85 research outputs found

    Optimal Routing for Quantum Networks

    Get PDF
    To fully unleash the potentials of quantum computing, several new challenges and open problems need to be addressed. From a routing perspective, the optimal routing problem, i.e., the problem of jointly designing a routing protocol and a route metric assuring the discovery of the route providing the highest quantum communication opportunities between an arbitrary couple of quantum devices, is crucial. In this paper, the optimal routing problem is addressed for generic quantum network architectures composed by repeaters operating through single atoms in optical cavities. Specifically, we first model the entanglement generation through a stochastic framework that allows us to jointly account for the key physical-mechanisms affecting the end-to-end entanglement rate, such as decoherence time, atom-photon and photon-photon entanglement generation, entanglement swapping, and imperfect Bell-state measurement. Then, we derive the closed-form expression of the end-to-end entanglement rate for an arbitrary path and we design an efficient algorithm for entanglement rate computation. Finally, we design a routing protocol and we prove its optimality when used in conjunction with the entanglement rate as routing metric

    Impact of drone route geometry on information collection in wireless sensor networks

    Get PDF
    The recent technological evolution of drones along with the constantly growing maturity of its commercialization, has led to the emergence of novel drone-based applications within the field of wireless sensor networks for information collection purposes. In such settings, especially when deployed in outdoor environments with limited external control, energy consumption and robustness are challenging problems for the system’s operation. In the present paper, a drone-assisted wireless sensor network is studied, the aim being to coordinate the routing of information (among the ground nodes and its propagation to the drone), investigating several drone trajectories or route shapes and examining their impact on information collection (the aim being to minimize transmissions and consequently, energy consumption). The main contribution lies on the proposed algorithms that coordinate the communication between (terrestrial) sensor nodes and the drone that may follow different route shapes. It is shown through simulations using soft random geometric graphs that the number of transmitted messages for each drone route shape depends on the rotational symmetry around the center of each shape. An interesting result is that the higher the order of symmetry, the lower the number of transmitted messages for data collection. Contrary, for those cases that the order of symmetry is the same, even for different route shapes, similar number of messages is transmitted. In addition to the simulation results, an experimental demonstration, using spatial data from grit bin locations, further validates the proposed solution under real-world conditions, demonstrating the applicability of the proposed approach.publishedVersio

    Airborne Directional Networking: Topology Control Protocol Design

    Get PDF
    This research identifies and evaluates the impact of several architectural design choices in relation to airborne networking in contested environments related to autonomous topology control. Using simulation, we evaluate topology reconfiguration effectiveness using classical performance metrics for different point-to-point communication architectures. Our attention is focused on the design choices which have the greatest impact on reliability, scalability, and performance. In this work, we discuss the impact of several practical considerations of airborne networking in contested environments related to autonomous topology control modeling. Using simulation, we derive multiple classical performance metrics to evaluate topology reconfiguration effectiveness for different point-to-point communication architecture attributes for the purpose of qualifying protocol design elements

    Quantum error correction protects quantum search algorithms against decoherence

    No full text
    When quantum computing becomes a wide-spread commercial reality, Quantum Search Algorithms (QSA) and especially Grover’s QSA will inevitably be one of their main applications, constituting their cornerstone. Most of the literature assumes that the quantum circuits are free from decoherence. Practically, decoherence will remain unavoidable as is the Gaussian noise of classic circuits imposed by the Brownian motion of electrons, hence it may have to be mitigated. In this contribution, we investigate the effect of quantum noise on the performance of QSAs, in terms of their success probability as a function of the database size to be searched, when decoherence is modelled by depolarizing channels’ deleterious effects imposed on the quantum gates. Moreover, we employ quantum error correction codes for limiting the effects of quantum noise and for correcting quantum flips. More specifically, we demonstrate that, when we search for a single solution in a database having 4096 entries using Grover’s QSA at an aggressive depolarizing probability of 10-3, the success probability of the search is 0.22 when no quantum coding is used, which is improved to 0.96 when Steane’s quantum error correction code is employed. Finally, apart from Steane’s code, the employment of Quantum Bose-Chaudhuri-Hocquenghem (QBCH) codes is also considered

    Twin-Component Near-Pareto Routing Optimization for AANETs in the North-Atlantic Region Relying on Real Flight Statistics

    Get PDF
    Integrated ground-air-space (IGAS) networks intrinsically amalgamate terrestrial and non-terrestrial communication techniques in support of universal connectivity across the globe. Multi-hop routing over the IGAS networks has the potential to provide long-distance highly directional connections in the sky. For meeting the latency and reliability requirements of in-flight connectivity, we formulate a multi-objective multi-hop routing problem in aeronautical ad hoc networks (AANETs) for concurrently optimizing multiple end-to-end performance metrics in terms of the total delay and the throughput. In contrast to single-objective optimization problems that may have a unique optimal solution, the problem formulated is a multi-objective combinatorial optimization problem (MOCOP), which generally has a set of trade-off solutions, called the Pareto optimal set. Due to the discrete structure of the MOCOP formulated, finding the Pareto optimal set becomes excessively complex for large-scale networks. Therefore, we employ a multi-objective evolutionary algorithm (MOEA), namely the classic NSGA-II for generating an approximation of the Pareto optimal set. Explicitly, with the intrinsic parallelism of MOEAs, the MOEA employed starts with a set of candidate solutions for creating and reproducing new solutions via genetic operators. Finally, we evaluate the MOCOP formulated for different networks generated both from simulated data as well as from real historical flight data. Our simulation results demonstrate that the utilized MOEA has the potential of finding the Pareto optimal solutions for small-scale networks, while also finding a set of high-performance nondominated solutions for large-scale networks

    Use of Inferential Statistics to Design Effective Communication Protocols for Wireless Sensor Networks

    Get PDF
    This thesis explores the issues and techniques associated with employing the principles of inferential statistics to design effective Medium Access Control (MAC), routing and duty cycle management strategies for multihop Wireless Sensor Networks (WSNs). The main objective of these protocols are to maximise the throughput of the network, to prolong the lifetime of nodes and to reduce the end-to-end delay of packets over a general network scenario without particular considerations for specific topology configurations, traffic patterns or routing policies. WSNs represent one of the leading-edge technologies that have received substantial research efforts due to their prominent roles in many applications. However, to design effective communication protocols for WSNs is particularly challenging due to the scarce resources of these networks and the requirement for large-scale deployment. The MAC, routing and duty cycle management protocols are amongst the important strategies that are required to ensure correct operations of WSNs. This thesis makes use of the inferential statistics field to design these protocols; inferential statistics was selected as it provides a rich design space with powerful approaches and methods. The MAC protocol proposed in this thesis exploits the statistical characteristics of the Gamma distribution to enable each node to adjust its contention parameters dynamically based on its inference for the channel occupancy. This technique reduces the service time of packets and leverages the throughput by improving the channel utilisation. Reducing the service time minimises the energy consumed in contention to access the channel which in turn prolongs the lifetime of nodes. The proposed duty cycle management scheme uses non-parametric Bayesian inference to enable each node to determine the best times and durations for its sleeping durations without posing overheads on the network. Hence the lifetime of node is prolonged by mitigating the amount of energy wasted in overhearing and idle listening. Prolonging the lifetime of nodes increases the throughput of the network and reduces the end-to-end delay as it allows nodes to route their packets over optimal paths for longer periods. The proposed routing protocol uses one of the state-of-the-art inference techniques dubbed spatial reasoning that enables each node to figure out the spatial relationships between nodes without overwhelming the network with control packets. As a result, the end-to-end delay is reduced while the throughput and lifetime are increased. Besides the proposed protocols, this thesis utilises the analytical aspects of statistics to develop rigorous analytical models that can accurately predict the queuing and medium access delay and energy consumption over multihop networks. Moreover, this thesis provides a broader perspective for design of communication protocols for WSNs by casting the operations of these networks in the domains of the artificial chemistry discipline and the harmony search optimisation algorithm

    Self-Evaluation Applied Mathematics 2003-2008 University of Twente

    Get PDF
    This report contains the self-study for the research assessment of the Department of Applied Mathematics (AM) of the Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS) at the University of Twente (UT). The report provides the information for the Research Assessment Committee for Applied Mathematics, dealing with mathematical sciences at the three universities of technology in the Netherlands. It describes the state of affairs pertaining to the period 1 January 2003 to 31 December 2008
    • …
    corecore