240 research outputs found

    Non-Deterministic Kleene Coalgebras

    Get PDF
    In this paper, we present a systematic way of deriving (1) languages of (generalised) regular expressions, and (2) sound and complete axiomatizations thereof, for a wide variety of systems. This generalizes both the results of Kleene (on regular languages and deterministic finite automata) and Milner (on regular behaviours and finite labelled transition systems), and includes many other systems such as Mealy and Moore machines

    Sound and complete axiomatizations of coalgebraic language equivalence

    Get PDF
    Coalgebras provide a uniform framework to study dynamical systems, including several types of automata. In this paper, we make use of the coalgebraic view on systems to investigate, in a uniform way, under which conditions calculi that are sound and complete with respect to behavioral equivalence can be extended to a coarser coalgebraic language equivalence, which arises from a generalised powerset construction that determinises coalgebras. We show that soundness and completeness are established by proving that expressions modulo axioms of a calculus form the rational fixpoint of the given type functor. Our main result is that the rational fixpoint of the functor FTFT, where TT is a monad describing the branching of the systems (e.g. non-determinism, weights, probability etc.), has as a quotient the rational fixpoint of the "determinised" type functor Fˉ\bar F, a lifting of FF to the category of TT-algebras. We apply our framework to the concrete example of weighted automata, for which we present a new sound and complete calculus for weighted language equivalence. As a special case, we obtain non-deterministic automata, where we recover Rabinovich's sound and complete calculus for language equivalence.Comment: Corrected version of published journal articl

    Weak bisimulation for coalgebras over order enriched monads

    Full text link
    The paper introduces the notion of a weak bisimulation for coalgebras whose type is a monad satisfying some extra properties. In the first part of the paper we argue that systems with silent moves should be modelled coalgebraically as coalgebras whose type is a monad. We show that the visible and invisible part of the functor can be handled internally inside a monadic structure. In the second part we introduce the notion of an ordered saturation monad, study its properties, and show that it allows us to present two approaches towards defining weak bisimulation for coalgebras and compare them. We support the framework presented in this paper by two main examples of models: labelled transition systems and simple Segala systems.Comment: 44 page

    On coalgebras with internal moves

    Full text link
    In the first part of the paper we recall the coalgebraic approach to handling the so-called invisible transitions that appear in different state-based systems semantics. We claim that these transitions are always part of the unit of a certain monad. Hence, coalgebras with internal moves are exactly coalgebras over a monadic type. The rest of the paper is devoted to supporting our claim by studying two important behavioural equivalences for state-based systems with internal moves, namely: weak bisimulation and trace semantics. We continue our research on weak bisimulations for coalgebras over order enriched monads. The key notions used in this paper and proposed by us in our previous work are the notions of an order saturation monad and a saturator. A saturator operator can be intuitively understood as a reflexive, transitive closure operator. There are two approaches towards defining saturators for coalgebras with internal moves. Here, we give necessary conditions for them to yield the same notion of weak bisimulation. Finally, we propose a definition of trace semantics for coalgebras with silent moves via a uniform fixed point operator. We compare strong and weak bisimilation together with trace semantics for coalgebras with internal steps.Comment: Article: 23 pages, Appendix: 3 page

    A Kleene theorem for polynomial coalgebras

    Get PDF
    For polynomial functors G, we show how to generalize the classical notion of regular expression to G-coalgebras. We introduce a language of expressions for describing elements of the final G-coalgebra and, analogously to Kleene’s theorem, we show the correspondence between expressions and finite G-coalgebras

    Towards a Uniform Theory of Effectful State Machines

    Full text link
    Using recent developments in coalgebraic and monad-based semantics, we present a uniform study of various notions of machines, e.g. finite state machines, multi-stack machines, Turing machines, valence automata, and weighted automata. They are instances of Jacobs' notion of a T-automaton, where T is a monad. We show that the generic language semantics for T-automata correctly instantiates the usual language semantics for a number of known classes of machines/languages, including regular, context-free, recursively-enumerable and various subclasses of context free languages (e.g. deterministic and real-time ones). Moreover, our approach provides new generic techniques for studying the expressivity power of various machine-based models.Comment: final version accepted by TOC

    Regular expressions for polynomial coalgebras

    Get PDF
    For polynomial set functors G, we introduce a language of expressions for describing elements of final G-coalgebra. We show that every state of a finite G-coalgebra corresponds to an expression in the language, in the sense that they both have the same semantics. Conversely, we give a compositional synthesis algorithm which transforms every expression into a finite G-coalgebra. The language of expressions is equipped with an equational system that is sound, complete and expressive with respect to G-bisimulation
    • …
    corecore