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Abstract. For polynomial functors G, we show how to generalize the
classical notion of regular expression to G-coalgebras. We introduce a
language of expressions for describing elements of the final G-coalgebra
and, analogously to Kleene’s theorem, we show the correspondence be-
tween expressions and finite G-coalgebras.

1 Introduction

Regular expressions were first introduced by Kleene [8] to study the properties
of neural networks. They are an algebraic description of languages, offering a
declarative way of specifying the strings to be recognized and they define exactly
the same class of languages accepted by deterministic (and non-deterministic)
finite state automata: the regular languages. The correspondence between regular
expressions and (non-)deterministic automata has been widely studied and a
translation between these two different formalisms is presented in most books
on automata and language theory [10,6].

Formally, a deterministic automaton consists of a set of states S equipped
with a transition function δ : S → 2× SA determining for each state whether or
not it is final and assigning to each input symbol a next state.

Deterministic automata can be generalized to coalgebras for an endofunctor
G on the category Set. A coalgebra is a pair (S , g) consisting of a set of states
S and a transition function g : S → GS , where the functor G determines the
type of the dynamic system under consideration and is the base of the theory of
universal coalgebra [14]. The central concepts in this theory are homomorphism
of coalgebras, bisimulation equivalence and final coalgebra. These can be seen,
respectively, as generalizations of automata homomorphism, language equiva-
lence and the set of all languages. In fact, in the case of deterministic automata,
the functor G would be instantiated to 2 × IdA and the usual notions would be
recovered. In particular, note that the final coalgebra for this functor is precisely
the set 2A∗

of all languages over A [15].
Given the fact that coalgebras can be seen as generalizations of determinis-

tic automata, it is natural to investigate whether there exists an appropriate
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notion of regular expression in this setting. More precisely: is it possible to de-
fine a language of expressions that represents precisely the behaviour of finite
G-coalgebras, for a given functor G?

In this paper, we show how to define such a language for coalgebras of polyno-
mial functors G (a functor is polynomial if it is built inductively from the identity
and constant functors, using product, coproduct and exponential). We introduce
a language of expressions for describing elements of the final G-coalgebra (Sec-
tion 3). Analogously to Kleene’s theorem, we show the correspondence between
expressions and finite G-coalgebras. In particular, we show that every state of a
finite G-coalgebra corresponds to an expression in the language (Section 4) and,
conversely, we give a compositional synthesis algorithm which transforms every
expression into a finite G-coalgebra (Section 5).

Related Work. Regular expressions have been originally introduced by
Kleene [8] as a mathematical notation for describing languages recognized by
deterministic finite automata. In [15], deterministic automata, the sets of formal
languages and regular expressions are all presented as coalgebras of the functor
2× IdA (where A is the alphabet, and 2 is the two element set). It is then shown
that the standard semantics of language acceptance of automata and the assign-
ment of languages to regular expressions both arise as the unique homomorphism
into the final coalgebra of formal languages. The coalgebra structure on the set
of regular expressions is determined by their so-called Brzozowski derivatives [4].
In the present paper, the set of expressions for the functor F (S ) = 2×SA differs
from the classical definition in that we do not have Kleene star and full concate-
nation (sequential composition) but, instead, the least fixed point operator and
action prefixing. Modulo that difference, the definition of a coalgebra structure
on the set of expressions in both [15] and the present paper is essentially the
same. All in all, one can therefore say that standard regular expressions and their
treatment in [15] can be viewed as a special instance of the present approach.
This is also the case for the generalization of the results in [15] to automata
on guarded strings [11]. Finally, the present paper extends the results in our
FoSSaCS’08 paper [3], where a sound and complete specification language and a
synthesis algorithm for Mealy machines is given. Mealy machines are coalgebras
of the functor (B × Id)A, where A is a finite input alphabet and B is a finite
meet semilattice for the output alphabet.

2 Preliminaries

We give the basic definitions on polynomial functors and coalgebras and intro-
duce the notion of bisimulation.

First we fix notation on sets and operations on them. Let Set be the category
of sets and functions. Sets are denoted by capital letters X ,Y , . . . and functions
by lower case f , g, . . .. The collection of functions from a set X to a set Y
is denoted by Y X . Given functions f : X → Y and g : Y → Z we write
their composition as g ◦ f . The product of two sets X ,Y is written as X × Y ,
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with projection functions X X × Y
π1�� π2 �� Y .The set 1 is a singleton set

typically written as 1 = {∗} and it can be regarded as the empty product. We
define X + Y as the set X � Y � {⊥,�}, where � is the disjoint union of sets,

with injections X
κ1 �� X � Y Y

κ2�� . Note that the set X + Y is different
from the classical coproduct of X and Y, because of the two extra elements
⊥ and �. These extra elements will later be used to represent, respectively,
underspecification and inconsistency in the specification of some systems. The
intuition behind the need of these extra elements will become clear when we
present our language of expressions and concrete examples, in Section 5.3, of
systems whose type involves +.

Polynomial Functors. In our definition of polynomial functors we will use
constant sets equipped with an information order. In particular, we will use
join-semilattices. A (bounded) join-semilattice is a set B equipped with a binary
operation ∨B and a constant ⊥B ∈ B , such that ∨B is commutative, associative
and idempotent. The element ⊥B is neutral w.r.t. ∨B . As usual, ∨B gives rise
to a partial ordering ≤B on the elements of B :

b1 ≤B b2 ⇔ b1 ∨B b2 = b2

Every set S can be transformed into a join-semilattice by taking B to be the set
of all finite subsets of S with union as join.

We are now ready to define the class of polynomial functors. They are functors
G : Set → Set, built inductively from the identity and constants, using ×, +
and (−)A. Formally, the class PF of polynomial functors on Set is inductively
defined by putting:

G:: = Id | B | G + G | G × G | GA

where B is a finite join-semilattice and A is a finite set.
Typical examples of polynomial functors are D = 2× IdA and P = (1+ Id)A.

These functors, which we shall later use as our running examples, represent,
respectively, the type of deterministic and partial deterministic automata. It
is worth noting that although when we mentioned the type of deterministic
automata in the introduction, we did not made explicit that the set 2 was a join
semilattice, which is in fact the case. Also the set of classical regular expressions
has a join-semilattice structure, which provides also intuition for the differences
in our definition of polynomial functors, when compared with [13,7], in the use of
a join-semilattice as constant and in the definition of +. If we want to generalize
regular expressions to polynomial functors then we must guarantee that they
also have such structure, namely by imposing it in the constant and + functors.
For the × and (−)A we do not need to add extra elements because the semilattice
structure is compositionally inherited.

Next, we give the definition of the ingredient relation, which relates a poly-
nomial functor G with its ingredients, i.e. the functors used in its inductive
construction. We shall use this relation later for typing our expressions.
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Let � ⊆ PF × PF be the least reflexive and transitive relation such that

G1 � G1 × G2, G2 � G1 × G2, G1 � G1 + G2, G2 � G1 + G2, G � GA

Here and throughout this document we use F �G as a shorthand for 〈F ,G〉 ∈ �.
If F � G, then F is said to be an ingredient of G. For example, 2, Id , IdA and
D itself are all the ingredients of the deterministic automata functor D .

Coalgebras. For a functor G on Set, a G-coalgebra is a pair (S , f ) consisting
of a set of states S together with a function f : S → GS . The functor G, together
with the function f , determines the transition structure (or dynamics) of the G-
coalgebra [14]. Deterministic automata and partial automata are, respectively,
coalgebras for the functors D = 2 × IdA and P = (1 + Id)A.

A G-homomorphism from a G-coalgebra (S , f ) to a G-coalgebra (T , g) is a
function h:S → T preserving the transition structure, i.e., such that g ◦ h =
Gh ◦f . A G-coalgebra (Ω, ω) is said to be final if for any G-coalgebra (S , f ) there
exists a unique G-homomorphism [[ · ]] : S → Ω. For every polynomial functor
G there exists a final G-coalgebra (ΩG , ωG) [14]. For instance, as we already
mentioned in the introduction, the final coalgebra for the functor D is the set of
languages 2A∗

over A, together with a transition function d : 2A∗ → 2× (2A∗
)A

defined as d(φ) = 〈φ(ε), λaλw .φ(aw)〉. Here ε denotes the empty sequence and
aw denotes the word resulting from prefixing w with the letter a. The notion of
finality will play a key role later in providing a semantics to expressions.

Let (S , f ) and (T , g) be two G-coalgebras. We call a relation R ⊆ S × T a
bisimulation [1] if there exists a map e : R → GR such that the projections π1

and π2 are coalgebra homomorphisms, i.e. the following diagram commutes.

S

f

��

R
π2 ��π1��

∃e
��

T

g

��
GS GR

Gπ1

��
Gπ2

�� GT

We write s ∼G t whenever there exists a bisimulation relation containing (s , t)
and we call ∼G the bisimilarity relation. We shall drop the subscript G whenever
the functor G is clear from the context. For G-coalgebras (S , f ) and (T , g) and
s ∈ S , t ∈ T , it holds that if s ∼ t then [[ s ]] = [[ t ]].

3 A Language of Expressions for Polynomial Coalgebras

In this section we generalize the classical notion of regular expressions to poly-
nomial coalgebras. We start by introducing an untyped language of expressions
and then we single out the well-typed ones via an appropriate typing system,
associating expressions to polynomial functors.

Let A be a finite set, B a finite join-semilattice and X a set of fixpoint vari-
ables. The set of all expressions is given by the following grammar:

ε :: = ∅ | x | ε ⊕ ε | μx .γ | b | l(ε) | r(ε) | l [ε] | r [ε] | a(ε)
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where γ is a guarded expression given by:

γ :: = ∅ | γ ⊕ γ | μx .γ | b | l(ε) | r(ε) | l [ε] | r [ε] | a(ε)

A closed expression is an expression without free occurrences of fixpoint variables
x . We denote the set of guarded and closed expressions by Exp.

Intuitively, expressions denote elements of the final coalgebra. The expressions
∅, ε1 ⊕ ε2 and μx . ε will play a similar role to, respectively, the empty language,
the union of languages and the Kleene star in classical regular expressions for
deterministic automata. The expressions l(ε), r(ε), l [ε], r [ε] and a(ε) refer to
the left and right hand-side of products and sums (i.e., represent projections
and injections), and function application, respectively. We shall soon illustrate,
by means of examples, the role of these expressions.

Our language does not have any operator denoting intersection or complement
(it only includes the sum operator ⊕). This is a natural restriction, very much in
the spirit of Kleene’s regular expressions for deterministic finite automata. We
will prove that this simple language is expressive enough to denote exactly all
finite coalgebras.

Next, we present a typing assignment system for associating expressions to
polynomial functors. This will associate with each functor G the expressions ε ∈
Exp that are valid specifications of G-coalgebras. The typing proceeds following
the structure of the expressions and the ingredients of the functors.

We type expressions ε using the ingredient relation, as follows:

� ∅ : F � G � b : B � G � x : G � G

� ε : G � G

� ε : Id � G

� ε1 : F � G � ε2 : F � G

� ε1 ⊕ ε2 : F � G

� ε : G � G

� μx .ε : G � G

� ε : F1 � G

� l(ε) : F1 × F2 � G

� ε : F2 � G

� r(ε) : F1 × F2 � G

� ε : F � G

� a(ε) : FA � G

� ε : F1 � G

� l [ε] : F1 + F2 � G

� ε : F2 � G

� r [ε] : F1 + F2 � G

This type system is simple and most rules are self-explanatory. However, for
full clarification some remarks should be made. (1) Intuitively, ε : F � G means
that ε is an element (up to bisimulation) of F (ΩG). (2) As expected, there is
a rule for each expression construct. The extra rule involving Id � G reflects
the isomorphism between the final coalgebra ΩG and G(ΩG). (3) Only fixpoints
at the outermost level of the functor are allowed. This does not mean however
that we disallow nested fixpoints. For instance, μx . a(x ⊕ μy. a(y)) would be
a well-typed expression for the functor D of deterministic automata, as it will
become clear below, when we will present more examples of well-typed and non-
well-typed expressions. (4) The presented type system is decidable (expressions
are of finite length and the system is recursive).
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We can now formally define the set of G-expressions: well-typed expressions
associated with a polynomial functor G.

Definition 1 (G-expressions). Let G be a polynomial functor and F an in-
gredient of G. We denote by ExpF�G the following set:

ExpF�G = {ε ∈ Exp | � ε : F � G} .

We define the set ExpG of well-typed G-expressions by ExpG�G .

For the functor D , examples of well-typed expressions include r(a(0)), l(1) ⊕
r(a(l(0))) and μx .r(a(x )) ⊕ l(1). The expressions l [1], l(1) ⊕ 1 and μx .1 are
examples of non well-typed expressions, because the functor D does not involve
+, the subexpressions in the sum have different type, and recursion is not at the
outermost level (1 has type 2 � D), respectively.

Let us instantiate the definition of expressions to the functors of deterministic
automata D = 2 × IdA and partial automata P = (1 + Id)A.

Example 2 (Deterministic expressions). Let A be a finite set of input actions
and let X be a set of (recursion or) fixpoint variables. The set of deterministic
expressions is given by the following BNF syntax. For a ∈ A and x ∈ X :

ε:: = ∅ | x | r(a(ε)) | l(1) | l(0) | ε ⊕ ε | μx .ε

where ε is closed and occurrences of fixpoint variables are within the scope of
an input action.

It is easy to see that the closed (and guarded) expressions generated by the
grammar presented above are exactly the elements of ExpD . One can easily see
that l(1) and l(0) are well-typed expressions for D = 2×IdA because both 1 and
0 are of type 2 � D . For the expression r(a(ε)) note that a(ε) has type IdA � D
as long as ε has type Id � D . And the crucial remark here is that, by definition
of �, ExpId�G = ExpG . Intuitively, this can be explained by the fact that for a
polynomial functor G, if Id is one of the ingredients of G, then it is functioning
as a pointer to the functor being defined:

G = . . . Id�� . . .

Therefore, ε has type Id �D if it is of type D �D , or more precisely, if ε ∈ ExpD ,
which explains why the grammar above is correct.

At this point, we should remark that the syntax of our expressions differs from
the classical regular expressions in the use of μ and action prefixing a(ε) instead
of star and full concatenation. We shall prove later that these two syntactically
different formalisms are equally expressive (Theorems 5 and 6).

Without additional explanation we present next the syntax for the expressions
in ExpP .
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Example 3 (Partial automata expressions). Let A be a finite set of input actions
and X be a set of (recursion or) fixpoint variables. The set of partial expressions
is given by the following BNF syntax. For a ∈ A and x ∈ X :

ε:: = ∅ | x | a(ε) | a↑ | ε ⊕ ε | μx .ε

where ε is closed and occurrences of fixpoint variables are within the scope of
an input action. For simplicity, a↑ and a(ε) abbreviate a(l [∗]) and a(r [ε]).

We have now defined a language of expressions which gives us an algebraic
description of systems. In the remainder of the paper, we want to present a
generalization of Kleene’s theorem for polynomial coalgebras (Theorems 5 and
6). Recall that, for regular languages, the theorem states that a language is
regular if and only if it is recognized by a finite automaton.

3.1 Expressions Are Coalgebras

In this section, we show that the set of G-expressions for a given polynomial
functor G has a coalgebraic structure λG : ExpG → G(ExpG) . We proceed
by induction on the ingredients of G. More precisely we are going to define a
function

λF�G : ExpF�G → F (ExpG)

and then set λG = λG�G . Our definition of the function λF�G will make use of
the following.

(i) We define a constant EmptyF�G ∈ F (ExpG) by induction on the syntactic
structure of F :

EmptyId�G = ∅
EmptyB�G = ⊥B

EmptyF1×F2�G = 〈EmptyF1�G ,EmptyF2�G〉
EmptyF1+F2�G = ⊥
EmptyFA�G = λa.EmptyF�G

(ii) We define PlusF�G : F (ExpG) × F (ExpG) → F (ExpG) by induction on the
syntactic structure of F :

PlusId�G(ε1, ε2) = ε1 ⊕ ε2

PlusB�G(b1, b2) = b1 ∨B b2

PlusF1×F2�G(〈ε1, ε2〉, 〈ε3, ε4〉) = 〈PlusF1�G(ε1, ε3),PlusF2�G(ε2, ε4)〉
PlusF1+F2�G(κi(ε1), κi(ε2)) = κi(PlusFi�G(ε1, ε2)), i ∈ {1, 2}
PlusF1+F2�G(κi(ε1), κj (ε2)) = � i , j ∈ {1, 2} and i �= j
PlusF1+F2�G(x ,�) = PlusF1+F2�G(�, x ) = �
PlusF1+F2�G(x ,⊥) = PlusF1+F2�G(⊥, x ) = x
PlusFA�G(f , g) = λa. PlusF�G(f (a), g(a))
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Now we have all we need to define λF�G . This function will be defined by
double induction on the maximum number N (ε) of nested unguarded occurrences
of μ-expressions in ε and on the length of the proofs for typing expressions. We
define N (ε) as follows:

N (∅) = N (b) = N (a(ε)) = N (l(ε)) = N (r(ε)) = N (l [ε]) = N (r [ε]) = 0
N (ε1 ⊕ ε2) = max{N (ε1), N (ε2)} N (μx .ε) = 1 + N (ε)

For every ingredient F of a polynomial functor G and expression ε ∈ ExpF�G ,
λF�G(ε) is defined as follows:

λF�G(∅) = EmptyF�G

λF�G(ε1 ⊕ ε2) = PlusF�G(λF�G(ε1), λF�G (ε2))
λG�G(μx .ε) = λG�G(ε[μx .ε/x ])
λId�G(ε) = ε for G �= Id
λB�G(b) = b
λF1×F2�G(l(ε)) = 〈λF1�G(ε),EmptyF2�G〉
λF1×F2�G(r(ε)) = 〈EmptyF1�G , λF2�G(ε)〉
λF1+F2�G(l [ε]) = κ1(λF1�G(ε))
λF1+F2�G(r [ε]) = κ2(λF2�G(ε))

λFA�G(a(ε)) = λa′.
{

λF�G(ε) a = a′

EmptyF�G otherwise

Here, ε[μx .ε/x ] denotes syntactic substitution, replacing every free occurrence
of x in ε by μx .ε.

In order to see that the definition of λF�G is well-formed, note the interplay
between the two inductions: the length of the typing proof of the arguments
in the recursive calls is strictly decreasing, except in the case of μx .ε; but, in
this case we have that N (ε) = N (ε[μx .ε/x ]), which can easily be proved by
(standard) induction on the syntactic structure of ε, since ε is guarded (in x ),
and it guarantees that N (ε[μx .ε/x ]) < N (μx .ε). Also note that clause 4 of the
above definition overlaps with clauses 1 and 2 (by taking F = Id). However,
they give the same result and thus the definition is correct.
Definition 4. We can now define, for each polynomial functor G, a G-coalgebra

λG : ExpG → G(ExpG)

by putting λG = λG�G .
This means that we can define the subcoalgebra generated by an expression
ε ∈ ExpG , by repeatedly applying λG , which seems to be the correspondent of
half of Kleene’s theorem — the language represented by a given regular expres-
sion can be recognized by a finite state automaton. However, it is important
to remark that the subcoalgebra generated by an expression ε ∈ ExpG by re-
peatedly applying λG is, in general, infinite. Take for instance the deterministic
expression ε1 = μx . r(a(x ⊕ μy. r(a(y)))) and observe that:

λD (ε1) = 〈0, ε1 ⊕ μy. r(a(y))〉
λD (ε1 ⊕ μy. r(a(y))) = 〈0, ε1 ⊕ μy. r(a(y)) ⊕ μy. r(a(y))〉

...
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As one would expect, all the new states are bisimilar and can be identified.
However, the function λD does not make any state identification and thus yields
an infinite coalgebra.

The observation that the set of expressions has a coalgebra structure will be
crucial for the proof of the generalized Kleene theorem, as will be shown in the
next two sections.

4 Expressions Are Expressive

Having a G-coalgebra structure on ExpG has two advantages. First, it provides
us, by finality, directly with a natural semantics because of the existence of a
(unique) homomorphism [[ · ]] : ExpG → ΩG , that assigns to every expression ε
an element [[ ε ]] of the final coalgebra ΩG .

The second advantage of the coalgebra structure on ExpG is that it lets us
use the notion of G-bisimulation to relate G-coalgebras (S , g) and expressions
ε ∈ ExpG . If one can construct a bisimulation relation between an expression ε
and a state s of a given coalgebra, then the behaviour represented by ε is equal
to the behaviour determined by the transition structure of the coalgebra applied
to the state s . This is the analogue of computing the language L(r) represented
by a given regular expression r and the language L(s) accepted by a state s of
a finite state automaton and checking whether L(r) = L(s).

The following theorem states that the every state in a finite G-coalgebra can
be represented by an expression in our language. This generalizes half of Kleene’s
theorem: if a language is accepted by a finite automaton then it is regular. The
generalization of the other half of the theorem (if a language is regular then it
is accepted by a finite automaton) will be presented in Section 5.

Theorem 5. Let G be a polynomial functor and (S , g) a G-coalgebra. If S is
finite then there exists for any s ∈ S an expression εs ∈ ExpG such that εs ∼ s
(which implies [[ εs ]] = [[ s ]]).

Proof. We construct, for a state s ∈ S , an expression εs ∼ s . If G = Id ,
εs = ∅. Otherwise we proceed in the following way. Let S = {s1, s2, . . . , sn},
where s1 = s . We associate with each state si a variable xi ∈ X and an equation
εi = μxi .γ

G
g(si)

, where γG
g(si)

is defined as follows. For F � G and s ′ ∈ FS , the
expression γF

s′ ∈ ExpF�G is defined by induction on the structure of F :

γId
s = xs γB

b = b

γF1×F2
〈s,s′〉 = l(γF1

s ) ⊕ r(εF2
s′ )

γF1+F2
κ1(s)

= l [γF1
s ] γF1+F2

κ2(s)
= r [γF2

s ]

γF1+F2
⊥ = ∅ γF1+F2

� = l [∅] ⊕ r [∅]
γFA

f =
⊕

a∈A a(γF
f (a))

Note that the choice of l [∅] ⊕ r [∅] to represent inconsistency is arbitrary but
canonical, in the sense that any other expression involving sum of l [ε1] and r [ε2]
will be bisimilar.
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Next, we eliminate all free occurrences of x1, . . . , xn from the system of equa-
tions ε1 = μx1.γ

G
g(s1)

, . . . , εn = μxn .γG
g(sn) by first replacing xn by εn in the

equations for ε1, . . . , εn−1. Next, we replace xn−1 by εn−1 in the equations for
ε1, . . . , εn−2. Continuing in this way, we end up with an equation ε1 = ε, where
ε no longer contains any free variable. We then take εs = ε.

Moreover, s ∼ εs , because the relation RG = {〈εs , s〉 | s ∈ S} is a bisimulation
(for every functor G). Due to space restrictions we omit the proof of this fact,
which can be found in [2].

Let us illustrate the construction above by some examples. Consider the following
deterministic automaton over a two letter alphabet A = {a, b}, whose transition
function is depicted in the following picture (�������	
������s represents that the state s is
final):

�������	s1 a ��

b
��

�������	��������s2

a,b

��

Now define ε1 = μx1. ε and ε2 = μx2. ε
′ where

ε = l(0) ⊕ r(b(x1) ⊕ a(x2)) ε′ = l(1) ⊕ r(a(x2) ⊕ b(x2))

Substituting x2 by ε2 in ε1 then yields

ε1 = μx1. l(0) ⊕ r(b(x1) ⊕ a(ε2)) ε2 = μx2. l(1) ⊕ r(a(x2) ⊕ b(x2))

By construction we have s1 ∼ ε1 and s2 ∼ ε2.
As another example, take the following partial automaton, also over a two

letter alphabet A = {a, b}:

�������	q1
a �� �������	q2

a
��

In the graphical representation of a partial automaton (S , p) we omit transitions
for which p(s)(a) = κ1(∗). In this case, this happens for both states for the input
letter b.

We define ε1 = μx1. ε and ε2 = μx2. ε
′ where ε = ε′ = b↑⊕a(x2). Substituting

x2 by ε2 in ε1 then yields

ε1 = μx1. b↑ ⊕ a(ε2) ε2 = μx2. b↑ ⊕ a(x2)

Again we have s1 ∼ ε1 and s2 ∼ ε2.

5 Finite Systems for Expressions

We now give a construction to prove the converse of Theorem 5, that is, we
describe a synthesis process that produces a finite G-coalgebra from an arbitrary
regular G-expression ε. The states of the resulting G-coalgebra will consist of a
finite subset of expressions, including an expression ε′ such that ε ∼G ε′.
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5.1 Formula Normalization

We saw in Section 3.1 that the set of expressions has a coalgebra structure. We
observed however that the subcoalgebra generated by an expression is in general
infinite.

In order to guarantee the termination of the synthesis process we need to
identify some expressions. In fact, as we will formally show later, it is enough to
identify expressions that are provably equivalent using only the following axioms:

(Idempotency) ε ⊕ ε = ε
(Commutativity) ε1 ⊕ ε2 = ε2 ⊕ ε1

(Associativity) ε1 ⊕ (ε2 ⊕ ε3) = (ε1 ⊕ ε2) ⊕ ε3

(Empty) ∅ ⊕ ε = ε

This group of axioms gives to the set of expressions the structure of a join-
semilattice. One easily shows that if two expressions are provably equivalent
using these axioms then they are bisimilar (soundness).

For instance, it is easy to see that the deterministic expressions

r(a(∅)) ⊕ l(1) ⊕ ∅ ⊕ l(1) and r(a(∅)) ⊕ l(1)

are equivalent using the equations (Idempotency) and (Empty).
We thus work with normalized expressions in order to eliminate any syntactic

redundancy present in the expression: in a sum, ∅ can be eliminated and, by
idempotency, the sum of two syntactically equivalent expressions can be simpli-
fied. The function normG : ExpG → ExpG encodes this procedure. We define it
by induction on the expression structure as follows:

normG(∅) = ∅
normG(ε1 ⊕ ε2) = plus(rem(flatten(normG(ε1) ⊕ normG(ε2))))
normG(μx .ε) = μx .ε
normB (b) = b
normG1×G2(l(ε)) = l(ε)
normG1×G2(r(ε)) = r(ε)
normG1+G2(l [ε]) = l [ε]
normG1+G2(r [ε]) = r [ε]
normGA(a(ε)) = a(ε)

Here, the function plus takes a list of expressions [ε1, . . . , εn ] and returns the
expression ε1 ⊕ . . . ⊕ εn (plus applied to the empty list yields ∅), rem removes
duplicates in a list and flatten takes an expression ε and produces a list of
expressions by omitting brackets and replacing ⊕-symbols by commas:

flatten(ε1 ⊕ ε2) = flatten(ε1) · flatten(ε2)
flatten(∅) = []
flatten(ε) = [ε], ε ∈ {b, a(ε1), l(ε1), r(ε1), l [ε1], r [ε1], μx .ε1}

In this definition, · denotes list concatenation and [ε] the singleton list containing
ε. Note that any occurrence of ∅ in a sum is eliminated because flatten(∅) = [].

For example, the normalization of the two deterministic expressions above
results in the same expression: r(a(∅)) ⊕ l(1).
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Note that normG only normalizes one level of the expression and still distin-
guishes the expressions ε1 ⊕ ε2 and ε2 ⊕ ε1. To simplify the presentation of the
normalization algorithm, we decided not to identify these expressions, since it
does not influence termination. In the examples below, this situation will never
occur.

5.2 Synthesis Procedure

Given an expression ε ∈ ExpG we will generate a finite G-coalgebra by applying
repeatedly λG : ExpG → ExpG and normalizing the expressions obtained at
each step. We will use the function Δ, which takes an expression ε ∈ ExpG and
returns a G-coalgebra, and which is defined as follows:

ΔG(ε) = (dom(g), g) where g = DG({normG(ε)}, ∅)
Here, dom returns the domain of a finite function and DG applies λG , starting
with state normG(ε), to the new states (after normalization) generated at each
step, repeatedly, until all states in the coalgebra have their transition structure
fully defined. The arguments of DG are two sets of states: sts ⊆ ExpG , the states
that still need to be processed and vis ⊆ ExpG , the states that already have
been visited (synthesized). For each ε ∈ sts , DG computes λG(ε) and produces
an intermediate transition function (possibly partial) by taking the union of all
those λG(ε). Then, it collects all new states appearing in this step, normalizing
them, and recursively computes the transition function for those.

DG(sts , vis) =
{∅ sts = ∅

trans ∪ DG(newsts , vis ′) otherwise
where trans = {〈ε, λG(ε)〉 | ε ∈ sts}

sts ′ = collectStatesG(π2(trans))
vis ′ = sts ∪ vis
newsts = sts ′ \ vis ′

Here, collectStatesG : GExpG → PExpG is a function that collects and normal-
izes the G-expressions appearing in a structured state λG(ε) ∈ GExpG . We can
now formulate the converse of Theorem 5.

Theorem 6. Let G be a polynomial functor. For every ε ∈ ExpG , ΔG(ε) =
(S , g) is such that S is finite and there exists s ∈ S with ε ∼ s.

Proof. First note that ε ∼ normG(ε) and normG(ε) ∈ S , by the definition of
ΔG and DG . For space reasons, we omit the proof that S is finite, i.e. that
DG({normG(ε)}, ∅) terminates (details can be found in [2]).

5.3 Examples

In this subsection we will illustrate the synthesis algorithm presented above. For
simplicity, we will consider deterministic and partial automata expressions over
A = {a, b}.
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Let us start by showing the synthesised automata for the most simple deter-
ministic expressions – ∅, l(0) and l(1).

�������	∅
a,b

��
������ !l(0)

a,b ���������	∅
a,b

��
������ !"#$%&'()l(1)

a,b ���������	∅
a,b

��

It is interesting to make the parallel with the traditional regular expressions and
remark that the first two automata recognize the empty language {} and the
last the language {ε} containing only the empty word.

An important remark is that the automata generated are not minimal (for
instance, the automata l(0) and ∅ are bisimilar). Our goal has been to generate
a finite automaton from a regular expression. From this the minimal automaton
can always be obtained by identifying bisimilar states.

For an example of an expression containing fixpoints, consider ε=μx . r(a(l(0)
⊕ l(1) ⊕ x )). One can easily compute the synthesised automaton:

*+ ,-

./ 01μx . r(a(l(0) ⊕ l(1) ⊕ x )) a ��

b

		
*+ ,-

./ 01

23 45

67 89l(0) ⊕ l(1) ⊕ ε

a
��

b ���������	∅
a,b





and observe that it recognizes the language aa∗. Here, the role of the join-
semilattice structure is also visible: l(0)⊕ l(1)⊕ε specifies that the current state
is both final and non-final. Because 1 ∨ 0 = 1 the state is set to be final.

As a last example of deterministic expressions consider ε1 = μx . r(a(x ⊕
μy. r(a(y)))). Applying λD to ε1 one gets the following (partial) automaton:

*+ ,-

./ 01μx . r(a(x ⊕ μy. r(a(y)))) a ��

b

��
*+ ,-

./ 01ε1 ⊕ μy. r(a(y)) �������	∅

Calculating λD (ε1 ⊕ μy. r(a(y)))(a) yields 〈0, ε1 ⊕ μy. r(a(y)) ⊕ μy. r(a(y))〉.
When applying collectStatesG , the expression ε1 ⊕μy. r(a(y))⊕μy. r(a(y)) will
be normalized to ε1 ⊕ μy. r(a(y)), which is a state that already exists. Remark
here the role of norm in guaranteeing termination. Without normalization, one
would get the following infinite coalgebra (ε2 = μy. r(a(y))))):

*+ ,-

./ 01μx . r(a(x ⊕ μy. r(a(y)))) a ��

b

������������������
*+ ,-

./ 01ε1 ⊕ ε2
a ��

b
��

*+ ,-

./ 01ε1 ⊕ ε2 ⊕ ε2
a ��

b
�������������

. . .

�������	∅
a,b





Let us now see a few examples of synthesis for partial automata expressions,
where we will illustrate the role of ⊥ and �. As before, let us first present the
corresponding automata for simple expressions – ∅, a↑, a(∅) and a↑ ⊕ b↑.
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�������	∅ a,b �� ⊥ "#$%&'()a↑ b �� ⊥ ������ !a(∅) a ��

b

��
�������	∅ a,b �� ⊥ *+ ,-

./ 01a↑ ⊕ b↑

In the graphical representation of a partial automata (S , p), whenever g(s)(a) ∈
{⊥,�} we represent a transition, but note that ⊥ �∈ S and � �∈ S (thus, the
square box) and have no defined transitions.

Here, one can now observe how ⊥ is used to encode underspecification, work-
ing as a kind of deadlock state. Note that in the first three expressions the
behaviour for one or both of the inputs is missing, whereas in the last expression
the specification is complete. The element � is used to deal with inconsistent
specifications. For instance, consider the expression a↑ ⊕ b↑ ⊕ a(a↑ ⊕ b↑). All
inputs are specified, but note that at the outermost level input a appears in two
different sub-expressions – a↑ and a(a↑⊕ b↑) – specifying at the same time that
input a leads to successful termination and that it leads to a state where a↑⊕b↑
holds, which is contradictory, giving rise to the following automaton.

*+ ,-

./ 01a↑ ⊕ b↑ ⊕ a(a↑ ⊕ b↑) a �� �

6 Conclusions

We have presented a generalization of Kleene’s theorem for polynomial coalge-
bras. More precisely, we have introduced a language of expressions for polynomial
coalgebras and we have shown that they constitute a precise syntactic descrip-
tion of deterministic systems, in the sense that every expression in the language
is bisimilar to a state of a finite coalgebra and vice-versa (Theorems 5 and 6).

The language of expressions presented in this paper can be seen as an alterna-
tive to the classical regular expressions for deterministic automata and to KAT
expressions [11] and as a generalization of previous work of the authors on Mealy
machines [3].

As was pointed out by the referees of the present paper, Theorem 5 is closely
related to the well known fact that, for polynomial functors, an element in a finite
subcoalgebra of the final coalgebra can be characterised as a “finite tree with
loops”. This could in turn give rise to a different language of expressions ε:: =
x | μx .ε | σ(ε1, ..., εn), where σ is an n-ary operation symbol in the signature
corresponding to a polynomial functor (e.g., if GX = 1 + X + X + X 2 then the
signature has one constant, two unary and one binary operation symbol). This
alternative approach might seem simpler than the one taken in this paper but
does not provide an operator for combining specifications as our ⊕ operator,
and, more importantly, will not allow for an easy and modular axiomatization of
bisimulation. Providing such a complete finite axiomatization generalizing the
results presented in [9,5] is subject of our current research. This will provide a
generalization of Kleene algebra to polynomial coalgebras.

Further, we would like to deal with non-deterministic systems (which amounts
to include the powerset in our class of functors) and probabilistic systems.
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In our language we have a fixpoint operator, μx .ε, and action prefixing, a(ε),
opposed to the use of star E∗ and sequential composition E1E2 in classical
regular expressions. We would like to study in more detail the precise relation
between these two (equally expressive) syntactic formalisms. Ordinary regular
expressions are closed under intersection and complement. We would like to
study whether a similar result can be obtained for our language.

Coalgebraic modal logics (CML) [12] have been presented as a general theory
for reasoning about transition systems. The connection between our language
and CML is also subject of further study.
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