28 research outputs found

    The ideal view on Rackoff's coverability technique

    Get PDF
    Rackoff’s small witness property for the coverability problem is the standard means to prove tight upper bounds in vector addition systems (VAS) and many extensions. We show how to derive the same bounds directly on the computations of the VAS instantiation of the generic backward coverability algorithm. This relies on a dual view of the algorithm using ideal decompositions of downwards-closed sets, which exhibits a key structural invariant in the VAS case. The same reasoning readily generalises to several VAS extensions

    Automata Column: The Complexity of Reachability in Vector Addition Systems

    Get PDF
    International audienceThe program of the 30th Symposium on Logic in Computer Science held in 2015 in Kyoto included two contributions on the computational complexity of the reachability problem for vector addition systems: Blondin, Finkel, Göller, Haase, and McKenzie [2015] attacked the problem by providing the first tight complexity bounds in the case of dimension 2 systems with states, while Leroux and Schmitz [2015] proved the first complexity upper bound in the general case. The purpose of this column is to present the main ideas behind these two results, and more generally survey the current state of affairs

    A polynomial-time algorithm for reachability in branching VASS in dimension one

    Get PDF
    Branching VASS (BVASS) generalise vector addition systems with states by allowing for special branching transitions that can non-deterministically distribute a counter value between two control states. A run of a BVASS consequently becomes a tree, and reachability is to decide whether a given configuration is the root of a reachability tree. This paper shows P-completeness of reachability in BVASS in dimension one, the first decidability result for reachability in a subclass of BVASS known so far. Moreover, we show that coverability and boundedness in BVASS in dimension one are P-complete as well

    Complexity Hierarchies Beyond Elementary

    Full text link
    We introduce a hierarchy of fast-growing complexity classes and show its suitability for completeness statements of many non elementary problems. This hierarchy allows the classification of many decision problems with a non-elementary complexity, which occur naturally in logic, combinatorics, formal languages, verification, etc., with complexities ranging from simple towers of exponentials to Ackermannian and beyond.Comment: Version 3 is the published version in TOCT 8(1:3), 2016. I will keep updating the catalogue of problems from Section 6 in future revision

    The Reachability Problem for Petri Nets is Not Elementary

    Get PDF
    Petri nets, also known as vector addition systems, are a long established model of concurrency with extensive applications in modelling and analysis of hardware, software and database systems, as well as chemical, biological and business processes. The central algorithmic problem for Petri nets is reachability: whether from the given initial configuration there exists a sequence of valid execution steps that reaches the given final configuration. The complexity of the problem has remained unsettled since the 1960s, and it is one of the most prominent open questions in the theory of verification. Decidability was proved by Mayr in his seminal STOC 1981 work, and the currently best published upper bound is non-primitive recursive Ackermannian of Leroux and Schmitz from LICS 2019. We establish a non-elementary lower bound, i.e. that the reachability problem needs a tower of exponentials of time and space. Until this work, the best lower bound has been exponential space, due to Lipton in 1976. The new lower bound is a major breakthrough for several reasons. Firstly, it shows that the reachability problem is much harder than the coverability (i.e., state reachability) problem, which is also ubiquitous but has been known to be complete for exponential space since the late 1970s. Secondly, it implies that a plethora of problems from formal languages, logic, concurrent systems, process calculi and other areas, that are known to admit reductions from the Petri nets reachability problem, are also not elementary. Thirdly, it makes obsolete the currently best lower bounds for the reachability problems for two key extensions of Petri nets: with branching and with a pushdown stack.Comment: Final version of STOC'1

    Tower-Complete Problems in Contraction-Free Substructural Logics

    Get PDF
    We investigate the non-elementary computational complexity of a family of substructural logics without contraction. With the aid of the technique pioneered by Lazi? and Schmitz (2015), we show that the deducibility problem for full Lambek calculus with exchange and weakening (FL_{ew}) is not in Elementary (i.e., the class of decision problems that can be decided in time bounded by an elementary recursive function), but is in PR (i.e., the class of decision problems that can be decided in time bounded by a primitive recursive function). More precisely, we show that this problem is complete for Tower, which is a non-elementary complexity class forming a part of the fast-growing complexity hierarchy introduced by Schmitz (2016). The same complexity result holds even for deducibility in BCK-logic, i.e., the implicational fragment of FL_{ew}. We furthermore show the Tower-completeness of the provability problem for elementary affine logic, which was proved to be decidable by Dal Lago and Martini (2004)

    The Parametric Complexity of Lossy Counter Machines

    Get PDF
    The reachability problem in lossy counter machines is the best-known ACKERMANN-complete problem and has been used to establish most of the ACKERMANN-hardness statements in the literature. This hides however a complexity gap when the number of counters is fixed. We close this gap and prove F_d-completeness for machines with d counters, which provides the first known uncontrived problems complete for the fast-growing complexity classes at levels 3 < d < omega. We develop for this an approach through antichain factorisations of bad sequences and analysing the length of controlled antichains

    Alternating Vector Addition Systems with States

    Get PDF
    International audienceAlternating vector addition systems are obtained by equipping vector addition systems with states (VASS) with 'fork' rules, and provide a natural setting for infinite-arena games played over a VASS. Initially introduced in the study of propositional linear logic, they have more recently gathered attention in the guise of multi-dimensional energy games for quantitative verification and synthesis. We show that establishing who is the winner in such a game with a state reachability objective is 2-ExpTime-complete. As a further application, we show that the same complexity result applies to the problem of whether a VASS is simulated by a finite-state system

    The ideal view on Rackoff's coverability technique

    Get PDF
    Well-structured transition systems form a large class of infinite-state systems, for which safety verification is decidable thanks to a generic backward coverability algorithm. However, for several classes of systems, the generic upper bounds one can extract from the algorithm are far from optimal. In particular, in the case of vector addition systems (VAS) and several of their extensions, the known tight upper bounds were rather derived thanks to ad-hoc arguments based on Rackoff's small witness property. We show how to derive the same bounds directly on the computations of the VAS instantiation of the generic backward coverability algorithm. This relies on a dual view of the algorithm using ideal decompositions of downwards-closed sets, which exhibits a key structural invariant in the VAS case. This reasoning offers a uniform setting for all well-structured transition systems, including branching ones, and we further apply it to several VAS extensions, deriving optimal upper bounds
    corecore