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Abstract

Constant envelope multi-level chirp modulations, with and without memory, are con-

sidered for data transmission. Specifically, three subclasses referred to as symbol-by-

symbol multi-level chirp modulation, full-response phase-continuous multi-level chirp

modulation and full-response multi-mode phase-continuous multi-level chirp modula-

tion are considered. These modulated signals are described, illustrated, and examined

for their properties. The ability of these signals to operate over AWGN is assessed

using upper bounds on minimum Euclidean distance as a function of modulation pa-

rameters. Coherent and non-coherent detection of multi-level chirp signals in AWGN

are considered and optimum and sub-optimum receiver structures are derived. The

performance of these receivers have been assessed using upper and lower bounds as

a function of SNR, modulation parameters, modulation levels, decision symbol lo-

cations, and observation length of receiver. Optimum multi-level chirp modulations

have been determined using numerical minimization of symbol error rate. Closed-

form expressions are derived for estimating the performance of multi-level chirp sig-

nals over several practical fading channels. Finally, spectral characteristics of digital

chirp signals are presented and illustrated.
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Chapter 1

Introduction

1.1 Introduction to Communications

Communication has been one of the most important needs of humans throughout

recorded history. It is essential in forming social unions, in educating the young,

and in expressing a myriad of emotions and needs. Good communication is central

to a civilized society. The host of communication disciplines in engineering have

the central purpose of providing technological aids to human communication. The

communication technology as one views it today became important with telegraphy,

then telephony, then video, then computer communication and today the amazing

mixture of all these in inexpensive, small portable devices. Communication enters

daily lives in so many di↵erent ways. With telephones in hands, radios and televisions

in living rooms, and with desktop, laptop, and tablet computers providing access to

the Internet in o�ces and homes, one is able to communicate to every corner of the

globe. Communication provides information to ships on high seas, aircraft in flight,

and rockets and satellite in space. Indeed, the list of applications involving the use

of communication in one way or another is almost endless.

1.2 Wireless Communications

In 1897, Guglielmo Marconi invented the first apparatus for transmitting radio waves

over longer distance which was used to enable communication with ships in the En-

glish channel [1]. Since then, wireless communications has become one of the most

rapidly growing industries in the world, and its products are now exerting an impact

in our daily lives. Wireless communications today cover a very wide array of appli-

cations. The telecommunications industry is one of the largest industries worldwide
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with more than $ 1 trillion in annual revenues for service and equipment. The largest

and most noticeable part of telecommunications business is telephony. The principal

wireless component of telephony is mobile telephony. The worldwide growth rate in

cellular telephony is very aggressive, and reports suggest that the number of cellular

telephony subscriptions worldwide has now surpassed the number of wired telephony

subscriptions. However, cellular telephony is only one of a very wide array of wireless

technologies that are being developed very rapidly at the present time. Among other

technologies are wireless Internet and other Personal Area Network (PAN) systems,

Wireless Local Area Network (WLAN) systems, wireless Metropolitan Area Network

(MAN) systems, and a variety of satellite systems. These technologies are supported

by a number of transmission and channel assignment technologies, including Time Di-

vision Multiple Access (TDMA), Code Division Multiple Access (CDMA) and other

spread-spectrum systems, Orthogonal Frequency Division Multiplexing (OFDM) and

other multi-carrier systems, and high-rate single-carrier systems. All these modern

technologies use the basic principles that underlie the design and analysis of Digital

Communication System (DCS) [2].

1.3 Digital Communication System

Modern society depends on electronic communication for most of its functioning.

Among the many possible ways of communicating, the class of techniques refereed to

as digital communications has become predominant in the 21st century, and indica-

tions are that this trend will continue. Digital communication is simply the practice

of exchanging information by the use of finite sets of signals. Thus, most modern

communication systems now contain digital interface between source and channel

(such as cable, twisted pair wire, optical fibers or electromagnetic radiation through

space). Digital interfaces are practical due to the availability of cheap, reliable, and

miniaturized digital hardware. Also, the digital interface simplifies implementation

and understanding, since source coding/decoding can be done independently of the

channel, and similarly channel coding/decoding can be done independently of the
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source. A generic model of a point-to-point digital communication system is shown

in Fig.1.1.

Message 
Source

Channel

ModulatorChannel 
Encoder

Source 
Encoder

DemodulatorChannel 
Decoder

Source
Decoder

Message 
Destination

Domain of thesis

Figure 1.1: Model of point-to-point digital communication system

The message source generates messages which are to be transmitted to the

receiver. In a digital communication system, the messages produced by the source

are usually converted into a sequence of binary digits. The binary digits are almost

universally used for digital communication and storage as well. The purpose of the

source encoder is to provide an e�cient representation of the source output that re-

sults in little or no redundancy [3]. The sequence of binary digits from the source

encoder is fed to the channel encoder which introduces in a controlled manner some

redundancy to combat the noise and interferences over the channel. The sequence of

binary digits from the channel encoder is to be transmitted through the channel to the

intended receiver. The channel may be either a pair of wires, a coaxial cable, a radio

channel, a satellite channel, an optical fiber channel or some combination of these

media [2],[3]. Such channels are basically waveform channels and hence, they cannot
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be used to transmit directly the sequence of binary digits. A device that converts the

digital information sequence into waveforms that are compatible with the character-

istics of the channel is called the digital modulator. The output of the modulator is

transmitted over the channel. At the receiving end of digital system, the digital de-

modulator processes the channel-corrupted transmitted waveforms and reduces them

to represent an estimate of the transmitted digital sequence. The channel decoder

uses this sequence in an attempt to reconstruct the original sequence from knowledge

of the code used by the channel encoder, which is then fed to the source decoder.

The source decoder attempts to reconstruct the original signal from the source. The

focus of this thesis is digital modulators and its mate digital demodulator over some

practical channels. Thus, in the next section, we present a simplified model of digital

communication system that is appropriate for the development of works presented in

this thesis.

1.4 Simplified Model of Digital Communication

System

The partial block diagram, which consists of information source and digital modu-

lators, of a typical digital communication system is shown in Fig. 1.2. The source

output may be either an analog signal, such as an audio or video signal, or digital

signal such as the output of a computer. In a DCS, the message produced by the

source are assumed to be sequence of binary digits. This binary sequence is passed

to an accumulator which accumulates K binary digits (and assigns unique amplitude

level) before presenting it to the digital modulator. When K = 1, the digital mod-

ulator simply maps binary digits 0 to a waveform S
1

(t) and the binary digit 1 to a

waveform S
2

(t), both over the bit interval of Tb sec. We call this binary modulation.

Alternatively, the modulator may transmit K information bits at a time by using

M = 2K distinct waveforms Si(t), i = 1, 2, . . . ,M , one waveform for each of the 2K

possible K�bit sequence. We call this M -level or M -ary modulation (M > 2). If R

is the bit rate of the input source, then a new K�bit sequence enters the modulator
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every K/R seconds. Thus, when the channel bit rate R is fixed, the amount of time

available to transmit one of the M waveforms corresponding to a K�bit sequence is

K times the time period in a system that uses binary modulation.

Figure 1.2: Partial Block Diagram of DCS

The communication channel is the medium that is used to send the signal from the

transmitter to the receiver. Whatever the physical medium used for transmission

of information, the essential feature is that the transmitted signal is corrupted in

random manners by a variety of possible mechanisms. The simplest mathematical

model for a communication channel is the additive noise channel. In this thesis, we

model the additive noise channel to be white and Gaussian, with two-sided power

spectral density of N0
2

watts/Hz. Because this channel model applies to a broad

class of physical communication channel and because of is mathematical tractability,

this is the predominant channel model used in our communication system design and

analysis.

At the receiver end of a digital communication system, the digital demodulator

processes the channel-corrupted transmitted waveform and reduce the waveforms to

a sequence of numbers that represent estimates of the data symbols which is sub-

sequently converted into a sequence of binary digits that represent estimate of the

source output at the transmitter.
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While the prime issue of concern in the study of DCS is the e�cient use of power

and bandwidth, there exist situations where one sacrifices these e�ciencies in order

to meet other design objectives such as to provide secure communication in a hostile

environment. A major advantage of such a system is its ability to reject interference,

be it intentional or unintentional. The class of signals that cater to this require-

ment is referred to as spread-spectrum modulation. In recent years indoor wireless

communication has gained increasing attention and its market share is expected to

grow rapidly in the coming years due to its advantages over cable networks such as

mobility of users, elimination of cabling and flexibility etc. Typical applications are

cordless phone systems, WLANs for home and o�ce applications and flexible mo-

bile data transmission links between sensors, actuators, robots, and controller units

in industrial environments. Due to the hostile electromagnetic (EM) environment,

which includes severe EM emissions from other devices as well as distortions due to

multi-path propagation, the robustness of the communication link is an extremely im-

portant feature in a wireless communication system. The spread-spectrum technology

is well suited to provide robust data transmission in these applications.

In a spread-spectrum system, the transmitted signal is spread over a wide fre-

quency band, often much wider than the minimum bandwidth required for conveying

the information. An instance of spectrum spreading may be seen in conventional

Frequency Modulation (FM), by employing frequency deviations greater than unity.

The wide-band FM thus produced is often classified as a spread-spectrum system

because the RF spectrum produced is much wider than that of the transmitted in-

formation. While in FM, the transmitted bandwidth is a function of both informa-

tion bandwidth and the amount modulation, there are techniques in which spectrum

spreading is accomplished using some signal or operation other than the informa-

tion bearing signal that is transmitted. For example, in Direct Sequence (DS) and

Frequency Hopping (FH) spread spectrum systems, the spreading and despreading

functions are used in the transmitter and receiver, respectively [3]. In these spread

spectrum systems, the synchronization of the despreading code is di�cult and needs

high computational e↵ort. Linear Frequency Modulation (LFM) or chirp modulation

is another type of spread spectrum signalling technique in which a carrier is swept
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over a wideband during a given data pulse interval. Chirp modulation [4],[5] does

not necessarily employ coding and produces a transmitted bandwidth much greater

than the bandwidth of the information being transmitted. The growing interest in

chirp modulation is mainly due to the advances in Surface Wave Acoustic (SAW)

technology, which o↵ers a rapid close-to-optimum method for both generation and

correlation of wideband chirp pulses [6]. Chirp systems have found major applica-

tions in radar systems for reasons such as anti-eavesdropping, anti-interference and

low-Doppler sensitivity. Among several applications of chirp signals in communica-

tion are radio telephony, cordless systems, air-ground communication via satellite

repeaters [7], data communication in the High Frequency (HF) band and WLANs.

In 2007, IEEE introduced Chirp Spread Spectrum (CSS) physical layer in the new

wireless standard 802.15.4a [8]. Additionally this standard uses chirp modulation

with no additional coding, whereas in 802.15.4 standard direct-sequence binary phase

shift keying (DS-BPSK) and additional spreading code are used. This new standard

targets applications such as industrial and safety control, sensor actuator network-

ing, and medical and private communication devices. By applying CSS techniques

to multidimensional multiple-access modulation, single-chip transceivers for wireless

communication in the industrial, scientific, and medical (ISM) band have been devel-

oped and are commercially available [9].

1.5 Literature Survey and Motivation

Chirp signals were first used in World War II in radar technology and because it is

easy to generate, they were used as a pulse compression techniques as well. In 1962,

Winkler [10], who was motivated by the anti-interference, anti-eavesdropping, and

low-Doppler sensitivity properties of chirp signals, considered chirp modulation for

binary data transmission. In [10], two chirp signals were used, up-chirp (sinusoidal

signal whose frequency increases linearly with time) and down-chirp (sinusoidal signal

whose frequency decreases linearly with time), to map binary data for transmission

of digital teletype, voice and telemetry signals. With the development of chirp com-

munications, Berni and Gregg [11] investigated the performance of chirp modulation
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in terms of its probability of bit error rate and spectrum usage and compared them

with the performances of BPSK and binary FSK techniques. They concluded that

BPSK is superior in performance compared to binary FSK and binary chirp mod-

ulation. Another author examined the capabilities of linear FM spread-spectrum

signals for communication systems. Cook [12] has provided a systematic basis in or-

der to choose appropriate modulation parameters by studying di↵erent factors such as

frequency-modulation indicies, time-bandwidth product and cross-talk criteria. Also,

he has established criteria for performance bounds and suggested a further com-

parison with other conventional spread-spectrum techniques based on these criteria.

Gott and Newsome [13] proposed wide-band chirp signals for data transmission in

the HF band and evaluated the performance of these signals experimentally. They

concluded that by using orthogonal signals and matched filter detection, both narrow-

band and wide-band systems o↵er equivalent performance for the same bit energy.

To combine the anti-interference property that chirp signals have and the bandwidth

e�ciency that di↵erential phase-shift keying have, Gott and Karia [14] subsequently

applied the concept of di↵erential encoding technique for binary data transmission

using chirp signals. By using hardware devises, they have evaluated the performance

of the proposed system in white noise, in single carrier interference and under the

e↵ect of Doppler frequency shift. They have concluded that the proposed system

has a better performance than conventional chirp system in white noise and single

carrier interference. In [15], Dayton has extended the concept of chirp modulation

for data transmission using satellites in the HF band. In [16], Kowatsch et. al. inves-

tigated the anti-jam performance of a combined PSK and chirp signal system. They

have concluded that such a system can assure Low Probability of Intercept (LPI)

and hence better anti-jam performance. In [17], Kowatsch and La↵erl presented a

spread spectrum transmission system that uses a combination of chirp modulation

and pseudo-random PSK. In [18], Elkhamy and Shaaban introduced a new class of

chirp modulation referred to as Matched Chirp Modulation (MCM), which is an

improved version of the conventional chirp modulation. They have analyzed the per-

formance of MCM using optimum non-coherent and partially coherent receivers. It is

shown that MCM o↵ers good performance over dispersive communication channels.
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Combining the chirp signalling technique with some kind of pseudo-random coding,

it is possible to achieve a substantial improvement in anti-jam performance. Such

a system is presented and analyzed in [19] by Elhakeem and Targi. In [20]. Wang,

Fei, and Li have proposed a structure for the chirp Binary Orthogonal Keying (BOK)

system and have obtained an expression for the probability of bit error. It is shown

that chirp BOK performs better than traditional BOK modulation in Additive White

Gaussian Noise (AWGN) channel. In all the above chirp systems binary data trans-

mission and receivers that are required to make independent bit-by-bit decisions are

considered. In [21], Hirt and Pasupathy consider binary chirp signals by introducing

phase continuity at bit transitions. They demonstrated that coherent binary phase

continuous chirp (CPC) modulation can o↵er, at most, 1.66 dB improvement over

BPSK. They have extended this work to non-coherent situation in [22]. In [23], Aulin

and Sundberg have investigated the performance and spectrum of M -ary CPM over

one symbol interval, the so-called full response systems. They have derived an expres-

sion for the probability of error in terms of the Euclidean distance. Also, they have

extended this work to partial response signalling in [24]. In [25], Raveendra considers

binary phase continuous chirp modulation with time-varying modulation parameters

referred to as dual-mode binary chirp modulation and has shown that it can outper-

form binary CPC modulation. More recently, in [26] , Bhumi and Raveendra have

considered digital asymmetric phase continuous chirp signals for data transmission

and have shown that it can outperform dual-mode chirp modulation considered in

[21]. In [27], Wilson and Gaus have presented a new procedure to calculate the power

spectrum of digital continuous-phase signals with multi-h phase codes. They have

generalized the method so that it can handle various frequency pulse shapes, multi-

level signalling and di↵erent sets of modulation indicies. It is well known that any

binary continuous phase modulated (CPM) signal can be decomposed exactly into

sum of a few PAM signals. Mengali and Morelli in [28], have extended this idea to

M -ary CPM waveforms. They have found that the decomposition has so many terms

especially with a long memory signalling schemes. As a result, they have proposed an

approximation with less number of terms. In recent years there have been a number

of publications [25], [29, 30, 31, 32, 33, 34] that clearly exhibit the choice of chirp
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modulation in a variety of digital communication systems. The error performance of

chirp modulation over frequency-selective and non-selective fading channels such as

Rayleigh fading and Nakagami-m fading have been investigated in [35] and closed-

form error probabilities expressions were developed. The performance analysis with

closed-form bit error probability expressions for Chirp modulation in the maximum

ratio combining (MRC) diversity system has been investigated in [36]. Moreover,

various kinds of nonlinear chirp signals such as quadratic, exponential, trigonometric

and hyperbolic, have been applied in multiuser chirp spread spectrum system in [37]

and in [38].

In digital communication, it is well known that M -level signalling schemes can

be used for reducing the bandwidth requirements of baseband Pulse Amplitude Mod-

ulation (PAM) data transmission systems [3]. In some cases, M -level signalling is a

natural choice when the message signal is inherentlyM -level like the English alphabet.

In a typical M -level signalling technique, the output of a binary source is combined

into groups of k bits which will result in 2k di↵erent bit patterns. Each block of k

bits is a symbol that is mapped to a distinct signal that occupies Ts = kTb seconds.

Therefore, by using M -level signalling, there is bandwidth saving of 1/k or in other

words we can transmit data at a rate that is k times faster than the corresponding

binary case. In practice, we seldom find a channel that has the exact bandwidth

required for transmitting the output of source using binary signalling schemes. M -

level signalling may be used to utilize the additional bandwidth to provide increased

immunity to channel noise. However, this saving in bandwidth comes at the expense

of increased power requirements and at the expense of error performance. The trans-

mitted power must be increased by a factor of M2/k compared to the binary case to

achieve same performance.

The research was motivated by applying the concept of M -level signalling to

the chirp signals. Also, because Continuous Phase Modulation (CPM) is an attrac-

tive modulation scheme due to its excellent power and bandwidth characteristics, a

new class of signal called M -level Continuous Phase Chirp Modulation (M -CPCM)

is proposed in this thesis. A comprehensive study of this class of signals in terms

of symbol error rate (SER) performance over various wireless communication chan-
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nels, bandwidth e�ciency, complexity and other geometric properties have not been

considered yet and will be accomplished in this thesis.

1.6 Thesis Objectives

The objectives of this thesis are mentioned below:

• Memoryless multi-level chirp modulation

General description of this modulation system is provided and its properties are

given and illustrated. Optimum algorithms for coherent and non-coherent detec-

tion of these signals in AWGN are derived and structures of optimum receivers

are identified. Bounds on the symbol error rate performance of the optimum

receivers are illustrated as a function of Signal to Noise Ratio, and modulation

parameters h, peak-to-peak frequency deviation divided by the symbol rate, and

w, frequency sweep width divided by the symbol rate. Optimum memoryless

multi-level chirp systems are determined.

• Multi-level Continuous Phase Chirp Modulation (M -CPCM)

General description of M -CPCM signals are given and their properties are il-

lustrated. Coherent and non-coherent detection of M -CPCM signals in AWGN

are considered. Structures of optimum receivers are derived and their perfor-

mance analysis are presented. Optimum coherent and non-coherent M -CPCM

systems have been determined and illustrated.

• Minimum Euclidean distance properties for M -CPCM signals as a function of

the modulation parameters (q, w) and observation intervals for the full response

signaling

M -CPCM with full response signaling is proposed and studied. The geometric

properties of this class of signals are analyzed using the criterion of minimum

Euclidean distance in the signal space and hence its ability to operate over

AWGN channel. Bounds on the achievable Euclidean distance are derived.
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• Multi-mode Multi-level Continuous Phase Chirp (M -CPCM)

A new signaling technique called multi-mode M -CPCM is proposed. These

signals are described and their ability to perform over the coherent Gaussian

channel is investigated.

• Performance of multi-level chirp over fading channels

Closed-form expressions for symbol error rate performance bounds of the M -

level chirp modulation over Rayleigh, Nakagami-m and Generalized-K (KG)

fading channel, are derived. These bounds are illustrated as a function of energy

per bit to noise ratio, Eb/No, channel fading parameters, observation length n

of the receiver and modulation parameters (q, w).

• Power spectra of M -CPCM

A general method is presented for calculation of the power spectra of M -CPCM

signals. The method can handle arbitrary M -level data and works for arbitrary

set of modulation parameters (q, w). Also, the method presented can be used to

calculate the power spectrum of arbitrary phase-continuous signals in general.

Numerical results are presented to illustrate power spectra of M -CPCM as

a function of modulation parameters. The technique can be used to study

power/bandwidth trade o↵s available with M -CPCM.

1.7 Thesis Organization

The thesis is organized as follows: In Chapter 2, the concept of utilizing chirp signals

for digital modulation is explained. The M -level chirp signals are described using

squared minimum Euclidean distance (d2min) criteria. Modulation parameters that

a↵ect Euclidean distance are described and optimum parameters sets (q, w) that

maximizes the distance are derived. Coherent and non-coherent optimum detection

of these signals in AWGN is considered.

In Chapter 3, M -CPCM signals are proposed for data transmission and the

problem of calculating the minimum squared normalized Euclidean distance (d2min)
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for M -CPCM with di↵erent observation interval n is considered. Bounds on the

minimum Euclidean distance are derived which are used to evaluate the probability

of error of the maximum-likelihood detection. In addition, optimum values of the

modulation parameters (q, w) that maximizes (d2min) are obtained.

In Chapter 4, the problem of detection of M -CPCM signals in additive, white,

Gaussian noise is addressed. The structures of optimum coherent and non-coherent

receivers are derived. Closed-form expressions for symbol error rates of these receivers

are derived and illustrated as a function of modulation parameters. A comparison of

error rate performance of M -level chirp modulations with other conventional M -level

modulations is also provided.

In Chapter 5, the concept of varying the modulation parameters is introduced

in M -CPCM. These multi-mode signals are described and illustrated. The detection

and performance of multi-mode M -CPCM signals in AWGN is considered. Optimum

dual-model M -CPCM systems have been determined. A comparison of error rate

performance of these signals with the corresponding single mode is also provided.

Chapter 6 is devoted to the performance analysis of multi-level chirp modulation

over fading channels. In particular, closed-form expressions for error rates bounds for

M -level chirp modulation over Rayleigh, Nakagami-m and Generalized-k (KG) fading

channels are derived. These bounds are illustrated as a function of energy per bit to

noise ratio, Eb/No, channel fading parameters, and modulation parameters (q, w).

In Chapter 7, power spectra of M -CPCM signals are calculated and compared

with other modulation schemes. Numerical results for power spectra as a function of

modulation parameters (q, w) are presented.

In Chapter 8, the contributions of this thesis and the conclusions from the

results obtained are summarized. Also, areas for further research in the light of the

needs of modern reliable communication systems are outlined.
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Chapter 2

Memoryless Constant-Envelope

Multi-Level Chirp Modulation: Coherent

and Non-Coherent Detection

2.1 Introduction

In this Chapter, memoryless constant-envelope multi-level chirp modulated signals are

proposed for data transmission. These signals are described, illustrated, and exam-

ined for their properties. The ability of these signals to operate over AWGN channel

is assessed by using minimum Euclidean distance criteria. Next, coherent and non-

coherent detection of multi-level chirp modulated signals in AWGN are addressed with

optimum detection algorithms, and hence optimum receiver structures are obtained.

The performances of these receivers are analyzed and closed-form expressions for sym-

bol error probabilities are derived. Optimum coherent and non-coherent multi-level

chirp systems have been determined by minimizing the symbol error rate expressions

as a function of signal-to-noise ratio (Eb/N0

), M , modulation level and the set of chirp

modulation parameters (q, w). A comparison of performance of multi-level chirp mod-

ulation with conventional multi-level modulations such as MPSK and MFSK is also

given.
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2.2 Constant Envelope Multi-Level Chirp

Modulated Signals

The general expression for constant envelope multi-level chirp modulated signal is

given by [39]:

Si(t) =

r

2Es

Ts
cos(wct+ �i(t) + ✓), 0  t  Ts, i = 1, 2, . . . ,M (2.1)

where Es is the symbol energy, Ts is the symbol duration, wc is the angular carrier

frequency, �i(t) is the information carrying phase, and ✓ is the starting phase (at

t = 0).

The information carrying phase �i(t), i = 1, 2, . . . ,M, is given by:

�i(t) = di g(t) (2.2)

where

di =

(

+i, if i is odd

�(i� 1), if i is even
(2.3)

represents one of the M input symbols or levels ±1,±3, . . . ,±(M � 1) applied to the

modulator. The phase function g(t) is given by:

g(t) =

8

>

>

>

>

<

>

>

>

>

:

0, t  0, t>Ts

2⇡
t
R

0

fd(⌧)d⌧, 0  t  Ts

⇡q = ⇡(h� w), t = Ts

(2.4)

where ⇡q denotes the ending phase at t = Ts sec, and fd(t) is the instantaneous

frequency function as given by:

fd(t) =

8

>

<

>

:

0, t  0, t>Ts
⇣

h
2T

s

⌘

�
✓

w
T 2
s

◆

t, 0  t  Ts
(2.5)
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Using (2.5) in (2.4), (2.2) can be written as:

�i(t) =

8

>

>

>

<

>

>

>

:

0, t  0, t>Ts

di⇡

⇢

h
⇣

t
T
s

⌘

� w
⇣

t
T
s

⌘

2

�

, 0  t  Ts

di⇡q = di⇡(h� w), t = Ts

(2.6)

In (2.6), h and w are dimensionless parameters: h represents the peak-to-peak fre-

quency deviation divided by the symbol rate 1

T
s

, and w represents the frequency

sweep width divided by the symbol rate 1

T
s

. Since h = (q + w), (q, w) are chosen

to be the set of independent signal modulation parameters. It is noted that in an

M -level (or M -ary) chirp modulation system, there exist M linear frequency sweeps

each uniquely corresponding to the input data ±1,±3, . . . ,±(M � 1). For example,

in a 2-level (binary) system, the linear frequency sweep of the chirp signal assumes

a positive or a negative slope corresponding to one of the two information symbols

-1 or +1, respectively. A schematic block diagram of the M -level chirp modulation

system is shown in Fig. 2.1.

Binary 
Data

Level
Shifter FM Modulator

Accumulator
1 2 k

0

( )
t

df dW W³

2S

cf

(t)iS

Figure 2.1: Schematic block diagram of M -level (M = 2k) chirp modulator

It is noted from (2.6) that the phase function is quadratic and hence the fre-

quency function is linear. In Fig. 2.2, both frequency and phase functions are plotted

for binary chirp signals.
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Figure 2.2: Phase (a) and frequency (b) as a function of time for arbitrary binary
chirp signal

2.2.1 2-level (2-ary) or Binary Chirp Modulation

In binary chirp modulation, the input to the modulator takes values ±1. The mod-

ulated binary chirp signals are plotted in Fig. 2.3, for arbitrary (q, w). The up-chirp

signal represents binary data ‘�1’ which has increasing frequency with respect to

time and similarly the down-chirp signal represents binary data ‘+1’ with decreasing

frequency. These signals are given by [39]:

+1�! S1(t) =

r

2Eb

Tb
cos



wct+ ⇡

⇢

h
⇣

t
Tb

⌘

� w
⇣

t
Tb

⌘2
��

-1�! S2(t) =

r

2Eb

Tb
cos



wct� ⇡

⇢

h
⇣

t
Tb

⌘

� w
⇣

t
Tb

⌘2
��

9

>

>

>

>

>

=

>

>

>

>

>

;

0  t  Tb (2.7)

where Es = Eb and Ts = Tb; Eb and Tb represent the bit energy and duration,
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respectively.
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Figure 2.3: Up-chirp (a) and down-chirp (b) Signals

2.2.2 4-level (4-ary) or Quaternary Chirp Modulated

Signals

In 4-level chirp modulation, the input to the modulator takes values ±1,±3. Fig. 2.4

shows 4-level chirp modulated signals. The four possible modulated signals can be

written as [39]:

+1�! S1(t) =

r

2Es

Ts
cos



2⇡fct+ 1⇡

⇢

h
⇣

t
Ts

⌘

� w
⇣

t
Ts

⌘2
��

-1�! S2(t) =

r

2Es

Ts
cos



2⇡fct� 1⇡

⇢

h
⇣

t
Ts

⌘

� w
⇣

t
Ts

⌘2
��

+3�! S3(t) =

r

2Es

Ts
cos



2⇡fct+ 3⇡

⇢

h
⇣

t
Ts

⌘

� w
⇣

t
Ts

⌘2
��

-3�! S4(t) =

r

2Es

Ts
cos



2⇡fct� 3⇡

⇢

h
⇣

t
Ts

⌘

� w
⇣

t
Ts

⌘2
��

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

0  t  (Ts = 2Tb)

(2.8)

where Es = 2Eb and Ts = 2Tb.
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Figure 2.4: 4-level chirp modulated signals as a function of time

2.3 Minimum Euclidean Distance Properties

The Euclidean distance between modulated waveforms in signal-space is a key concept

[40] in understanding the ultimate utility of arbitrary signaling technique in any digital

communication system. With reference to the set of multi-level chirp modulated

waveforms given in (2.1), the squared Euclidean distance between signals Si(t) and

Sj(t) is given by:

D2(Si, Sj) =

T
s

Z

0

⇥

Si(t)� Sj(t)
⇤

2

dt (2.9)

which can be simplified and is given by:

D2(Si, Sj) = 2Es(1� ⇢(Si, Sj)) (2.10)
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where di is the symbol associated with Si(t) and dj is the symbol associated with

Sj(t), and:

⇢(Si, Sj) =
1

Es

T
s

Z

0

Si(t) Sj(t) dt (2.11)

represents the normalized correlation between Si(t) and Sj(t). For su�ciently large

SNR, the performance of the optimum maximum likelihood receiver [40] is dominated

by the minimum Euclidean distance [3] and is given by:

D2

min = min
all i,j
i 6=j

{D2(Si, Sj)} (2.12)

and the performance of the optimum receiver is given by:

Pe ' Q

2

4

s

D2

min

2N
0

3

5 (2.13)

By using energy normalization d2 = D2

2E
b

, it becomes easy to compare di↵erent M -

level modulation schemes on an equal
E
b

N0
basis. It is noted that d2min = 2 for BPSK

and QPSK modulations. Thus, an estimate of SNR gain relative to BPSK is given

by:

G = 10 log
10

✓

d2

2

◆

(2.14)

ForM -level chirp modulation, a closed-form expression forD2(Si, Sj) can be obtained

(derived in Appendix A) and is given by:

D2(Si, Sj) = 2Es(1� ⇢(Si, Sj)) (2.15)

where

⇢(Si, Sj) =
1p
2�w

[cos(⌦) C+ sin(⌦) S] (2.16)

and
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C = C(uh)�C(ul), S = S(uh)� S(ul)

⌦ =
⇡�h2

4w
, � = |di � dj |

uh =

r

�

2

(w � q)p
w

, ul =

r

�

2

(w + q)p
w

The value di (±1,±3, ...,±(M � 1)) is the data associated with the signal Si(t) and

dj (±1,±3, ...,±(M � 1)) is the data associated with the signal Sj(t). The function

C(.) and S(.) are the Fresnel cosine and sine integrals [41] which are given by:

C(u) =

u
Z

0

cos(
⇡x2

2
)dx (2.17)

S(u) =

u
Z

0

sin(
⇡x2

2
)dx (2.18)

In order to estimate the limiting SNR gain G given by (2.14) for arbitrary

M -level chirp modulation, d2min(= D2

min/2Eb) needs to be computed using (2.12),

(2.15), and (2.16). Table 2.1 shows sets (q, w) that maximize the minimum distance,

d2min, for M = 2, 4, 8, and 16 chirp modulations. For M -level chirp, PSK, and FSK

modulations d2min are shown in Table 2.2.

Table 2.1: (q, w) maximizing d2min for M-level chirp modulated signals

M (q, w) max{d2min} G (dB)

2 (0.37, 1.50) 1.635 -0.875

4 (0.20,0.71) 3.263 2.126

8 (0.20,0.71) 4.895 3.887

16 (0.20,0.71) 6.526 5.136
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Table 2.2: d2min for M -level chirp modulated signals, M -PSK, and M -FSK
modulations

M M -ary Chirp M -PSK M -FSK

2 1.635 2.000 1.000

4 3.263 2.000 2.000

8 4.895 0.878 3.000

16 6.526 0.304 4.000

In arriving at the optimum (q, w) sets in Table 2.1, the range of modulation param-

eter space is bounded by (0, 0)  (q, w)  (3, 5). In Fig. 2.5 to 2.7 contour and

surface plots of d2min as a function of modulation parameters q and w are shown.

It is noted from Fig. 2.5 that the optimum or the best 2-level chirp modulation is

achieved for the set (q = 0.37, w = 1.5). For this optimum 2-level chirp modulation

d2min = 1.635 (Table 2.1) and thus the corresponding SNR gain relative to BPSK is

-0.875 dB. It is worthwhile to note that there exist multiple (q, w) sets that result

in the same d2min thereby suggesting that it is possible to design 2-level chirp sys-

tems with varying interference rejection capabilities and yet maintain the same bit

error rate performance. For example, in Fig. 2.5, 2-level (0.37, 1.50) and (0.30, 1.70)

chirp systems o↵er the same d2min of 1.635. These two systems, therefore have the

same bit error rate performance. However, their bandwidth are di↵erent and hence

di↵erent interference rejection capabilities. The surface plots in Figs. 2.6 and 2.7

show the variation of d2min as a function of q and w. These plots also confirm that

(q, w) = (0.37, 1.50) and (q, w) = (0.30, 1.70) achieve the best distance for 2-level

chirp modulation. Table 2.1 also lists the achievable SNR gains relative to BPSK for

M=4, 8, and 16-level chirp modulations.



Chapter 2: Memoryless Constant-Envelope Multi-Level Chirp Modulation: Coherent
and Non-Coherent Detection 23

0.2

0
.2

0
.2

0.5

0
.5

0
.5

0.
5

0.8

0
.8

0
.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1.3

1.3

1.3

1.3

1.3

1.3

1.3

1.3

1.3

1.4

1.4

1.4

1.4

1.4

1.5

1
.5

1.6

w

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

q

0

0.5

1

1.5

2

2.5

3

Figure 2.5: Contour plot of d2min for
2-level chirp signals
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Figure 2.7: Surface plot of d2min for 2-level chirp signals

Observation similar to those presented for 2-level chirp modulation can be made for

M = 4, 8, and 16-level modulations. Figs. 2.8 and 2.9 show contour and surface plots
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for d2min for the 4-level chirp signals. In Fig. 2.8, again it is observed that 4-level

chirp systems with same symbol error rate can be designed with di↵erent interference

rejection capabilities. It is noted that maximum d2min = 3.26 is achieved for two sets

of modulation parameters (q, w) = (0.40, 1.40) and (q, w) = (0.30, 1.70). Fig. 2.10

shows multiple peaks of max{d2min} at di↵erent sets of modulation parameters.
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For the 8-level chirp signals, Figs. 2.11 and 2.12, show the contour and surface plots

for d2min. It is observed that max{d2min} = 4.89 can be achieved for multiple sets

of modulation parameters (q, w). Fig. 2.13 illustrates the maximum peaks of d2min

which can occur at (q, w) = (0.4, 1.4) and (q, w) = (0.3, 1.7).
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Figure 2.13: Surface plot of d2min for 8-level chirp signals
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Figs. 2.14-2.16 show the contour and surface plots for 16-level chirp signals. max{d2min} =

6.53 occurs at di↵erent sets of modulation parameters (q, w) = (0.4, 1.4) and (0.3, 1.7).
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In general, it is observed that M -level chirp systems provide very good flexibility in

terms of system design as a function of modulation parameters q and w. It is noted

that max{d2min} is an indication of the ultimate ability of a given signaling technique

in AWGN. Also, this distance provides an upper bound on the achievable performance

of the conceptual maximum likelihood receiver [42]. In the next Section, detection

of M -level chirp modulated signals in AWGN is addressed to obtain the structure

of the optimum receiver. Both coherent and non-coherent detection situations are

considered.

2.4 Coherent Detection and Performance of

Multi-level (M-ary) Chirp Signals

2.4.1 Coherent Detection

The detection of M -level chirp modulated signals can be stated as an M -hypotheses

testing problem [40] as given by:

H
1

: r(t) = S
1

(t) + n(t)

H
2

: r(t) = S
2

(t) + n(t)
...

HM : r(t) = SM (t) + n(t)

9

>

>

>

>

>

=

>

>

>

>

>

;

0  t  Ts (2.19)

where Si(t), i = 1, 2, . . . ,M are the M chirp modulated signals given by (2.1), r(t)

is the received waveform, and n(t) is the AWGN with two-sided spectral density of
N0
2

watts/Hz. For coherent detection, ✓ in (2.1) is set equal to zero. The detection

problem is to observe the received waveform r(t) in (2.19), 0  t  Ts, and to produce

an optimum decision as to which of theM equally likely chirp signals was transmitted.

It is noted that the M outputs of the chirp modulator are equally likely and hence

their a priori probabilities are given by:

P (S
1

) = P (S
2

) = · · · = P (SM ) =
1

M
(2.20)
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and their symbol energies are the same and is given by:

Es =

T
s

Z

0

S2

i (t) dt, i = 1, 2, . . . ,M (2.21)

The solution to the M -hypothesis testing problem stated in (2.19) is the Bayesian

receiver that performs the maximum Likelihood Ratio Test (LRT) [40]. Such a test

determines the M likelihood functions given by:

⇤(R|Hi) = pr|H
i

(R|Hi), i = 1, 2, . . . ,M (2.22)

where

R = Si +N (2.23)

and
R = [r

1

, . . . , rN ]T

Si = [si1, . . . , siN ]T

N = [n
1

, . . . , nN ]T

(2.24)

with
rj , r(tj)

sij , Si(tj)

nj , n(tj)

9

>

>

=

>

>

;

j = 1, 2, . . . , N (2.25)

Assuming the noise samples are i.i.d, (2.23) can be written as:

pr|H
i

(R|Hi) =
N
Q

j=1

pn(rj � sij) (2.26)

⇤(R|Hi) = pr|H
i

(R|Hi) =
N
Q

j=1

1p
⇡N

0

e
�
(rj � sij)

2

N
0 , i = 1, 2, . . . ,M (2.27)
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which can be written as:

⇤(R|Hi) =

✓

1

⇡N
0

◆N/2

exp

(

1

N
0

"

2
N
P

j=1

rjrij �
N
P

j=1

r2j �
N
P

j=1

r2ij

#)

, i = 1, 2, . . . ,M

(2.28)

canceling the common terms and taking limit in the mean (l.i.m) as N ! 1, [40]

(2.28) can be written as:

⇤(R|Hi) = exp

2

6

4

2

N
0

T
s

Z

0

r(t) Si(t) dt

3

7

5

(2.29)

where
T
s

R

0

r(t) Si(t) dt is the correlation of the received waveform r(t) with the known

signal Si(t), over 0  t  Ts. Also, it is noted that:

l.i.m
N!1

N
X

j=1

r2j =

T
s

Z

0

r2(t) dt (2.30)

and

l.i.m
N!1

N
X

j=1

s2ij =

T
s

Z

0

S2

i (t) dt, i = 1, 2, . . . ,M (2.31)

The optimum receiver just needs to determine theM likelihood functions ⇤(R|Hi), i =

1, 2, . . . ,M , and choose the maximum of these for obtaining a decision on the data

transmitted. By taking natural logarithm on both sides of (2.29), we get log likelihood

functions given by:

ĺi = ln
h

⇤́(R|Hi)
i

=
2

N
0

T
s

Z

0

r(t) Si(t) dt, i = 1, 2, . . . ,M (2.32)

Multiplying both sides by
N
0

2
, the M likelihood functions in (2.32) can be written
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as:

li =

T
s

Z

0

r(t) Si(t) dt, i = 1, 2, . . . ,M (2.33)

The optimum coherent receiver will determine M log likelihood functions li, i =

1, 2, . . . ,M, and produces an estimate of the transmitted data d̂ based on the largest

of these values. Thus, the decision rule is:

lk = max{l
1

, l
2

, . . . , lM} (2.34)

The receiver decides the transmitted data as:

d̂ =

(

+k, k odd

�(k � 1), k even
(2.35)

The structure of the receiver that implements the decision rule of (2.34) is shown in

Fig. 2.17.
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Figure 2.17: Optimum coherent receiver for M -level chirp modulation
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2.4.2 Error Rate Performance

With reference to Fig. 2.17, it is noted that the decision variable li, i = 1, 2, . . . ,M ,

are Gaussian random variables. Let hypothesis Hj be true. Then, the received signal

is given by:

r(t) = Sj(t) + n(t), 0  t  Ts (2.36)

The conditional probability of the receiver making a symbol error is given by:

P
�

✏/Hj
�

= Pr
⇥

l
1

> lj or l
2

> lj . . . or lM > lj |Hj
⇤

(2.37)

Using the identity P (x
1

+ x
2

+ . . . xn) 
n
P

j=1

p(xj), and fitting a union bound [40],

and averaging over all Hj , the probability of symbol error can be bounded and is

given by:

PM (✏) 
M
X

j=1

M
X

i=1

i 6=j

P (Hj)Pr
⇥

li > lj |Hj
⇤

(2.38)

Assuming all hypotheses are equally likely, the average symbol probability of error

can be simplified and is given by:

PM (✏)  1

M

M
X

j=1

M
X

i=1

i 6=j

Pr
⇥

li > lj |Hj
⇤

(2.39)

where

Pr
⇥

li > lj |Hj
⇤

=
1

2

(

1� erf

"

s

Eb log2(M)

2N
0

(1� ⇢(i, j))

#)

(2.40)

and

erf(x) , 2p
⇡

x
Z

0

e�t2 dt (2.41)
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The quantity ⇢(i, j) is the normalized correlation between Si(t) and Sj(t) and is

defined in (2.16).

2.4.3 Numerical Results

The performance of the optimum coherent M -level chirp receiver (Fig. 2.17) can

be evaluated using the expression for symbol error probability given by (2.39). The

symbol error probability is a function of: i) M , number of modulation levels; ii)
E
b

N0
,

Signal-to-Noise-Ratio (SNR), and iii) (q, w), the set of modulation parameters. The

set (q, w) which should be chosen for a given M and
E
b

N0
is the one that minimizes

the probability of symbol error given by (2.39). This has been done numerically and

optimum sets (qopt, wopt) have been determined for M = 2, 4, 8, and 16, at
E
b

N0
= 6, 8,

and 10 dB. It is observed that (qopt, wopt) obtained are the same at all three SNRs

for each M = 2, 4, 8, and 16. These are tabulated in Table 2.3. For 2-level chirp mod-

ulation, the set (0.36, 1.52) minimizes the probability of bit error, P
2

(✏), at an SNR

of 6 dB, yielding min{P
2

(✏)} = 5.37 ⇥ 10�3. Similarly, sets (0.40, 2.40), (0.95, 0.25),

and (0.95, 0.50) minimize P
4

(✏), P
8

(✏), and P
16

(✏) for 4-, 8-, and 16-level chirp mod-

ulations, respectively. In order to understand the e↵ect of (q, w) on symbol error

probability, PM (✏), relative to min{PM (✏)} are shown in Figs 2.18-2.21 for M=2,4,8,

and 16. The contours in these figures show log
10

(PM (✏)/min{PM (✏)}), where PM (✏)

is the symbol error probability for a given set of modulation parameters (q, w) and

min{PM (✏)} is the symbol error probability for the optimum set of modulation pa-

rameters (qopt, wopt) given in Table 2.3. For example, in Fig. 2.18, the contour 1.1071

indicates that there exist a sub-range of q and w for which symbol error probability

is 101.1071 times that of the symbol error probability for the optimum set (0.36, 1.52).

The larger the value of the contour, the poorer is the performance relative to the

optimum chirp modulation. It is observed from these contour plots that as the num-

ber of modulation levels increases, symbol error probability becomes less sensitive to

(q, w).
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Table 2.3: Optimum modulation parameters (qopt, wopt) for M =2,4,8 and 16-chirp
systems

Modulation Size (M) (q, w)

2 (0.36,1.52)

4 (0.40,2.40)

8 (0.95,0.25)

16 (0.95, 0.50)

Fig. 2.22 shows the error rate performance of the optimum binary chirp system

(q = 0.36 and w = 1.52). In the same figure, performances of BPSK and binary

orthogonal FSK are shown. Table 2.4 summarizes bit error rate performance of

optimum 2-level chirp, BPSK, and 2-level coherent orthogonal FSK systems as a

function of SNR (=6,8, and 10 dB).



Chapter 2: Memoryless Constant-Envelope Multi-Level Chirp Modulation: Coherent
and Non-Coherent Detection 36

Eb/N0, dB
0 2 4 6 8 10 12 14

P
2
(ϵ
)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

2-CHIRP (q = 0.36, w = 1.52)
BPSK
2-FSK

Figure 2.22: Error probability performance of optimum coherent binary chirp
system (q = 0.36, w = 1.52)

Table 2.4: Bit Error Rate Comparison of Optimum 2-level chirp, BPSK and binary
FSK

SNR (dB)
P
2

(✏)

2-chirp BPSK 2-FSK

6 5.37⇥10�3 2.39⇥10�3 2.30⇥10�2

8 6.59⇥10�4 1.91⇥10�4 6.00⇥10�3

10 2.63⇥10�5 3.87⇥10�6 7.83⇥10�4

In order to examine the behavior of binary chirp modulation as a function

of modulation parameters w and q, in Fig. 2.23 and Fig. 2.24 error probability

performances are shown as a function of w and q, respectively. It is observed that for
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a fixed value of q the bit error rate performance is not very sensitive to variation in

the value of w; however, for a fixed value of w, error probability performance is more

sensitive to variation in the value of q.
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Figure 2.23: Error probability performance of coherent binary chirp system as a
function of w, for a fixed value of q = 0.36

In Fig.2.25, the symbol error rate performances of optimum 4-level chirp, QPSK

and 4-FSK modulations are shown. It is observed that the optimum 4-level chirp

system is superior to 4-FSK by around 1 dB and to QPSK by nearly 0.5 dB. Table

2.5 summarizes the behavior of P
4

(✏) values at 6, 8 and 10 dB for these modulations.
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Figure 2.24: Error probability performance of coherent binary chirp system as a
function of q, for a fixed value of w = 1.52
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Figure 2.25: Error probability performance of coherent 4-level optimum chirp
system (q = 0.4, w = 2.4)
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Table 2.5: Symbol Error Rate Performance of Optimum 4-level chirp, QPSK and
4-FSK

SNR (dB)
P
4

(✏)

4-chirp QPSK 4-FSK

6 2.79⇥10�3 4.78⇥10�3 7.17⇥10�3

8 1.37⇥10�4 3.82⇥10�4 5.73⇥10�4

10 1.32⇥10�6 7.74⇥10�6 1.16⇥10�5

Fig.2.26 shows the performance of optimum 8-level chirp modulation. In the

same figure, performances of 8-PSK and orthogonal 8-FSK are shown. Table 2.6 sum-

marizes the P
8

(✏) values for 6, 8 and 10 dB for these modulations. It is observed that

8-level chirp system has nearly same performance as that of 8-FSK and outperform

8-PSK by nearly 5 dB.

Table 2.6: Symbol Error Rate Performance of Optimum 8-level chirp, 8-PSK and
8-FSK

SNR (dB)
P
8

(✏)

8-chirp 8-PSK 8-FSK

6 1.39⇥10�3 6.14⇥10�2 1.92⇥10�3

8 2.87⇥10�5 1.85⇥10�2 4.75⇥10�5

10 6.93⇥10�8 3.03⇥10�3 1.51⇥10�7

In Fig.2.27, the error rate performances of optimum 16-level chirp, 16-PSK and

16-FSK modulation are shown. Table 2.7 summarizes P
8

(✏) values for 6, 8 and 10
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Figure 2.26: Error probability performance of coherent 8-level optimum chirp
system (q = 0.95, w = 0.25)

dB for these modulations. It is observed that the optimum 16-ary chirp system is

superior to 16-PSK for SNR> 7 dB and has a performance almost same as 16-FSK.

Table 2.7: Symbol Error Rate Performance of Optimum 16-level chirp, 16-PSK and
16-FSK

SNR (dB)
P
16

(✏)

16-chirp 16-PSK 16-FSK

6 3.75⇥10�4 2.71⇥10�1 4.95⇥10�4

8 2.56⇥10�6 1.66⇥10�1 3.80⇥10�6

10 1.12⇥10�9 8.10⇥10�2 1.91⇥10�9
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Figure 2.27: Error probability performance of coherent 16-level optimum chirp
system (q = 0.95, w = 0.5)

2.5 Non-Coherent Detection and Performance of

Multi-level (M-ary) Chirp Signals

2.5.1 Non-Coherent Detection

The received M -level chirp modulated signals in AWGN can be stated as:

Hi : r(t) = Si(t, ✓) + n(t), 0  t  Ts, i = 1, . . . ,M (2.42)

The detection problem is similar to the problem stated for the coherent case in (2.19)

except that the starting phase ✓ in (2.42) is considered to be an independent uniformly
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distributed random variable with probability density given by:

p✓(✓) =

8

>

>

>

<

>

>

>

:

1

2⇡
, 0 < ✓  2⇡

0, elsewhere

(2.43)

The solution to the hypothesis testing problem in (2.42) is the maximum likelihood

ratio test (LRT) [40]. Following the development presented for the coherent detection

case in Section 2.4, the optimum non-coherent receiver for multi-level chirp modula-

tion computes the M likelihood function given by:

l
1

=

Z

✓

exp

2

6

4

2

N
0

T
s

Z

0

r(t) S
1

(t, ✓) dt

3

7

5

p✓(✓) d✓

...

...

lM =

Z

✓

exp

2

6

4

2

N
0

T
s

Z

0

r(t) SM (t, ✓) dt

3

7

5

p✓(✓) d✓

(2.44)

Using (2.43) in (2.44), the M likelihood functions can be written as:

li = I
0

✓

2

N
0

Zi

◆

, i = 1, 2, . . . ,M (2.45)

where

Z2

i =

0

B

@

T
s

Z

0

r(t) Si(t, 0) dt

1

C

A

2

+

0

B

@

T
s

Z

0

r(t) Si(t,
⇡

2
) dt

1

C

A

2

(2.46)

and I
0

is the zeroth-order Bessel function [3]. Since I
0

(.) is a monotonically increasing

function, the optimum receiver simplify computes the max {Z
1

, . . . , ZM} to arrive at

an estimate of the data transmitted. The receiver that dictates this decision rule is

shown in Fig. 2.28.
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Figure 2.28: Optimum non-coherent receiver for M -level chirp signals

Thus, the decision rule can be stated as:

Zk = max{Z
1

, Z
2

, . . . , ZM} (2.47)

The receiver decides the transmitted data as:

d̂ =

(

+k, k odd

�(k � 1), k even
(2.48)

2.5.2 Error Rate Analysis

The symbol error probability performance of the optimum non-coherent receiver

shown in Fig. 2.28 can be derived by noting that Zis are Rician random variables [3].
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Assuming hypothesis Hj is true, the probability of making a symbol error is given

by:

P
�

✏/Hj
�

= Pr
⇥

Z
1

> Zj or Z
2

> Zj . . . or ZM > Zj |Hj
⇤

(2.49)

Employing the union bounding technique used for the case of coherent receiver in

Section 2.4, the conditional probability of symbol error is given by:

P (✏|Hj) 
M
X

i=1

i 6=j

Pr
⇥

Zi > Zj |Hj
⇤

(2.50)

Averaging over all equally likely hypotheses, the probability of symbol error is given

by:

PM (✏)  1

M

M
X

j=1

M
X

i=1

i 6=j

Pr
⇥

Zi > Zj |Hj
⇤

(2.51)

where Pr
⇥

Zi > Zj |Hj
⇤

is the probability of Rician random variable Zi exceeding

another Rician random variable Zj [40] and is given by:

Pr
⇥

Zi > Zj |Hj
⇤

=
1

2

h

1�Q(
p
b,
p
a) +Q(

p
a,
p
b))

i

(2.52)

where

8

>

>

<

>

>

:

a

b

9

>

>

=

>

>

;

=
Es

2N
0

✓

1⌥
q

1� |⇢c(i, j)|2
◆

(2.53)

and Q(x, y) is the Marcum Q function defined as:

Q(x, y) =

1
Z

y

exp



�
✓

x2 + u2

2

◆�

I
0

(xu) u du (2.54)
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The quantity ⇢c(i, j) denotes the complex correlation which is given by:

⇢c(i, j) =
1

2Es

T
s

Z

0

Sc
i (t) S

c⇤
j (t) dt (2.55)

where

Sc
k(t) = Sk(t, 0) + j Sk(t, ⇡/2), k = 1, 2, ....,M

and ⇤ denotes complex conjugation. Appendix B provides derivation for the closed

form expression for equation (2.55) which is given by:

⇢c(i, j) =



cos(⌦)p
2�w

Cr +
sin(⌦)p
2�w

Sr
�

+j



cos(⌦)p
2�w

Ci +
sin(⌦)p
2�w

Si
�

(2.56)

where

Cr = C(uh)�C(ul), Sr = S(uh)� S(ul)

Ci = S(uh)� S(ul), Si = �C(uh) +C(ul)

⌦ =
⇡�h2

4w
, � = |di � dj |

uh =

r

�

2

(w � q)p
w

, ul =

r

�

2

(w + q)p
w

The value di (±1,±3, ...,±(M � 1)) is the data associated with the signal Sc
i (t) and

dj (±1,±3, ...,±(M � 1)) is the data associated with the signal Sj
j (t) .The function

C(.) and S(.) are the Fresnel cosine and sine integral which were defined in (2.17)

and (2.18).
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2.5.3 Numerical Results

The symbol error rate performance of the optimum non-coherent receiver for multi-

level chirp modulation can be determined using equations (2.51). The symbol error

rate is a function of i) M , ii)
E
b

N0
and (iii) (q, w). An insight into the behavior of

symbol error rate of non-coherent chirp modulation can be obtained using contour

plots shown in Fig. (2.29), Fig. (2.30), and Fig. (2.31), forM = 2,M = 4, andM = 8

chirp systems. From these figures it is observed that there exist nearly orthogonal

chirp systems for M = 2, 4, and 8 modulation levels. Again multiple sets of (q, w)

exists, for each of these M , for which nearly orthogonal chirp modulation can be

found. Lower the value of the contour closer it is to the orthogonal signaling.

0.01

0.0
1

0.01

0.02

0.02

0.02

0.0
2

0.03

0
.0

3

0.03

0.03

0.04

0
.0

4

0.04

0.04

0
.0

5

0.0
5

0.05

0
.0

6

0.0
6

0.06

0
.0

7

0.0
7

0.07

0
.0

7

0.08

0.08

0.
08

0
.0

8

0.08

0
.0

8

0.09

0.09

0.0
9

0.0
9

0.0
9

0
.0

9

0.09

0.1

0.1

0
.1

0.1

0.1

0
.1

0.1

0.11

0.11

0
.1

1

0.11

0
.1

1

0.11

0.12

0.12

0
.1

2

0.12

0
.1

2

0.12

0.1
3

0.13 0
.1

3

0.13

0.13

0.13

0.14

0.14

0
.1

4

0.14

0
.1

4

0.15

0.15

0
.1

5

0.1
5

0.2

0
.2

0.2

0.2

0.3

0
.3

0.4
0.5

0.6
0.7

w

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

q

0

0.5

1

1.5

2

2.5

3

Figure 2.29: log
10

(P
2

(✏)/min{P
2

(✏)}) contour plot for non-coherent 2-level chirp
receiver at 6 dB SNR



Chapter 2: Memoryless Constant-Envelope Multi-Level Chirp Modulation: Coherent
and Non-Coherent Detection 47

0.01

0
.0

1

0.0
1

0.02

0
.0

2

0.02

0.02

0
.0

3

0.0
3

0.03

0
.0

4

0.0
4

0.0
4

0
.0

5

0.0
5

0.05

0
.0

6

0.0
6

0.06

0.06

0
.0

6

0.07

0.07

0.0
7

0
.0

7

0.07

0
.0

7

0.07

0
.0

8

0.08

0.08
0
.0

8

0
.0

8

0.08

0.09

0.09

0.0
9

0
.0

9

0
.0

9

0.09

0.1

0.1
0
.1

0.1

0
.1

0.11

0.11
0
.1

1

0
.1

1

0.12

0.12
0
.1

2

0
.1

2

0.13

0.1
3

0
.1

3

0
.1

3
0.14

0.14

0.1
4

0.15

0
.1

5 0.1
5

0.2

0
.2

0.3

0.4
0.5

0.6

w

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

q

0

0.5

1

1.5

2

2.5

3

Figure 2.30: log
10

(P
4

(✏)/min{P
4

(✏)}) contour plot for non-coherent 4-level chirp
receiver at 6 dB SNR

0.001

0.
00

1

0.002

0.0
02

0.003

0.003

0.01

0
.0

1

0.0
1

0.0
1

0
.0

2

0.0
2

0.0
2

0
.0

3

0.0
3

0.0
3

0
.0

4

0.0
4

0.0
4

0
.0

4

0.0
5

0.0
5

0.0
5

0.05

0.05

0
.0

5

0.05

0.05

0.06

0.0
6

0.0
6

0
.0

6

0
.0

6

0
.0

6

0.07

0.07

0
.0

7

0.0
7

0
.0

7

0.08

0.0
8

0
.0

8

0
.0

8

0.09

0.09

0.09
0.1

0.1

0
.10.11

0
.1

1

0
.1

1

0.12

0
.1

2

0.13

0
.1

3

0.14

0
.1

4

0.15

0
.1

5

0.2
0.24

w

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

q

0

0.5

1

1.5

2

2.5

3

Figure 2.31: log
10

(P
8

(✏)/min{P
8

(✏)}) contour plot for non-coherent 8-level chirp
receiver at 6 dB SNR



Chapter 2: Memoryless Constant-Envelope Multi-Level Chirp Modulation: Coherent
and Non-Coherent Detection 48

For the case of M = 2 (binary) orthogonal chirp modulation has been found for (q =

2.00, w = 0.05). The bit error rate performance of 2-level non-coherent chirp system

for (2.00, 0.05) is shown in Fig. 2.32. In the same figure 2-DPSK performance is also

shown for comparison. Non-coherent orthogonal FSK and optimum non-coherent 2-

chirp with (q = 2.00, w = 0.05) have the same performance and these systems are

poorer by 3 dB when compared to binary DPSK (di↵erentially coherent system). In

order to understand the sensitivity of q and w on bit error rate, in Fig. 2.33 and

2.34 performances are plotted with q and w fixed and correspondingly w and q are

varied. It is noted that in 2-level non-coherent chirp system with q fixed at 2.00,

orthogonality is lost rapidly as w increases. On the other hand, for w fixed at 0.05,

the orthogonality of the system remains nearly the same with variation in q. Table

(2.8) summarizes P
2

(✏) values at 6, 8, and 10 dB for 2-level optimum non-coherent

chirp, non-coherent 2-FSK and 2-DPSK modulations.
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Figure 2.32: Error probability performance of optimum (q = 2.00, w = 0.05)
non-coherent binary chirp system
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Figure 2.33: Error probability performance of non-coherent binary chirp system as a
function of w, for a fixed value of q = 2.00
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Figure 2.34: Error probability performance of non-coherent binary chirp system as a
function of q, for a fixed value of w = 0.05
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Table 2.8: Symbol Error Rate Performance of Optimum Non-coherent 2-level chirp,
2-DPSK and 2-FSK

SNR (dB)
P
2

(✏)

2-chirp 2-DPSK 2-FSK

6 6.83⇥10�2 9.33⇥10�3 6.83⇥10�2

8 2.13⇥10�2 9.09⇥10�4 2.13⇥10�2

10 3.37⇥10�3 2.27⇥10�5 3.37⇥10�3

In Fig. 2.35, the symbol error rates performances of optimum 4-level non-coherent

chirp along with the performance of 4-level DPSK and 4-level non-coherent FSK are

shown. Table (2.9) summarizes P
4

(✏) values at 6, 8, and 10 dB. It is observed that the

performance of optimum 4-level non-coherent chirp system (q = 2.00 and w = 0.10)

and 4-level non-coherent orthogonal FSK are the same and 4-DPSK is inferior by

2.5 dB to these modulations. It is noted that 4-level non-coherent chirp system with

q = 2.00 and w = 0.10 happens to be orthogonal signaling technique.
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Figure 2.35: Error probability performance of (q = 2.00, w = 0.10) non-coherent
4-ary chirp system
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Table 2.9: Symbol Error Rate Performance of Optimum Non-coherent 4-level chirp,
4-DPSK and 4-FSK

SNR (dB)
P
4

(✏)

4-chirp 4-DPSK 4-FSK

6 2.80⇥10�2 3.54⇥10�2 2.80⇥10�2

8 2.73⇥10�3 8.08⇥10�3 2.73⇥10�3

10 6.81⇥10�5 8.54⇥10�4 6.81⇥10�5

In the case of 8-level non-coherent chirp system, orthogonality has been found for the

set of modulation parameters (q = 3.00, w = 0.10). Symbol error rate performance

of this chirp system along with performance of 8-level orthogonal non-coherent FSK

and 8-DPSK are shown in Fig. 2.36. In Table (2.10), P
8

(✏) for these systems at 6, 8,

and 10 dB are shown. Optimum 8-level chirp system is superior to 8-DPSK by nearly

6 dB.
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Figure 2.36: Error probability performance of (q = 3.00, w = 0.10) non-coherent
8-ary chirp system
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Table 2.10: Symbol Error Rate Performance of Optimum Non-coherent 8-level
chirp, 8-DPSK and 8-FSK

SNR (dB)
P
8

(✏)

8-chirp 8-DPSK 8-FSK

6 8.93⇥10�3 1.83⇥10�1 8.93⇥10�3

8 2.72⇥10�4 9.17⇥10�2 2.72⇥10�4

10 1.07⇥10�6 3.37⇥10�2 1.07⇥10�6

2.6 Conclusions

In this Chapter constant-envelope multi-level (M -ary) chirp modulation has been

proposed for data transmission. Such technique is also referred to as memoryless

modulation and symbol-by-symbol modulation, as the modulated signal during any

arbitrary symbol interval carries no information about the past or future symbols and

hence symbol-by-symbol detection is the optimum technique.

The proposed multi-level chirp modulated signals are mathematically described as a

function of modulation parameters (q, w). The ability of these signals to operate over

AWGN is assessed using the concept of minimum Euclidean distance in signal-space.

For example, it is shown that 2-, 4-, 8-, and 16-level chirp modulations exist that can

o↵er gains up to -0.875, 2.126, 3.887, and 5.136 dB, respectively, relative to BPSK.

Coherent and non-Coherent detection of multi-level chirp signals in AWGN were

considered and structure of optimum receivers have been derived. Closed-form ex-

pressions for symbol error rates for these receivers have been derived. Through min-

imization of these expressions optimum multi-level coherent and non-coherent chirp

systems have been determined. It is shown that there exist optimum coherent 2-level

(binary) chirp modulation that is superior in performance to coherent 2-level (binary)

orthogonal FSK by nearly 2 dB and inferior in performance to BPSK by only 0.8 dB.
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4-level and 8-level coherent chirp systems have been found whose performance are

better and nearly the same compared to coherent 4-FSK and 8-FSK, respectively. In

the non-coherent case, it is shown that M (2, 4, and 8)-level non-coherent chirp sys-

tems exist that o↵er same performance as that of M (2, 4, and 8)-level non-coherent

orthogonal FSK system.
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Chapter 3

Constant Envelope Multi-Level Chirp

Modulation with Memory: Signals and

Distance Properties

3.1 Introduction

In Chapter 2, memoryless multi-level chirp modulation was considered. In such a

modulation, the ending phase of the transmitted signal during any arbitrary symbol

interval is not the same as the starting phase of the signal in the next symbol interval.

Hence, discontinuity exists at symbol transitions. For this reason, such a modulation

is referred to as memoryless, symbol-by-symbol, or discontinuous-phase chirp mod-

ulation. When the phase at symbol transition is constrained to be continuous, one

obtains a class of chirp modulations with memory. These signals are collectively

referred to as M -level (M�ary) Continuous Phase Chirp Modulation (M�CPCM).

The memory introduced by constraining the phase to be continuous at bit transi-

tions provides smooth spectral behavior of the transmitted signal and also permits

multiple-symbol detection providing enhanced symbol error rate performance. The

intent in this Chapter is to propose constant envelope phase-continuous multi-level

chirp modulation. These modulated signals are mathematically described and their

signal-space properties are examined thoroughly.

Signal space approach is a key element in receiver design and performance

analysis. Because it is easier to represent signals in space as vectors, and the Euclidean

distance properties can then be used to determine essential system parameters such as

detection and spectral e�ciency. Minimum Euclidean distance analysis is significant

in determining the ultimate error rate performance over AWGN channel. Moreover,
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probability of error performance becomes a function of minimum Euclidean distance

at high SNR [3].

In this Chapter, a closed form expression for Euclidean distance for M -CPCM

is derived as functions of modulation parameters q and w and observation interval

n. Upper bounds on the minimum distance are then derived to estimate the limiting

value on the SNR Gain Gn and to know for which value of observation interval n the

distance can reach its bound. Next, the numerical results for this class of signals are

sketched as 3-D surfaces to better understand M -CPCM signals. A comparison of

the minimum distance properties of M -CPCM with other conventional modulation

schemes is also presented.

3.2 M-level Continuous Phase Chirp Modulation

(M-CPCM) Signals

The general expression for M -CPCM signal is given by [39]:

S(t, d) =
q

2E
s

T
s

cos(wct+ �(t, d) + ✓), 0  t < 1 (3.1)

where Es is the symbol energy during the symbol duration Ts seconds, wc is the

angular carrier frequency, �(t, d) is the information carrying phase, and ✓ is the

starting phase (at t = 0). The information carrying phase for M -CPCM signal is

given by:

�(t, d) = dig(t� (i� 1)Ts) + ⇡q
i�1

P

k=1

dk, (i� 1)Ts  t  iTs (3.2)

and

d = d
1

, d
2

, d
3

, . . .
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is an infinitely long sequence of uncorrelated M -ary data symbols, each taking one of

the values:

di = ±1,±3,±5, . . . ,±(M � 1); i = 1, 2, . . . (3.3)

with a probability

P (di) =
1

M
; i = 1, 2, . . . (3.4)

In (3.2), the phase function g(t) is given by:

g(t) =

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

0, t  0, t>Ts

2⇡
t
R

0

f(⌧)d⌧, 0  t  Ts

⇡q = ⇡(h� w), t = Ts

(3.5)

and f(t) is the instantaneous frequency as a function of time. For chirp signaling:

f(t) =

8

>

>

<

>

>

:

0, t  0, t>Ts
⇣

h
2T

s

⌘

�
✓

w
T 2
s

◆

t, 0  t  Ts

(3.6)

using (3.6) in (3.5), (3.5) can be written as:

g(t) =

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

0, t  0, t>Ts

⇡

⇢

h
⇣

t
T
s

⌘

� w
⇣

t
T
s

⌘

2

�

, 0  t  Ts

⇡q = ⇡(h� w), t = Ts

(3.7)

where h and w are dimensionless parameters, h represents the peak-to-peak frequency

deviation divided by the symbol rate 1

T
s

, and w represents the frequency sweep width

divided by the symbol rate 1

T
s

. Since h = (q+w), we choose (w, q) to be independent

signal modulation parameters.
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It is instructive to sketch the phase trajectories generated by (3.2) for all possible

values of the data sequence. For example, in the case of 2-CPCM with symbols

di = ±1 and for four bit time intervals, the set of phase trajectories beginning at

time t = 0 is shown in Fig. 3.1 (for (q, w) = (0.5, 2.2)). The phase trajectories for 4-

CPCM is shown in Fig. 3.2. These phase diagrams are called phase trees. It is noted

that the phase tree for M -CPCM is a continuous function of time. For simplicity, ✓

has been set equal to zero for coherent transmission.
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Figure 3.1: Phase tree for 2-CPCM signal

From (3.2), it is observed that the phase of the signal during the ith symbol

interval is not only a function of the data during the ith symbol interval, but also it is

a function of the past symbols d
1

, d
2

, . . . , di�1

that have entered the modulator. The

first-term in (3.2) is the phase due to the ith symbol and the second-term is referred
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Figure 3.2: Phase tree for 4-CPCM signal

to as the accumulated phase due to the past symbols. Since phase is always modulo

2⇡ and further by appropriately choosing the value of modulation parameter q, it is

possible to model the M -CPCM signal to be a finite-state trellis [3]. For example,
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for 2-CPCM with q = 1

2

the phase tree in Fig. 3.1 becomes a 4-state trellis diagram

shown in Fig. 3.3.
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Figure 3.3: Phase trellis for 2-CPCM signal with q = 1

2

and arbitrary w

3.3 Minimum Euclidean Distance Properties

The M -CPCM signal is assumed to be transmitted over an AWGN channel with two-

sided PSD of N0
2

watts/Hz. Thus, the received signal available for observation can

be written as:

r(t) = S(t, d) + n(t) , 0  t < 1 (3.8)

where n(t) is a Gaussian random process and S(t, d) is the received M -CPCM signal.

A receiver which minimizes the probability of erroneous decision is required to observe

r(t) over 0  t < +1 and to choose the infinitely long sequence d = (d
1

, d
2

, . . . )

which minimizes the error probability. Such a receiver is referred to as MLSE receiver
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and is impractical for theoretical investigation. Instead, a sub-optimum receiver that

observes the received signal over n symbol intervals and makes a decision about a

specific data symbol can be studied. Thus, we consider a receiver that observes

r(t) = S(t, d) + n(t) , 0  t  nTs (3.9)

where d = (d
1

, d
2

, . . . , dn) and produces an estimate d̂
1

of d
1

. The optimum detector

is the one that observes r(t) in (3.9) and maximizes the log likelihood functions given

by:

li =

nT
Z

0

r(t)S(t, d) dt, i = 1, 2, . . . ,M (3.10)

As n ! 1, MLSE receiver is obtained. It is noted that there are Mn sequences of

data, (d
1

, d
2

, . . . , dn), are possible, but the detector is only interested in finding an

estimate d̂
1

of d
1

. Thus, Mn sequences can be formed into M groups:

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

d
1

= �(M � 1), d
2

, . . . , dn

...

d
1

= �1, d
2

, . . . , dn

d
1

= +1, d
2

, . . . , dn

...

d
1

= +(M � 1), d
2

, . . . , dn

(3.11)

where dk, k = 2, 3, . . . , n, takes values ±1,±3, . . . ,±(M � 1). It is noted that the

receiver need not find the specific sequence d
2

, . . . , dn which maximizes (3.10) to

choose d̂
1

as an estimate of d
1

. This aspect will be explained in Chapter 4 where

receiver structure for detection of M -CPCM signals in AWGN is derived. For large

SNR, the probability of erroneous decision can be upper bounded using union bound
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[40] and is given by:

Pe 
1

Mn�1

Mn�1
X

j=1

v 6=u

Mn�1
X

k=1

Q



Dn(vj, uk)p
2N

0

�

(3.12)

where

Q(x) , 1p
2⇡

1
Z

x

e�
t

2
2 dt (3.13)

The quantityDn(vj, uk) represents the Euclidean distance between the signals S(t, d
1

=

v, Aj) and S(t, d
1

= u,Ak) and is given by:

Dn(vj, uk) =

2

6

4

nT
s

Z

0

�

�S(t, d
1

= v, Aj)� S(t, d
1

= u,Ak)
�

�

2

dt

3

7

5

1
2

(3.14)

The distance between waveforms is a key concept [40] in understanding the ultimate

utility of any arbitrary signaling scheme in digital communications. The squared

Euclidean distance is given by:

D2

n(vj, uk) =

nT
s

Z

0

�

�S(t, d
1

= v, Aj)� S(t, d
1

= u,Ak)
�

�

2

dt (3.15)

=
n
X

l=1

lT
s

Z

(l�1)T
s

[S(t, d
1

= v, Aj)� S(t, d
1

= u,Ak)]
2 dt

=
n
X

l=1

lT
s

Z

(l�1)T
s

[S2(t, d
1

= v, Aj)�2S(t, d
1

= v, Aj)S(t, d1 = u,Ak)+S2(t, d
1

= u,Ak)] dt.

(3.16)



Chapter 3: Constant Envelope Multi-Level Chirp Modulation with Memory: Signals
and Distance Properties 62

Using (3.1) and neglecting the high frequency term, (3.16) can be written as:

D2

n(vj, uk) = 2Es(n�
n
X

l=1

1

Ts

T
s

Z

0

cos{��l(t, vj, uk)} dt) (3.17)

where

��l(t, vj, uk) = �l g(t) + ⇡q

l�1

X

i=1

�i.

��l(t, vj, uk) represents the phase di↵erence between the signals S(t, d
1

= v, Aj) and

S(t, d
1

= u,Ak) during the lth symbol interval with the di↵erence term �l = d
j
l � dkl

which is given by:

8

>

>

<

>

>

:

�
1

= v � u = 2, 4, 6, ........, 2(M � 1),

�l = d
j
l � dkl = 0,±2,±4, ........,±2(M � 1), l = 2, 3, ...., n

(3.18)

In the above equations S(t, d
1

, Aj) denotes the transmitted M -CPCM signal given

by (3.1) over 0  t  nTs, with the first symbol as d
1

and Aj represents a particular

data sequence, i.e, n� 1 tuple (d
2

, d
3

, . . . , dn). A closed-form expression for squared

Euclidean distance given in (3.17) has been obtained and is given by:

D2

n(vj, uk) = 2Es{n�
n
X

l=1

1
p

2|�l|w
[cos(⌦l)(C(xl) + C(yl))

+ sin(⌦l)(S(xl) + S(yl))]} (3.19)

where

⌦l =
⇡

2

(w + q)2

2w
|�l|+ 2q sgn(�l)

l�1

X

r=1

�r

xl =

r

|�l|
2w

(w � q)
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yl =

r

|�l|
2w

(w + q)

sgn(x) =

8

>

>

<

>

>

:

+1, x � 0

�1, x < 0

�l = d
j
l � dkl

�
1

= v � u

Es = Eb log2(M).

C(x) and S(x) are defined in (2.17) and (2.18), respectively. It is noted thatD2

n(vj, uk)

is a function of �
1

, �
2

, . . . , �n which is the di↵erence sequence. Thus, it is su�cient

to consider the di↵erence sequence instead of the pair of sequences dj
1

, d
j
2

, . . . , d
j
n and

dk
1

, dk
2

, . . . , dkn. The error probability given by (3.12), for high SNR can be approxi-

mated by:

Pe ⇠= �
0

Q



Dn,minp
2N

0

�

(3.20)

where �
0

is some positive constant independent of
E
b

N0
. The quantity Dn,min

is

the minimum of Dn(vj, uk) with respect to all pair of sequences d
j
1

, d
j
2

, . . . , d
j
n and

dk
1

, dk
2

, . . . , dkn, j, k = 1, 2, . . . ,Mn�1, with the restriction of v 6= u. That is:

D2

n,min

= min
v,u,j,k
v 6=u

{D2

n(vj, uk)} (3.21)

Using energy normalization, the normalized squared Euclidean distance can be ex-

pressed as:

d2 =
D2

n

2Eb
(3.22)

By using this normalization, one can compare di↵erent M -level or (M -ary) modula-

tions on an equal
E
b

N0
basis. As a reference point, it is noted that d2min = 2 for MSK,
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BPSK, and QPSK. An estimate of the SNR gain relative to BPSK is then obtained

using:

Gn = 10 log
10



d2n
2

�

(3.23)

3.4 Bounds on The Minimum Euclidean Distance

An important tool in the analysis of the distance properties associated with the M -

CPCM signals is its phase tree. To calculate the maximum squared Euclidean distance

associated with this signalling set, with signals in that set defined over n symbol

intervals, all pairs of phases trajectories in the phase tree over n symbol intervals

must be considered. The phase trajectories over the first symbol interval, however,

must not coincide. The squared Euclidean distance is then determined using (3.19) for

all these pairs. Using the fact that the Euclidean distance is a non-decreasing function

of observation length n, an upper bound for any n, may be obtained by considering

just a few representative pairs of infinitely long sequences. Good candidates for all

these sequences are pairs that merge as soon as possible. Fig. 3.4 shows the merging

point for 2-CPCM system that occurs at t = 2Ts. Turning to the 4-CPCM case, Fig.

3.5, the merging points are denoted by A, B, C, D and E. It is noted that there

are more than one merging point and two di↵erent trajectories can have the same

merging point. It is seen that such an infinitely long sequence is:

�̃ = +x
0

,�x
0

, 0, 0, . . . ; x
0

= 2, 4, 6, ....., 2(M � 1) (3.24)

Using (3.24), an upper bound on the minimum Euclidean squared distance for M -

CPCM for all n is given by:

d2B,M (q, w) = log
2

(M) min
1pM�1

{2� cos(p⇡q)
p
pw

[cos(
⇡p(q2 + w2)

2w
)(C(x) + C(y))+

sin(
⇡p(q2 + w2)

2w
)(S(x) + S(y))]} (3.25)
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Figure 3.4: Phase tree for 2-CPCM signal with merging point

where

x =

r

p

w
(w � q)

y =

r

p

w
(w + q)

and the quantities C(·) and S(·) are the Fresnel cosine and sine integral that are

defined in (2.17) and (2.18), respectively. It is noted that:

d2B,M (q, w) = d2B,M (�q, w) = d2B,M (|q|, w) (3.26)

3.5 Numerical Results and Discussion

Since the upper bound of (3.25) is a function of the set of signal modulation param-

eters (q, w), d2B,M was computed over the range of modulation parameters 0 < q  2
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Figure 3.5: Phase tree for 4-CPCM signal with merging points

and 0 < w  10. The results of this computation are shown in Table 3.1, where (q, w)

that maximized the upper bound d2B,M (q, w) are shown for 2-, 4-, and 8-CPCM.

Table 3.1: (q, w) maximizing d2B,M for M -CPCM

M (q, w) max {d2B,M} Gn (dB)

2 (0.0, 2.4) 2.93 1.66

4 (0.0, 9.6) 4.51 3.53

8 (1.9, 6.9) 6.00 4.77

The maximum in Table 3.1 gives an estimate of the limiting gain achievable with

M -CPCM. For example, 4-CPCM o↵ers an advantage of 3.53 dB, at best, relative

to BPSK. However, it should be noted that the actual value of d2n given by (3.22)
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will be smaller than the global maximum. That is, for q 6= 0, a value of d2n close to

the maximum value may be found out. Also, it is observed that there exist multiple

sets of (q, w) that achieve the upper bound distance shown in Table 3.1. In Figs. 3.6

- 3.8 are shown 3-D surface plots of d2B,M for 2-, 4-, and 8-CPCM as a function of

modulation parameters q and w.
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Figure 3.6: Surface plot of d2B,2 as a function of q and w for 2-CPCM
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Figure 3.7: Surface plot of d2B,4 as a function of q and w for 4-CPCM
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Figure 3.8: Surface plot of d2B,8 as a function of q and w for 8-CPCM

M -level (M -ary) Continuous Phase Frequency Shift Keying (M -CPFSK) is a well-

studied modulation technique in the literature [23], [24], [42]. This signalling tech-

nique can serve as a good comparison to the M -CPCM signalling proposed in this

thesis. It is noted that with w = 0 in (3.1)-(3.7), M -CPCM becomes M -CPFSK and

h becomes the well-known modulation index of an FM signal. Thus, for comparison,

in Fig. 3.9 are shown d2B,M for 2-, 4-, and 8-CPFSK signaling. Table 3.2 shows the

values of h that maximizes d2B,M for M -CPFSK [23].

Table 3.2: h maximizing d2B,M for M -CPFSK

M h max {d2B,M} Gn (dB)

2 0.72 2.43 0.84

4 0.91 4.23 3.25

8 0.96 6.13 4.86
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Figure 3.9: d2B for M -CPFSK for (M=2, 4, 8)

While d2B,M given in (3.25) provides an estimate of the ultimate gain inherent in

M -CPCM, the actual minimum squared Euclidean distance D2

n,min in (3.19) is a

function of the number of observation intervals n of the optimum receiver and the set

of modulation parameters (q, w). For a given n, one is required to find the optimum or

the best (q, w) that maximizesD2

n,min. For simplicity, we denoteD2

n = max{D2

n,min}.

In Tables 3.3 - 3.5, optimum (q, w) that maximize d2n (= D2
n

2E
b

) and Gn (dB) are shown

for n = 2, 3, 4, and for M = 2, 4, and 8. The maximization has been carried out in

the modulation parameter space (0, 0) < (q, w)  (2, 10). In these Tables, for the

sake of comparison, results for M -CPFSK are also shown. It is observed from Table

3.3 that the 2-CPCM system with (q = 0.20, w = 2.40) and an observation length

of the optimum receiver of n = 4 provides an SNR gain of 1.4 dB relative to BPSK

which implies that nearly 84 % of the SNR gain inherent in 2-CPCM is realized

with only n = 4. The best 2-CPCM has a limiting SNR gain of 1.66 dB (Table

3.1). Optimum 2-CPCM system with n = 4 outperforms corresponding optimum

2-CPFSK system by nearly 0.6 dB; relative to BPSK. Similarly, from Tables 3.4 and

3.5, it is observed that optimum 4-CPCM and 8-CPCM systems, for n = 4, o↵er SNR
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gains, relative to BPSK, of 3.29 and 3.29 dB, respectively. Equivalently, optimum

4-CPCM and 8-CPCM systems, for n = 4, realize nearly 93 % and 70 % of SNR

gains inherent in corresponding 4-CPCM and 8-CPCM systems, respectively. This

observation indicates that an observation interval longer than 4 symbols can be used

to obtain further advantages in SNR, relative to BPSK.

Table 3.3: Optimum modulation parameters maximizing d2n and Gn for 2-CPCM
and 2-CPFSK

n
2-CPCM 2-CPFSK

(q, w) max{d2n} Gn (dB) h max{d2n} Gn (dB)

2 (0.30, 1.9) 2.404 0.79 0.76 2.03 0.065

3 (0.20, 2.4) 2.761 1.4 0.72 2.43 0.846

4 (0.20, 2.4) 2.761 1.4 0.72 2.43 0.846

Table 3.4: Optimum modulation parameters maximizing d2n and Gn for 4-CPCM
and 4-CPFSK

n
4-CPCM 4-CPFSK

(q, w) max{d2n} Gn (dB) h max{d2n} Gn (dB)

2 (0.40, 6.6) 3.690 2.66 3.75 3.89 2.89

3 (0.40, 2.6) 4.27 3.29 3.8 3.97 2.97

4 (0.40, 2.6) 4.27 3.29 0.85 4.08 3.09
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Table 3.5: Optimum modulation parameters maximizing d2n and Gn for 8-CPCM
and 8-CPFSK

n
8-CPCM 8-CPFSK

(q, w) max{d2n} Gn (dB) h max{d2n} Gn (dB)

2 (1.10, 4.20) 4.67 3.68 0.90 3.88 2.88

3 (1.10, 3.60) 5.22 4.16 0.45 4.46 3.48

4 (1.10, 3.70) 5.22 4.16 0.45 5.03 4.00
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Figure 3.10: Surface plots of d2n as a function of q and w for (a) n = 2, (b) n = 3,
and (c) n = 4 for 2-CPCM
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In Fig. 3.10, 3-D surface plots for 2-CPCM system are shown for n = 2, 3, and

4. These figures provides an understanding of how modulation parameters q and w

a↵ect the distance properties of the signalling technique. Similar surface plots for

4-CPCM and 8-CPCM are shown in Figs. 3.11 and 3.12, respectively. The max{d2n}
in these figures correspond to the values presented in Tables 3.3, 3.4, and 3.5, for 2-,

4-, 8-CPCM, respectively, for n = 2, 3, and 4.
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Figure 3.11: Surface plots of d2n as a function of q and w for (a) n = 2, (b) n = 3,
and (c) n = 4 for 4-CPCM
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Figure 3.12: Surface plots of d2n as a function of q and w for (a) n = 2, (b) n = 3,
and (c) n = 4 for 8-CPCM

In order to understand the sensitivity of one modulation parameter (say q) with

the other varying (say w), in Figs. 3.13 and 3.14, d2
2

are plotted as a function of

w and q, with q and w fixed, respectively. For 2-CPCM the optimum modulation

parameters are q = 0.30 and w = 1.9, for two observation intervals (i.e. n = 2).

These parameters result in max{d2
2

}=2.404 (Table 3.3). It is observed that d2
2

is very

sensitive to variations in w when q is fixed. This implies that system parameters need

to be chosen carefully for optimum error rate performance. Similar observations are

in order for the case when w is varied with q fixed. A general observation regarding

M -CPCM is that there always exist multiple sets of (q, w) that yield the same error

rate performance.
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Figure 3.13: Squared Euclidean distance d2
2

as a function of w for 2-CPCM with
(q = 0.2,0.3, 0.4, 0.5, 0.8)
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Figure 3.14: Squared Euclidean distance d2
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as a function of q for 2-CPCM with
(w = 1.6,1.9, 1, 2.2, 3)

In Fig. 3.15, contour plots of Gn(q, w) (SNR gain relative to BPSK) for 2-CPCM

system for n = 2, 3, and 4 are shown. For example, in Fig. 3.15(a), the contour with
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a value equal to 0.79 indicates sets of (q, w) that achieve the best performance in a

2-CPCM system with an observation length n = 2. Contour with a value equal to

0 denotes 2-CPCM systems with performance equal to that of BPSK. The negative

value contours represent 2-CPCM systems that have performance poorer than BPSK.
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Figure 3.15: Contour plots of Gn(q, w) for 2-CPCM signals for (a) n = 2, (b) n = 3,
and (c) n = 4
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3.6 Conclusions

In this Chapter, a class of signals refereed to as M -CPCM is introduced for digital

data transmission. This class of signals represent multi-level chirp modulation with

memory. A general description of M -CPCM is given and the independent modula-

tion parameters that characterize such a system are identified and described. Using

the notion of minimum Euclidean distance in signal-space, the limiting SNR gains

inherent is 2-, 4-, and 8-CPCM systems have been established. It is shown that 2-,

4-, and 8-CPCM systems have at least 1.66, 3.53, and 4.77 dB advantage relative to

BPSK. Also, an analysis of how to realize these SNR gains as a function of the num-

ber of observation intervals, n, of the receiver is presented. It is shown that with just

n = 4, 84 %, 93 %, and 70 % of the inherent gains available with 2-, 4-, and 8-CPCM

systems can be realized by appropriately choosing the modulation parameters q and

w. Several 3D and contour plots of Euclidean distance as a function of q, w, and n are

provided that can be used in the design of M -CPCM systems for data transmission.
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Chapter 4

Detection and Performance of M-CPCM

in AWGN Channel

4.1 Introduction

In Chapter 3, multi-level chirp modulation with memory called M -CPCM is intro-

duced and its geometric properties is examined in depth. The class of M -CPCM

signals have inherent memory by virtue of phase-continuity at symbol transitions and

can be exploited to gain advantage in terms of symbol error rate performance. In

this Chapter the problem of detection of M -CPCM signals over AWGN channel is

addressed. Both coherent and non-coherent detection situations are considered and

structures of optimum receivers are derived. Symbol error probability bounds on the

performance of these receivers are then derived and optimum M -CPCM systems are

determined. A comparison of the performance of M -CPCM with other comparable

multi-level modulations such as M -CPFSK is also provided. Comments are o↵ered on

the complexities of coherent and non-coherent receiver structures from the viewpoint

of implementation.

4.2 Coherent Detection of M-CPCM

The transmitted M -CPCM signal during the ith symbol interval can be written as

(Chapter 3):

S(t, d) =

r

2Es

Ts
cos(wct+ dig(t� (i� 1)Ts)+

⇡q
i�1

P

k=1

dk + ✓), (i� 1)Ts  t  iTs (4.1)
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where

g(t) =

8
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>
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s

⌘
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T
s

⌘

2

�

, 0  t  Ts

⇡q = ⇡(h� w), t = Ts

(4.2)

and d = (d
1

, d
2

, . . . , dn) denotes the first n symbols transmitted. The transmit-

ted M -CPCM signal over 0  t  nTs is modeled as S(t, d�, A, ✓) where d� rep-

resents the decision symbol and A = (d
1

, d
2

, . . . , d��1

, d�+1

, . . . , dn) represents the

sequence of remaining (n� 1) data symbols. Since di, i = 1, 2, . . . , n, can take values

±1,±3, . . . ,±(M�1), A represents (n�1)-tuple (d
1

, d
2

, . . . , d��1

, d�+1

, . . . , dn). The

starting phase at t = 0 is denoted by ✓. With this model for the M -CPCM signal

over n symbol intervals, next the detection problem is addressed in 4.2.1.

4.2.1 Optimum Coherent Receiver

For coherent transmission ✓ can be set equal to zero in (4.1). The detection strategy

is to observe the received waveform over n symbol intervals in the presence of AWGN

with two-sided power spectral density of N0
2

watts/Hz and to arrive at an optimum

decision about a specific data symbol transmitted, say d�, � = 1, 2, . . . , n, during this

interval. Thus, the detection problem is to observe the received waveform:

r(t) = S(t, d�, A) + n(t) , 0  t  nTs (4.3)

and produce an estimate d̂� of d�. In (4.3), A = (d
1

, d
2

, . . . , d��1

, d�+1

, . . . , dn)

represents one of the m = Mn�1 possible sequence of data symbols. The detection

problem in (4.3) is the well-known composite hypothesis testing problem [40] and the

solution is the likelihood ratio test. Following the developments in Chapter 2, for the
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M -CPCM signals at hand, the likelihood functions are given by:
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(4.4)

where the probability density of the composite parameter A is given by:

p(A) = p(d
1

)p(d
2

) . . . p(d��1

)p(d�+1

) . . . p(dn) (4.5)

and the densities:

p(di) =
1

M
[�(di � 1) + �(di + 1) + · · ·+ �(di � (M � 1)) + �(di + (M � 1))] (4.6)

i = 1, 2, . . . , � � 1, � + 1, . . . , n.

The integral

Z

A

dA in (4.4) is given by:
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Using (4.5) and (4.6) in (4.4), the M likelihood functions can be written as:
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(4.7)

where m = Mn�1. The quantity 1

m which is common to all lis can be ignored.

The optimum receiver computes l
1

, l
2

, . . . , lM and then computes:

lk = max{l
1

, l
2

, . . . , lM} (4.8)

in order to arrive at an estimate d̂� of d� using:

d̂� =

8

>

>

<

>

>

:

k, if k is odd

�(k � 1), if k is even

(4.9)
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The receiver structure dictated by (4.7) is shown in Fig. 4.1. The receiver corre-

lates the received waveform with each of the m possible transmitted M -CPCM sig-

nals with the first symbol data d� = +1, to produce x
+11

, x
+12

, . . . , x
+1m, (x

+1k =
R nT

s

0

r(t)S(t, d� = +1, Ak) dt), and then computes the sum
m
P

k=1

exp( 2

N0
x
+1k) to pro-

duce the likelihood function l
1

. A similar operation of correlation and summing is

performed with first symbol data=�1,±3, . . . ,±(M � 1) to produce the likelihood

functions l
2

, . . . , lM . Once these M likelihood functions are computed, the decision

about d� is made based on the largest value of these functions. The optimum receiver

shown in Fig. 4.1 is non-linear and requires a total of Mn correlation operations. The

non-linearity of the receiver is due to the memory inherent in the M -CPCM signals.

The performance of the optimum receiver is too complex to determine analytically.

However, by making high and low SNR approximations in the likelihood functions,

linear receivers can be obtained. In the next section, the performance analysis of the

optimum receiver shown in Fig. 4.1 is presented using this approximation on SNR.

4.2.2 Symbol Error Probability Analysis

High SNR Upper bound

With reference to Fig. 4.1, the M likelihood functions can be written as:

l
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=
m
X
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X
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N
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m
X
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exp
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N
0
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�

(4.10)
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Figure 4.1: Optimum coherent M -CPCM receiver
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(4.11)

For large values of SNR, the summations in (4.10) can be written as:

m
X

k=1

exp

✓

2

N
0

x�k

◆

⇠= exp

✓

2

N
0

x̃�

◆

, � = 1, 2, . . . ,M (4.12)

where

x̃� = max{x�k; k = 1, 2, . . . ,m} (4.13)

Since exp(·) is a monotonic function, x̃� is an equivalent parameter to investigate.

The high-SNR sub-optimum receiver dictated by (4.12)-(4.13) is shown in Fig. 4.2.

This receiver computes all x�k;� = 1, 2, . . . ,M and k = 1, 2, . . . ,m, and chooses the

largest of these to make a decision on d�. It is noted that this sub-optimum receiver

is a linear receiver and requires as many correlators as the optimum receiver. Also,

the sub-optimum receiver is optimum at high SNR, whereas the optimum receiver is

optimum at all values of SNR. The sub-optimum receiver in Fig. 4.2 need not find

the specific sequence Ak to choose d̂� as an estimate of d� (Chapter 3, (3.11)). The

symbol error rate performance of the receiver shown in Fig. 4.2 can be determined

using high SNR upper bound. The upper bound can be constructed by observing that

x�ks are Gaussian random variables. For a given transmitted symbol d� = u and a

specific sequence Ak (d
1

, d
2

, . . . , d��1

, d�+1

, . . . , dn), the receiver would be in error if

it decides d� = v, v 6= u (v, u = 1, 2, . . . ,M). Thus, the conditional probability of
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this error using union bounding [40] is given by:

PM (✏ | d� = u,Ak) <
M
X

v=1

m
X

j=1

Pr[xvj > xuk|d� = u,Ak] (4.14)
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Figure 4.2: High-SNR sub-optimum coherent M -CPCM receiver

Averaging over all equally likely sequences Ak, the conditional probability of error
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can be written as:

PM (✏ | d� = u) <
1

m

M
X

v=1

m
X

j=1

m
X

k=1

Pr
⇥

xvj > xuk|d� = u
⇤

(4.15)

where p(Ak) = 1

m , for k = 1, 2, . . . ,m. Averaging over all possible u, the average

symbol error probability can be written as:

PM (✏) <
1

M

1

m

M
X

u=1

M
X

v=1

v 6=u

m
X

j=1

m
X

k=1

Pr
⇥

xvj > xuk
⇤

(4.16)

where

Pr[xvj > xuk] = Q

"

s

nEs

N
0

(1� ⇢(vj, uk))

#

(4.17)

The quantity ⇢(vj, uk) in (4.17) is given by:

⇢(vj, uk) =
1

nEs

nT
Z

0

S(t, d� = v, Aj)S(t, d� = u,Ak) dt (4.18)

and represents the normalized correlation between the signals S(t, d� = v, Aj) and

S(t, d� = u,Ak). It is noted that u and v take values 1, 2, . . . ,M and represent the

decision symbol data d�. That is:

d� =

8

>

>

<

>

>

:

u or v, u, v odd

�(u� 1) or � (v � 1), u, v even

(4.19)

⇢(vj, uk) in (4.18) can be written as:

⇢(vj, uk) = ⇠(�̃) (4.20)

where �̃ = (�
1

, �
2

, . . . , ��, . . . , �n) is the di↵erence sequence between data symbol

sequences (u,Ak) and (v, Aj). Since �� = u � v and u 6= v, it can take values from
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the set {±2,±4, . . . ,±2(M � 1)} and �i = dki �d
j
i , i = 1, 2, . . . , (��1), (�+1), . . . , n,

and takes values from the set {0,±2,±4, . . . ,±2(M � 1)}. A closed form expression

for ⇠(�̃) has been derived for M -CPCM and is given by:

⇠(�̃) =

8

>

>

>

>

<

>

>

>

>

:

cos

 

n�1

X

i=1

�i⇡q

!

, �n = 0

r

⇡

2a
{ 

1

�  
2

} , �n 6= 0

(4.21)

where

 
1

= cos

✓

b2 � ac

a

◆

C

"

r

2

a⇡
(a+ b)

#

+ sin

✓

b2 � ac

a

◆

S

"

r

2

a⇡
(a+ b)

#

and

 
2

= cos

✓

b2 � ac

a

◆

C

"

r

2

a⇡
(b)

#

+ sin

✓

b2 � ac

a

◆

S

"

r

2

a⇡
(b)

#

where

a = �n⇡w, b = �0.5 ⇤ �n⇡(q + w)

c = �
n�1

X

i=1

⇡q

Although, an explicit expression for computation of symbol error rate for M -CPCM

has been derived, (4.17), the computation involved is too large. A simplified expres-

sion for (4.17) can be obtained by recognizing and identifying the Gaussian pairs

which have the same correlation. Using (4.17)-(4.20) in (4.16), an equivalent expres-

sion for symbol error rate can be obtained and is given by:

PM (✏) < (m� 1)Mn�1

Z

�̃

Q

"

s

nEs

N
0

(1� ⇠(�̃))

#

p(�̃) d�̃ (4.22)
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where

Z

�̃

d�̃ =

Z

. . .

Z

d�
1

. . . d�� . . . d�n (4.23)

and

p(�̃) = p(�
1

) . . . p(��) . . . p(�n) (4.24)

with

p(��) =
1

M(M � 1)

M�1

X

j=1

j [�(�� + 2(M � j)) + �(�� � 2(M � j))] (4.25)

and

p(�i) =
1

M
�(�i) +

1

M2

M�1

X

j=1

j [�(�i + 2(M � j)) + �(�i � 2(M � j))] (4.26)

i = 1, 2, . . . , � � 1, � + 1, . . . n

This simplified expression for symbol error probability requires less computations

than the one given in (4.16).

High SNR lower bound

A lower bound on the symbol error probability of the coherent sub-optimum M -

CPCM receiver (Fig. 4.2) can be constructed by supposing that for each transmitted

symbol sequence, the receiver needs only to decide between this sequence and its

nearest neighbor. Such a receiver would perform at least as good as the receiver

that is not aware of two symbol sequences transmitted but must compare with all

possible symbol sequences. The performance of this receiver is a lower bound to the
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performance of the optimum receiver in Fig. 4.1 at high SNR. The lower bound on

symbol error probability is given by:

PM (✏) >
1

M

1

m

M
X

u=1

M
X

v=1

v 6=u

m
X

k=1

Q

"

s

nEs

N
0

(1� ⇢⇤(v, uk))

#

(4.27)

where

⇢⇤(v, uk) = max {⇢(vj, uk), j = 1, 2, . . . ,m}

4.2.3 Numerical Results and Discussion

The symbol error rate upper bound of (4.16) is a function of: i)
E
b

N0
, ii) n, iii) (q, w),

and iv) M . For a given M , n, and a suitably high SNR, the set (q, w) that should

be chosen is the one that minimizes (4.16). The optimum (q, w) sets have been

determined at 6, 8, 10, and 12 dB for 2  n  5 for 2-, 4-, 8-CPCM. The modulation

parameter space is bounded by 0 < q  2 ⇥ 0 < w  10. Tables 4.1-4.3 summarize

these results. It is observed that optimum (q, w) sets are nearly independent of SNR

except for minor variations.

Table 4.1: Optimum (q, w) 2-CPCM systems as a function of observation intervals n
and SNR (Eb/N0

)

SNR (dB)
(qopt, wopt)

n=2 n=3 n=4 n=5

6 (0.28, 1.85) (0.24, 2.07) (0.23, 2.22) (0.22, 2.33)

8 (0.27, 1.88) (0.23, 2.16) (0.21, 2.31) (0.19, 2.37)

10 (0.26, 1.93) (0.22, 2.20) (0.19, 2.33) (0.18, 2.39)

12 (0.26, 1.95) (0.21, 2.20) (0.18, 2.32) (0.18, 2.39)

For purposes of symbol error rate performance illustration, the optimum sets com-

puted at an SNR of 6 dB are used. It is noted that the high SNR upper bound

given by (4.16) and the high SNR lower bound given by (4.27) become the same for

SNR greater than or equal to 6 dB. Hence, the upper bound of (4.16) will be used to

illustrate symbol error rate performance.
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Table 4.2: Optimum (q, w) 4-CPCM systems as a function of observation intervals n
and SNR (Eb/N0

)

SNR (dB)
(qopt, wopt)

n=2 n=3 n=4 n=5

6 (0.24, 2.73) (0.40, 2.43) (0.39, 2.48) (0.38, 2.49)

8 (0.25, 2.75) (0.40, 2.48) (0.39, 2.51) (0.38, 2.50)

10 (0.25, 2.74) (0.40, 2.51) (0.38, 2.52) (0.38, 2.51)

12 (0.25, 2.76) (0.40, 2.50) (0.38, 2.52) (0.38, 2.50)

Table 4.3: Optimum (q, w) 8-CPCM systems as a function of observation intervals n
and SNR (Eb/N0

)

SNR (dB)
(qopt, wopt)

n=2 n=3 n=4

6 (1.12, 4.10) (0.88, 4.71) (0.88, 4.71)

8 (1.12, 4.10) (0.88, 4.69) (0.88, 4.69)

10 (1.12, 4.10) (0.88, 4.68) (0.88, 4.68)

12 (1.12, 4.11) (0.88, 4.69) (0.88, 4.68)

2-CPCM System

In Fig. 4.3, the high SNR upper bound on the performance of the optimum coherent

receiver for observation intervals n = 2, 3, 4 and 5 are shown for 2-CPCM systems.

It is observed that as n increases, the performance improves. However, in going from

n = 4 to n = 5, the improvement in performance is only marginal but the complexity

of the receiver increases considerably. This observation shows the trade o↵ that exists

between receiver complexity and performance. For n = 2, the optimum 2-CPCM

system outperforms BPSK. The optimum 2-CPCM system for 5Ts observation length

with (q = 0.22, w = 2.33) outperforms BPSK by nearly 1.6 dB. In Chapter 3, the

limiting SNR gain of 2-CPCM relative to BPSK was found out to be 1.66 dB. Thus,

it is clear that nearly all the potential of 2-CPCM can be achieved with n = 5. An

improvement of about 0.75 dB and 0.25 dB are possible in going from 2Ts to 5Ts
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and 3Ts to 5Ts observation lengths, respectively. When coherent receiver is used, the

performance remains the same regardless of the position � of the decision symbol.

For example, for a 3-symbol observation length receiver, the performance is the same

when decision is made on the first symbol (� = 1), second symbol (� = 2) or the third

symbol (� = 3).
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2-FSK
n=2 (q=0.28, w=1.85)
n=3 (q=0.24, w=2.07)
n=4 (q=0.23, w=2.22)
n=5 (q=0.22, w=2.33)

Figure 4.3: Error probability performance of optimum 2-CPCM systems for
n = 2, 3, 4 and 5

In Fig. 4.4 error rate performance of 2-CPCM as a function of n is shown for specific

SNRs of 6, 8, 10, and 12 dB. In Table 4.4, error probabilities of optimum 2-CPCM,

BPSK and 2-FSK orthogonal are shown for
E
b

N0
=6, 8, and 10 dB.
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Observation interval (n)
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Figure 4.4: Error probability performance of optimum 2-CPCM systems as a

function n at
E
b

N0
= 6, 8, 10 and 12 dB

Table 4.4: Error probabilities of 2-CPCM, BPSK, and 2-FSK at Eb/N0

=6, 8, and
10 dB

SNR (dB)
2-CPCM

BPSK 2-FSK
n = 2 n = 3 n = 4 n = 5

6 1.23⇥10�3 6.46⇥10�4 4.24⇥10�4 3.65⇥10�4 2.39⇥10�3 2.30⇥10�2

8 4.99⇥10�5 1.79⇥10�5 1.09⇥10�5 9.30⇥10�6 1.90⇥10�4 6.00⇥10�3

10 3.70⇥10�7 9.15⇥10�8 5.53⇥10�8 4.56⇥10�8 3.87⇥10�6 7.83⇥10�4

A good comparison of 2-CPCM can be made with 2-CPFSK. In Fig. 4.5, error rate

performance of 2-CPFSK as a function of n is shown. From Figs. 4.3 and 4.5, it is

observed that 2-CPCM outperforms 2-CPFSK by nearly 0.5 dB. In Table 4.5 error
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probabilities of optimum 2-CPCM nd 2-CPFSK systems are given as a function of n

for
E
b

N0
= 6, 8, and 10 dB.
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Figure 4.5: Error probability performance of 2-CPFSK (h = 0.715) for n = 2, 3, 4
and 5

Table 4.5: Probability of error comparison of 2-CPCM and 2-CPFSK

SNR (dB)
n = 2 n = 3 n = 4 n = 5

2-CPCM 2-CPFSK 2-CPCM 2-CPFSK 2-CPCM 2-CPFSK 2-CPCM 2-CPFSK

6 1.23⇥10�3 2.86⇥10�3 6.46⇥10�4 9.94⇥10�4 4.24⇥10�4 6.76⇥10�4 3.65⇥10�4 6.00⇥10�4

8 4.99⇥10�5 1.98⇥10�4 1.80⇥10�5 3.59⇥10�5 1.09⇥10�5 2.48⇥10�5 1.03⇥10�5 2.35⇥10�5

10 3.70⇥10�7 3.78⇥10�6 9.31⇥10�8 2.66⇥10�7 5.53⇥10�8 2.05⇥10�7 5.49⇥10�8 2.03⇥10�7
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4-CPCM System

The sets of modulation parameters (0.24, 2.73) and (0.38, 2.49) are optimum for n = 2

and n = 5, respectively, for 4-CPCM system. These sets minimize the symbol error

rate given in (4.16). It is observed that optimum (0.38, 2.49) 4-CPCM system with

n = 5 provides nearly 3.6 dB relative to coherent QPSK. In Fig. 4.6 symbol error

rates for optimum 4-CPCM systems for n = 2, 3, 4, and 5 are shown. It is noted that

energy normalization Es = 2Eb has been used for plotting error rates in Fig. 4.6.
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Figure 4.6: Symbol error probability performance of optimum 4-CPCM systems for
n = 2, 3, 4 and 5

The optimum (0.24, 2.73) 4-CPCM system (optimum for n = 2) with 2Ts observation

length provides nearly 2.5 dB gain relative to coherent QPSK. A further advantage of

nearly 1 dB can be obtained when the observation length of the receiver is increased

from n = 2 to n = 5. An overall gain inherent in 4-CPCM system is 3.53 dB (Chapter

3, Table 3.1) and using the optimum receiver for 4-CPCM with n = 5, it is possible

to realize almost all the potential available in a 4-CPCM system.
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Table 4.6: Error probabilities of 4-CPCM and QPSK at Eb/N0

=6, 8, and 10 dB

SNR (dB)
4-CPCM

QPSK
n = 2 n = 3 n = 4 n = 5

6 2.73⇥10�4 6.78⇥10�5 3.27⇥10�5 2.39⇥10�5 4.78⇥10�3

8 2.43⇥10�6 2.09⇥10�7 1.02⇥10�7 7.47⇥10�8 3.82⇥10�4

10 2.24⇥10�9 4.28⇥10�11 1.99⇥10�11 1.36⇥10�11 7.74⇥10�6

In Fig. 4.7, symbol error rates for 4-CPCM as a function of n are shown for
E
b

N0
=6,

8, 10, and 12 dB. Table 4.6 shows symbol error probabilities at
E
b

N0
=6, 8, and 10 dB

for 4-CPCM system. For comparison purposes in Fig. 4.8 symbol error probability

performance of 4-CPFSK for n = 2, 3, 4, and 5 are plotted as a function of SNR.
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Figure 4.7: Error probability performance of optimum 4-CPCM systems as a

function of n at
E
b

N0
= 6, 8, 10, and 12 dB

Also, in Table 4.7, symbol error probabilities at
E
b

N0
=6, 8, and 10 dB are shown for
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both 4-CPCM and 4-CPFSK. It is observed that 4-CPCM outperforms 4-CPFSK for

all observation intervals.
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Figure 4.8: Error probability performance of 4-CPFSK for n = 2, 3, 4 and 5 [43]

Table 4.7: Probability of error comparison of 4-CPCM and 4-CPFSK

SNR (dB)
n = 2 n = 3 n = 4 n = 5

4-CPCM 4-CPFSK 4-CPCM 4-CPFSK 4-CPCM 4-CPFSK 4-CPCM 4-CPFSK

6 2.73⇥10�4 3.40⇥10�4 6.78⇥10�5 7.02⇥10�5 3.27⇥10�5 4.30⇥10�5 2.39⇥10�5 4.30⇥10�5

8 2.43⇥10�6 2.67⇥10�6 2.09⇥10�7 2.93⇥10�7 1.02⇥10�7 2.50⇥10�7 7.47⇥10�8 2.50⇥10�7

10 2.24⇥10�9 1.50⇥10�9 4.28⇥10�11 1.12⇥10�10 1.99⇥10�11 1.10⇥10�10 1.36⇥10�11 1.10⇥10�10

8-CPCM System

In Fig. 4.9, the symbol error rates for optimum 8-CPCM systems for n = 2 and

n = 3 are shown. In the same figure is shown the performance of 8-PSK. Again
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energy normalization of Es = 3Eb has been used in plotting the graphs in Fig. 4.9.
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Figure 4.9: Symbol error probability performance of 8-CPCM for n = 2 and 3 and
8-PSK

Table 4.8: Error probabilities of 8-CPCM and 8-PSK

SNR (dB)
8-CPCM

8-PSK
n = 2 n = 3

6 6.23⇥10�5 9.39⇥10�6 3.07⇥10�2

8 1.22⇥10�7 8.05⇥10�9 9.27⇥10�3

10 9.04⇥10�12 1.95⇥10�13 1.52⇥10�3

In Fig. 4.10 symbol error probability performance of 8-CPFSK for n = 2 and n = 3

are shown. Tables 4.8 and 4.9 shows error probabilities at
E
b

N0
= 6, 8, and 10 dB for

8-CPCM, 8-CPFSK and 8-PSK. The 8-CPCM system with the set of modulation

parameters (0.88, 4.71), optimum for n = 3, is superior to coherent 8-PSK by nearly

7 dB. In going from n = 2 to n = 3, 8-CPCM system can o↵er an advantage of
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nearly 1 dB. As a comparison with 8-CPFSK, optimum 8-CPCM is only marginally

inferior. Further investigation of 8-CPCM is needed for n � 4 to assess the modulation

completely.
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Figure 4.10: Symbol error probability performance of 8-CPFSK for n = 2 and 3 [43]

Table 4.9: Probability of error comparison of 8-CPCM and 8-CPFSK

SNR (dB)
n = 2 n = 3

8-CPCM 8-CPFSK 8-CPCM 8-CPFSK

6 6.23⇥10�5 6.71⇥10�5 9.39⇥10�6 1.10⇥10�5

8 1.22⇥10�7 2.81⇥10�7 8.05⇥10�9 1.78⇥10�8

10 9.04⇥10�12 9.04⇥10�11 1.95⇥10�13 1.21⇥10�12
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4.3 Non-coherent Detection of M-CPCM in

AWGN

4.3.1 Optimum Non-coherent Receiver

The received M -CPCM signal in AWGN for non-coherent detection can be written

as:

r(t) = S(t, d�, A, ✓), 0  t  nTs (4.28)

where d�, � 2 {1, 2, . . . , n} is the decision symbol, A = (d
1

, d
2

, . . . , d��1

, d�+1

, . . . , dn)

represents one of the m = Mn�1 possible symbol sequences, ✓ is the starting phase

considered to be an independent random variable uniformly distributed in (0, 2⇡),

and n(t) is the AWGN with two-sided power spectral density of N0
2

watts/Hz and

mean equal to zero. Following arguments similar to those in Chapter 2, the solution

to the detection problem stated in (4.28) is the likelihood ratio test, modified by

taking expectation over composite parameters A and ✓. The likelihood functions can

be written as:

l1 =

Z

✓

m
X

k=1

exp

2

4

2

N0

nTs
Z

0

r(t) S(t, d� = +1, Ak, ✓) dt

3

5 p✓(✓) d✓

l2 =

Z

✓

m
X

k=1

exp

2

4

2

N0

nTs
Z

0

r(t) S(t, d� = �1, Ak, ✓) dt

3

5 p✓(✓) d✓

.

.

.

.

.

.

lM�1 =

Z

✓

m
X

k=1

exp

2

4

2

N0

nTs
Z

0

r(t) S(t, d� = +(M � 1), Ak, ✓) dt

3

5 p✓(✓) d✓

lM =

Z

✓

m
X

k=1

exp

2

4

2

N0

nTs
Z

0

r(t) S(t, d� = �(M � 1), Ak, ✓) dt

3

5 p✓(✓) d✓

(4.29)
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where

p✓(✓) =

8

>

>

<

>

>

:

1

2⇡
0  ✓  2⇡

0, otherwise

(4.30)

Upon performing integration in (4.29), the likelihood functions become:

lj =
m
X

k=1

I
0

✓

2

N
0

Zjk

◆

, j = 1, 2, . . . ,M (4.31)

where

Z2

jk = I2jk +Q2

jk (4.32)

with

Ijk =

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

nT
S

Z

0

r(t) S(t, d� = +j, Ak, 0) dt, j odd

nT
S

Z

0

r(t) S(t, d� = �(j � 1), Ak, 0) dt, j even

(4.33)

and

Qjk =

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

nT
s

R

0

r(t) S(t, d� = +j, Ak,
⇡

2
) dt, j odd

nT
R

0

r(t) S(t, d� = �(j � 1), Ak,
⇡

2
) dt, j even

(4.34)

In (4.31) I
0

(·) is the modified zero-order Bessel function.

The structure of the optimum receiver implied by (4.31) is shown in Fig. 4.11.

The optimum non-coherent receiver derived from (4.31) essentially consists of a bank

Mn�1 matched filters, for each d� (±1, . . . ,±(M � 1)), whose outputs are envelope-

detected and weighted with the nonlinearity I
0

(·) to formM sum terms, l
1

, l
2

, . . . , lM ,
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before a decision on d� is made. Mathematically, the decision rule for the optimum

non-coherent receiver for M -CPCM is given by:

lk = max {l
1

, l
2

, . . . , lm} (4.35)

and the decision based on this is:

d̂� =

8

>

>

<

>

>

:

k, k odd

�(k � 1), k even

(4.36)

The optimum non-coherent receiver for M -CPCM is twice as complex as that of the

corresponding optimum coherent receiver. However, in the case of the former no

phase recovery circuit is required.

4.3.2 Symbol Error Probability Analysis

At high values of SNR, a sub-optimum receiver with symbol error rate performance

close to the optimum receiver can be obtained. That is, at high SNR:

m
X

i=1

I
0

✓

2

N
0

Zji

◆

⇠= I
0

✓

2

N
0

Z̃j

◆

(4.37)

where

Z̃j = max
�

Zj1, Zj2, . . . , Zjm
 

(4.38)

since I
0

(x) is a monotonic function of x, the decision rule for the sub-optimum re-

ceiver is to choose max
�

Zji; j = 1, . . . ,M, i = 1, . . . ,m
 

. The sub-optimum receiver

is shown in Fig. 4.12. An exact evaluation of the performance of this receiver is not

possible. However, the union bound [40] will provide a tight performance estimate

at high SNR. Given d� = u, and Ak, the conditional probability of symbol error is

bounded by:
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PM (✏|u,Ak) <
M
X

v=1

m
X

j=1

Pr
⇥

Zvj > Zuk|u,Ak

⇤

(4.39)

Averaging over all Ak, k = 1, 2, . . . , n, we get:

PM (✏|u) < 1

m

M
X

u=1

m
X

j=1

m
X

k=1

Pr
⇥

Zvj > Zuk|u
⇤

(4.40)

where P (Ak) = 1

m , k = 1, 2, . . . ,m. Averaging over all u, v 6= u, the symbol error

rate can be written as:

PM (✏) <
1

M

1

m

M
X

u=1

M
X

v=1

v 6=u

m
X

j=1

m
X

k=1

Pr
⇥

Zvj > Zuk

⇤

(4.41)

By observing that Z�,k, � = 1, 2, . . . ,M and k = 1, 2, . . . , n are Rician random

variables, probability of one Rician random variable [3] exceeding another in (4.41)

is given by:

Pr
⇥

Zvj > Zuk

⇤

=
1

2

⇣

1�Q(
p
b,
p
a) +Q(

p
a,
p
b)
⌘

(4.42)

where

a =
nEs

2N
0



1�
q

1� |⇢c(vj, uk)|2
�

(4.43)

b =
nEs

2N
0



1 +
q

1� |⇢c(vj, uk)|2
�

(4.44)
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In (4.43) and (4.44), nE
s

N0
represents the signal-to-noise ratio and ⇢c(vj, uk) is the

correlation between complex envelopes Sc(t, d� = v, Aj) and Sc(t, d� = u,Ak) respec-

tively. The complex envelopes are given by:

Sc(t,�, A) =

r

2Es

Ts
exp [j�(t,�, A)] (4.45)

In (4.42), Q(·, ·) represents the Marcum-Q function [3] given by:

Q(x, y) =

1
Z

y

exp�


x2 + u2

2

�

I
0

(xu) u du (4.46)

The quantity ⇢(·, ·) in (4.43) and (4.44) for M -CPCM is given by:

⇢c(vj, uk) =
1

2nEs

nT
s

Z

0

Sc(t, d� = v, Aj) Sc(t, d� = u,Ak) dt (4.47)

That is,

⇢(vj, uk) =
1

n

n
X

i=1

1

Ts

T
s

Z

0

exp [j�(t, vj, uk)] dt (4.48)

using (4.1), the phase can be written as:

�i(t, vj, uk) = (dji � dki )g(t� (i� 1)Ts) + ⇡q
i�1

X

r=1

(djr � dkr ) (4.49)

and represents the phase di↵erence during the ith symbol interval between signals

S(t, d� = v, Aj) and S(t, d� = u,Ak). It is noted that the complex correlation is a

function of the di↵erence of the jth and kth data sequences. Denoting these sequences

as (dj
1

, d
j
2

, . . . , d
j
��1

d
j
�+1

, . . . , d
j
n) and (dk

1

, dk
2

, . . . , dk��1

dk�+1

, . . . , dkn), the correlation in

(4.46) can be written as:

⇢(vj, uk) = ⇣(�̃) =
n
X

i=1

⇣(�i) (4.50)
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where �̃ = (�
1

, �
2

, . . . , ���1

, ��, ��+1

, . . . , �n) with �� = v � u and �i = d
j
i � dki ; i =

1, 2, . . . , � � 1, � + 1, . . . , n. For M -CPCM signals:

⇣(�i) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

exp(jPi), �i = 0

(2⇡|�i|w)�1/2 exp j
⇥

Pi + sgn(�i)
⇡
4w |�i|(q + w)2

⇤

⇥

{[C(X) +C(Y )]� j sgn(�i) [S(X) + S(Y )]} , �i 6= 0

(4.51)

where

Pi = ⇡q
i�1

X

r=1

�r

X = (|�i|/2w)1/2(w � q)

Y = (|�i|/2w)1/2(w + q)

Using (4.51), an expression easy for computation of symbol error rate can be written.

That is:

PM (✏) < (M � 1) Mn�1

Z

�̃

1

2

h

1�Q(
p
b,
p
a) +Q(

p
a,
p
b)
i

p(�̃) d�̃ (4.52)

where
R

�̃ d�̃ and p(�̃) are as given in (4.23) and (4.24).

4.3.3 Numerical Results and Discussion

The general error probability upper bound on the performance of optimum non-

coherent M -CPCM receiver can be computed using (4.52). As in the coherent case,

the symbol error probability is a function of: i) n, ii) Eb/N0

, iii) M , iv) �, and (q, w).

The set of signal modulation parameters (q, w) that should be chosen is obviously the

one that minimizes the symbol error probability upper bound of (4.52). Optimum
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sets of modulation parameters have been determined numerically, as analytical min-

imization of (4.52) is di�cult to perform. The minimization have been carried out

over (0, 0) < (q, w)  (2, 10) and at SNR=8 dB. Optimum (q, w) sets for 2-, 4-, and

8-CPCM non-coherent systems as a function of n and � are shown in Tables 4.10 to

4.12.

Table 4.10: Optimum (q, w) sets for non-coherent 2-CPCM system as a function of
n and �

n � optimum (q, w)

2
1 (0.53, 3.45)

2 (0.48, 1.25)

3

1 (0.78, 3.85)

2 (0.50, 3.45)

3 (0.31, 1.70)

4

1 (0.21, 2.00)

2 (0.69, 3.90)

3 (0.69, 5.00)

4 (0.85, 4.00)

5 3 (0.26, 2.60)
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Table 4.11: Optimum (q, w) sets for non-coherent 4-CPCM system as a function of
n and �

n � optimum (q, w)

2 2 (0.86, 4.80)

3 2 (0.76, 4.80)

4 2 (0.76, 4.65)

5 3 (0.75, 4.65)

Table 4.12: Optimum (q, w) sets for non-coherent 8-CPCM system as a function of
n and �

n � optimum (q, w)

2 2 (0.92, 4.00)

3 2 (0.88, 4.70)

2-CPCM System

It is noted that for non-coherent 2-CPCM system, the optimum modulation parame-

ters is a function of the choice of the position of the decision symbol. For n odd, best

error rates are achieved when decision is made on the middle symbol. For example,

if n = 3, and n = 5, � = 2 and � = 3, respectively, provide the least symbol error

rates. However, when n is even, decision made on one of the middle bits provides

the best performance. That is, for n = 4, � could be either 2 or 3. The symbol error

probability upper bound on the performance of the optimum non-coherent 2-CPCM

receiver is shown in Fig. 4.13 for n = 3 and n = 5 using the optimum (q, w) sets.
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Figure 4.13: Error probability performance of non-coherent 2-CPCM for n = 3 and 5

An overall gain of about 1 dB is possible with non-coherent 2-CPCM (with n = 5)

relative to coherent BPSK. Also, the same 2-CPCM system is superior to non-coherent

orthogonal FSK by nearly 4.3 dB. In Fig. 4.14, symbol error rates for non-coherent 2-

CPFSK for n = 3 and 5 using h = 0.715 are shown and Table 4.13 shows a comparison

of symbol error rates between 2-CPCM and 2-CPFSK non-coherent systems. It is

observed that the 2-CPCM is marginally superior to 2-CPFSK, when non-coherent

detection is employed.



Chapter 4: Detection and Performance of M-CPCM in AWGN Channel 109

Eb/N0, dB
2 4 6 8 10 12 14

P
2
(ϵ
)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

BPSK
n=3
n=5

Figure 4.14: Error probability performance of non-coherent 2-CPFSK for n = 3 and
5) [43]

Table 4.13: Error probability of 2-CPCM and 2-CPFSK at SNR= 6, 8, and 10 dB

SNR (dB)
2-CPCM

(n = 3)

2-CPFSK

(n = 3)

2-CPCM

(n = 5)

2-CPFSK

(n = 5)
BPSK

6 1.03⇥10�2 1.30⇥10�2 4.14⇥10�3 4.07⇥10�3 1.03⇥10�2

8 6.79⇥10�4 9.92⇥10�4 1.29⇥10�4 1.32⇥10�4 6.79⇥10�4

10 1.20⇥10�5 2.11⇥10�5 7.95⇥10�7 9.57⇥10�7 1.19⇥10�5

4-CPCM System

For 4-CPCM non-coherent system upper bound symbol error rates are shown in Fig.

4.15 for n = 3 and n = 5. In the same figure, the performance of coherent QPSK is

also shown. It is noted that the plots in this figure show symbol error rates vs. SNR

per bit. In Fig. 4.16, upper bound symbol error rates for 4-CPFSK (n = 3 and n = 5)
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non-coherent receiver are shown. From these figures, it is observed that 4-CPCM non-

coherent system marginally outperforms 4-CPFSK when n = 5 is employed. Both

these systems outperform coherent QPSK. There is an advantage of nearly 1 dB is

going from n = 3 to n = 5 in the case of non-coherent 4-CPCM system.
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Figure 4.15: Error probability performance of non-coherent 4-CPCM systems for
n = 3 and 5
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Figure 4.16: Error probability performance of non-coherent 4-CPFSK h = 0.715 for
n = 3 and 5 [43]

Table 4.14: Error probabilities for non-coherent 4-CPCM and 4-CPFSK at
E
b

N0
= 6, 8, and 10 dB

SNR (dB)
4-CPCM

(n = 3)

4-CPFSK

(n = 3)

4-CPCM

(n = 5)

4-CPFSK

(n = 5)

QPSK

6 3.39⇥10�3 2.89⇥10�3 5.24⇥10�4 5.35⇥10�4 4.78⇥10�3

8 4.32⇥10�5 3.04⇥10�5 1.98⇥10�6 2.46⇥10�6 3.82⇥10�4

10 8.56⇥10�8 3.97⇥10�8 6.77⇥10�10 1.02⇥10�9 7.74⇥10�6

4.4 Conclusions

In this Chapter, coherent and non-coherent detection of M -CPCM signals in AWGN

are addressed. Structures of optimum coherent and non-coherent receivers are de-
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rived. Precise performance analysis of these receivers is too complex to carry out

analytically and hence upper bounds on their performance are determined, at high

SNR, using union bounding technique. Closed-form expressions for symbol error

probability are derived that are simpler from the viewpoint of numerical computa-

tion. Symbol error rates, for both coherent and non-coherent receivers are functions

of: i) Signal-to-noise ratio
E
b

N0
, ii) observation length of the receiver n, iii) Number of

levels used in the modulator M , iv) Signal modulation parameters (q, w), and v) the

location of the decision symbol �, within the observation length. Optimum coherent

and non-coherent M -CPCM systems have been identified, through minimization of

the symbol error rates, as a function of observation length of the receivers and the

location of the decision symbol.

Coherent 2-, 4-, and 8- CPCM designs exist and can o↵er SNR advantage

of 1.6, 3.6 and 7 dB relative to coherent BPSK, coherent QPSK, and coherent 8-

PSK systems. In the case of coherent M -CPCM receivers, the location of decision

symbol (�) has no e↵ect on the symbol error rate. Similarly, non-coherent 2-, 4-, 8-

CPCM systems can be designed that are superior in performance relative to coherent

BPSK, coherent QPSK, and octal PSK systems, respectively. In the case ofM -CPCM

non-coherent receiver, it is observed that the location of decision symbol � plays an

important role and the optimum decision symbol location is given by � = int(n
2

) + 1,

for n odd and � = (n
2

) or � = (n
2

) + 1 for n even. However, for coherent M -CPCM

receiver, the symbol error rate is independent of the location, 1  �  n, of the

decision symbol.
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Chapter 5

Multi-Mode Multi-Level Continuous

Phase Chirp Modulation: Coherent

Detection

5.1 Introduction

In Chapters 3 and 4, multi-level chirp modulation with memory is examined. In this

modulation, the phase of the modulated signals is constrained to be continuous. It

is this phase continuity that introduces memory into the signals. In M -CPCM, the

set of signal modulation parameters (q, w) is held the same from symbol-to-symbol

intervals. However, it is well known [3], [25] that impressive gains in performance can

be obtained by using time-varying modulation parameters. The purpose of this Chap-

ter is to use this concept of time-varying modulation parameters in multi-level chirp

modulation and examine its performance in AWGN channel. The class of modulation

considered is referred to as multi-mode M -CPCM.

5.2 Multi-mode M-CPCM Signals

Multi-mode M -CPCM signals can be written as:

S(t, d) =
q

2E
s

T
s

cos(wct+ �(t, d) + ✓), 0  t  nTs (5.1)
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where Es, Ts, wc, d, and ✓ have the same meaning as explained in Chapter 3. The set

of modulation parameters used during any symbol interval is chosen cyclically from

a set ⌦k of K sets of modulation parameter. That is, from the set:

⌦K = {(q
1

, w
1

), (q
2

, w
2

), . . . , (qK , wK)} (5.2)

For example, the set used during the first symbol interval is (q
1

, w
1

) and during

the 2nd, 3rd, . . . , Kth symbol intervals sets (q
2

, w
2

), (q
3

, w
3

), . . . , (qK , wK) are used.

From (K+1) to (K+K), again sets (q
1

, w
1

), . . . , (qK , wK) are going to be employed.

This process goes on and on. In other words, the set of modulation parameters used

during the (i + K)th symbol interval is same as that used during the ith symbol

interval. That is:

(qi+K , wi+K) = (qi, wi), i = 1, 2, . . . (5.3)

In (5.1), the information carrying phase is given by:

�(t, d) = dig(t� (i� 1)Ts) + ⇡
i�1

P

l=0

ql dl, (i� 1)Ts  t  iTs (5.4)

where

g(t) =

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

0, t  (i� 1)Ts, t> iTs

2⇡
t
R

0

f(⌧)d⌧, (i� 1)Ts  t  iTs

⇡qi = ⇡(hi � wi), t = iTs

(5.5)

and f(·) is the instantaneous frequency during the ith interval and is given by:

f(t) =

8

>

>

<

>

>

:

0, t  (i� 1)Ts, t> iTs
⇣

h
i

2T
s

⌘

�
✓

w
i

T 2
s

◆

t, (i� 1)Ts  t  iTs

(5.6)
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using (5.6) in (5.5), the phase function g(t) can be written as:

g(t) =

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

0, t  (i� 1)Ts, t> iTs

⇡

⇢

hi

⇣

t
T
s

⌘

� wi

⇣

t
T
s

⌘

2

�

, (i� 1)Ts  t  iTs

⇡qi = ⇡(hi � wi), t = iTs

(5.7)

The number of sets of modulation parameters K defines how many modes exist. For

example, if K = 2, the modulation is referred to as 2-mode M -CPCM or dual-mode

M -CPCM, if K = 3 we get 3-mode (or triple-mode) M -CPCM, and so on. In Fig.

5.1 are shown instantaneous phase and frequency for a dual-mode 2-CPCM system.
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Figure 5.1: Phase (a) and instantaneous frequency (b) for a dual-mode 2-CPCM
system

In Fig. 5.2 is shown the evolution of phase as a function of time for a dual-mode

2-CPCM system (with the starting phase ✓ = 0). One of the important features of

dual-mode 2-CPCM is observed in Fig. 5.2. The first merge in the phase tree occurs

for dual-mode 2-CPCM after 3-symbol intervals, unlike after 2 symbols for 2-CPCM

(Fig. 3.5). Mono-mode M -CPCM or simply M -CPCM signals in Chapter 4 (Section
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4.2) were modeled as S(t, d�, A, ✓), 0  t  nTs. However, in the case of multi-mode

M -CPCM slight modification is required to reflect the sequence of sets of modulation

parameters used. Thus, the transmitted signal in the case of multi-mode M -CPCM is

modeled as Sp(t, d�, A, ✓), where p denotes the specific sequence of signal parameter

sets ((q
1

, w
1

), (q
2

, w
2

), . . . , (qn, wn) used over n symbol intervals of the signal. For

⌦K = {(q
1

, w
1

), . . . , (qK , wK)}, it is fairly easy to see that p = K, regardless of n.
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Figure 5.2: Phase tree for dual-mode 2-CPCM system
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For example, for ⌦
2

= {(q
1

, w
1

), (q
2

, w
2

)} and n = 4 (say), the unique permutations

possible are:

(q
1

, w
1

), (q
2

, w
2

), (q
1

, w
1

), (q
2

, w
2

)

(q
2

, w
2

), (q
1

, w
1

), (q
2

, w
2

), (q
1

, w
1

)

The delay merges in the phase tree results in better distance properties and hence

better SNR gain in the case of dual-mode 2-CPCM when compared to mono-mode

2-CPCM. In this thesis, only dual-mode M -CPCM systems are considered.

5.3 Optimum Coherent Receiver and

Performance Analysis

The received waveform over n-symbol intervals can be written as:

r(t) = Sp(t, d�, A) + n(t), 0  t  nTs (5.8)

where Sp(·, ·, ·) denotes the transmitted multi-mode M -CPCM signal. n(t) is the

AWGN with two-sided power spectral density of N0
2

watts/Hz, d� is the decision sym-

bol taking values from the set {±1,±3, . . . ,±(M�1)} andA = (d
1

, d
2

, . . . , d��1

, d�+1

, dn)

denotes one of the m = Mn�1 possible sequences. Again, the detection strategy is

to observe r(t), 0  t  nTs, and arrive at a optimum decision on d�. In (5.8), p

denotes one of the K possible sequences of signal modulation parameters sets. Fol-

lowing the developments presented in Chapter 4 for coherent detection of M -CPCM,

the M likelihood functions are given by:

l
p
� =

m
X

k=1

exp



2

N
0

x
p
�k

�

(5.9)
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where � = 1, 2, . . . ,M and

x
p
�k =

8

>
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>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

nT
Z

0

r(t)Sp(t, d� = �, Ak) dt, � odd

nT
Z

0

r(t)Sp(t, d� = �(�� 1), Ak) dt, � even

(5.10)

The receiver structure dictated by (5.9) is shown in Fig. 5.3 computes
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Figure 5.3: Optimum coherent multi-mode M -CPCM receiver
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l
p
�,� = 1, 2, . . .M and chooses the largest of these to arrive at an estimate d̂� of d�.

That is, the receiver computes:

l
p
k = max{lp

1

, l
p
2

, . . . , l
p
M} (5.11)

and decides

d̂� =

8

>

>

<

>

>

:

k, k odd

�(k � 1), k even

(5.12)

It is noted that the transmitter and the receiver must know p precisely. The perfor-

mance of the optimum receiver can be bounded at high SNR using union bounding

technique used in Chapter 4 and the upper and lower bounds for symbol error rate

are given by:

PM (✏) <
1

KmM

K
X

p=1

M
X

u=1

M
X

v=1

v 6=u

m
X

j=1

m
X

k=1

Q

"

s

nEs

N
0

(1� ⇢p(vj, uk))

#

(5.13)

and

PM (✏) >
1

K

1

M

1

m

K
X

p=1

M
X

u=1

M
X

v=1

v 6=u

m
X

k=1

Q

"

s

nEs

N
0

(1� ⇢p⇤(v, uk))

#

(5.14)

where

⇢p⇤(v, uk) = max {⇢p(vj, uk), j = 1, 2, . . . ,m} (5.15)

The normalized correlation ⇢p(vj, uk) is given by:

⇢p(vj, uk) =
1

nEs

nT
s

Z

0

Sp(t, d� = v, Aj)S
p(t, d� = u,Ak) d(t) (5.16)
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For multi-mode M -CPCM, a closed-form expression for (5.16) has been obtained and

is given by:

⇢p(vj, uk) =

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

cos(⇡
l�1

P

r=1

�rq
p
r ), �l = 0

1
q

2|�l|w
p
k

[cos(⌥ p
l )�

p
l + sin(⌥ p

l )⇥
p
l ], �l 6= 0

(5.17)

where

⌥
p
l =

1

4wp
l

⇡|�l|(w
p
l � q

p
l )

2 + sgn(ajl � akl )⇡
l�1

X

r=1

�rq
p
r

�p
l = C(�) + C(�)

⇥
p
k = S(�) + S(�)

and

� =

s

|�l|
2wp

l

(wp
l � q

p
l )

� =

s

|�l|
2wp

l

(wp
l + q

p
l )

The parameters wp
l and q

p
l belongs to the lth set of the pth of K possible sequences

of sets {(q
1

, w
1

), (q
2

, w
2

), . . . , (qn, wn)}.

5.4 Numerical Results and Discussion

The expressions given in (5.13) and (5.14) can be used to compute upper and lower

bounds on symbol error probability at high SNR. It is noted that these two bounds

become the same for SNRs � 6 dB, thereby implying the bounds are tight and hence
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we work with high SNR upper bound. The symbol error rate performance of the

optimum coherent receiver is a function of i) E
s

N0
, ii) M , iii) �, iv) n, and v) ⌦k,

the set of K sets of signal modulation parameters. In order to find the optimum

⌦ = {(q
1

, w
1

), . . . , (qK , wK)}. The upper bound expression given in (5.13) can be

minimized as a function of M , ⌦k, and n at high-SNR. This exercise has been carried

out at
E
b

N0
= 6, 8, and 10 dB for dual-mode (K = 2) 2-, 4-, and 8-CPCM systems. The

minimization has been carried out in the signal parameter range given by 0 < w  5

and 0 < q
1

, q
2

 2 and the results are given in Table 5.1 to 5.3 for M = 2, 4, and

8-CPCM, respectively.

Table 5.1: Optimum dual-mode 2-CPCM modulation parameter sets

SNR (dB)
(q
1

, q
2

;w
1

)

n=2 n=3 n=4 n=5

6 (0.28, 0.28; 1.85) (0.26, 0.49; 1.37) (0.27, 0.49; 1.62) (0.30, 0.49; 1.63)

8 (0.27, 0.27; 1.88) (0.26, 0.49; 1.36) (0.27, 0.49; 1.68) (0.30, 0.50; 1.68)

10 (0.26, 0.26; 1.93) (0.26, 0.49; 1.35) (0.28, 0.50; 1.66) (0.31, 0.50; 1.58)

(q1, q2;w1) is used to denote ⌦2 = {(q1, w1), (q2, w1)}

Table 5.2: Optimum dual-mode 4-CPCM modulation parameter sets

SNR (dB)
(q
1

, q
2

;w
1

)

n=2 n=3 n=4

6 (0.24, 0.25; 2.73) (0.41, 0.40; 2.46) (0.40, 0.39; 2.49)

8 (0.25, 0.24; 2.73) (0.39, 0.40; 2.45) (0.41, 0.39; 2.51)

10 (0.25, 0.25; 2.72) (0.40, 0.40; 2.46) (0.38, 0.40; 2.49)

(q1, q2;w1) is used to denote ⌦2 = {(q1, w1), (q2, w1)}

To reduce number of computation in the evaluation of upper bound, a simplified

expression for the probability of error similar to the expression used in Chapter 4 has

been used. Fig. 5.4 shows the error probability performance of dual-mode 2-CPCM

system for observation intervals n = 2, 3, 4 and 5. Fig. 5.5 shows the performance
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Table 5.3: Optimum dual-mode 8-CPCM modulation parameter sets

SNR (dB)
(q
1

, q
2

;w
1

)

n=2 n=3

6 (1.11, 1.12; 4.13) (0.87, 0.89; 4.71)

8 (1.10, 1.11; 4.10) (0.89, 0.89; 4.69)

10 (1.10, 1.12; 4.12) (0.88, 0.89; 4.68)

(q1, q2;w1) is used to denote ⌦2 = {(q1, w1), (q2, w1)}

of mono-mode 2-CPCM along with dual mode 2-CPCM for n = 4 and 5. The

optimum dual-mode 2-CPCM with 4 observation intervals outperforms the mono-

mode 2-CPCM with 5 observation intervals by nearly 0.5 dB. Table 5.4 shows symbol

error probabilities for both systems at
E
b

N0
= 6, 8, and 10 dB.
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Figure 5.4: Error probability performance of dual-mode 2-CPCM for n = 2, 3, 4 and
5 and BPSK



Chapter 5: Multi-Mode Multi-Level Continuous Phase Chirp Modulation: Coherent
Detection 123

Eb/N0, dB
4 6 8 10

P
2
(ϵ
)

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

n=4 (q
1
=0.27, q

2
=0.49; w=1.68)

n=5 (q
1
=0.30, q

2
=0.50; w=1.68)

n=4 (q=0.23, w=2.22)
n=5 (q=0.22, w=2.33)

Figure 5.5: Error probability performance of dual-mode and mono-mode 2-CPCM
for n = 4 and 5

Table 5.4: Error probabilities of dual-mode and mono-mode 2-CPCM systems at
E
b

N0
= 6, 8, 10 dB

SNR (dB)
Dual-mode 2-CPCM Mono-mode 2-CPCM

n = 3 n = 4 n = 4 n = 3 n = 4 n = 5

6 5.14⇥10�4 2.33⇥10�4 1.50⇥10�4 6.45⇥10�4 4.24⇥10�4 3.56⇥10�4

8 1.11⇥10�5 2.89 ⇥10�6 1.37⇥10�6 1.79⇥10�5 1.09⇥10�5 9.31⇥10�6

10 3.24⇥10�8 4.38⇥10�9 1.30⇥10�9 9.15⇥10�8 5.53⇥10�8 4.56⇥10�8

In Fig. 5.6, performance of dual-mode 4-CPCM for n = 2, 3, and 4, along with the

performance of coherent QPSK are shown. It is observed that dual-mode 4-CPCM

outperforms coherent QPSK by almost 4, 3.5, and 2 dB for observation intervals

n = 2, 3, and 4, respectively.
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Figure 5.6: Error probability performance of dual-mode 4-CPCM for n = 2, 3, and 4

To compare dual-mode 4-CPCM with corresponding mono-mode system, in Fig. 5.7

performances of these systems for n = 3, and 4 are shown. The performance of

dual-mode system with n = 3 is almost identical to the performance of mono-mode

system with n = 4. This improvement in the performance comes at the cost of

increased complexity of dual-mode system. Also, it is observed that dual-mode 4-

CPCM outperforms corresponding mono-mode system by nearly 0.25 dB. Table 5.5

shows error probabilities of both mono- and dual-mode 4-CPCM systems at
E
b

N0
= 6,

8, and 10 dB.
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Figure 5.7: Error probability performance of dual-mode and mono-mode 4-CPCM
for n = 3 and 4

Table 5.5: Error probabilities of dual-mode and mono-mode 4-CPCM at
E
b

N0
= 6, 8,

10 dB

SNR (dB)
Dual-mode 4-CPCM Mono-mode 4-CPCM

n = 2 n = 3 n = 4 n = 2 n = 3 n = 4

6 2.69⇥10�4 4.74⇥10�5 2.04⇥10�5 2.73⇥10�4 6.78⇥10�5 3.27⇥10�5

8 1.66⇥10�6 8.16⇥10�8 4.77⇥10�8 2.43⇥10�6 2.09⇥10�7 1.02⇥10�7

10 6.26⇥10�10 3.49⇥10�12 1.73⇥10�12 2.24⇥10�9 4.28⇥10�11 1.99⇥10�11

In Fig. 5.8, performance of dual-mode 8-CPCM for n = 2 and 3 is shown. In the same

figure performance of coherent 8-PSK is also shown. Fig. 5.9 shows performances

of both mono-mode and dual-mode 8-CPCM. It is observed that dual-mode system

outperform mono-mode by nearly 0.2 dB for n = 2 and 3. Table 5.6 summarizes the

performance of both mono- and dual-mode 8-CPCM systems.
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Figure 5.8: Error probability performance of dual-mode 8-CPCM for n = 2 and 3
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Figure 5.9: Error probability performance of dual-mode and mono-mode 8-CPCM
for (n = 2 and 3)
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Table 5.6: Error probabilities of dual-mode and mono-mode 8-CPCM at
E
b

N0
= 6, 8,

10 dB

SNR (dB)
Dual-mode 8-CPCM Mono-mode 8-CPCM

n = 2 n = 3 n = 2 n = 3

6 2.52⇥10�5 5.43⇥10�6 6.23⇥10�5 9.39⇥10�6

8 2.35⇥10�8 2.21⇥10�9 1.22⇥10�7 8.05⇥10�9

10 4.69⇥10�13 1.66⇥10�14 9.04⇥10�12 1.95⇥10�13

5.5 Conclusions

In this Chapter, the concept of time varying modulation parameters has been applied

to multi-level chirp modulation. The performance of these signals in AWGN is exam-

ined. Structure of the optimum coherent multi-mode M -CPCM receiver is derived

and its performance analysis is presented. Closed-form expression for symbol error

probability is derived for multi-mode M -CPCM. Optimum dual-mode M -CPCM sys-

tems have been identified, through minimization of symbol error rate, as a function of

observation length of the receiver, number of levels of data, and the received signal-

to-noise ratio
E
b

N0
. It has been found that dual-mode 2-, 4-, and 8-CPCM outperform

corresponding mono-mode 2-, 4-, and 8-CPCM by nearly 0.5 dB, 0.25 dB and 0.2 dB,

respectively. In the case of multi-mode M -CPCM coherent receiver, the location of

decision symbol, �, has no e↵ect on its performance.
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Chapter 6

Memoryless Multi-level Chirp Modulation

over Fading Channels

6.1 Introduction

In Chapter 2, memoryless multi-level chirp modulated signals are proposed for data

transmission and investigated over AWGN channel. Closed-form expression for sym-

bol error rate of a digital communication system employing M -CPCM is derived and

used to determine optimum chirp signaling techniques. However, the dominant con-

sideration in the design of communication systems employing wireless technologies

will be their ability to perform over channels perturbed by a lot of impairments, not

the least of which is the multi-path fading and shadowing. Thus, the objective of

this Chapter is to examine the performance of multi-level chirp modulation. In par-

ticular, closed-form expressions for symbol error rates are derived over: i) Rayleigh,

ii) Nakagami-m, and iii) Generalized-K (KG) fading and shadowing environments

for communication systems employing multi-level chirp modulation. Illustrations are

then provided using these expressions to assess the performance of M -CPCM over

fading channels.

6.2 Fading Channel Models

Wireless channel introduces various impairments and e↵ects including short-term fad-

ing and long-term fading (shadowing) which cause serious degradation of signal-to-

noise ratio (SNR) leading to poor BER performance. Over here, the performance of
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the optimum M -CPCM receiver over short-term and long-term fading (shadowing) is

evaluated. The received M -CPCM signal over the fading channel can be written as:

r(t) = h(t) ⇤ S(t, d�, A, ✓) + n(t), 0  t  nTs (6.1)

where h(t) = ↵�(t) is the impulse response of the channel and n(t) is AWGN.

The instantaneous SNR per symbol and the average SNR are � = ↵2Es/N
0

and

�̄ = ⌦Es/N
0

, where ⌦ = E{↵2} and Es = Eb log2(M). The average symbol er-

ror probability of M -CPCM (PM (✏)) over fading channel is determined by averaging

the conditional error probability over the Probability Density Function (PDF) of the

fading model and is given by [44]:

Pav =

1
Z

0

p�(�) PM (✏|�) d� (6.2)

where p�(�) is the density of � and PM (✏|�) is the conditional symbol error probability

of M -CPCM over AWGN channel.

6.2.1 Rayleigh Fading Channel

Rayleigh fading channel is used to model multi-path fading channel when there is

no Line-of-Sight (LOS) path between the transmitter and the receiver antennas. It

is commonly used in many di↵erent environments. The density that describes the

Rayleigh fading channel is given by [44]:

p↵(↵) =
2↵

⌦
exp

✓

�↵2

⌦

◆

, ↵ � 0 (6.3)

6.2.2 Nakagami-m Fading Channel

Nakagami-m distribution is used to model a variety of fading environments. In par-

ticular, it is used to model a multi-path fading channel when there is a direct Line-

of-Sight (LOS) path between the transmitter and receiver. Also, it is a general distri-

bution used to model di↵erent fading environments by changing the parameter m of



Chapter 6: Memoryless Multi-level Chirp Modulation over Fading Channels 130

the model. For example, when m = 1, Nakagami-m distribution reduces to Rayleigh

distribution and as m ! +1, Nakagami-m distribution becomes identical to AWGN.

The Nakagami-m density is given by [44]:

p↵(↵) =
2mm↵2m�1

⌦m�(m)
exp

✓

�m↵2

⌦

◆

, ↵ � 0 (6.4)

where 0.5  m < 1 is the Nakagami-m fading parameter.

6.2.3 Generalized-K Fading and Shadowing Channel

The Generalized-K is a composite model used to describe both fading and shadowing

channel characteristics. This model represents a wireless channel subjected to short

and long-term fading. The density of the Generalized-K model is given by:

p↵(↵) = 2
⇣cm

⌦

⌘

c+m

2 ↵
c+m�2

2

�(c)�(m)
Kc�m

✓

2

r

cm

⌦
↵

◆

, � > 0 (6.5)

where Kc�m(.) is the modified Bessel function of order c�m, and �(.) is the Gamma

function [45]. The coe�cients c and m are the shadowing and fading parameters,

respectively. As m and c increase, the fading and shadowing become less sever. For

m and c ! 1, the channel approaches that of AWGN.

To compute the average symbol error probability in (6.2), the integral must be

evaluated for each fading model. In the next Section, closed-form expressions for the

average symbol error probabilities for M -CPCM communication system are derived

for the three fading environments described in this Section.
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6.3 Average Symbol Error Rate Expressions for

Memoryless M-CPCM

6.3.1 Rayleigh Fading Channel

When ↵ in (6.1) is Rayleigh, the density given in (6.3) of � is given by:

p�(�) =
1

�
exp

✓

��

�

◆

, � > 0 (6.6)

where � = ↵2Es

N0
and � = ⌦E

s

N0
(⌦ = E{↵2}). The symbol error probability expres-

sion for M -CPCM is given by (2.39) and is reproduced here for convenience:

PM (✏) <
1

M

M
X
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M
X

i=1

i 6=j

Q

"
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Es

N
0

(1� ⇢(i, j))

#

(6.7)

since received M -CPCM signal over fading channel is r(t) = ↵S(t, d�, A, ✓) + n(t),

the conditional symbol error probability is given by:

PM (✏|�) < 1

M

M
X

j=1

M
X

i=1

i 6=j

Q

"

s

Es

N
0

(1� ⇢(i, j))

#

(6.8)

where � = ↵2E
s

N0
. For M -CPCM signal ⇢(i, j) is given in (2.16) and:

Q(x) , 1p
2⇡

1
Z

x

e�
t

2
2 dt

which also can be written as [44]:

Q(x) =
1

⇡

⇡

2
Z

0

e

✓

� x

2

2sin2(✓)

◆

d✓ (6.9)
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Using (6.6), and (6.8), in (6.2), the average symbol error rate can be expressed as:

Pav =
1

⇡�M
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performing the integrations in (6.10), the average symbol error rate can be written

as:

Pav =
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6.3.2 Performance analysis over Nakagami-m Fading

Channel

The exponential function in (6.4) can be written as [46]:

exp

✓

�m
�

�

◆

= G
1,0
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�

�

�

0

◆

(6.12)

where G
q,p
a,b

�

x
�

�

...

...

�

is the Meijer G-function [45]. Q(·) term in (6.8) can be written

as [47]:
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using (6.12) and (6.13) in (6.2), the average symbol error rate can be written as:

Pav =
1

M
p
⇡

M
X

j=1

M
X

i=1

i 6=j

1
Z

0

�m�1G
2,0
1,2

✓

(1� ⇢(i, j))�
�

�

1

0, 1/2

◆

G
1,0
0,1

✓

m�

�

�

�

0

◆

d�

(6.14)
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By solving the integral in (6.14), a closed form expression for the symbol error rate

over Nakagami-m channel can be written as:

Pav =
1
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6.3.3 Generalized-K Fading and Shadowing Channel

The average symbol error rate Pav can be evaluated by using (6.8), (6.9), (6.2), (6.5)

and expressing the modified Bessel function in (6.5) as [46]:
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Thus, the integral of (6.2) can be expressed in terms of Miejer G-function as:
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solving (6.17), and the average symbol error probability (Pav) over KG-channel is

obtained in a closed form as:
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6.4 Numerical Results and Discussion

In Fig. 6.1 average symbol error rates for 2-level chirp (q = 0.36, w = 1.52), BPSK,

2-FSK, and DPSK over Rayleigh fading channel is shown as a function of normalized

SNR. Also, in the same figure performance of 2-level chirp over AWGN is shown. It

is observed that the performance of 2-level chirp is nearly the same as that of BPSK

and is better than 2-FSK and DPSK systems, over Rayleigh fading channel.



Chapter 6: Memoryless Multi-level Chirp Modulation over Fading Channels 134

Eb/N0, dB
0 5 10 15 20 25 30 35

P
2
(ϵ
)

10
-4

10
-3

10
-2

10
-1

2-CHIRP (AWGN)
2-CHIRP
BPSK
2-FSK
DPSK

Figure 6.1: Average symbol error rate performance of optimum 2-level chirp system
(q = 0.36, w = 1.52) over Rayleigh fading channel
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Figure 6.2: Average symbol error rate performance of 2-level chirp system over
Rayleigh fading channel as a function of w = 1.52 (optimum), 1, 4, 7, for a fixed

value of q = 0.36
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Figure 6.3: Average symbol error rate performance of 2-level chirp system over
Rayleigh fading channel as a function of q = 0.36 (optimum), 0.1, 0.2, 0.9, for a

fixed value of w = 1.52

Fig. 6.4 and Fig. 6.5 show symbol error probability performance of 4-level (q =

0.40, w = 2.40) and 8-level (q = 0.95, w = 0.25) chirp systems, respectively. These

chirp system perform poorly relative to 4-PSK and 8-FSK, respectively over Rayleigh

fading channel.
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Figure 6.4: Average symbol error rate performance of 4-level chirp system
(q = 0.40, w = 2.40) over Rayleigh fading channel
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Figure 6.5: Average symbol error rate performance of 8-level chirp system
(q = 0.95, w = 0.25) over Rayleigh fading channel

Figs. 6.6 to 6.8 show average symbol error rates for 2, 4, and 8-level chirp systems over

Nakagami-m fading channel. For the special case when m = 1, Nakagami-m reduces

to the well known Rayleigh model. The performance approaches AWGN performance
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Figure 6.6: Average symbol error rate performance of 2-level chirp system
(q = 0.36, w = 1.52) over Nakagami-m fading channel as a function of m
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Figure 6.7: Average symbol error rate performance of 4-level chirp system
(q = 0.40, w = 2.40) over Nakagami-m fading channel as a function of m

as m ! 1 because the line of sight (LOS) path dominates the received signal.

Also, it is noted that as M increases the symbol error rate increases for some fading

parameters m, at a fixed value of SNR. This observation can be utilized to design
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an adaptive modulation technique by changing the modulation order to increase the

bandwidth e�ciency or to improve the error rate performance to meet a certain

quality of service [48].

Eb/N0, dB
0 5 10 15 20 25 30 35

P
8
(ϵ
)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

8-ary (AWGN)
m=1
m=2
m=3
m=6
m=9
8-ary (Rayleigh)

Figure 6.8: Average symbol error rate performance of 8-level chirp system
(q = 0.95, w = 0.25) over Nakagami-m fading channel as a function of m

Figs. 6.9 to 6.11 show average symbol error rates for 2, 4 and 8-ary chirp system

over KG fading channel as a function of c and m. For comparison purposes, symbol

error rate over Rayleigh fading and AWGN channel are also plotted. Because of the

shadowing e↵ect, the performance over KG channel is poorer than the performance

over AWGN and Rayleigh channels. Several techniques may be used to mitigate the

e↵ect of shadowing and fading on the performance. For example, at a symbol error

rate of 10�4 for 2-level chirp system, performance deteriorates by 5, 14, and 27 dB

for generalized-K with c = 6, m = 8, generalized-K with c = 6,m = 2, and Rayleigh

channel model, respectively, with relative to the performance over AWGN channel.

To compensate for this degradation in performance, channel coding and/or diversity

techniques could be used. However, these techniques increase the channel bandwidth

and system complexity.
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Figure 6.9: Average symbol error rate performance of 2-level chirp system
(q = 0.36, w = 1.52) over KG fading channel as a function of c and m
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Figure 6.10: Average symbol error rate performance of 4-level chirp system
(q = 0.40, w = 2.40) over KG fading channel as a function of c and m
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Figure 6.11: Average symbol error rate performance of 8-level chirp system
(q = 0.95, w = 0.25) over KG fading channel as a function of c and m

6.5 Conclusions

In this Chapter, average symbol error rate performance of M -level chirp signals over

Rayleigh, Nakagami-m and Generalized-K fading and shadowing channels are con-

sidered. In particular, the performance of the optimum coherent symbol-by-symbol

detection receiver is examined for memoryless M -level chirp signals. New and easy-

to-compute closed-form expressions for average symbol error probability for digital

M -level chirp communication system impaired by additive white Gaussian noise and

three fading models are derived. The selected fading models represent most practical

wireless channels. The closed-form expressions derived are then used to illustrate the

performance of 2-, 4-, and 8-level chirp systems as a function of average bit energy to

noise ratio, and modulation and fading environment. It is found that the performance

of binary chirp system is very close to the performance of BPSK modulation and bet-

ter than the performance of 2-FSK and DPSK systems, over Rayleigh fading channel .

Also, it is noted that the e↵ect of shadowing on the performance is worse than fading

and as M increases, the symbol error rate increases for some fading parameters m at



Chapter 6: Memoryless Multi-level Chirp Modulation over Fading Channels 141

a fixed value of SNR. The technique used to estimate average symbol error rates over

fading channels can be used to design e�cient communication systems. Although

the results presented in this Chapter is for memoryless M -level chirp modulation, it

is fairly easy to extend the results to M -CPCM and multi-mode M -CPCM systems

treated in Chapter 4 and 5.
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Chapter 7

Spectral Characteristics of M-CPCM

Signals

7.1 Introduction

Like the error rate performance, the bandwidth that a signal occupies is considered

an important aspect of the total system performance. M -CPCM signals are constant-

envelop signals that do not have a limited bandwidth. As a result, di↵erent measures,

like power outside a certain frequency or the position of spectral nulls are useful

to assess the spectral e�ciency. In this Chapter, di↵erent ways to compute the

distribution of energy as a function of frequency in a digital signal are explored and

the direct method to compute the power spectral density for M -CPCM signals is

presented.

7.2 Spectral Calculation Methods

Power spectral density (PSD) describes the energy distribution for a signal with re-

spect to frequency. It is used to calculate the bandwidth that a signal occupies and

hence its bandwidth e�ciency. In the literature, there are many methods that are

used to calculate the power spectrum. Some of these are simple and straightforward

and some require complicated mathematical calculations. One approach is the auto-

correlation method in which the Fourier transform of time-averaged autocorrelation

is computed. This approach can only be applied to a system whose data produces

wide-sense stationary output. Another approach is the so-called direct approach in

which the Fourier transform of the signal is computed and then averaged. The limi-

tations of this method come from the complicated equations and the two-dimensional
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numerical integrations which are required for most schemes. Also, there are many

other approaches such as the simulation approach and the Markov chain which can

be used to measure the power spectra for any scheme. These approaches have not

proved satisfactory as they do not produce closed-form expressions for the spectra

or produce expression that are very di�cult to be translated into computer formu-

las. Moreover, some approaches apply only to frequency pulses that integrate to zero

and some require very long computation especially for high level M of modulation

and for pulses with changeable modulation parameters. In the next Section, a gen-

eral method to calculate the power spectrum is introduced. This method can handle

arbitrary M -level data and works for arbitrary set of modulation parameters [27].

7.3 Spectra of M-CPCM

The power spectrum of a stochastic signal x(t) is defined as [49]:

G(f) = lim
�!1



2

�
G�(f)

�

, f > 0 (7.1)

where

G�(f) = E

8

<

:

|
�
Z

0

x(t) exp [�j2⇡ft] dt|2
9

=

;

(7.2)

and E denotes the expectation operator. Using this definition of power spectrum,

many authors have derived closed-form expressions for the spectra of digital signals.

Applying the direct method developed in [27] to M -CPCM signals, the power spectra

of M -CPCM signals can be obtained. The method can handle arbitrary M -level data

and works for arbitrary sets of modulation parameters q and w. The one-sided low

pass spectrum is given by:

G(f) =
2

T̂
[p(f) + 2Re{F (f)F ⇤

b (f) exp(�j2⇡fT̂ ) + F (f)F ⇤
b (f)⇤(f)}] (7.3)
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where

⇤(f) = exp(�j4⇡fT̂ )
C(T̂ )

1� C(T̂ )exp(�j2⇡fT̂ )
(7.4)

and
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ˆT
Z
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exp(�j2⇡ft+ jbn(t)) dt (7.6)

C(T ) = E{exp(iBn)} (7.7)

Bn = bn(T̂ ) (7.8)

F (f) = E{Fn(f)} = M�k
X

n

Fn(f) (7.9)
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b (f) = E{F ⇤

n(f) exp(jBn)} = M�k
X

n
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n(f) exp(jBn) (7.10)

P (f) = E{|Fn(f)|2} = M�k
X

n

|Fn(f)|2 (7.11)

E denotes the expectation operator with respect to index n = 1, 2, · · ·Mk, T̂ = kT

is the signal interval in seconds and the factor k represents the cycle length (equal 1

for the single-mode signalling). In (7.5), the function f(⌧), f(⌧ � Ts), . . . , f(⌧ � kTs)

denotes the frequency function of M -CPCM during each time interval which were

defined in (Chapter 3, 3.6). The expressions (7.3) to (7.11) have been evaluated using
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Matlab to find the spectra of M -CPCM. Eqn. 7.6 involves numerical integration and

for which the adaptive Simpson quadrature method was used to solve the integra-

tion. As a cross check, the result of the well known power and bandwidth e�cient

modulation scheme MSK is considered first. In the chirp pulse, if the modulation

parameter w is set to zero, and q is 0.5, the pulse shape becomes same as the pulse

shape of MSK. The spectra of binary chirp (q = 0.5 and w = 0) is sketched by using

the direct method and by using the closed-form expression of the squared magnitude

of the Fourier transform given in [3]. In Fig. 7.1, power spectrum of 2-CPCM along

with spectrum of MSK are shown. It is noted that both spectra are identical.
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Figure 7.1: Power spectra of 2-CPCM (q = 0.5, w = 0.0) and MSK

In the next Section, spectra for someM -CPCM systems are plotted forM = 2, 4

and 8 and compared with other conventional systems. Note that, the spectra for

systems with values other than M=2 should be compared at the same bit rate. Thus,

all given plots are normalized to the bit rate which is given by:

Tb =
Ts

log
2

(M)
(7.12)
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7.4 Spectra of Mono-mode M-CPCM Signals

Fig. 7.2 shows the power spectra for 2-CPCM systems using sets of modulation pa-

rameters that minimizes the probability of error. It is observed that 2-CPCM can

o↵er di↵erent bandwidth occupancy by varying modulation parameter sets. Opti-

mum 2-level CPCM with bit by bit detection can o↵er 99% bandwidth at normalized

frequency of 0.56 Hz/bit/s, which is slightly better than the bandwidth o↵ered by

MSK (0.60 Hz/bits/s) but has a wider main lobe. However, this set of modulation

parameter does not provide a gain in dB relative to MSK. Also, it is noted that

other sets of modulation parameters can have di↵erent energy distributions and thus

power/bandwidth trades-o↵s are possible with these signals. Fig. 7.3 shows the power

spectra for modulation parameter sets that maximizes Euclidean distance over di↵er-

ent observation lengths. It is noted that the di↵erence between the maximum value

of power in the main lobe and the maximum value in the first side lobe is nearly 20

dB for 2-CPCM with (q = 0.30, w = 1.90) and 22 dB with (q = 0.20, w = 2.40).

This show significant signal energy distribution in side lobes. To examine the sensi-

tivity of 2-CPCM system with respect to modulation parameters, Fig. 7.4 shows the

power spectra for di↵erent modulation parameters sets with a fixed value of w = 1.5.

It is noted that the spectra are very sensitive to small change in the modulation

parameters q.
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Figure 7.2: Power spectra of 2-CPCM system
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Figure 7.3: Power spectra of 2-CPCM system
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Figure 7.4: Power spectra of 2-CPCM system for a fixed value of w

To compare di↵erent power spectra as a function of modulation level M , the spectra

of 4-CPCM and 8-CPCM systems are shown in Fig.7.5 to 7.7. It is found that as

M increases, spectra become smoother and smoother; however, the signal energy

distribution is almost the same throughout the spectrum.
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Figure 7.5: Power spectra of 4-CPCM system
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Figure 7.6: Power spectra of 4-CPCM system
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Figure 7.7: Power spectra of 8-CPCM system
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7.5 Conclusions

In this Chapter, the direct method to calculate the power spectra of M -CPCM is

investigated. Numerical results are exhibited for a variety of chirp signals of interest.

It is observed that M -level chirp signals can o↵er di↵erent bandwidth occupancy

by varying modulation parameters. These variations can be exploited to provide

a trade-o↵ between the error rate performance and the bandwidth e�ciency. It has

been shown that there exist some sets of modulation parameters that o↵er bandwidth

occupancy better than conventional scheme and thus making M -CPCM signals an

attractive modulation technique from the viewpoint of power and bandwidth trade-

o↵s.
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Chapter 8

Conclusion

8.1 Introduction

This Chapter summarizes the contributions of this thesis and the conclusions from

the results obtained. Also, the areas for further research in the light of the needs

of modern wireless communication systems are outlined. In Section 8.2, summary of

contributions to the thesis is given and in Section 8.3, suggestions for further research

work are outlined.

8.2 Summary of Contributions

In Chapter 2, a class of memoryless constant-envelope multi-level chirp signals is

proposed for data communication. The parameters of these signals are described

and illustrated. The ability of these signals to operate over AWGN is assessed using

minimum Euclidean distance criteria. Optimum modulation parameter sets (q, w)

that maximize the minimum distance have been determined for 2-, 4-, 8-, and 16-

level chirp modulated signals. Next, detection of these signals in AWGN is addressed

for coherent and non-coherent receptions. Error rate analyses are presented and

closed-form expressions for symbol error rates are derived for the optimum receivers.

Optimum multi-level coherent and non-coherent chirp systems have been determined

that minimize symbol error rate. It is found that M -level chirp systems are attractive

for data transmission by virtue of its power/bandwidth performance.

In Chapter 3, a class of signals referred to as M -CPCM is proposed and de-

scribed. A detailed investigation of the minimum Euclidean distance properties of

these signals is presented. Closed-form expression for Euclidean distance is derived,
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as a function of the modulation parameters q and w and observation length n for 2-,

4-, 8-CPCM. Upper bounds on the minimum Euclidean distance of this class of sig-

nals are derived and sets of modulation parameters that maximize Euclidean distance

are identified. A significant property of 2-CPCM is that it provides a distance larger

than the 2-CPFSK modulation. Also, it is shown that 4- and 8-CPCM have distance

larger than the distances of 4- and 8-CPFSK, for observation lengths of 2 to 5. In all

cases, the minimum Euclidean distance is an increasing function of the observation

interval n and the maximum values of distance does not just occur at a specific set of

modulation parameters. This observation is very useful and provides a flexibility in

the design of chirp communication system by choosing a set of modulation parameters

of practical interest.

In Chapter 4, multiple-symbol detection of M -CPCM signals over AWGN is

addressed. First, optimum coherent receiver structure for arbitrary observation length

is derived and its error rate performances analysis is given. Upper bound on symbol

error probability performance of optimum coherent M -CPCM receiver is given in

closed-form, as a function of signal modulation parameters (q, w), the receiver decision

observation length n, number of levels of data M , location of decision symbol (�),

and the received signal-to-noise ratio
E
b

N0
. It is shown that the 2-CPCM system, for

5T observation interval, o↵ers nearly 2 dB improvement in performance relative to

coherent PSK and about 4 dB improvement relative to coherent binary FSK. It is

observed that, by increasing the observation length, gain in the SNR can be achieved

but this gain comes at the cost of increased complexity of the receiver. 4-CPCM

system has nearly 3.5 dB gain over coherent QPSK and 8-CPCM system o↵ers nearly

7 dB improvement relative to coherent octal PSK. Next, a similar analysis for non-

coherent reception is given. Upper bound on symbol error probability performance of

optimum non-coherent M -CPCM receiver is given in the closed-form. It is observed

that the location of decision symbol � plays an important role and the optimum

decision symbol location is given by � = int(n
2

)+1, for n odd and � = (n
2

) or � = (n
2

)+1

for n even. It is observed that non-coherent 2-CPCM system performs better than

BPSK by nearly 1.2 dB when the observation length is 5T . The performance of

non-coherent 2-CPCM and non-coherent 2-CPFSK are nearly the same when the
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observation lengths are 3T and 5T , respectively.

In Chapter 5, a class of time-varying M -CPCM referred to as multi-mode M -

CPCM is proposed for data transmission. A general description of this M -CPCM

system is given and the independent sets of modulation parameters that characterize

such a system are identified and described. The symbol error probability upper

bound on the performance of the optimum coherent dual-mode M -CPCM receiver is

derived as a function of the sets of modulation parameters (q, w), the receiver decision

observation length n, number of levels of dataM , and the received signal-to-noise ratio
E
b

N0
. It is found that dual-mode 2-CPCM system outperforms corresponding mono-

mode system. This improvement can be only achieved at certain sets of modulation

parameters.

In Chapter 6, performances of M -level chirp systems over Rayleigh, Nakagami-

m and Generalized-K fading and shadowing channel are presented. New and easy-

to-compute closed-form expressions for average symbol error probability for M -level

chirp communication system for three fading models are derived. The fading models

represent most practical wireless channels. It is found that the performance of binary

chirp is very close to the performance of BPSK modulation over Rayleigh fading

channel and better than the performance of 2-FSK and DPSK systems. Also, it is

found that the e↵ect of shadowing on the performance of M -level chirp system is

worse than that in fading. The results presented can be used to design an e�cient

and reliableM -level chirp communication system for application over fading channels.

In Chapter 7, direct method to calculate the power spectra of M -CPCM is

presented. Numerical results are given for the classes of chirp signals considered in

the thesis. It is observed that bandwidth occupancy of M -CPCM can be changed by

varying modulation parameters. This observation can be exploited to obtain a trade-

o↵ between the error rate performance and the bandwidth e�ciency. It is shown

that there exist some sets of modulation parameters that o↵er bandwidth occupancy

better than the conventional modulations and thus making M -CPCM an attractive

modulation technique from the viewpoint of power and bandwidth trade-o↵.
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8.3 Suggestions for Future Work

• Space time coding (STC) is an attractive area of research in recent years. CPM

with STC are proposed and studied. However, utilizing M -level chirp signals

in STC to enhance system performance is an interesting area of research.

• In this thesis, error rate performance analysis and some properties of constant-

envelope chirp signals have been analyzed and examined using analytical meth-

ods. It would be interesting to examine the performance and properties of this

class of signals using practical implementations of chirp systems.

• M -level chirp modulation with coding can be used for application in a multiple

user environment. In a multi-user environment, co-channel interference and

adjacent channel interference are major sources of performance degradation. It

would be interesting to design and analyze multi-user communication systems

using M -level chirp modulation.
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Appendix A

Squared Euclidean Distance for M-Level

Chirp Signals

The squared Euclidean distance between signals Si(t) and Sj(t) is derived here. The

squared Euclidean distance is given by:

D2(Si, Sj) = 2Es(1� ⇢(Si, Sj)) (A.1)

where the quantity ⇢(Si, Sj) represents the normalized correlation between Si and

Sj . Assume the the transmitted signal represents data symbol dj and the received

signal represents data symbol di. These signals are given by:

S(t, di) =

r

2Es

T
cos

h

wct+ di⇡
n

h
� t
T

�

� w
� t
T

�

2

oi

S(t, dj) =

r

2Es

T
cos

h

wct+ dj⇡
n

h
� t
T

�

� w
� t
T

�

2

oi

(A.2)

The normalized cross correlation between these signals is defined by:

⇢(i, j) =
1

Es

T
Z

0

S(t, di) S(t, dj)dt (A.3)

Substitute (A.2) in (A.3)
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Using the identity:

cos↵ cos � =
1

2
[cos (↵ + �) + cos (↵� �)] (A.5)

and ignoring the high frequency term. (A.4) can be written as:

⇢(i, j) =
1

T

T
Z

0

cos

"

(di � dj)⇡

(

h

✓

t

T

◆
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)#

dt (A.6)

if (di � dj) = 0 ) ⇢ = 1

if (di � dj) + ve or (di � dj) � ve

⇢(i, j) =
1

T

T
Z

0

cos

"

|(di � dj)|⇡w
✓

t

T

◆

2

� ⇡|di � dj |h
✓

t

T

◆

#

dt (A.7)

Let a = ⇡|di � dj |w , b = ⇡|di � dj | and x = t
T (A.7) can be written as:

⇢(i, j) =

1

Z

0

cos
⇣

ax2 � bx
⌘

dx (A.8)
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and by completing the square, (A.8) can be written as:

⇢(i, j) =
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applying the di↵erence formula for the cosine cos(↵ � �) = cos↵ cos � + sin↵sin�,

(A.9) can be expressed as:

⇢(i, j) =

1

Z

0

cos

"

✓

b

2
p
a

◆

2

#

cos

"

✓p
ax� b

2
p
a

◆

2

#

+

1

Z

0

sin

"

✓

b

2
p
a

◆

2

#

sin

"

✓p
ax� b

2
p
a

◆

2

#

dx (A.10)

By changing the variable
p
ax� b

2
p
a
in (A.10) into

r

⇡

2
u and accordingly changing

the limits of the integration, we get:
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where ⌦ =
⇡

4
|di � dj |

(q + w)2

w
and � = |di � dj |. Solving the integral in (A.11) by

applying Fresnel integral, the normalized cross correlation can be given as:

⇢(i, j) =



cos(⌦)p
2�w

(C[uh]�C[ul]) +
sin(⌦)p
2�w

(S[uh]� S[ul])

�

(A.12)

where the function C(.) and S(.) are the Fresnel cosine and sine integral which are

given by [41]:
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Appendix B

Complex Correlation for M-Level Chirp

Signals

In this appendix, we derive an expression for the complex cross correlation between

signals Si(t) and S⇤
j (t). The complex correlation can be defined as:

⇢c(i, j) =
1

2Es

nT
Z

0

Si(t)S
⇤
j (t)dt (B.1)

which is equal to:
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(B.2) can be rewritten as:
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Applying Euler’s formula to (B.3)

⇢c(i, j) =
1

T

T
Z

0

[cos(⇥) + j sin(⇥)] dt (B.4)
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where ⇥ = |di � dj |⇡
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)

The integral for the cosine and sine in

(B.4) can be solved following the same procedure in Appendix A. The correlation is

given by:

⇢(i, j) =
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(S[uh]� S[ul]) +
sin(⌦)p
2�w

(S[uh]� S[ul])

�

(B.5)

where ⌦ =
⇡

4
|di � dj |

(q + w)2

w
, � = |di � dj | and the function C(.) and S(.) are the

Fresnel cosine and sine integral which are given by [41]:

C(u) =

u
Z

0

cos(
⇡x2

2
) dx

S(u) =

u
Z

0

sin(
⇡x2

2
) dx
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