571 research outputs found

    A Constellation Space Dimensionality Reduced Sub-Optimal Receiver for Orthogonal STBC CPM Modulation in a MIMO Channel

    Get PDF
    We consider burst orthogonal space-time block coded (OSTBC) CPM modulation in a MIMO flat slow Rayleigh fading channel. The optimal receiver must process a multidimensional non-linear CPM signal on each antenna. This task imposes a high load on the receiver computational performance and increases its complexity. We analytically derive a suboptimal receiver with a reduced number of front end matched filters (MFs) corresponding to the CPM dimension. Our derivation is made fully in the constellation signal space, and the reduction is based on the linear orthogonal projection to the optimal subspace. Criterion optimality is a standard space-time rank and determinant criterion. The optimal arbitrary-dimensional subspace search leads to the eigenvector solution. We present the condition on a sufficient subspace dimension and interpret the meaning of the corresponding eigenvalues. It is shown that the determinant and rank criterion for OSTBC CPM is equivalent to the uncoded CPM Euclidean distance criterion. Hence the proposed receiver may be practical for uncoded CPM and foremost in a serially concatenated (SC) CPM system. All the derivations are supported by suitable error simulations for binary 2REC h= 1/2, but the procedure is generally valid for any CPM variant. We consider OSTBC CPM in a Rayleigh fading AWGN channel and SC CPM in an AWGN channel.

    Capacity -based parameter optimization of bandwidth constrained CPM

    Get PDF
    Continuous phase modulation (CPM) is an attractive modulation choice for bandwidth limited systems due to its small side lobes, fast spectral decay and the ability to be noncoherently detected. Furthermore, the constant envelope property of CPM permits highly power efficient amplification. The design of bit-interleaved coded continuous phase modulation is characterized by the code rate, modulation order, modulation index, and pulse shape. This dissertation outlines a methodology for determining the optimal values of these parameters under bandwidth and receiver complexity constraints. The cost function used to drive the optimization is the information-theoretic minimum ratio of energy-per-bit to noise-spectral density found by evaluating the constrained channel capacity. The capacity can be reliably estimated using Monte Carlo integration. A search for optimal parameters is conducted over a range of coded CPM parameters, bandwidth efficiencies, and channels. Results are presented for a system employing a trellis-based coherent detector. To constrain complexity and allow any modulation index to be considered, a soft output differential phase detector has also been developed.;Building upon the capacity results, extrinsic information transfer (EXIT) charts are used to analyze a system that iterates between demodulation and decoding. Convergence thresholds are determined for the iterative system for different outer convolutional codes, alphabet sizes, modulation indices and constellation mappings. These are used to identify the code and modulation parameters with the best energy efficiency at different spectral efficiencies for the AWGN channel. Finally, bit error rate curves are presented to corroborate the capacity and EXIT chart designs

    Detection, Receivers, and Performance of CPFSK and CPCK

    Get PDF
    Continuous Phase Modulation (CPM) is a power/bandwidth efficient signaling technique for data transmission. In this thesis, two subclasses of this modulation called Continuous Phase Frequency Shift Keying (CPFSK) and Continuous Phase Chirp Keying (CPCK) are considered and their descriptions and properties are discussed in detail and several illustrations are given. Bayesian Maximum Likelihood Ratio Test (MLRT) is designed for detection of CPFSK and CPCK in AWGN channel. Based on this test, an optimum receiver structure, that minimizes the total probability of error, is obtained. Using high- and low-SNR approximations in the Bayesian test, two receivers, whose performances are analytically easy-to-evaluate relative to the optimum receiver, are identified. Next, a Maximum Likelihood Sequence Detection (MLSD) technique for CPFSK and CPCK is considered and a simplified and easy-to-understand structure of the receiver is presented. Finally, a novel Decision Aided Receiver (DAR) for detection of CPFSK and CPCK is presented and closed-form expressions for its Bits Error Rate (BER) performance are derived. Throughout the thesis, performances of the receivers are presented in terms of probability of error as a function of Signal-to-Noise Ratio (SNR), modulation parameters and number of observation intervals of the received waveform. Analytical results wherever possible and, in general, simulation results are presented. An analysis of numerical results is given from the viewpoint of the ability of CPFSK and CPCK to operate over AWGN Channel

    Constant-Envelope Multi-Level Chirp Modulation: Properties, Receivers, and Performance

    Get PDF
    Constant envelope multi-level chirp modulations, with and without memory, are considered for data transmission. Specifically, three sub-classes referred to as symbol-by-symbol multi-level chirp modulation, full-response phase-continuous multi-level chirp modulation and full-response multi-mode phase-continuous multi-level chirp modulation are considered. These modulated signals are described, illustrated, and examined for their properties. The ability of these signals to operate over AWGN is assessed using upper bounds on minimum Euclidean distance as a function of modulation parameters. Coherent and non-coherent detection of multi-level chirp signals in AWGN are considered and optimum and sub-optimum receiver structures are derived. The performance of these receivers have been assessed using upper and lower bounds as a function of SNR, modulation parameters, modulation levels, decision symbol locations, and observation length of receiver. Optimum multi-level chirp modulations have been determined using numerical minimization of symbol error rate. Closed-form expressions are derived for estimating the performance of multi-level chirp signals over several practical fading channels. Finally, spectral characteristics of digital chirp signals are presented and illustrated

    Development of a Nanosatellite Software Defined Radio Communications System

    Get PDF
    Communications systems designed with application-specific integrated circuit (ASIC) technology suffer from one very significant disadvantage - the integrated circuits do not possess the ability of programmability. However, Software Defined Radio’s (SDR’s) integrated with Field Programmable Gate Arrays (FPGA) provide an opportunity to update the communication system on nanosatellites (which are physically difficult to access) due to their capability of performing signal processing in software. SDR signal processing is performed in software on reprogrammable elements such as FPGA’s. Applying this technique to nanosatellite communications systems will optimize the operations of the hardware, and increase the flexibility of the system. In this research a transceiver algorithm for a nanosatellite software defined radio communications is designed. The developed design is capable of modulation of data to transmit information and demodulation of data to receive information. The transceiver algorithm also works at different baud rates. The design implementation was successfully tested with FPGA-based hardware to demonstrate feasibility of the transceiver design with a hardware platform suitable for SDR implementation
    corecore