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Abstract
The reachability problem in lossy counter machines is the best-known ACKERMANN-complete problem
and has been used to establish most of the ACKERMANN-hardness statements in the literature. This
hides however a complexity gap when the number of counters is fixed. We close this gap and prove
Fd-completeness for machines with d counters, which provides the first known uncontrived problems
complete for the fast-growing complexity classes at levels 3 < d < ω. We develop for this an approach
through antichain factorisations of bad sequences and analysing the length of controlled antichains.
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1 Introduction

Mayr and Meyer exhibited in 1981 “the first uncontrived decidable problems which are not
primitive-recursive,” namely the finite containment and equality problems in Petri nets [31].
McAloon [33], Clote [8], and Howell and Yen [23] subsequently proved Ackermannian upper
bounds for these two problems, essentially matching Mayr and Meyer’s lower bound.

Such an astronomical complexity could have been an isolated phenomenon with only a few
examples related to the original problems, but uncontrived problems with a similar complexity
actually occur in logic (e.g., relevance logic [47], data logics [11, 15], interval temporal logic [35],
linear logic [28], metric temporal logic [27]), verification (e.g., counter machines [43, 22],
fragments of the π-calculus [4], broadcast protocols [42], rewriting systems [20], register
automata [11, 17]), and games (e.g., partial observation energy games [36], bisimulation
games on pushdown automata [24]), and even higher complexities also occur naturally [29, 6,
37, 19, 18, 10]; see [38, Sec. 6] for an overview.

This abundance of results is largely thanks to a framework [41, 42, 39] that comprises:
The definition of an ordinal-indexed hierarchy (Fα)α of fast-growing complexity classes,
along with assorted notions of reductions and completeness suitable to work with such high
complexities [38]. The previous decision problems are complete for ACKERMANN = Fω
under primitive-recursive reductions; Fω is the lowest non primitive-recursive class in the
hierarchy, where TOWER = F3 corresponds to problems solvable in time bounded by a
tower of exponentials and where each Fk for a finite k is primitive-recursive.
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129:2 The Parametric Complexity of Lossy Counter Machines

The identification of master decision problems, which allow to establish completeness more
easily than from first principles. For instance, reachability in lossy counter machines [47,
43, 45] plays a similar role for ACKERMANN as, e.g., 3SAT for NP or QBF for PSPACE,
and has been used to derive most of the known ACKERMANN-hardness results [4, 11, 15,
35, 27, 22, 20, 17, 24].
Lower bound techniques for establishing the complexity of such master problems: this
typically relies on implementing weak computers for Hardy functions and their inverses in
the formalism at hand, allowing to build a large but bounded working space on which a
Turing or a Minsky machine can then be simulated [47, 43, 45, 6, 37, 19, 18].
Upper bound techniques relying on combinatorial statements, called length function
theorems, on the length of controlled bad sequences over well-quasi-orders, which are used
to prove the termination of the decision procedures [33, 8, 49, 7, 14, 40, 3, 37].

From an algorithmic perspective, these results are negative and one could qualify such
problems as merely “not undecidable”. What we gain however are insights into the computa-
tional power of the models, allowing to compare them and to identify the main sources of
complexity – e.g., in lossy counter machines, the key parameter is the number of counters.
Furthermore, from a modelling perspective, a formalism with a tremendous computational
power that nevertheless falls short of Turing completeness can be quite satisfactory.

Contributions. In this paper, we revisit the proof of the best-known result in this area,
namely the ACKERMANN-completeness of reachability in lossy counter machines (LCMs).
Those are simply multi-counter Minsky machines with a lossy semantics that allows the
counters to decrease in an uncontrollable manner during executions; see Section 2.

The gap in the current state of knowledge appears when one fixes the key complexity
parameter, i.e., the number d of counters. Indeed, the best known lower bound for LCM
reachability is Fd-hardness when d ≥ 3 [39, Thm. 4.9], but the best known upper bound
is Fd+1 [14, 41, 3]. This complexity gap reveals a serious shortcoming of the framework
advertised earlier in this introduction, and also impacts the complexity of many problems
shown hard through a reduction from LCM reachability.

Our first main contribution in Proposition 8 is an Fd upper bound, which together with
the lower bound from [39, Thm. 4.9] entails the following completeness result.

I Theorem 1. LCM Reachability is Fω-complete, and Fd-complete if the number d ≥ 3 of
counters is fixed.

Note that this provides an uncontrived decision problem for every class Fk with 3 ≤ k ≤
ω, whereas no natural Fk-complete problems were previously known for the intermediate
primitive-recursive levels strictly between TOWER and ACKERMANN, i.e., for 3 < k < ω.

As we recall in Section 3, reachability in lossy counter machines can be solved using
the generic backward coverability algorithm for well-structured systems [1, 16]. As usual,
we derive our complexity upper bound by bounding the length of the bad sequences that
underlie the termination argument for this algorithm. The main obstacle here is that the
length function theorems in [14, 41, 3] – i.e., the bounds on the length of controlled bad
sequences over Nd – are essentially optimal and only yield an Fd+1 complexity upper bound.

We circumvent this using a new approach in Section 4. We restrict our attention to
strongly controlled bad sequences rather than the more general amortised controlled ones (see
Section 4.1), which in turn allows us to work on the antichain factorisations of bad sequences
(see Section 4.2). This entails that, in order to bound the length of strongly controlled
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bad sequences, it suffices to bound the length of strongly controlled antichains. This is
tackled in Section 5, where we prove a width function theorem on the length of controlled
antichains over Nd; to the best of our knowledge, this is the first statement of this kind
specific to antichains rather than bad sequences. We wrap up with the proof of Proposition 8
in Section 6.

The developments of Sections 4 and 5 form our second main contribution. They are of
wide interest beyond lossy counter machines, as they can be applied whenever the termination
of an algorithm relies on Nd having finite (controlled) bad sequences or antichains.

2 Lossy Counter Machines

Syntax. A lossy counter machine (LCM) [32] is syntactically identical to a Minsky machine
M = (Q, C, δ), where the transitions in δ ⊆ Q× C× {=0?, ++, --} ×Q operate on a finite set
Q of control locations and a finite set C of counters through zero-tests c=0?, increments c++
and decrements c--.

Operational Semantics. The semantics of an LCM differ from the usual, ‘reliable’ semantics
of a counter machine in that the counter values can decrease in an uncontrolled manner at
any point of the execution. Formally, a configuration q(v) associates a control location q
in Q with a counter valuation v in NC, i.e. counter values can never go negative. The set
of configurations Q × NC is ordered by the product ordering: q(v) ≤ q′(v′) if q = q′ and
v(c) ≤ v′(c) for all c ∈ C.

A transition of the form (q, c, op, q′) ∈ δ defines a set of reliable computation steps
q(v)→ q′(v′), where v(c′) = v′(c′) for all c 6= c′ in C and

if op = =0?, then v(c) = v′(c) = 0,
if op = ++, then v(c) + 1 = v′(c), and
if op = --, then v(c) = v′(c) + 1.

A lossy computation step is then defined by allowing counter values to decrease arbitrarily
between reliable steps: q(v)→` q

′(v′) if there exist w ≤ v and w′ ≥ v′ such that q(w)→
q′(w′). We write as usual →∗` for the transitive reflexive closure of →`.

Reachability. The decision problem we tackle in this paper is the following.

I Problem (LCM Reachability).
instance A lossy counter machine (Q, C, δ) and two configurations q0(v0) and qf (vf ).
question Is qf (vf ) reachable from q0(v0), i.e., does q0(v0)→∗` qf (vf )?

Note that, due to the lossy semantics, this is equivalent to the coverability problem, which
asks instead whether there exists v ≥ vf such that q0(v0)→∗` qf (v). Indeed, such a v exists
if and only if q0(v0) ≥ qf (vf ) or q0(v0)→∗` qf (vf ).

While many problems are undecidable in LCMs [32, 44], these systems are in fact well-
structured in the sense of [1, 16], which means that their coverability problem is decidable,
as further discussed in Section 3. The ACKERMANN-hardness of reachability was first shown
by Schnoebelen [43] in 2002,1 while an ACKERMANN upper bound follows from the length
function theorems for Dickson’s Lemma [33, 8, 14, 41, 3]. Note that LCM reachability is
equivalent to reachability in counter machines with incrementing errors [11] and to coverability
in reset counter machines [45, Sec. 6], and this also holds if we fix the number of counters.

1 Urquhart [47] showed independently in 1999 and using a similar approach the same result for the closely
related model of alternating expansive vector addition systems.

ICALP 2019
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3 Well Structured Systems

Well-structured transition systems (WSTS) [1, 16] form a family of computational models
where the (usually infinite) set of configurations is equipped with a well-quasi-ordering
(see Section 3.1) that is “compatible” with the computation steps (see Section 3.2). The
existence of this well-quasi-ordering allows for the decidability of some important behavioural
properties like termination (from a given initial configuration) or coverability, see Section 3.3.

3.1 Well-Quasi-Orders
A quasi-order (qo) is a pair (X,≤) where ≤ ⊆ X ×X is transitive and reflexive; we write
x < y for the associated strict ordering, when x ≤ y and y 6≤ x, x ⊥ y for incomparable
elements, when x 6≤ y and y 6≤ x, and x ≡ y for equivalent elements, when x ≤ y and y ≤ x.
The upward-closure ↑Y of some Y ⊆ X is defined as ↑Y def= {x ∈ X | ∃y ∈ Y . x ≥ y}; we
write ↑x instead of ↑{x} for singletons and say that a set U ⊆ X is upwards-closed when
U = ↑U . We call a finite or infinite sequence x0, x1, x2, . . . over X bad if for all indices i < j,
xi 6≤ xj ; if xi ⊥ xj for all i < j, then x0, x1, x2, . . . is an antichain.

A well-quasi-order (wqo) [21, 26] is a qo (X,≤) where bad sequences are finite. Equi-
valently, (X,≤) is a wqo if and only if it is both well-founded, i.e., there does not exist
any infinite decreasing sequences x0 > x1 > x2 > · · · of elements in X, and has the finite
antichain condition, i.e., there are no infinite antichains. Still equivalently, (X,≤) is a wqo if
and only if it has the ascending chain condition: any increasing sequence U0 ⊆ U1 ⊆ U2 ⊆ · · ·
of upwards-closed subsets of X eventually stabilises, i.e.,

⋃
i∈N Ui = Uk = Uk+1 = Uk+2 = · · ·

for some k. Still equivalently, (X,≤) is a wqo if and only if it has the finite basis property:
any non-empty subset contains at least one, and at most finitely many minimal elements (up
to equivalence); thus if U ⊆ X is upwards-closed, then minU is finite and U = ↑(minU).

For a basic example, consider any finite set Q along with the equality relation, which is
a wqo (Q,=) by the pigeonhole principle. Any well-order is a wqo, thus the set of natural
numbers and any of its initial segments [k] def= {0, . . . , k− 1} along with their natural ordering
are also wqos. More examples can be constructed using algebraic operations: for instance, if
(X0,≤X0) and (X1,≤X1) are wqos, then so are:

their disjoint sum (X0 tX1,≤) where X0 tX1
def= {(x, 0) | x ∈ X0} ∪ {(x, 1) | x ∈ X1}

and (x, i) ≤ (y, j) if i = j and x ≤Xi y;
their Cartesian product (X0 × X1,≤) where (x0, x1) ≤ (y0, y1) if xi ≤Xi yi for all
0 ≤ i ≤ 1; in the case of (Nd,≤), this result is also known as Dickson’s Lemma [12].

Note that the set of configurations (Q×NC,≤) of an LCM is a wqo for the product ordering.

3.2 Compatibility
An ordered transition system S = (S,→,≤) combines a set S of configurations with a
transition relation → ⊆ S × S and a quasi-ordering ≤ of its configurations. An ordered
transition system S = (S,→,≤) is well-structured if (S,≤) is a wqo and

∀s1, s2, t1 ∈ S,
(
s1 → s2 and s1 ≤ t1

)
implies ∃t2 ∈ S,

(
t1 → t2 and s2 ≤ t2

)
. (1)

This property is also called compatibility (of the ordering with the transitions). Formally, it
just means that ≤ is a simulation relation for (S,→), in precisely the classical sense of [34].
The point of (1) is to ensure that a larger configuration can do at least as much as a smaller
configuration. For instance, lossy steps in a LCM are visibly compatible with ≤ according
to (1), and thus the transition system (Q × NC,→`,≤) defined by the lossy operational
semantics of a LCM is a WSTS.
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3.3 Coverability
We focus here on the coverability problem: given a WSTS (S,→,≤) and two configurations
s, t ∈ S, does s cover t, i.e., does there exist t′ ≥ t such that s →∗ t′? The decidability of
this problem uses a set-saturation method first introduced by Arnold and Latteux [5] for
reset Petri nets, but the algorithm was independently rediscovered by Abdulla et al. [2] for
lossy channel systems and its generic formulation was popularised in the surveys [1, 16].

Backward Coverability. The algorithm computes Pre∗∃(↑t)
def= {s′ ∈ S | ∃t′ ≥ t, s′ →∗ t′},

i.e., the set of configurations that cover t; it only remains to check whether s ∈ Pre∗∃(↑t) in
order to answer the coverability instance. More precisely, for a set of configurations U ⊆ S,
let us define its (existential) predecessor set as Pre∃(U) def= {s ∈ S | ∃s′ ∈ U, s → s′}. The
algorithm computes the limit of the sequence U0 ⊆ U1 ⊆ · · · defined by

U0
def= ↑t , Un+1

def= Un ∪ Pre∃(Un) . (2)

Note that for all n, Un = {s′ ∈ S | ∃t′ ≥ t, s′ →≤n t′} is the set of configurations that cover
t in at most n steps, and that we can stop this computation as soon as Un+1 ⊆ Un.

There is no reason for the chain defined by (2) to stabilise in general ordered transition
systems, but it does in the case of a WSTS. Indeed, Pre∃(U) is upwards-closed whenever
U ⊆ S is upwards-closed, thus the sequence defined by (2) stabilises to

⋃
i∈N Ui = Pre∗∃(↑t)

after a finite amount of time thanks to the ascending chain condition. Moreover, the finite
basis property ensures that all the sets Ui can be finitely represented using their minimal
elements, and the union or inclusion of two upwards-closed sets can be computed on this
representation. The last ingredients are two effectiveness assumptions:

(S,≤) should be effective, meaning that S is recursive and the ordering ≤ is decidable,
there exists an algorithm returning the set of minimal predecessors min Pre∃(↑s′) of any
given configuration s′; this is known as the effective pred-basis assumption.

These two assumptions hold in LCMs: (Q×NC,≤) is certainly effective, and the minimal
predecessors of a configuration q′(v′) can be computed by

min Pre∃(↑q′(v′)) = min{q(prec op(v′)) | (q, c, op, q′) ∈ δ and v′(c) = 0 if op = =0?} (3)

where prec op(v′) is a vector in NC defined by prec op(v′)(c′) def= v′(c′) for all c′ 6= c in C and

prec=0?(v′)(c) def= 0 , prec++(v′)(c) def= max{0,v′(c)− 1} , prec--(v′)(c) def= v′(c) + 1 . (4)

Coverability Pseudo-Witnesses. Let us reformulate the termination argument of the back-
ward coverability algorithm in terms of bad sequences. We can extract a sequence of elements
t0, t1, . . . from the ascending sequence U0 ( U1 ( · · · defined by (2) before saturation: t0 def= t

and ti+1 ∈ Ui+1 \ Ui for all i. Note that if i < j, then tj ∈ Uj \ Ui and therefore ti 6≤ tj : the
sequence t0, t1, . . . is bad and therefore finite. In fact, we can even pick ti+1 at each step
among the minimal elements of Pre∃(↑ti); we call such a bad sequence t0, t1, . . . , tn with

t0
def= t , ti+1 ∈ min Pre∃(↑ti) \ Ui . (5)

a pseudo-witness of the coverability of t. The maximal length of pseudo-witnesses is therefore
equal to the number of steps of the backward coverability algorithm, and this is what we will
bound in the upcoming Sections 4 and 5.

ICALP 2019
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4 Controlled Bad Sequences and Antichains

As we have just discussed, the running time of the backward coverability algorithm is
essentially bounded by the length of the bad sequences constructed by its termination
argument. Though bad sequences over a wqo are finite, we cannot bound their lengths in
general; e.g., (0, n+ 1), (0, n), . . . , (0, 0) and (1, 0), (0, n), (0, n− 1), . . . , (0, 1), (0, 0) are bad
sequences over N2 of length n+ 2 for all n. Nevertheless, a bad sequence produced by an
algorithm like the backward coverability algorithm of Section 3.3 is not arbitrary, because its
elements are determined by the algorithm’s input and the complexity of its operations. We
capture this intuition formally through controlled sequences.

4.1 Controlling Sequences
Norms. Given a wqo (X,≤X), we posit a norm function | . |X :X → N; if x ≤X x′ implies
|x|X ≤ |x′|X , we call this norm monotone. In order to be able to derive combinatorial
statements, we require X≤n def= {x ∈ X | |x|X ≤ n} to be finite for every n; we call the
resulting structure (X,≤X , | · |X) a normed wqo (nqo).

We will use the following monotone norms on the wqos we defined in Section 3.1: over a
finite Q, all the elements have the same norm 0; over N or [d], n has norm |n|N = |n|[d] = n;
over disjoint sums X0 t X1, (x, i) uses the norm |x|Xi of its underlying set; finally, over
Cartesian products X × Y , (x, y) uses the infinite norm max(|x|X , |y|Y ).

Controls. Let n0 ∈ N and let g:N→ N be a monotone and inflationary function, i.e., for all
x ≤ x′, g(x) ≤ g(x′) and x ≤ g(x). We say that a sequence x0, x1, x2, . . . of elements in X is
amortised (g, n0)-controlled if

∀i . |xi|X ≤ gi(n0) , (6)

where gi denotes the ith iterate of g. We say that it is strongly (g, n0)-controlled if

|x0|X ≤ n0 and ∀i . |xi+1|X ≤ g(|xi|X) . (7)

By definition, a strongly controlled sequence is also amortised controlled: |x0|X ≤ g0(n0) = n0,
which prompts the name of initial norm for n0, and amortised steps cannot grow faster
than g the control function.

Previous works like [14, 41, 3] focused on the more general amortised controlled sequences,
but strong controlled ones are actually more relevant in practice. For instance, in the case of
LCM coverability, the computation of minimal predecessors in (3–4) shows that the pseudo-
witnesses from (5) of the coverability of a target configuration qf (vf ) are strongly (H, |vf |)-
controlled by the initial norm |vf | = maxc∈C vf (c) and the control function H(x) def= x+ 1.

Length, Norm, and Width Functions. The point of controlled sequences is that their
length can be bounded. Consider for this the tree obtained by sharing the common prefixes
of all the strongly (g, n0)-controlled bad sequences over a normed wqo (X,≤X , | . |X).

This tree is finitely branching by (7) – its branching degree is bounded by the cardinal of
X≤gi(n0) for a node at depth i – , and
it has no infinite branches since bad sequences over (X,≤X) are finite.

By Kőnig’s Lemma, this tree of bad sequences is therefore finite, of some height Ls
g,X(n0)

representing the length of the maximal strongly (g, n0)-controlled bad sequence(s) over X,
and we also let N s

g,X(n0) bound the norms encountered along such sequences; note that
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(3, 4)

(5, 2)

(4, 3)

(4, 2)

(5, 1)

(2, 3)

(4, 1)

(5, 0)

(1, 4)

(3, 1)

(0, 4)

(3, 0)

(1, 1)
>

> > >

>

Figure 1 The antichain factorisation of the strongly (H, 4)-controlled bad sequence (3, 4) (5, 2)
(4, 3) (4, 2) (5, 1) (2, 3) (4, 1) (5, 0) (1, 4) (3, 1) (0, 4) (3, 0) (1, 1) over N2 for H(x) def= x+ 1.

N s
g,X(n0) ≤ gL

s
g,X(n0)(n0) since g is monotone inflationary. Similarly, there exists a max-

imal length, denoted by W a
g,X(n0) (resp. W s

g,X(n0)), for amortised (resp. strongly) (g, n0)-
controlled antichains over X. We call Ls

g,X , N s
g,X , and W s

g,X the strong length, strong norm,
and strong width functions respectively, and W a

g,X the width function. By definition, a
strongly controlled antichain is amortised controlled, i.e.,

W s
g,X(n0) ≤W a

g,X(n0) , (8)

and the length of a bad sequence where all the elements are of norm at most N = N s
g,X(n0)

is bounded by the cardinal of X≤N , i.e.,

Ls
g,X(n0) ≤ |X≤N s

g,X
(n0)| . (9)

Observe that Ls
g,X(|t|X) bounds the number of steps required by the backward coverability

algorithm for a WSTS over (X,≤X , | . |X) with target configuration t where s′ ∈ min Pre(↑t′)
implies |s′|X ≤ g(|t′|X). In the case of LCMs, we are therefore interested in Ls

H,Q×NC(|vf |).

4.2 Antichain Factorisations
Let (X,≤X , | . |X) be a nwqo where | . |X is monotone – i.e., x ≤ x′ implies |x|X ≤ |x′|X – ,
and let x0, x1, . . . , x`−1 ∈ X∗ be a strongly (g, n0)-controlled bad sequence over (X,≤X , | . |X).
Informally, the antichain factorisation of x0, x1, . . . , x`−1 is an ordered forest A where all the
branches are strongly (g, n0)-controlled antichains, siblings are ordered left-to-right by the
strict ordering >X , and such that the pre-order traversal of A yields back the bad sequence.
Consider for instance the example of Figure 1: this bad sequence has length 13, thus the norm
of its elements is at most H12(4) = 16, but because the height of its antichain factorisation
is 4, we can actually bound the norm by H3(4) = 7.

We can compute this factorisation from any strongly (g, n0)-controlled bad sequence.
Formally, A ⊆ X∗ is a prefix-closed finite set of antichains with the prefix ordering as vertical
ordering. Two antichains u and v in A are siblings if u = w ·x and v = w · y for some w ∈ X∗
and x, y ∈ X, and we order such siblings by letting u >X v if x >X y. Given x0, . . . , x`−1,
we let A def= Fact(x0, 1) where

Fact(y0 · · · ym, i) def= {y0 · · · ym} ∪


∅ if i = ` ,

Fact(y0 · · · ymxi, i+ 1) if ∀j . yj 6>X xi ,

Fact(y0 · · · yk−1xi, i+ 1) if k = min{j | yj >X xi} .
(10)

ICALP 2019
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This corresponds to scanning the elements xi of the bad sequence from left to right while
building the current “rightmost branch” y0 · · · ym ∈ A, which is (by induction on i) a strongly
(g, n0)-controlled antichain and a scattered subword of x0 · · ·xi−1 (thus yj 6≤ xi for all
0 ≤ j ≤ m) such that ym = xi−1. If yj 6>X xi for all 0 ≤ j ≤ m, then y0 · · · ymxi is a
(g, n0)-controlled antichain and a scattered subword of x0 · · ·xi. If otherwise yj >X xi for
some yj , we let k be the minimal such j and we start a new rightmost branch with xi out
of yk−1 (xi is possibly a new root if k = 0); crucially, because | . |X is monotone and xi <X yk,
we have |xi|X ≤ |yk|X ≤ g(|yk−1|X) (or |xi|X ≤ |yk|X ≤ n0 at the root), thus y0 · · · yk−1xi
is again a strongly (g, n0)-controlled antichain and a scattered subword of x0 · · ·xi.

We deduce a bound on the strong norm function in terms of the strong width function.

I Lemma 2 (Antichain Factorisation). Let (X,≤X , |.|X) be a normed wqo with |.|X monotone,
n0 in N, and g:N→ N monotone inflationary. Then N s

g,X(n0) ≤ gW
s
g,X(n0)(n0).

Lemma 2 combined with (8) shows that the strong norm function N s
g,X can be bounded

in terms of the width function W a
g,X . By (9), this will also yield a bound on the strong

length function Ls
g,X . We focus therefore on the width function in the upcoming Section 5.

5 Width Function Theorem

As seen in Section 4, by suitably controlling how large the elements can grow in antichains,
we can derive upper bounds on the time and space required by the backward coverability
algorithm of Section 3. We prove in this section a width function theorem, a combinatorial
statement on the length of amortised controlled antichains over tuples of natural numbers,
which will allow to derive a complexity upper bound for reachability in lossy counter machines.

The high complexities at play here require the use of ordinal-indexed subrecursive functions
in order to denote non-elementary growths. We first recall the definitions of two families
of such functions in Section 5.1; we refer the reader to [46, 41] for further details. We then
prove in Section 5.2 a bound on the width function W a

g,Nd using the framework of [40, 41].

5.1 Subrecursive Hierarchies

Fundamental Sequences and Predecessors. A fundamental sequence for a limit ordinal λ
is a strictly increasing sequence (λ(x))x<ω of ordinal terms with supremum λ. We use the
standard assignment of fundamental sequences to limit ordinals below ε0 in Cantor normal
form, defined inductively by

(γ + ωβ+1)(x) def= γ + ωβ · (x+ 1) , (γ + ωλ)(x) def= γ + ωλ(x) . (11)

This particular assignment satisfies e.g. 0 < λ(x) < λ(y) for all x < y. For instance,
ω(x) = x+ 1, (ωω4 + ωω

3+ω2)(x) = ωω
4 + ωω

3+ω·(x+1).
The predecessor Px(α) of an ordinal term 0 < α < ε0 at x ∈ N is defined inductively by

Px(α+ 1) def= α , Px(λ) def= Px(λ(x)) . (12)

In essence, the predecessor of an ordinal is obtained by repeatedly taking the xth element in
the fundamental sequence of limit ordinals, until we finally reach a successor ordinal and
may remove 1. For instance, Px(ω2) = Px(ω · (x+ 1)) = Px(ω · x+ x+ 1) = ω · x+ x.
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Hardy and Cichoń Hierarchies. Let h:N→ N be a function. The Hardy hierarchy (hα)α∈ε0

and the Cichoń hierarchy (hα)α∈ε0 relative to h are defined for all 0 < α < ε0 by

h0(x) def= x , hα(x) def= hPx(α)(h(x)) , h0(x) def= 0 , hα(x) def= 1 + hPx(α)(h(x)) . (13)

Observe that hk(x) = hPx(k)(h(x)) = hk−1(h(x)) for some finite k is the kth iterate of
h. This intuition carries over: hα is a “transfinite” iteration of the function h, using
diagonalisation in the fundamental sequences to handle limit ordinals. A standard choice
for the function h is the successor function, noted H(x) def= x+ 1; in that case, we see that a
first diagonalisation yields Hω(x) = Hx(x+ 1) = 2x+ 1. The next diagonalisation occurs at
Hω·2(x) = Hω+x(x+ 1) = Hω(2x+ 1) = 4x+ 3. Fast-forwarding a bit, we get for instance
a function of exponential growth Hω2(x) = 2x+1(x + 1) − 1, and later a non-elementary
function Hω3(x) akin to a tower of exponentials of height x, and an “Ackermannian” non
primitive-recursive function Hωω .

Both hα and hα are monotone and inflationary whenever h is monotone inflationary.
Hardy functions are well-suited for expressing large iterates of a control function, and therefore
for bounding the norms of elements in a controlled sequence. Cichoń functions are well-suited
for expressing the length of controlled sequences: we can compute how many times we should
iterate h in order to compute hα(x) using the corresponding Cichoń function [7]:

hα(x) = hhα(x)(x) . (14)

5.2 Width Function for Dickson’s Lemma
The starting point for our analysis is a descent equation for amortised controlled antichains
through residuals, similar to the equations proven in [14, 40] for bad sequences (see Lemma 3).
The key idea introduced in [14] is then to over-approximate the residuals of Nd by working
over polynomial nwqos, where disjoint sums are also allowed. Then, the notion of “over-
approximation” of residuals of polynomial nwqos is captured formally by showing the existence
of a normed reflection into another polynomial nwqo. The final step lifts this to ordinals,
allowing to relate W a

g,X for a polynomial nwqo X to functions in the Cichoń hierarchy.

Strict Polynomial Normed wqos. Let us write X · p for
p times︷ ︸︸ ︷

X t · · · tX, Xd for
d times︷ ︸︸ ︷

X × · · · ×X,
and 0 for the empty nwqo. We call a nwqo of the form Nd1 t · · · t Ndm for some m ≥ 0 and
d1, · · · , dm ≥ 1 a strict polynomial nwqo. The set of configurations Q× NC of an LCM with
|Q| = q locations and |C| = d ≥ 1 counters, along with its ordering and infinite norm, is
isomorphic to the strict polynomial nwqo Nd · q.

Residuals and a Descent Equation. Let (X,≤X , |.|X) be a normed wqo and x be an element
of X. We write X⊥x def= {y ∈ X | x⊥ y} for the residual of X in x. By the finite antichain
condition, there cannot be infinite sequences of residuations (· · · ((X⊥x0)⊥x1)⊥x2 · · · )⊥xi
because xi ⊥ xj for all i < j and it would create an infinite antichain.

Consider now an amortised (g, n0)-controlled antichain x0, x1, x2, . . . over X. Assuming
the sequence is not empty, then for all i > 0, x0 ⊥ xi, i.e. the suffix x1, x2, . . . is actually an
antichain over X⊥x0 . This suffix is now amortised (g, g(n0))-controlled, and thus of length
bounded by W a

g,X⊥x0
(g(n0)). This yields the following descent equation when considering all

the possible amortised (g, n0)-controlled antichains; see the full version for a proof.

I Lemma 3. Let (X,≤X , | . |X) be a nwqo, n0 ∈ N and g:N → N. Then W a
g,X(n0) =

maxx∈X≤n0
1 +W a

g,X⊥x
(g(n0)).
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Reflecting Normed wqos. The descent equation, though it offers a way of computing
the width function, quickly leads to complex residual expressions. We are going to over-
approximate these X⊥x’s using nwqo reflections, so that the computation can be carried
out without leaving the realm of strict polynomial nwqos, leading to an inductive over-
approximation of X⊥x over the structure of the strict polynomial nwqo X.

A nwqo reflection [40] is a mapping r:X → Y between two nwqos (X,≤X , | . |X) and
(Y,≤Y , | . |Y ) that satisfies the two following properties:

∀x, x′ ∈ X. r(x) ≤Y r(x′) implies x ≤X x′ , (15)
∀x ∈ X. |r(x)|Y ≤ |x|X . (16)

In other words, a nwqo reflection is an order reflection that is not norm-increasing. This
induces a quasi-ordering between nwqos, written X ↪→ Y . Remark that reflections are
compatible with disjoint sums and products [40, Prop. 3.5]:

X0 ↪→ Y0 and X1 ↪→ Y1 imply X0 tX1 ↪→ Y0 t Y1 and X0 ×X1 ↪→ Y0 × Y1 . (17)

Crucially, nwqo reflections preserve amortised controlled antichains. Indeed, let r:X ↪→ Y ,
and consider a sequence x0, x1, . . . over X. Then by (15), r(x0), r(x1), . . . is an antichain
when x0, x1, . . . is, and by (16), it is (g, n)-controlled when x0, x1, . . . is. Hence

X ↪→ Y implies W a
g,X(n) ≤W a

g,Y (n) for all g, n . (18)

Inductive Reflection of Residuals. We provide a strict polynomial wqo reflecting X⊥x by
induction over the structure of the strict polynomial nwqo X. The key difference compared
to the analysis of bad sequences in [14, 41] occurs for X = N: if k ∈ N,

N⊥k = 0 . (19)
Regarding disjoint sums X0 tX1, it is plain that

(X0 tX1)⊥(x,i) = (Xi)⊥x tX1−i . (20)
Consider now (Nd)⊥v where d > 1 and v ∈ Nd. Observe that if u ∈ Nd is such that u⊥ v,
then there exists 1 ≤ i ≤ d such that u(i) < v(i), as otherwise we would have u ≥ v. Thus

(Nd)⊥v ↪→
⊔

1≤i≤d
Nd−1 × [v(i)] ↪→ Nd−1 ·

∑
1≤i≤d

v(i) . (21)

Ordinal Notations. As it is more convenient to reason with ordinals than with polynomial
nwqos, we use the following bijection between strict polynomial nwqos and ωω:

w(0) def= 0 , w(Nd) def= ωd−1 , w(X0 tX1) = w(X0)⊕ w(X1) . (22)

where “⊕” denotes the natural sum (aka Hessenberg sum) on ordinals: the natural sum α⊕β of
two ordinals with Cantor normal forms α =

∑p
i=1 ω

αi and β =
∑m
j=1 ω

βj is ωγ1 + · · ·+ωγp+m

where the exponents γ1 ≥ · · · ≥ γp+m are a reordering of α1, . . . , αp, β1, . . . , βm. Given a
strict polynomial nwqo X =

⊔m
i=1 Ndi , its associated ordinal is w(X) =

⊕m
i=1 ω

di−1. In the
case of an LCM with d def= |C| counters and q def= |Q| locations, w(Q× NC) = ωd−1 · q.

For each n ∈ N, we define a relation ∂n over ordinals in ωω that mirrors the inductive
residuation and reflection operations on strict polynomial nwqos X over the ordinals w(X):

∂nα
def=
{
γ ⊕ ∂nωd | α = γ ⊕ ωd

}
, ∂nω

d def=

{
0 if d = 0,
ωd−1 · n(d+ 1) otherwise.

(23)
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The intuition here is that w(Y ) ∈ ∂nw(X) implies X⊥x ↪→ Y for some x ∈ X≤n. Observe
that α′ ∈ ∂nα implies α′ < α, thus

⋃
n ∂n is a well-founded relation. This leads to the

definition of an over-approximation of the width function W a
g,X (see the full version):

Mg,α(n) def= max
α′∈∂nα

{
1 +Mg,α′(g(n))

}
. (24)

I Proposition 4. Let (X,≤X , | . |X) be a strict polynomial nwqo, n0 ∈ N, and g:N → N.
Then W a

g,X(n0) ≤Mg,w(X)(n0).

It remains to compareMg,α with standard subrecursive functions like the Cichoń functions,
which was already done in [41, Sec. 2.4.3] for a very similar function; see the full version.

I Proposition 5. Let n be in N, g:N→ N a monotone inflationary function, and 0 < α < ωd.
Then Mg,α(n) ≤ 1 +Mg,Pnd(α)(n).

This extra twist of using a predecessor function different from the standard one from (12)
can be avoided by instead over-approximating the control function g.

I Theorem 6 (Width Function for Strict Polynomial nwqos). Let d > 0, (X,≤X , | . |X)
be a strict polynomial nwqo with w(X) < ωd, n0 ∈ N, g:N → N monotone inflationary,
and let h:N → N be a monotone function such that h(x · d) ≥ g(x) · d for all x. Then
W a
g,X(n0) ≤ hw(X)(n0d).

Proof. By Proposition 4, it suffices to show that Mg,w(X)(n) ≤ hw(X)(nd), which we do by
induction over α def= w(X). If α = 0, then ∂nα = ∅ thus Mg,α(n) = 0 ≤ hα(nd). Otherwise,
by Proposition 5, Mg,α(n) ≤ 1 +Mg,Pnd(α) (g(n)). Because Pnd(α) < α, we can apply the
induction hypothesis, yielding Mg,α(n) ≤ 1+hPnd(α) (g(n)d) ≤ 1+hPnd(α) (h(nd)) = hα(nd),
where the last inequality follows from h(nd) ≥ g(n)d and the monotonicity of hPnd(α). J

Setting h(x) def= g(x)d always satisfies the conditions of the theorem. There are cases
where setting h def= g suffices: e.g., g(x) def= 2x, g(x) def= x2, g(x) def= 2x, and more generally
whenever g is super-homogeneous, i.e. satisfies g(dx) ≥ g(x)d for all d, x ≥ 1. In the case of
LCMs, where w(Q × NC) < ωd if d def= |C| > 0, a control function g(x) def= x+ 1 = H(x) fits,
thus setting h(x) def= x+ d = Hd(x) satisfies h(dx) = dx+ d = (x+ 1)d = g(x)d.

By (8), Lemma 2, and (14), Theorem 6 also yields a bound on the strong norm function.

I Corollary 7 (Strong Norm Function for Strict Polynomial nwqos). Let d, X, n0, g, and h be
as in Theorem 6. Then N s

g,X(n0) ≤ hw(X)(n0d).

6 Wrapping up

We have now all the ingredients needed to prove an Fd upper bound on LCM Reachability.
Let us first recall the definition of the fast-growing complexity classes from [38].

Fast-Growing Complexity Classes. The fast-growing complexity classes [38] form a strict
ordinal-indexed hierarchy of complexity classes (Fα)α<ε0 using the Hardy functions (Hα)α<ε0

relative to H(x) def= x+ 1 as a standard against which to measure high complexities. Let

F<α
def=
⋃
β<ωα

FDTIME
(
Hβ(n)

)
, Fα def=

⋃
p∈F<α

DTIME
(
Hωα(p(n))

)
. (25)

Then F<α is the class of functions computed by deterministic Turing machines in time
O(Hβ(n)) for some β < ωα; this captures for instance the class of Kalmar elementary
functions as F<3 and the class of primitive-recursive functions as F<ω [30, 48]. The class Fα is
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the class of decision problems solved by deterministic Turing machines in time O
(
Hωα(p(n))

)
for some function p ∈ F<α. The intuition behind this quantification of p is that, just like e.g.
EXP =

⋃
p∈poly DTIME

(
2p(n)) quantifies over polynomial functions to provide enough “wiggle

room” to account for polynomial reductions, Fα is closed under F<α reductions [38, Thms. 4.7
and 4.8]. For instance, TOWER def= F3 defines the class of problems that can be solved in time
bounded by a tower of exponentials of elementary height in the size of the input,

⋃
k∈N Fk

is the class of primitive-recursive decision problems, and ACKERMANN def= Fω is the class of
problems that can be solved in time bounded by the Ackermann function applied to some
primitive-recursive function of the input size.

Upper Bound. Recall from Section 3.3 that a pseudo-witness for coverability of a config-
uration qf (vf ) in a LCM with d def= |C| > 0 counters and q def= |Q| locations is a strongly
(H, |vf |)-controlled bad sequence over Q× NC, which as discussed in Section 5.2 is a strict
polynomial wqo with w(Q × NC) = ωd−1 · q < ωd, and that h def= Hd fits the conditions of
Theorem 6 and Corollary 7. As stated in Theorem 1, together with the lower bounds from [39],
the following entails the Fd-completeness of LCM Reachability with a fixed number d ≥ 3 of
counters.

I Proposition 8 (Upper Bound for LCM Reachability). LCM Reachability is in Fω, and in Fd
if the number d ≥ 3 of counters is fixed.

Proof. Let n0
def= |vf | be the infinite norm of the target configuration, d def= |C| ≥ 3 be the

number of counters, and q def= |Q| ≥ 1 the number of locations. By Corollary 7, the elements
in a pseudo-witness of the coverability of qf (vf ) are of norm at most N def= N s

H,Q×NC(n0) =
hω

d−1·q(n0) for h(x) def= Hd(x). Let n def= max{qd− 1, n0}. As shown in the full version, this
means that

N ≤ Hωd−1·qd(n0) ≤ Hωd−1·qd(n) ≤ Hωd(n) (26)

by monotonicity of the Hardy functions.
Note that there are at most q(N + 1)d different configurations in Q×NC of norm bounded

by N , i.e., |(Q × NC)≤N | ≤ q(N + 1)d. By (9), this is also a bound on the strong length
function Ls

H,Q×Nd(n0). Thus the number of steps in the backward coverability algorithm is
bounded by q(N +1)d, and each step can be carried in time O(N), hence the algorithm works
in deterministic time O(q(N + 1)d+1) = O(f(N)) = O(f(Hωd(n))) for some elementary
function f ∈ F<3. By [38, Cor. A.9], there exists an elementary inflationary function p ∈ F<3
such that f(Hωd(n)) ≤ Hωd(p(n)): the backward coverability algorithm therefore works in
deterministic time O(Hωd(p(n))) for some p ∈ F<3, which is an expression of the form (25).

Therefore, LCM Reachability is in Fd when d is fixed, and in Fω otherwise because
p(n) ≥ n ≥ d− 1 and thus Hωd(p(n)) ≤ Hωω (p(n)). J

7 Concluding Remarks

We have shown the Fd-completeness of reachability in lossy counter machines with a fixed
number d ≥ 3 of counters. The key novelty is that we analyse the length of controlled
antichains over Nd rather than that of controlled bad sequences. A possible explanation why
this leads to improved upper bounds is that the ordinal width of Nd, i.e., the ordinal rank of
its antichains, is conjectured to be ωd−1 [13], while its maximal order type, i.e., the ordinal
rank of its bad sequences, is well-known to be ωd [9].
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Our approach might be employed to tackle related parameterised complexity gaps, like
the one between Fωm−2-hardness [25] and Fωm−1+1 membership [40] of reachability in lossy
channel systems with m ≥ 4 channel symbols and a single channel. Those results rely
however on the set of finite words over an alphabet of size m being a wqo for Higman’s
scattered subword ordering [21], for which the ordinal width and maximal order type coincide
at ωωm−1 [13, 9].
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