205 research outputs found

    Modelling large motion events in fMRI studies of patients with epilepsy

    Get PDF
    EEG-correlated fMRI can provide localisation information on the generators of epileptiform discharges in patients with focal epilepsy. To increase the technique's clinical potential, it is important to consider ways of optimising the yield of each experiment while minimizing the risk of false-positive activation. Head motion can lead to severe image degradation and result in false-positive activation and is usually worse in patients than in healthy subjects. We performed general linear model fMRI data analysis on simultaneous EEG–fMRI data acquired in 34 cases with focal epilepsy. Signal changes associated with large inter-scan motion events (head jerks) were modelled using modified design matrices that include ‘scan nulling’ regressors. We evaluated the efficacy of this approach by mapping the proportion of the brain for which F-tests across the additional regressors were significant. In 95% of cases, there was a significant effect of motion in 50% of the brain or greater; for the scan nulling effect, the proportion was 36%; this effect was predominantly in the neocortex. We conclude that careful consideration of the motion-related effects in fMRI studies of patients with epilepsy is essential and that the proposed approach can be effective

    Independent component analysis of interictal fMRI in focal epilepsy: comparison with general linear model-based EEG-correlated fMRI

    Get PDF
    The general linear model (GLM) has been used to analyze simultaneous EEG–fMRI to reveal BOLD changes linked to interictal epileptic discharges (IED) identified on scalp EEG. This approach is ineffective when IED are not evident in the EEG. Data-driven fMRI analysis techniques that do not require an EEG derived model may offer a solution in these circumstances. We compared the findings of independent components analysis (ICA) and EEG-based GLM analyses of fMRI data from eight patients with focal epilepsy. Spatial ICA was used to extract independent components (IC) which were automatically classified as either BOLD-related, motion artefacts, EPI-susceptibility artefacts, large blood vessels, noise at high spatial or temporal frequency. The classifier reduced the number of candidate IC by 78%, with an average of 16 BOLD-related IC. Concordance between the ICA and GLM-derived results was assessed based on spatio-temporal criteria. In each patient, one of the IC satisfied the criteria to correspond to IED-based GLM result. The remaining IC were consistent with BOLD patterns of spontaneous brain activity and may include epileptic activity that was not evident on the scalp EEG. In conclusion, ICA of fMRI is capable of revealing areas of epileptic activity in patients with focal epilepsy and may be useful for the analysis of EEG–fMRI data in which abnormalities are not apparent on scalp EEG

    Disruption to control network function correlates with altered dynamic connectivity in the wider autism spectrum.

    Get PDF
    Autism is a common developmental condition with a wide, variable range of co-occurring neuropsychiatric symptoms. Contrasting with most extant studies, we explored whole-brain functional organization at multiple levels simultaneously in a large subject group reflecting autism's clinical diversity, and present the first network-based analysis of transient brain states, or dynamic connectivity, in autism. Disruption to inter-network and inter-system connectivity, rather than within individual networks, predominated. We identified coupling disruption in the anterior-posterior default mode axis, and among specific control networks specialized for task start cues and the maintenance of domain-independent task positive status, specifically between the right fronto-parietal and cingulo-opercular networks and default mode network subsystems. These appear to propagate downstream in autism, with significantly dampened subject oscillations between brain states, and dynamic connectivity configuration differences. Our account proposes specific motifs that may provide candidates for neuroimaging biomarkers within heterogeneous clinical populations in this diverse condition

    Methods for cleaning the BOLD fMRI signal

    Get PDF
    Available online 9 December 2016 http://www.sciencedirect.com/science/article/pii/S1053811916307418?via%3Dihubhttp://www.sciencedirect.com/science/article/pii/S1053811916307418?via%3DihubBlood oxygen-level-dependent functional magnetic resonance imaging (BOLD fMRI) has rapidly become a popular technique for the investigation of brain function in healthy individuals, patients as well as in animal studies. However, the BOLD signal arises from a complex mixture of neuronal, metabolic and vascular processes, being therefore an indirect measure of neuronal activity, which is further severely corrupted by multiple non-neuronal fluctuations of instrumental, physiological or subject-specific origin. This review aims to provide a comprehensive summary of existing methods for cleaning the BOLD fMRI signal. The description is given from a methodological point of view, focusing on the operation of the different techniques in addition to pointing out the advantages and limitations in their application. Since motion-related and physiological noise fluctuations are two of the main noise components of the signal, techniques targeting their removal are primarily addressed, including both data-driven approaches and using external recordings. Data-driven approaches, which are less specific in the assumed model and can simultaneously reduce multiple noise fluctuations, are mainly based on data decomposition techniques such as principal and independent component analysis. Importantly, the usefulness of strategies that benefit from the information available in the phase component of the signal, or in multiple signal echoes is also highlighted. The use of global signal regression for denoising is also addressed. Finally, practical recommendations regarding the optimization of the preprocessing pipeline for the purpose of denoising and future venues of research are indicated. Through the review, we summarize the importance of signal denoising as an essential step in the analysis pipeline of task-based and resting state fMRI studies.This work was supported by the Spanish Ministry of Economy and Competitiveness [Grant PSI 2013–42343 Neuroimagen Multimodal], the Severo Ochoa Programme for Centres/Units of Excellence in R & D [SEV-2015-490], and the research and writing of the paper were supported by the NIMH and NINDS Intramural Research Programs (ZICMH002888) of the NIH/HHS

    Anatomo-functional magnetic resonance imaging of the spinal cord and its application to the characterization of spinal lesions in cats

    Get PDF
    Les lésions de la moelle épinière ont un impact significatif sur la qualité de la vie car elles peuvent induire des déficits moteurs (paralysie) et sensoriels. Ces déficits évoluent dans le temps à mesure que le système nerveux central se réorganise, en impliquant des mécanismes physiologiques et neurochimiques encore mal connus. L'ampleur de ces déficits ainsi que le processus de réhabilitation dépendent fortement des voies anatomiques qui ont été altérées dans la moelle épinière. Il est donc crucial de pouvoir attester l'intégrité de la matière blanche après une lésion spinale et évaluer quantitativement l'état fonctionnel des neurones spinaux. Un grand intérêt de l'imagerie par résonance magnétique (IRM) est qu'elle permet d'imager de façon non invasive les propriétés fonctionnelles et anatomiques du système nerveux central. Le premier objectif de ce projet de thèse a été de développer l'IRM de diffusion afin d'évaluer l'intégrité des axones de la matière blanche après une lésion médullaire. Le deuxième objectif a été d'évaluer dans quelle mesure l'IRM fonctionnelle permet de mesurer l'activité des neurones de la moelle épinière. Bien que largement appliquées au cerveau, l'IRM de diffusion et l'IRM fonctionnelle de la moelle épinière sont plus problématiques. Les difficultés associées à l'IRM de la moelle épinière relèvent de sa fine géométrie (environ 1 cm de diamètre chez l'humain), de la présence de mouvements d'origine physiologique (cardiaques et respiratoires) et de la présence d'artefacts de susceptibilité magnétique induits par les inhomogénéités de champ, notamment au niveau des disques intervertébraux et des poumons. L'objectif principal de cette thèse a donc été de développer des méthodes permettant de contourner ces difficultés. Ce développement a notamment reposé sur l'optimisation des paramètres d'acquisition d'images anatomiques, d'images pondérées en diffusion et de données fonctionnelles chez le chat et chez l'humain sur un IRM à 3 Tesla. En outre, diverses stratégies ont été étudiées afin de corriger les distorsions d'images induites par les artefacts de susceptibilité magnétique, et une étude a été menée sur la sensibilité et la spécificité de l'IRM fonctionnelle de la moelle épinière. Les résultats de ces études démontrent la faisabilité d'acquérir des images pondérées en diffusion de haute qualité, et d'évaluer l'intégrité de voies spinales spécifiques après lésion complète et partielle. De plus, l'activité des neurones spinaux a pu être détectée par IRM fonctionnelle chez des chats anesthésiés. Bien qu'encourageants, ces résultats mettent en lumière la nécessité de développer davantage ces nouvelles techniques. L'existence d'un outil de neuroimagerie fiable et robuste, capable de confirmer les paramètres cliniques, permettrait d'améliorer le diagnostic et le pronostic chez les patients atteints de lésions médullaires. Un des enjeux majeurs serait de suivre et de valider l'effet de diverses stratégies thérapeutiques. De telles outils représentent un espoir immense pour nombre de personnes souffrant de traumatismes et de maladies neurodégénératives telles que les lésions de la moelle épinière, les tumeurs spinales, la sclérose en plaques et la sclérose latérale amyotrophique.Spinal cord injury has a significant impact on quality of life since it can lead to motor (paralysis) and sensory deficits. These deficits evolve in time as reorganisation of the central nervous system occurs, involving physiological and neurochemical mechanisms that are still not fully understood. Given that both the severity of the deficit and the successful rehabilitation process depend on the anatomical pathways that have been altered in the spinal cord, it may be of great interest to assess white matter integrity after a spinal lesion and to evaluate quantitatively the functional state of spinal neurons. The great potential of magnetic resonance imaging (MRI) lies in its ability to investigate both anatomical and functional properties of the central nervous system non invasively. To address the problem of spinal cord injury, this project aimed to evaluate the benefits of diffusion-weighted MRI to assess the integrity of white matter axons that remain after spinal cord injury. The second objective was to evaluate to what extent functional MRI can measure the activity of neurons in the spinal cord. Although widely applied to the brain, diffusion-weighted MRI and functional MRI of the spinal cord are not straightforward. Various issues arise from the small cross-section width of the cord, the presence of cardiac and respiratory motions, and from magnetic field inhomogeneities in the spinal region. The main purpose of the present thesis was therefore to develop methodologies to circumvent these issues. This development notably focused on the optimization of acquisition parameters to image anatomical, diffusion-weighted and functional data in cats and humans at 3T using standard coils and pulse sequences. Moreover, various strategies to correct for susceptibility-induced distortions were investigated and the sensitivity and specificity in spinal cord functional MRI was studied. As a result, acquisition of high spatial and angular diffusion-weighted images and evaluation of the integrity of specific spinal pathways following spinal cord injury was achieved. Moreover, functional activations in the spinal cord of anaesthetized cats was detected. Although encouraging, these results highlight the need for further technical and methodological development in the near-future. Being able to develop a reliable neuroimaging tool for confirming clinical parameters would improve diagnostic and prognosis. It would also enable to monitor the effect of various therapeutic strategies. This would certainly bring hope to a large number of people suffering from trauma and neurodegenerative diseases such as spinal cord injury, tumours, multiple sclerosis and amyotrophic lateral sclerosis

    Hemodynamic Deconvolution Demystified: Sparsity-Driven Regularization at Work

    Full text link
    Deconvolution of the hemodynamic response is an important step to access short timescales of brain activity recorded by functional magnetic resonance imaging (fMRI). Albeit conventional deconvolution algorithms have been around for a long time (e.g., Wiener deconvolution), recent state-of-the-art methods based on sparsity-pursuing regularization are attracting increasing interest to investigate brain dynamics and connectivity with fMRI. This technical note revisits the main concepts underlying two main methods, Paradigm Free Mapping and Total Activation, in the most accessible way. Despite their apparent differences in the formulation, these methods are theoretically equivalent as they represent the synthesis and analysis sides of the same problem, respectively. We demonstrate this equivalence in practice with their best-available implementations using both simulations, with different signal-to-noise ratios, and experimental fMRI data acquired during a motor task and resting-state. We evaluate the parameter settings that lead to equivalent results, and showcase the potential of these algorithms compared to other common approaches. This note is useful for practitioners interested in gaining a better understanding of state-of-the-art hemodynamic deconvolution, and aims to answer questions that practitioners often have regarding the differences between the two methods.Comment: 18 pages, 6 figures, submitted to Apertur

    Resting-State Multi-Spectrum Functional Connectivity Networks for Identification of MCI Patients

    Get PDF
    In this paper, a high-dimensional pattern classification framework, based on functional associations between brain regions during resting-state, is proposed to accurately identify MCI individuals from subjects who experience normal aging. The proposed technique employs multi-spectrum networks to characterize the complex yet subtle blood oxygenation level dependent (BOLD) signal changes caused by pathological attacks. The utilization of multi-spectrum networks in identifying MCI individuals is motivated by the inherent frequency-specific properties of BOLD spectrum. It is believed that frequency specific information extracted from different spectra may delineate the complex yet subtle variations of BOLD signals more effectively. In the proposed technique, regional mean time series of each region-of-interest (ROI) is band-pass filtered ( Hz) before it is decomposed into five frequency sub-bands. Five connectivity networks are constructed, one from each frequency sub-band. Clustering coefficient of each ROI in relation to the other ROIs are extracted as features for classification. Classification accuracy was evaluated via leave-one-out cross-validation to ensure generalization of performance. The classification accuracy obtained by this approach is 86.5%, which is an increase of at least 18.9% from the conventional full-spectrum methods. A cross-validation estimation of the generalization performance shows an area of 0.863 under the receiver operating characteristic (ROC) curve, indicating good diagnostic power. It was also found that, based on the selected features, portions of the prefrontal cortex, orbitofrontal cortex, temporal lobe, and parietal lobe regions provided the most discriminant information for classification, in line with results reported in previous studies. Analysis on individual frequency sub-bands demonstrated that different sub-bands contribute differently to classification, providing extra evidence regarding frequency-specific distribution of BOLD signals. Our MCI classification framework, which allows accurate early detection of functional brain abnormalities, makes an important positive contribution to the treatment management of potential AD patients

    Mechanisms of motor learning: by humans, for robots

    No full text
    Whenever we perform a movement and interact with objects in our environment, our central nervous system (CNS) adapts and controls the redundant system of muscles actuating our limbs to produce suitable forces and impedance for the interaction. As modern robots are increasingly used to interact with objects, humans and other robots, they too require to continuously adapt the interaction forces and impedance to the situation. This thesis investigated the motor mechanisms in humans through a series of technical developments and experiments, and utilized the result to implement biomimetic motor behaviours on a robot. Original tools were first developed, which enabled two novel motor imaging experiments using functional magnetic resonance imaging (fMRI). The first experiment investigated the neural correlates of force and impedance control to understand the control structure employed by the human brain. The second experiment developed a regressor free technique to detect dynamic changes in brain activations during learning, and applied this technique to investigate changes in neural activity during adaptation to force fields and visuomotor rotations. In parallel, a psychophysical experiment investigated motor optimization in humans in a task characterized by multiple error-effort optima. Finally a computational model derived from some of these results was implemented to exhibit human like control and adaptation of force, impedance and movement trajectory in a robot

    Data-analysis perspectives on naturalistic stimulation in functional magnetic resonance imaging

    Get PDF
    Modern brain imaging allows to study human brain function during naturalistic stimulus conditions, which entail specific challenges for the analysis of the brain signals. The conventional analysis of data obtained by functional magnetic resonance imaging (fMRI) is based on user-specified models of the temporal behavior of the signals (general linear model, GLM). Alongside these approaches, data-based methods can be applied to model the signal behavior either on the basis of the measured data, as in seed-point correlations or inter-subject correlations (ISC), or alternatively the temporal behavior is not modeled, but spatial signal sources and related time courses are estimated directly from the measured data (independent component analysis, ICA). In this Thesis, fMRI data-analysis methods were studied and compared in experiments that gradually proceeded towards more naturalistic and complex stimuli. ICA showed superior performance compared with GLM-based method in the analysis of naturalistic situations. The particular strengths of the ICA were its capability to reveal activations when signal behavior deviated from an expected model, and to show similarities between signals of different brain areas and of different individuals. The practical difficulty of ICA in naturalistic conditions is that the user may not be able to determine, purely on the basis of the components' spatial distribution or temporal behavior, the brain networks that are related to the given stimuli. In this Thesis, a new solution to sort the components was proposed that ordered the components according to the ISC map, and thereby facilitated the selection of stimulus-related components. The method prioritized brain areas closely related to sensory processing, but it also revealed circuitries of intrinsic processing if they were affected similarly across individuals by external stimulation. Analysis issues related to the impact of physiological noise in fMRI signals were also considered. Cardiac-triggered fMRI improved detection of touch-related activation both in the thalamus and in the secondary somatosensory cortex. The most common way to eliminate noise is to filter the data. In this Thesis, however, aberrations in temporal behavior, as well as in functional connectivities in chronic pain patients were observed, which likely could not have been revealed with conventional temporal filtering
    corecore