate a group of recursive equations that define the

stochastics of the secondary servers and produce an approximation to the blocking

probability in the network.

0.
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2
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Figure 4.2: Approximate Blocking Probability for a Network with M = 4, R = 10, N, = 1,

k, = 5, N, = 15, and k, = 5



The EQRM method, when applied to a simple network with M = 4, R = 10, N, = 1, k, = 5,

N2 = 15, and k, = 5, produced the graph of the blocking probability in the L1 as a function

of r" and the traffic load shown in Figure 4.2. The traffic load p is defined to be the ratio

of a to ar.

The maximum throughput value of rý for this network is five. Figure 4.2 illustrates that

for low traffic intensity the blocking probability is minimized near r, = 5. However, as the

traffic intensity increases, so does the value of rx that minimizes the blocking probability.

This result might suggest a simple solution to the heavy load scenario: regardless of the

traffic shape, set r" to its maximum value and the blocking probability will be minimized.

While the maximum value of r" will in fact minimize the blocking probability, the resulting

dynamics are highly undesirable in that they violate the traffic shape.

Consider the example of Figure 4.2. The traffic intensity on one O-D pair is five times

higher than that on all the other pairs. In a high load scenario the blocking probability is

minimized when 4/5 of the traffic on the heavy-intensity O-D pair is blocked and thus the

traffic is "uniformized." Uniform traffic is always best handled by a pure X-router since

the overall bandwidth is maximized and every O-D pair gets an equal share.

The example can be generalized to show that regardless of the traffic shape, under heavy

loads blocking probability is minimized when the traffic is "uniformized" and a pure

X-router is used. This approach does not preserve the traffic shape. If the above example

was a client-server communication network, 4/5 of the server traffic would be discarded.

This is clearly not desirable in such a network. As a result, blocking probability does not

appear to be an appropriate measure for network performance optimization.



The other network performance measure we consider is average network delay. In the

delay model call requests are queued until they are served, and thus traffic shape is

preserved.

At loads approaching capacity minimizing delay is consistent with maximizing the

throughput. To see this, note that a traffic load near capacity can only be handled at one

value of r". At this value of r" the average delay is finite. The traffic can not be handled at

any other values of r, and the average delay for these configurations will be infinite. As

maximizing throughput will select the only value of r" that allows for finite delay, at heavy

loads minimizing delay is equivalent to maximizing throughput. Thus, average delay

appears to be viable for use as a network performance measure. Its use preserves the

traffic shape.

4.2 Minimum Delay Configuration

Network delay is in general a function of the service strategy and the resources available

for serving messages or calls. Total L1 bandwidth is maximized when a pure X-router

configuration is used, but this bandwidth can not be shared. The sharing of bandwidth in

general reduces network delay. This is best demonstrated by the example of a

communication channel with M users where users will experience lower delay using

statistical multiplexing to share the channel than using frequency division multiplexing or

time division multiplexing [BG92].

The introduction of stochastics into the network model creates two opposing forces acting

to minimize average delay. One force calls for maximizing the bandwidth and pushes the

L1 towards a pure X-router. The other calls for maximizing the statistical multiplexing

gain and pushes the L towards a pure transmissive star. In general, the maximum



throughput configuration will fall somewhere in the middle. Recall that at loads near

capacity the maximum throughput configuration also results in minimum delay. At low

loads it is unclear what configuration minimizes delay.

4.3 Simulation Results and Discussion

At loads approaching capacity only one value of r" results in finite average delay. As the

load decreases, more values of r" become feasible and the maximum throughput r, is

always one of them. The maximum throughput r. results in the network configuration

with the most capacity for a particular traffic shape. It is therefore reasonable that the

minimum delay r, would move away from the maximum throughput r, in continuous

fashion as the load decreases (see Figure 4.3). Because at low loads the statistical

multiplexing gain offered by the star promises to decrease delay, it also seems reasonable

that as the load drops off the minimum delay r" might move from the maximum throughput

r" towards zero.

Figure 4.3: Behavior of Minimum Delay r" vs. Network Load for an Example Network

with R = 10 and Maximum Throughput r- = 8
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While the above argument would suggest that at low loads the r" that maximizes

throughput analysis is unlikely to minimize delay, there is an additional dimension to the

problem. When the load on the network is low, the value of the average delay is an

insignificant number. For example, at p = .5, the average delay in the network illustrated

in Figure 4.3 may be 2x10 7 s when r. = 8 and 1x10-7 s when r" = 7. Thus, one may set r" to

8 and optimize the network configuration for maximum traffic at a very low cost. This

rationale would suggest that by selecting rV to maximize network throughput one can

guarantee good delay performance for all values of p.

Simulation was used to explore whether the arguments above are justified. The simulation

tool used was MIL3's Opnet (see Appendix A). In the interest of consistency we use a

network ofM = 4 and R = 10 with a traffic shape ofk, = 2, N, = 1, k, = 1, N, = 15 for all

simulations. The maximum throughput value of r" for this traffic shape is 8. We vary the

value of a to control the traffic load. Figure 4.4 shows simulation results under three

traffic loads, the data is listed in Table 4.1.

The simulation results described by Figure 4.4 and Table 4.1 show that at heavy and

medium loads the maximum throughput r" is also the minimum delay r". Furthermore,

they show that at low loads, while the maximum throughput and minimum delay values of

r" may be different, their difference in their respective delays is so small that it is negligible.

The simulations support the earlier conclusion that good network performance in terms of

minimum average delay is achieved when r" is chosen to maximize the potential

throughput for a particular traffic shape.



Figure 4.4: Average Queueing Delay for a Sample Network of M = 4 and R = 10 with

traffic shape k, = 2, N, = 1, k2 = 1, N 2 = 15 at a = 1, 2.5, 5, and 7.

(Maximum Throughput r" = 8)

r p ;.1 p -. 3 p .6 p ; .9

0 2x10- a 0o oo0

1 0 .03 oo oo

2 0 .0016 oo oo

3 0 7x10-5  oo oo

4 0 2.5x10 ao oo

5 0 3x10 -7  .133 oo

6 0 5x10-9  .05 00

7 0 1.5x10-7 .024 1.2

8 0 1.5x10 .0175 .46

9 0 4.25x10 .027 00

10 5x10-7 9.3x104 .6 00

Table 4.1: Data for Figure 4.4
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Chapter 5

Scheduling

In this chapter we address the problem of scheduling the transmissive star. The star can

be used by all the O-D pairs in the network. We propose several algorithms for allocating

of the star's bandwidth and identify the most efficient one based on simulation results and

analysis.

5.1 The Need for Efficient Scheduling of the
Transmissive Star

Assume that the arrival traffic to the network is Poisson and that call hold times are

exponential. Also assume that r" has been selected to maximize throughput. In this

scenario it might seem that any work conserving service policy should produce the

minimal average queueing delay [BG92]. It therefore might seem that it is irrelevant how

the transmissive star is scheduled as long as it is working whenever there is work to be

done.

Unfortunately, the above argument is incorrect when applied to the Level 1 of the AON.

The reason it is incorrect is that the AON Level 1 is intrinsically non work-conserving. A

scenario that clearly demonstrates this involves two O-D pairs. One has many active users

and needs all the resources it can get. The other has no active users. In a work-

conserving network, the busy O-D pair would borrow %-router channels from the idle one.



Such bandwidth sharing is impossible in the X-router. Thus, even the best strategy for

sharing the transmissive star in the L1 will not be work-conserving.

In a non work-conserving network the service strategy directly affects the queuing delay.

As this effect can be very significant, we study several possible strategies for scheduling

the use of the transmissive star in the L1.

5.2 ,-Router Scheduling

We assume that the X-router follows the general strategy outlined below for all O-D pair

call requests.

Call requested Call in. -router terminates

No Yes No Yes

YesNo



When the h-router is full, the O-D pair requests bandwidth in the transmissive star. If it is

granted bandwidth, the call is scheduled in the star. If it is denied, the call is enqueued.

The decision is based on the availability of the star and the star sharing strategy in use.

We make the assumption that if a call is scheduled in the star it will use the star until it

terminates.

5.3 Star Scheduling Strategies Considered

Because of the beneficial effect statistical multiplexing gain usually has on average

queueing delay, we focus on star sharing strategies that allow access to the star for all

O-D pairs. The first strategy we consider is the round robin strategy. The round robin

strategy is outlined below.

Round Robin Strategy

1. Let i= 0.

2. Follow the diagram below:

Bandwidth requested Call in Star Terminates

3. Letj = i.

4. Determine whether O-D pair j has calls in queue. If yes, let i = (i + 1) mod M',

schedule first enqueued call from O-D pair j in star, and go to 2. If not, go to 5.



5. Let j = (j + 1) mod M2. Ifj = i then all queues empty, go to 2. Else go to 4.

The round robin strategy ensures that all active O-D pairs have equal opportunity to use

the star. Thus, this strategy allows for fair sharing of the star as well as for bandwidth

flexibility.

The round robin strategy has a critical problem. At loads near capacity, each O-D pair

uses approximately 1/M2 of the capacity of the star. Each O-D pair uses approximately

the same amount of bandwidth, and the effect is the "uniformization" of the traffic in a

manner similar to that caused by the use of blocking probability as a network performance

measure (Chapter 4). Thus, at loads near capacity the round robin strategy fails to

preserve the traffic shape.

The bandwidth reservation strategy, outlined below, ensures that the traffic shape is

preserved at all loads.

Bandwidth Reservation Strategy

1. Permanently divide up the bandwidth of the transmissive star in the following manner:

To each member of class i, assign xi k, a. bandwidth in the star, where xi is the

optimal fraction of class i's traffic assigned to the star under the fluid maximum

throughput analysis, ki is class i's intensity, and a. is the maximum value of a

(Chapter 3).

2. Do not allow any bandwidth sharing.

This strategy will in most cases call for fractional division of the channels available in the

transmissive star. This can be accomplished either through TDM or through time sharing.



Unlike the round robin strategy, the bandwidth reservation strategy ensures that all O-D

pairs have the bandwidth necessary for queue stability as long as a < a .. It does not

operate well at low loads since it allows for no dynamic bandwidth sharing. However, the

the argument can be made that at low loads the delay is so small that the exact level of

performance is negligible.

The round robin stragety should perform well at small values of p and the bandwidth

reservation strategy should perform well at high values of p. It is desirable to find a

strategy that operates well over the entire range of p. The final strategy analyzed has the

potential of accomplishing this goal. We call this strategy the longest queue strategy and

outline it below.

Longest Queue Strategy

1. Follow the diagram below:

Bandwidth requested

Yes No

Call in star terminates

Yes No

2. Determine which O-D pair has the most calls in queue. Send first enqueued call from

this O-D pair to star and go to 1.



Under this strategy, the O-D pairs with the heaviest loads will tend to gain the most access

to the star because they will tend to have the longest queues. However, all users will be

able to use the star if they need it. Thus, this strategy allows for full bandwidth sharing

while ensuring that at heavy loads the star is largely reserved for the heaviest users.

We compare the three strategies in the following sections.

5.4 Delay Limits

An absolute bound on the delay achievable in the L1 would be very helpful with strategy

comparisons. We calculate two bounds on the minimum queueing delay achievable.

Delay Bound 1

Note that the delay is bounded by that of a work-conserving network with the same

number of servers and the same arrival rate as the L1. In such a network all system

resources are shared and its delay is independent of the serving discipline. The delay of

this network is the delay of an M/M/m network with the number of servers, m, equal to

the total number of %-router and transmissive star channels and arrival rate, X, equal to the

sum of the arrival rates of all the O-D pairs. The average queueing delay in an M/M/m

network is given by W in (5. 1) [BG92], where p = V/mgr, and, as throughout this thesis,

ji is normalized to 1.

W = (5.1)
S ( 1- p)

where P =  M p- " (5.2)- '(mp)" (p)5.

and o = n! m(1-p) (5.3)n- 0 n! M!(0 - p)J



This delay bound is tight when r1 is equal to zero. We expect it to be reasonably accurate

when r- is small, and to be loose when r" is large.

Delay Bound 2

To get the second delay bound note that all O-D pairs in the network use at most r" + Mr*

servers. Define the arrival rate of calls on O-D pair i to be ki and the wait in queue for

O-D pair i's calls to be Wi. Then, from M/M/m queueing theory, the queueing delay W

obeys the bound in (5.4),

M
2- 1

W_< A X . W (5.4)

Z' 1= 0

1= 0

where Wi is the delay of an M/M/m system with X = Xi and m = r1 + Mr'. The bound is

exact at r1 = R. We expect it to perform relatively well at large values of rý and to be very

loose at small values of r .

Queueing delay is lower bounded by both of these values. Thus, for any algorithm X, we

can say that

max (delay bound 1, delay bound 2)

5 delay using algorithm X (5.5)

5.5 Delay Calculations

In certain cases the average queueing delay for the star sharing strategies can be

calculated. In certain cases the delay for the bandwidth reservation system is easily

calculable. Each O-D pair operates like an independent M/M/m system, where m



corresponds to the number of X-router servers it has access to (rl) plus the number of

servers it has reserved in the transmissive star (this number is not necessarily an integer).

The overall average delay is the average of the individual session delays weighted by the

session arrival rates.

In the general case where m does not turn out to be an integer, three options are available

for approximating the delay. One method is to realize m by alternating between two

integer values with weighted average equal to m. A rough approximation of the delay in

this case can be calculated by using a weighted average of the delays calculated by using

the largest integer less than m and the smallest integer greater than m. Because the delay

of an M/M/m system is nonlinear in m, this approximation may be poor.

The second method to approximate the delay is to note that the delay of an M/M/m system

with arrival rate X is lower bounded by k times the delay of an M/M/km system with an

arrival rate kk. This bound works well at low loads and small values of k, but as load and

k grow it becomes very loose.

The third method is to lower bound the delay of the M/M/m system by using an M/M/c

system where c is the smallest integer greater than m. Note that while the first method is a

crude approximation, the second and third methods produce strict lower bounds. Thus,

the delay of a bandwidth reservation system can be lower bounded by using the maximum

of the delays produced by the second and third delay approximation methods.

The following example illustrates the use of the bandwidth reservation strategy delay

approximation. Since m turns out to be an integer in this case, all three approximation

methods yield the same result. Consider a heavy load system with k, = 2, NI = 1, k2 = 1,

N, = 15, and R =10 at r" = 8 and a = 7 (thus p - .9). When the bandwidth is divided up



according to the bandwidth reservation strategy, the heavy user O-D pair is allowed 16

servers and the other O-D pairs get 8 servers each. The delay is the weighted average of

an M/M/16 system with X = 14 and fifteen M/M/8 systems with X = 7. The resulting

theoretical delay is .59, a value that has been confirmed by simulation.

The delay for the round-robin system is very difficult to calculate in general, but it satisfies

an easily calculable upper bound. Each O-D pair has access to at least the X-router

channels and 1/1M of the transmissive star's channels for a total of rx plus MrI/M channels.

Thus, each O-D pair's delay is upper bounded by the delay of an

M/M/(r" plus r*/M) system. The overall system delay is the average of the individual O-D

pairs' average delays weighted by their arrival rates. As the load approaches capacity, the

system delay approaches the bound.

The same scenario as above is used to illustrate the use of this bound in the heavy load

situation. When k 1 = 2, N, = 1, k2 = 1, N2= 15, R =10, r" = 8 and a = 7 the delay can be

approximated by the weighted average of the delays of an M/M/(8 + 8/16) system with X

= 14 and fifteen M/M/(8 + 8/16) systems with X = 7. The 8.5 servers available can not

handle traffic with X= 14 and the approximation produces infinite delay, as was again

confirmed by simulation.

The delay of the longest queue strategy is very difficult to calculate, although at loads near

capacity it should approach that of the bandwidth reservation strategy. We do not attempt

to approximate this delay and instead rely on simulation for numerical results.



5.6 Simulation Results

Tables 5.1 - 5.3 show the simulated queueing delay for the round robin and longest queue

strategies and calculated lower bounds on the delay for the bandwidth reservation strategy

for a network with k, = 2, N, = 1, k, = 1, N2 = 15 and R = 10. The maximum throughput

value of r" for this network and traffic pattern is 8.

r_ Round Robin BW Res Longest Q
1-6 00 00 00

7 oo 2.15 s 1.2 s
8 o0 .59 s .46 s

9-10 oo oo 00

Table 5.1: Comparison of the Average Delays vs. r, Generated by the Three Strategies

under Heavy Load when k, = 2, N, = 1, k, = 1, and N 2= 15 at a = 7 (p ; .9)

r, Round Robin BW Res Longest Q
0-3 00oo oo o00
4 oo 2.21 .72
5 .7 .54 .133
6 .08 .15 .05
7 .032 .052 .024
8 .025 .05 .0175
9 .035 .029 .027
10 .6 .6 .6

Table 5.2: Comparison of the Average Delays vs. r" Generated by the Three Strategies

under Medium Load when k, = 2, N, = 1, k, = 1, and N, = 15 at a = 5 (p % .6)



r% Round Robin BW Res Longest Q
0 00 00 00

1 .035 .36 .03
2 .0018 .19 .0016
3 8x10 -' .05 7x10 -5

4 8x106 .012 2.5x106
5 3x10lO .012 3x10 -7

6 5x10 "9  .003 5x10 -9

7 1.510-7  7.27x10 4  1.5x10. 7

8 1.5xl10 7.25x10 4  1.5x10
9 6x10 "l  1.94x10 4  4.25x10l

10 9.3x104 9.3x104 9.3x10 4

Table 5.3: Comparison of the Average Delays vs. r" Generated

under Low Load when k, = 2, N, = 1, k2= 1, and N, = 15

by the Three Strategies

at a = 2.5 (p ; .3)

Figure 5.1 illustrates the behavior of the three strategies as a function of the network load.

It shows that the longest queue strategy gives the lowest delay for all values of p. It also

Figure 5.1: Average Delay Using Three Star Sharing Strategies at the maximum

throughput value of r for a Network with k, = 2, N1 = 1, k, = 1, N2 = 15 and R = 10
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shows that at low values of p, the round robin strategy outperforms the bandwidth

reservation strategy. At high values of p the bandwidth reservation strategy outperforms

the round robin strategy.

5.7 Discussion

The simulation results show that the longest queue strategy always outperforms the

bandwidth reservation and round robin strategy. In this section we compare the longest

queue strategy to the other two and attempt to explain the performance differences. We

also address an inefficiency inherent in the longest queue strategy.

5.7.1 Longest Queue vs. Bandwidth Reservation

At heavy loads, these two strategies perform very similarly. To see this, consider the very

simplified scenario of r" = 0, R = 3, and two active sessions. Session one has X = 1 and

session two has X = 2. The bandwidth reservation strategy will assign 1 server to session

1 and 2 servers to session 2. The longest queue strategy will assign the servers based on

the length of the two queues. Each second, session one will have an average of one

arrival, and session two will have an average of two arrivals. Assuming that the queues

are equal at the beginning of this second (since the strategy acts to equalize the queues,

most of the time they will be approximately equal), session two will be given the first

available server, and each session will receive one of the next two available servers. On

the average, three servers become available every second. Thus, session one will average

one server per second and session two will average two servers per second -- the same

result that was achieved with bandwidth reservation.



At lower loads, the bandwidth reservation strategy behaves the same as it does at heavy

loads but the longest queue strategy allows for more dynamic bandwidth sharing. Under

the longest queue strategy each session will get access to at least as much of the

transmissive star's bandwidth as it would have using the bandwidth reservation strategy.

Thus, the longest queue strategy should perform at least as well as the bandwidth

reservation strategy at all loads, and should perform better at lower loads. The

simulations support this hypothesis, and we conclude that use of the longest queue

strategy produces smaller average queueing delay than use of the bandwidth reservation

strategy.

5.7.2 Longest Queue vs. Round Robin

At low loads, the longest queue and round robin star sharing strategies produce

approximately the same average delays. Both allow bandwidth sharing, and if there is any

work that can be done in the star, both enable this work to be performed. The two

strategies do differ, however, under heavier loads when rý > 0. To illustrate this case,

consider two O-D pairs, one with a low load and one with a high load (Figure 5.2). The

high load pair's queue will usually be non-empty. The low-load pair's queue will usually be

empty, but due to statistical fluctuations, it will at times have a number of calls waiting for

service. Assume the low load queue has a small number of messages waiting for

connection (Step 1). Under the round robin strategy, one of them will eventually enter the

star (Step 2). Because the queue is small and the load is low, there is a high probability

that the queue will empty and some X-router session will complete before the star session

completes (Step 3). At this point, the low-load O-D pair is using bandwidth in the star

though it could be sending a message via its X-router. Star bandwidth is unnecessarily

being used by the low-load O-D pair and the system is operating in an inefficient manner.



Step 1
O-D O-D

Pair I Pair 2

SO0
Queue 0 0

0 0X- router 60

0

Step 2
O-D O-D

Pair 1 Pair 2

*0

@0
0

Step 3
O-D O-D

Pair 1 Pair 2

@0-

0

Figure 5.2: Round Robin Strategy

Note that if the longest queue strategy was being used, the low load session would rarely

get service in the star. A high load O-D pair's queue is unlikely to empty before its

messages in the transmissive star end, and therefore the probability of system inefficiency

is small. In this situation the longest queue strategy is more efficient than the round robin

strategy. The scenario illustrated above would happen with high frequency if a round

robin strategy was being used. For this reason the longest queue strategy uses network

resources more efficiently than the round robin strategy and should produce a shorter

average delay. This result was confirmed by simulation.

5.8 Call Redirection and the Longest Queue Strategy

The longest queue strategy outperforms the other two strategies considered under all

network loads, and it accomplishes two goals that an optimum strategy should

accomplish. First, it allows for bandwidth sharing at all network loads and second, it

ensures that all nodes will have finite queues if possible. However, the situation illustrated

in Step 3 of Figure 5.2, which results in inefficiencies and thus longer waiting times, is still



possible with the longest queue strategy. The following modification to the strategy

would eliminate this inefficient use of %-router bandwidth.

1. Allocate resources in such a manner that all possible X-router channels are used.

Send rest of traffic to the transmissive star, using the longest queue strategy.

2. Redirect calls to the ,-router at any time to ensure (1) is satisfied.

Call redirection will be invoked only when an O-D pair has a session in the star, one of its

X-router sessions terminates, and it has no sessions in the queue. This strategy allows for

the redirection of a call from the transmissive star to an idle ,-router channel. We now

argue that call redirection should not significantly decrease average delay over the longest

queue strategy.

Under low loads, the transmissive star is usually not full and any allocation strategy that

allows bandwidth sharing will perform similarly. Under heavy loads, using the longest

queue strategy ensures that all sessions in the transmissive star belong to O-D pairs with

long queues. Thus, if one of their X-router channels becomes available before the star

session finishes service, one of the queued sessions will take its place without any

inefficiency. Because the sessions in the transmissive star belong to O-D pairs with long

queues, it is very unlikely that a X-router channel opens up before a star session finishes

service for an O-D pair that has no queue, which is the only time call redirection would be

invoked. Thus, under the longest queue strategy, it is very unlikely that call redirection

would be necessary and the efficiency of this strategy approaches that of a strategy that

allows for call redirection.



In a real system we would have to consider the fact that redirecting calls carries with it

overhead costs. These costs depend on the system, but regardless of the system they

further reduce the benefits that would be gained by call redirection. It is even possible that

redirecting calls would add to the overall average dealy as a result of the switching

overhead. For this reason, it appears that the longest queue strategy is a very good

strategy when the goal is the minimization of overall delay.



Chapter 6

Conclusion

In this thesis we addressed many problems relating to the efficient use of resources in the

Level 1 of the AON. We developed a method for optimally allocating the bandwidth in

the AON Level 1 between the h-router and the transmissive star in order to maximize

network throughput. The method is applicable to arbitrary traffic patterns. We have

explored the performance of the L1 under Poisson arrivals and exponential service and

have shown that when the network is configured for maximum throughput the queueing

delay in the L1 approaches the minimum delay possible. Finally, we have considered

several scheduling strategies for sharing the resources of the transmissive star and

concluded that a longest queue strategy results in the most efficient use of the L1

resources.





Appendix A

Simulation

In this appendix we describe the simulation that was used to support the results of

Chapters 4 and 5.

A.1 Simulation Tool

The simulation tool used in this thesis was Opnet, version 2.4c. Produced by MIL3, Inc.4,

Opnet is a package designed to simulate communication networks. For further

information on Opnet, consult the Opnet manuals.

A.2 Simulation Model

The simulation involves a network of four nodes (LOs) and thus sixteen O-D pairs. A

total often FSRs are divided between the h-router and the transmissive star. Each

wavelength is modeled as an independent server. Each O-D pair has access to rx

proprietary servers (wavelengths in the X-router). In addition, Mr" servers (transmissive

star wavelengths) are shared by all the O-D pairs. Figure 4.1 in Chapter 4 illustrates the

server model used.

4Mi13, Inc., The INTELSAT Building, 3400 International Dr. NW, Washington, DC 20008.



In all cases calls are served by the X-router if possible. If the ,-router is busy calls are

either queued or routed to the transmissive star. The scheduling of the transmissive star is

determined by the star sharing strategy as determined in Chapter 5.

All call hold times are exponential with parameter one. Arrivals to the O-D pairs are

independent Poisson processes. Each O-D pair has a specific arrival rate. This rate is set

to yield different simulation scenarios.

The performance parameter measured is average queuing delay. Queuing delay is

measured from the time a call is requested to the time it is serviced. The average is

calculated over all messages in the network.

A.3 Validation Using Theoretical Results

In general, queuing delay in the simulation model can not be calculated theoretically.

However, in special cases the simulation model can be treated like an M/M/m queue. In

Table A. 1, we compare the theoretical results to the simulation results for several of these

special cases in order to ensure that the simulation model is correct.

Arrival rate Theoretical MeasuredR r (each O-D pair) Average Delay Average Delay
10 10 5 .0072s .0072s
10 0 2 .0015 s .0015 s

20 (node 0)10 50 (node o) .042 s .043 s
~0 (all others)

Table A. 1: Comparison of Simulated and Theoretical Results

The measured results agree with the theoretical results and therefore there is significant

evidence that the simulation produces valid results.



A.4 Simulation Code

Figure A. 1 illustrates the organization of the network model. The solid lines denote

message paths and the icons denote nodes (or devices). Each node has a corresponding

process model. Figure A.2 illustrates the organization of a %-router node. Figure A.3

illustrates the organization of the transmissive star node. The node model attributes and

the code for the process models follow the figures.

Figure A. 1: Network Model



Figure A.2: X-Router Node Process Model

Figure A.3: Transmissive Star Process Model



A.4.1 Node Model Attributes
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A.4.2 X-Router Node Process Code
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A.4.3 Transmissive Star Process Code Using Longest Queue Strategy
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A.4.4 Transmissive Star Process Code Using Round Robin Strategy
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A.4.5 Variable Initiation Node Process Code
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